1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 * Copyright 2015 RackTop Systems. 26 * Copyright 2017 Nexenta Systems, Inc. 27 */ 28 29 /* 30 * Pool import support functions. 31 * 32 * To import a pool, we rely on reading the configuration information from the 33 * ZFS label of each device. If we successfully read the label, then we 34 * organize the configuration information in the following hierarchy: 35 * 36 * pool guid -> toplevel vdev guid -> label txg 37 * 38 * Duplicate entries matching this same tuple will be discarded. Once we have 39 * examined every device, we pick the best label txg config for each toplevel 40 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 41 * update any paths that have changed. Finally, we attempt to import the pool 42 * using our derived config, and record the results. 43 */ 44 45 #include <ctype.h> 46 #include <devid.h> 47 #include <dirent.h> 48 #include <errno.h> 49 #include <libintl.h> 50 #include <stddef.h> 51 #include <stdlib.h> 52 #include <string.h> 53 #include <sys/stat.h> 54 #include <unistd.h> 55 #include <fcntl.h> 56 #include <sys/vtoc.h> 57 #include <sys/dktp/fdisk.h> 58 #include <sys/efi_partition.h> 59 #include <thread_pool.h> 60 61 #include <sys/vdev_impl.h> 62 63 #include "libzfs.h" 64 #include "libzfs_impl.h" 65 66 /* 67 * Intermediate structures used to gather configuration information. 68 */ 69 typedef struct config_entry { 70 uint64_t ce_txg; 71 nvlist_t *ce_config; 72 struct config_entry *ce_next; 73 } config_entry_t; 74 75 typedef struct vdev_entry { 76 uint64_t ve_guid; 77 config_entry_t *ve_configs; 78 struct vdev_entry *ve_next; 79 } vdev_entry_t; 80 81 typedef struct pool_entry { 82 uint64_t pe_guid; 83 vdev_entry_t *pe_vdevs; 84 struct pool_entry *pe_next; 85 } pool_entry_t; 86 87 typedef struct name_entry { 88 char *ne_name; 89 uint64_t ne_guid; 90 struct name_entry *ne_next; 91 } name_entry_t; 92 93 typedef struct pool_list { 94 pool_entry_t *pools; 95 name_entry_t *names; 96 } pool_list_t; 97 98 /* 99 * Go through and fix up any path and/or devid information for the given vdev 100 * configuration. 101 */ 102 static int 103 fix_paths(nvlist_t *nv, name_entry_t *names) 104 { 105 nvlist_t **child; 106 uint_t c, children; 107 uint64_t guid; 108 name_entry_t *ne, *best; 109 char *path, *devid; 110 int matched; 111 112 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 113 &child, &children) == 0) { 114 for (c = 0; c < children; c++) 115 if (fix_paths(child[c], names) != 0) 116 return (-1); 117 return (0); 118 } 119 120 /* 121 * This is a leaf (file or disk) vdev. In either case, go through 122 * the name list and see if we find a matching guid. If so, replace 123 * the path and see if we can calculate a new devid. 124 * 125 * There may be multiple names associated with a particular guid, in 126 * which case we have overlapping slices or multiple paths to the same 127 * disk. If this is the case, then we want to pick the path that is 128 * the most similar to the original, where "most similar" is the number 129 * of matching characters starting from the end of the path. This will 130 * preserve slice numbers even if the disks have been reorganized, and 131 * will also catch preferred disk names if multiple paths exist. 132 */ 133 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 134 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 135 path = NULL; 136 137 matched = 0; 138 best = NULL; 139 for (ne = names; ne != NULL; ne = ne->ne_next) { 140 if (ne->ne_guid == guid) { 141 const char *src, *dst; 142 int count; 143 144 if (path == NULL) { 145 best = ne; 146 break; 147 } 148 149 src = ne->ne_name + strlen(ne->ne_name) - 1; 150 dst = path + strlen(path) - 1; 151 for (count = 0; src >= ne->ne_name && dst >= path; 152 src--, dst--, count++) 153 if (*src != *dst) 154 break; 155 156 /* 157 * At this point, 'count' is the number of characters 158 * matched from the end. 159 */ 160 if (count > matched || best == NULL) { 161 best = ne; 162 matched = count; 163 } 164 } 165 } 166 167 if (best == NULL) 168 return (0); 169 170 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 171 return (-1); 172 173 if ((devid = devid_str_from_path(best->ne_name)) == NULL) { 174 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); 175 } else { 176 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) { 177 devid_str_free(devid); 178 return (-1); 179 } 180 devid_str_free(devid); 181 } 182 183 return (0); 184 } 185 186 /* 187 * Add the given configuration to the list of known devices. 188 */ 189 static int 190 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path, 191 nvlist_t *config) 192 { 193 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 194 pool_entry_t *pe; 195 vdev_entry_t *ve; 196 config_entry_t *ce; 197 name_entry_t *ne; 198 199 /* 200 * If this is a hot spare not currently in use or level 2 cache 201 * device, add it to the list of names to translate, but don't do 202 * anything else. 203 */ 204 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 205 &state) == 0 && 206 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 207 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 208 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 209 return (-1); 210 211 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 212 free(ne); 213 return (-1); 214 } 215 216 ne->ne_guid = vdev_guid; 217 ne->ne_next = pl->names; 218 pl->names = ne; 219 220 return (0); 221 } 222 223 /* 224 * If we have a valid config but cannot read any of these fields, then 225 * it means we have a half-initialized label. In vdev_label_init() 226 * we write a label with txg == 0 so that we can identify the device 227 * in case the user refers to the same disk later on. If we fail to 228 * create the pool, we'll be left with a label in this state 229 * which should not be considered part of a valid pool. 230 */ 231 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 232 &pool_guid) != 0 || 233 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 234 &vdev_guid) != 0 || 235 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 236 &top_guid) != 0 || 237 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 238 &txg) != 0 || txg == 0) { 239 return (0); 240 } 241 242 /* 243 * First, see if we know about this pool. If not, then add it to the 244 * list of known pools. 245 */ 246 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 247 if (pe->pe_guid == pool_guid) 248 break; 249 } 250 251 if (pe == NULL) { 252 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 253 return (-1); 254 } 255 pe->pe_guid = pool_guid; 256 pe->pe_next = pl->pools; 257 pl->pools = pe; 258 } 259 260 /* 261 * Second, see if we know about this toplevel vdev. Add it if its 262 * missing. 263 */ 264 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 265 if (ve->ve_guid == top_guid) 266 break; 267 } 268 269 if (ve == NULL) { 270 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 271 return (-1); 272 } 273 ve->ve_guid = top_guid; 274 ve->ve_next = pe->pe_vdevs; 275 pe->pe_vdevs = ve; 276 } 277 278 /* 279 * Third, see if we have a config with a matching transaction group. If 280 * so, then we do nothing. Otherwise, add it to the list of known 281 * configs. 282 */ 283 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 284 if (ce->ce_txg == txg) 285 break; 286 } 287 288 if (ce == NULL) { 289 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { 290 return (-1); 291 } 292 ce->ce_txg = txg; 293 ce->ce_config = fnvlist_dup(config); 294 ce->ce_next = ve->ve_configs; 295 ve->ve_configs = ce; 296 } 297 298 /* 299 * At this point we've successfully added our config to the list of 300 * known configs. The last thing to do is add the vdev guid -> path 301 * mappings so that we can fix up the configuration as necessary before 302 * doing the import. 303 */ 304 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 305 return (-1); 306 307 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 308 free(ne); 309 return (-1); 310 } 311 312 ne->ne_guid = vdev_guid; 313 ne->ne_next = pl->names; 314 pl->names = ne; 315 316 return (0); 317 } 318 319 /* 320 * Returns true if the named pool matches the given GUID. 321 */ 322 static int 323 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid, 324 boolean_t *isactive) 325 { 326 zpool_handle_t *zhp; 327 uint64_t theguid; 328 329 if (zpool_open_silent(hdl, name, &zhp) != 0) 330 return (-1); 331 332 if (zhp == NULL) { 333 *isactive = B_FALSE; 334 return (0); 335 } 336 337 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, 338 &theguid) == 0); 339 340 zpool_close(zhp); 341 342 *isactive = (theguid == guid); 343 return (0); 344 } 345 346 static nvlist_t * 347 refresh_config(libzfs_handle_t *hdl, nvlist_t *config) 348 { 349 nvlist_t *nvl; 350 zfs_cmd_t zc = { 0 }; 351 int err, dstbuf_size; 352 353 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0) 354 return (NULL); 355 356 dstbuf_size = MAX(CONFIG_BUF_MINSIZE, zc.zc_nvlist_conf_size * 4); 357 358 if (zcmd_alloc_dst_nvlist(hdl, &zc, dstbuf_size) != 0) { 359 zcmd_free_nvlists(&zc); 360 return (NULL); 361 } 362 363 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT, 364 &zc)) != 0 && errno == ENOMEM) { 365 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { 366 zcmd_free_nvlists(&zc); 367 return (NULL); 368 } 369 } 370 371 if (err) { 372 zcmd_free_nvlists(&zc); 373 return (NULL); 374 } 375 376 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) { 377 zcmd_free_nvlists(&zc); 378 return (NULL); 379 } 380 381 zcmd_free_nvlists(&zc); 382 return (nvl); 383 } 384 385 /* 386 * Determine if the vdev id is a hole in the namespace. 387 */ 388 boolean_t 389 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) 390 { 391 for (int c = 0; c < holes; c++) { 392 393 /* Top-level is a hole */ 394 if (hole_array[c] == id) 395 return (B_TRUE); 396 } 397 return (B_FALSE); 398 } 399 400 /* 401 * Convert our list of pools into the definitive set of configurations. We 402 * start by picking the best config for each toplevel vdev. Once that's done, 403 * we assemble the toplevel vdevs into a full config for the pool. We make a 404 * pass to fix up any incorrect paths, and then add it to the main list to 405 * return to the user. 406 */ 407 static nvlist_t * 408 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok, 409 nvlist_t *policy) 410 { 411 pool_entry_t *pe; 412 vdev_entry_t *ve; 413 config_entry_t *ce; 414 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot; 415 nvlist_t **spares, **l2cache; 416 uint_t i, nspares, nl2cache; 417 boolean_t config_seen; 418 uint64_t best_txg; 419 char *name, *hostname = NULL; 420 uint64_t guid; 421 uint_t children = 0; 422 nvlist_t **child = NULL; 423 uint_t holes; 424 uint64_t *hole_array, max_id; 425 uint_t c; 426 boolean_t isactive; 427 uint64_t hostid; 428 nvlist_t *nvl; 429 boolean_t found_one = B_FALSE; 430 boolean_t valid_top_config = B_FALSE; 431 432 if (nvlist_alloc(&ret, 0, 0) != 0) 433 goto nomem; 434 435 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 436 uint64_t id, max_txg = 0; 437 438 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 439 goto nomem; 440 config_seen = B_FALSE; 441 442 /* 443 * Iterate over all toplevel vdevs. Grab the pool configuration 444 * from the first one we find, and then go through the rest and 445 * add them as necessary to the 'vdevs' member of the config. 446 */ 447 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 448 449 /* 450 * Determine the best configuration for this vdev by 451 * selecting the config with the latest transaction 452 * group. 453 */ 454 best_txg = 0; 455 for (ce = ve->ve_configs; ce != NULL; 456 ce = ce->ce_next) { 457 458 if (ce->ce_txg > best_txg) { 459 tmp = ce->ce_config; 460 best_txg = ce->ce_txg; 461 } 462 } 463 464 /* 465 * We rely on the fact that the max txg for the 466 * pool will contain the most up-to-date information 467 * about the valid top-levels in the vdev namespace. 468 */ 469 if (best_txg > max_txg) { 470 (void) nvlist_remove(config, 471 ZPOOL_CONFIG_VDEV_CHILDREN, 472 DATA_TYPE_UINT64); 473 (void) nvlist_remove(config, 474 ZPOOL_CONFIG_HOLE_ARRAY, 475 DATA_TYPE_UINT64_ARRAY); 476 477 max_txg = best_txg; 478 hole_array = NULL; 479 holes = 0; 480 max_id = 0; 481 valid_top_config = B_FALSE; 482 483 if (nvlist_lookup_uint64(tmp, 484 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { 485 verify(nvlist_add_uint64(config, 486 ZPOOL_CONFIG_VDEV_CHILDREN, 487 max_id) == 0); 488 valid_top_config = B_TRUE; 489 } 490 491 if (nvlist_lookup_uint64_array(tmp, 492 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, 493 &holes) == 0) { 494 verify(nvlist_add_uint64_array(config, 495 ZPOOL_CONFIG_HOLE_ARRAY, 496 hole_array, holes) == 0); 497 } 498 } 499 500 if (!config_seen) { 501 /* 502 * Copy the relevant pieces of data to the pool 503 * configuration: 504 * 505 * version 506 * pool guid 507 * name 508 * comment (if available) 509 * pool state 510 * hostid (if available) 511 * hostname (if available) 512 */ 513 uint64_t state, version; 514 char *comment = NULL; 515 516 version = fnvlist_lookup_uint64(tmp, 517 ZPOOL_CONFIG_VERSION); 518 fnvlist_add_uint64(config, 519 ZPOOL_CONFIG_VERSION, version); 520 guid = fnvlist_lookup_uint64(tmp, 521 ZPOOL_CONFIG_POOL_GUID); 522 fnvlist_add_uint64(config, 523 ZPOOL_CONFIG_POOL_GUID, guid); 524 name = fnvlist_lookup_string(tmp, 525 ZPOOL_CONFIG_POOL_NAME); 526 fnvlist_add_string(config, 527 ZPOOL_CONFIG_POOL_NAME, name); 528 529 if (nvlist_lookup_string(tmp, 530 ZPOOL_CONFIG_COMMENT, &comment) == 0) 531 fnvlist_add_string(config, 532 ZPOOL_CONFIG_COMMENT, comment); 533 534 state = fnvlist_lookup_uint64(tmp, 535 ZPOOL_CONFIG_POOL_STATE); 536 fnvlist_add_uint64(config, 537 ZPOOL_CONFIG_POOL_STATE, state); 538 539 hostid = 0; 540 if (nvlist_lookup_uint64(tmp, 541 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 542 fnvlist_add_uint64(config, 543 ZPOOL_CONFIG_HOSTID, hostid); 544 hostname = fnvlist_lookup_string(tmp, 545 ZPOOL_CONFIG_HOSTNAME); 546 fnvlist_add_string(config, 547 ZPOOL_CONFIG_HOSTNAME, hostname); 548 } 549 550 config_seen = B_TRUE; 551 } 552 553 /* 554 * Add this top-level vdev to the child array. 555 */ 556 verify(nvlist_lookup_nvlist(tmp, 557 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 558 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 559 &id) == 0); 560 561 if (id >= children) { 562 nvlist_t **newchild; 563 564 newchild = zfs_alloc(hdl, (id + 1) * 565 sizeof (nvlist_t *)); 566 if (newchild == NULL) 567 goto nomem; 568 569 for (c = 0; c < children; c++) 570 newchild[c] = child[c]; 571 572 free(child); 573 child = newchild; 574 children = id + 1; 575 } 576 if (nvlist_dup(nvtop, &child[id], 0) != 0) 577 goto nomem; 578 579 } 580 581 /* 582 * If we have information about all the top-levels then 583 * clean up the nvlist which we've constructed. This 584 * means removing any extraneous devices that are 585 * beyond the valid range or adding devices to the end 586 * of our array which appear to be missing. 587 */ 588 if (valid_top_config) { 589 if (max_id < children) { 590 for (c = max_id; c < children; c++) 591 nvlist_free(child[c]); 592 children = max_id; 593 } else if (max_id > children) { 594 nvlist_t **newchild; 595 596 newchild = zfs_alloc(hdl, (max_id) * 597 sizeof (nvlist_t *)); 598 if (newchild == NULL) 599 goto nomem; 600 601 for (c = 0; c < children; c++) 602 newchild[c] = child[c]; 603 604 free(child); 605 child = newchild; 606 children = max_id; 607 } 608 } 609 610 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 611 &guid) == 0); 612 613 /* 614 * The vdev namespace may contain holes as a result of 615 * device removal. We must add them back into the vdev 616 * tree before we process any missing devices. 617 */ 618 if (holes > 0) { 619 ASSERT(valid_top_config); 620 621 for (c = 0; c < children; c++) { 622 nvlist_t *holey; 623 624 if (child[c] != NULL || 625 !vdev_is_hole(hole_array, holes, c)) 626 continue; 627 628 if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 629 0) != 0) 630 goto nomem; 631 632 /* 633 * Holes in the namespace are treated as 634 * "hole" top-level vdevs and have a 635 * special flag set on them. 636 */ 637 if (nvlist_add_string(holey, 638 ZPOOL_CONFIG_TYPE, 639 VDEV_TYPE_HOLE) != 0 || 640 nvlist_add_uint64(holey, 641 ZPOOL_CONFIG_ID, c) != 0 || 642 nvlist_add_uint64(holey, 643 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 644 nvlist_free(holey); 645 goto nomem; 646 } 647 child[c] = holey; 648 } 649 } 650 651 /* 652 * Look for any missing top-level vdevs. If this is the case, 653 * create a faked up 'missing' vdev as a placeholder. We cannot 654 * simply compress the child array, because the kernel performs 655 * certain checks to make sure the vdev IDs match their location 656 * in the configuration. 657 */ 658 for (c = 0; c < children; c++) { 659 if (child[c] == NULL) { 660 nvlist_t *missing; 661 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 662 0) != 0) 663 goto nomem; 664 if (nvlist_add_string(missing, 665 ZPOOL_CONFIG_TYPE, 666 VDEV_TYPE_MISSING) != 0 || 667 nvlist_add_uint64(missing, 668 ZPOOL_CONFIG_ID, c) != 0 || 669 nvlist_add_uint64(missing, 670 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 671 nvlist_free(missing); 672 goto nomem; 673 } 674 child[c] = missing; 675 } 676 } 677 678 /* 679 * Put all of this pool's top-level vdevs into a root vdev. 680 */ 681 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 682 goto nomem; 683 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 684 VDEV_TYPE_ROOT) != 0 || 685 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 686 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 687 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 688 child, children) != 0) { 689 nvlist_free(nvroot); 690 goto nomem; 691 } 692 693 for (c = 0; c < children; c++) 694 nvlist_free(child[c]); 695 free(child); 696 children = 0; 697 child = NULL; 698 699 /* 700 * Go through and fix up any paths and/or devids based on our 701 * known list of vdev GUID -> path mappings. 702 */ 703 if (fix_paths(nvroot, pl->names) != 0) { 704 nvlist_free(nvroot); 705 goto nomem; 706 } 707 708 /* 709 * Add the root vdev to this pool's configuration. 710 */ 711 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 712 nvroot) != 0) { 713 nvlist_free(nvroot); 714 goto nomem; 715 } 716 nvlist_free(nvroot); 717 718 /* 719 * zdb uses this path to report on active pools that were 720 * imported or created using -R. 721 */ 722 if (active_ok) 723 goto add_pool; 724 725 /* 726 * Determine if this pool is currently active, in which case we 727 * can't actually import it. 728 */ 729 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 730 &name) == 0); 731 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 732 &guid) == 0); 733 734 if (pool_active(hdl, name, guid, &isactive) != 0) 735 goto error; 736 737 if (isactive) { 738 nvlist_free(config); 739 config = NULL; 740 continue; 741 } 742 743 if (policy != NULL) { 744 if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY, 745 policy) != 0) 746 goto nomem; 747 } 748 749 if ((nvl = refresh_config(hdl, config)) == NULL) { 750 nvlist_free(config); 751 config = NULL; 752 continue; 753 } 754 755 nvlist_free(config); 756 config = nvl; 757 758 /* 759 * Go through and update the paths for spares, now that we have 760 * them. 761 */ 762 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 763 &nvroot) == 0); 764 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 765 &spares, &nspares) == 0) { 766 for (i = 0; i < nspares; i++) { 767 if (fix_paths(spares[i], pl->names) != 0) 768 goto nomem; 769 } 770 } 771 772 /* 773 * Update the paths for l2cache devices. 774 */ 775 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 776 &l2cache, &nl2cache) == 0) { 777 for (i = 0; i < nl2cache; i++) { 778 if (fix_paths(l2cache[i], pl->names) != 0) 779 goto nomem; 780 } 781 } 782 783 /* 784 * Restore the original information read from the actual label. 785 */ 786 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 787 DATA_TYPE_UINT64); 788 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 789 DATA_TYPE_STRING); 790 if (hostid != 0) { 791 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 792 hostid) == 0); 793 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 794 hostname) == 0); 795 } 796 797 add_pool: 798 /* 799 * Add this pool to the list of configs. 800 */ 801 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 802 &name) == 0); 803 if (nvlist_add_nvlist(ret, name, config) != 0) 804 goto nomem; 805 806 found_one = B_TRUE; 807 nvlist_free(config); 808 config = NULL; 809 } 810 811 if (!found_one) { 812 nvlist_free(ret); 813 ret = NULL; 814 } 815 816 return (ret); 817 818 nomem: 819 (void) no_memory(hdl); 820 error: 821 nvlist_free(config); 822 nvlist_free(ret); 823 for (c = 0; c < children; c++) 824 nvlist_free(child[c]); 825 free(child); 826 827 return (NULL); 828 } 829 830 /* 831 * Return the offset of the given label. 832 */ 833 static uint64_t 834 label_offset(uint64_t size, int l) 835 { 836 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 837 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 838 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 839 } 840 841 /* 842 * Given a file descriptor, read the label information and return an nvlist 843 * describing the configuration, if there is one. 844 * Return 0 on success, or -1 on failure 845 */ 846 int 847 zpool_read_label(int fd, nvlist_t **config) 848 { 849 struct stat64 statbuf; 850 int l; 851 vdev_label_t *label; 852 uint64_t state, txg, size; 853 854 *config = NULL; 855 856 if (fstat64(fd, &statbuf) == -1) 857 return (-1); 858 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 859 860 if ((label = malloc(sizeof (vdev_label_t))) == NULL) 861 return (-1); 862 863 for (l = 0; l < VDEV_LABELS; l++) { 864 if (pread64(fd, label, sizeof (vdev_label_t), 865 label_offset(size, l)) != sizeof (vdev_label_t)) 866 continue; 867 868 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 869 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) 870 continue; 871 872 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 873 &state) != 0 || state > POOL_STATE_L2CACHE) { 874 nvlist_free(*config); 875 continue; 876 } 877 878 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 879 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 880 &txg) != 0 || txg == 0)) { 881 nvlist_free(*config); 882 continue; 883 } 884 885 free(label); 886 return (0); 887 } 888 889 free(label); 890 *config = NULL; 891 errno = ENOENT; 892 return (-1); 893 } 894 895 typedef struct rdsk_node { 896 char *rn_name; 897 int rn_dfd; 898 libzfs_handle_t *rn_hdl; 899 nvlist_t *rn_config; 900 avl_tree_t *rn_avl; 901 avl_node_t rn_node; 902 boolean_t rn_nozpool; 903 } rdsk_node_t; 904 905 static int 906 slice_cache_compare(const void *arg1, const void *arg2) 907 { 908 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; 909 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; 910 char *nm1slice, *nm2slice; 911 int rv; 912 913 /* 914 * slices zero and two are the most likely to provide results, 915 * so put those first 916 */ 917 nm1slice = strstr(nm1, "s0"); 918 nm2slice = strstr(nm2, "s0"); 919 if (nm1slice && !nm2slice) { 920 return (-1); 921 } 922 if (!nm1slice && nm2slice) { 923 return (1); 924 } 925 nm1slice = strstr(nm1, "s2"); 926 nm2slice = strstr(nm2, "s2"); 927 if (nm1slice && !nm2slice) { 928 return (-1); 929 } 930 if (!nm1slice && nm2slice) { 931 return (1); 932 } 933 934 rv = strcmp(nm1, nm2); 935 if (rv == 0) 936 return (0); 937 return (rv > 0 ? 1 : -1); 938 } 939 940 static void 941 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno, 942 diskaddr_t size, uint_t blksz) 943 { 944 rdsk_node_t tmpnode; 945 rdsk_node_t *node; 946 char sname[MAXNAMELEN]; 947 948 tmpnode.rn_name = &sname[0]; 949 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u", 950 diskname, partno); 951 /* 952 * protect against division by zero for disk labels that 953 * contain a bogus sector size 954 */ 955 if (blksz == 0) 956 blksz = DEV_BSIZE; 957 /* too small to contain a zpool? */ 958 if ((size < (SPA_MINDEVSIZE / blksz)) && 959 (node = avl_find(r, &tmpnode, NULL))) 960 node->rn_nozpool = B_TRUE; 961 } 962 963 static void 964 nozpool_all_slices(avl_tree_t *r, const char *sname) 965 { 966 char diskname[MAXNAMELEN]; 967 char *ptr; 968 int i; 969 970 (void) strncpy(diskname, sname, MAXNAMELEN); 971 if (((ptr = strrchr(diskname, 's')) == NULL) && 972 ((ptr = strrchr(diskname, 'p')) == NULL)) 973 return; 974 ptr[0] = 's'; 975 ptr[1] = '\0'; 976 for (i = 0; i < NDKMAP; i++) 977 check_one_slice(r, diskname, i, 0, 1); 978 ptr[0] = 'p'; 979 for (i = 0; i <= FD_NUMPART; i++) 980 check_one_slice(r, diskname, i, 0, 1); 981 } 982 983 static void 984 check_slices(avl_tree_t *r, int fd, const char *sname) 985 { 986 struct extvtoc vtoc; 987 struct dk_gpt *gpt; 988 char diskname[MAXNAMELEN]; 989 char *ptr; 990 int i; 991 992 (void) strncpy(diskname, sname, MAXNAMELEN); 993 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1])) 994 return; 995 ptr[1] = '\0'; 996 997 if (read_extvtoc(fd, &vtoc) >= 0) { 998 for (i = 0; i < NDKMAP; i++) 999 check_one_slice(r, diskname, i, 1000 vtoc.v_part[i].p_size, vtoc.v_sectorsz); 1001 } else if (efi_alloc_and_read(fd, &gpt) >= 0) { 1002 /* 1003 * on x86 we'll still have leftover links that point 1004 * to slices s[9-15], so use NDKMAP instead 1005 */ 1006 for (i = 0; i < NDKMAP; i++) 1007 check_one_slice(r, diskname, i, 1008 gpt->efi_parts[i].p_size, gpt->efi_lbasize); 1009 /* nodes p[1-4] are never used with EFI labels */ 1010 ptr[0] = 'p'; 1011 for (i = 1; i <= FD_NUMPART; i++) 1012 check_one_slice(r, diskname, i, 0, 1); 1013 efi_free(gpt); 1014 } 1015 } 1016 1017 static void 1018 zpool_open_func(void *arg) 1019 { 1020 rdsk_node_t *rn = arg; 1021 struct stat64 statbuf; 1022 nvlist_t *config; 1023 int fd; 1024 1025 if (rn->rn_nozpool) 1026 return; 1027 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) { 1028 /* symlink to a device that's no longer there */ 1029 if (errno == ENOENT) 1030 nozpool_all_slices(rn->rn_avl, rn->rn_name); 1031 return; 1032 } 1033 /* 1034 * Ignore failed stats. We only want regular 1035 * files, character devs and block devs. 1036 */ 1037 if (fstat64(fd, &statbuf) != 0 || 1038 (!S_ISREG(statbuf.st_mode) && 1039 !S_ISCHR(statbuf.st_mode) && 1040 !S_ISBLK(statbuf.st_mode))) { 1041 (void) close(fd); 1042 return; 1043 } 1044 /* this file is too small to hold a zpool */ 1045 if (S_ISREG(statbuf.st_mode) && 1046 statbuf.st_size < SPA_MINDEVSIZE) { 1047 (void) close(fd); 1048 return; 1049 } else if (!S_ISREG(statbuf.st_mode)) { 1050 /* 1051 * Try to read the disk label first so we don't have to 1052 * open a bunch of minor nodes that can't have a zpool. 1053 */ 1054 check_slices(rn->rn_avl, fd, rn->rn_name); 1055 } 1056 1057 if ((zpool_read_label(fd, &config)) != 0 && errno == ENOMEM) { 1058 (void) close(fd); 1059 (void) no_memory(rn->rn_hdl); 1060 return; 1061 } 1062 (void) close(fd); 1063 1064 rn->rn_config = config; 1065 } 1066 1067 /* 1068 * Given a file descriptor, clear (zero) the label information. 1069 */ 1070 int 1071 zpool_clear_label(int fd) 1072 { 1073 struct stat64 statbuf; 1074 int l; 1075 vdev_label_t *label; 1076 uint64_t size; 1077 1078 if (fstat64(fd, &statbuf) == -1) 1079 return (0); 1080 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 1081 1082 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL) 1083 return (-1); 1084 1085 for (l = 0; l < VDEV_LABELS; l++) { 1086 if (pwrite64(fd, label, sizeof (vdev_label_t), 1087 label_offset(size, l)) != sizeof (vdev_label_t)) { 1088 free(label); 1089 return (-1); 1090 } 1091 } 1092 1093 free(label); 1094 return (0); 1095 } 1096 1097 /* 1098 * Given a list of directories to search, find all pools stored on disk. This 1099 * includes partial pools which are not available to import. If no args are 1100 * given (argc is 0), then the default directory (/dev/dsk) is searched. 1101 * poolname or guid (but not both) are provided by the caller when trying 1102 * to import a specific pool. 1103 */ 1104 static nvlist_t * 1105 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg) 1106 { 1107 int i, dirs = iarg->paths; 1108 struct dirent64 *dp; 1109 char path[MAXPATHLEN]; 1110 char *end, **dir = iarg->path; 1111 size_t pathleft; 1112 nvlist_t *ret = NULL; 1113 static char *default_dir = ZFS_DISK_ROOT; 1114 pool_list_t pools = { 0 }; 1115 pool_entry_t *pe, *penext; 1116 vdev_entry_t *ve, *venext; 1117 config_entry_t *ce, *cenext; 1118 name_entry_t *ne, *nenext; 1119 avl_tree_t slice_cache; 1120 rdsk_node_t *slice; 1121 void *cookie; 1122 1123 if (dirs == 0) { 1124 dirs = 1; 1125 dir = &default_dir; 1126 } 1127 1128 /* 1129 * Go through and read the label configuration information from every 1130 * possible device, organizing the information according to pool GUID 1131 * and toplevel GUID. 1132 */ 1133 for (i = 0; i < dirs; i++) { 1134 tpool_t *t; 1135 char rdsk[MAXPATHLEN]; 1136 int dfd; 1137 boolean_t config_failed = B_FALSE; 1138 DIR *dirp; 1139 1140 /* use realpath to normalize the path */ 1141 if (realpath(dir[i], path) == 0) { 1142 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1143 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]); 1144 goto error; 1145 } 1146 end = &path[strlen(path)]; 1147 *end++ = '/'; 1148 *end = 0; 1149 pathleft = &path[sizeof (path)] - end; 1150 1151 /* 1152 * Using raw devices instead of block devices when we're 1153 * reading the labels skips a bunch of slow operations during 1154 * close(2) processing, so we replace /dev/dsk with /dev/rdsk. 1155 */ 1156 if (strcmp(path, ZFS_DISK_ROOTD) == 0) 1157 (void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk)); 1158 else 1159 (void) strlcpy(rdsk, path, sizeof (rdsk)); 1160 1161 if ((dfd = open64(rdsk, O_RDONLY)) < 0 || 1162 (dirp = fdopendir(dfd)) == NULL) { 1163 if (dfd >= 0) 1164 (void) close(dfd); 1165 zfs_error_aux(hdl, strerror(errno)); 1166 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1167 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 1168 rdsk); 1169 goto error; 1170 } 1171 1172 avl_create(&slice_cache, slice_cache_compare, 1173 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node)); 1174 /* 1175 * This is not MT-safe, but we have no MT consumers of libzfs 1176 */ 1177 while ((dp = readdir64(dirp)) != NULL) { 1178 const char *name = dp->d_name; 1179 if (name[0] == '.' && 1180 (name[1] == 0 || (name[1] == '.' && name[2] == 0))) 1181 continue; 1182 1183 slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); 1184 slice->rn_name = zfs_strdup(hdl, name); 1185 slice->rn_avl = &slice_cache; 1186 slice->rn_dfd = dfd; 1187 slice->rn_hdl = hdl; 1188 slice->rn_nozpool = B_FALSE; 1189 avl_add(&slice_cache, slice); 1190 } 1191 /* 1192 * create a thread pool to do all of this in parallel; 1193 * rn_nozpool is not protected, so this is racy in that 1194 * multiple tasks could decide that the same slice can 1195 * not hold a zpool, which is benign. Also choose 1196 * double the number of processors; we hold a lot of 1197 * locks in the kernel, so going beyond this doesn't 1198 * buy us much. 1199 */ 1200 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 1201 0, NULL); 1202 for (slice = avl_first(&slice_cache); slice; 1203 (slice = avl_walk(&slice_cache, slice, 1204 AVL_AFTER))) 1205 (void) tpool_dispatch(t, zpool_open_func, slice); 1206 tpool_wait(t); 1207 tpool_destroy(t); 1208 1209 cookie = NULL; 1210 while ((slice = avl_destroy_nodes(&slice_cache, 1211 &cookie)) != NULL) { 1212 if (slice->rn_config != NULL && !config_failed) { 1213 nvlist_t *config = slice->rn_config; 1214 boolean_t matched = B_TRUE; 1215 1216 if (iarg->poolname != NULL) { 1217 char *pname; 1218 1219 matched = nvlist_lookup_string(config, 1220 ZPOOL_CONFIG_POOL_NAME, 1221 &pname) == 0 && 1222 strcmp(iarg->poolname, pname) == 0; 1223 } else if (iarg->guid != 0) { 1224 uint64_t this_guid; 1225 1226 matched = nvlist_lookup_uint64(config, 1227 ZPOOL_CONFIG_POOL_GUID, 1228 &this_guid) == 0 && 1229 iarg->guid == this_guid; 1230 } 1231 if (matched) { 1232 /* 1233 * use the non-raw path for the config 1234 */ 1235 (void) strlcpy(end, slice->rn_name, 1236 pathleft); 1237 if (add_config(hdl, &pools, path, 1238 config) != 0) 1239 config_failed = B_TRUE; 1240 } 1241 nvlist_free(config); 1242 } 1243 free(slice->rn_name); 1244 free(slice); 1245 } 1246 avl_destroy(&slice_cache); 1247 1248 (void) closedir(dirp); 1249 1250 if (config_failed) 1251 goto error; 1252 } 1253 1254 ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy); 1255 1256 error: 1257 for (pe = pools.pools; pe != NULL; pe = penext) { 1258 penext = pe->pe_next; 1259 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 1260 venext = ve->ve_next; 1261 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 1262 cenext = ce->ce_next; 1263 nvlist_free(ce->ce_config); 1264 free(ce); 1265 } 1266 free(ve); 1267 } 1268 free(pe); 1269 } 1270 1271 for (ne = pools.names; ne != NULL; ne = nenext) { 1272 nenext = ne->ne_next; 1273 free(ne->ne_name); 1274 free(ne); 1275 } 1276 1277 return (ret); 1278 } 1279 1280 nvlist_t * 1281 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv) 1282 { 1283 importargs_t iarg = { 0 }; 1284 1285 iarg.paths = argc; 1286 iarg.path = argv; 1287 1288 return (zpool_find_import_impl(hdl, &iarg)); 1289 } 1290 1291 /* 1292 * Given a cache file, return the contents as a list of importable pools. 1293 * poolname or guid (but not both) are provided by the caller when trying 1294 * to import a specific pool. 1295 */ 1296 nvlist_t * 1297 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile, 1298 char *poolname, uint64_t guid) 1299 { 1300 char *buf; 1301 int fd; 1302 struct stat64 statbuf; 1303 nvlist_t *raw, *src, *dst; 1304 nvlist_t *pools; 1305 nvpair_t *elem; 1306 char *name; 1307 uint64_t this_guid; 1308 boolean_t active; 1309 1310 verify(poolname == NULL || guid == 0); 1311 1312 if ((fd = open(cachefile, O_RDONLY)) < 0) { 1313 zfs_error_aux(hdl, "%s", strerror(errno)); 1314 (void) zfs_error(hdl, EZFS_BADCACHE, 1315 dgettext(TEXT_DOMAIN, "failed to open cache file")); 1316 return (NULL); 1317 } 1318 1319 if (fstat64(fd, &statbuf) != 0) { 1320 zfs_error_aux(hdl, "%s", strerror(errno)); 1321 (void) close(fd); 1322 (void) zfs_error(hdl, EZFS_BADCACHE, 1323 dgettext(TEXT_DOMAIN, "failed to get size of cache file")); 1324 return (NULL); 1325 } 1326 1327 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) { 1328 (void) close(fd); 1329 return (NULL); 1330 } 1331 1332 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1333 (void) close(fd); 1334 free(buf); 1335 (void) zfs_error(hdl, EZFS_BADCACHE, 1336 dgettext(TEXT_DOMAIN, 1337 "failed to read cache file contents")); 1338 return (NULL); 1339 } 1340 1341 (void) close(fd); 1342 1343 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1344 free(buf); 1345 (void) zfs_error(hdl, EZFS_BADCACHE, 1346 dgettext(TEXT_DOMAIN, 1347 "invalid or corrupt cache file contents")); 1348 return (NULL); 1349 } 1350 1351 free(buf); 1352 1353 /* 1354 * Go through and get the current state of the pools and refresh their 1355 * state. 1356 */ 1357 if (nvlist_alloc(&pools, 0, 0) != 0) { 1358 (void) no_memory(hdl); 1359 nvlist_free(raw); 1360 return (NULL); 1361 } 1362 1363 elem = NULL; 1364 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1365 src = fnvpair_value_nvlist(elem); 1366 1367 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME); 1368 if (poolname != NULL && strcmp(poolname, name) != 0) 1369 continue; 1370 1371 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID); 1372 if (guid != 0 && guid != this_guid) 1373 continue; 1374 1375 if (pool_active(hdl, name, this_guid, &active) != 0) { 1376 nvlist_free(raw); 1377 nvlist_free(pools); 1378 return (NULL); 1379 } 1380 1381 if (active) 1382 continue; 1383 1384 if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE, 1385 cachefile) != 0) { 1386 (void) no_memory(hdl); 1387 nvlist_free(raw); 1388 nvlist_free(pools); 1389 return (NULL); 1390 } 1391 1392 if ((dst = refresh_config(hdl, src)) == NULL) { 1393 nvlist_free(raw); 1394 nvlist_free(pools); 1395 return (NULL); 1396 } 1397 1398 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1399 (void) no_memory(hdl); 1400 nvlist_free(dst); 1401 nvlist_free(raw); 1402 nvlist_free(pools); 1403 return (NULL); 1404 } 1405 nvlist_free(dst); 1406 } 1407 1408 nvlist_free(raw); 1409 return (pools); 1410 } 1411 1412 static int 1413 name_or_guid_exists(zpool_handle_t *zhp, void *data) 1414 { 1415 importargs_t *import = data; 1416 int found = 0; 1417 1418 if (import->poolname != NULL) { 1419 char *pool_name; 1420 1421 verify(nvlist_lookup_string(zhp->zpool_config, 1422 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0); 1423 if (strcmp(pool_name, import->poolname) == 0) 1424 found = 1; 1425 } else { 1426 uint64_t pool_guid; 1427 1428 verify(nvlist_lookup_uint64(zhp->zpool_config, 1429 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0); 1430 if (pool_guid == import->guid) 1431 found = 1; 1432 } 1433 1434 zpool_close(zhp); 1435 return (found); 1436 } 1437 1438 nvlist_t * 1439 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import) 1440 { 1441 verify(import->poolname == NULL || import->guid == 0); 1442 1443 if (import->unique) 1444 import->exists = zpool_iter(hdl, name_or_guid_exists, import); 1445 1446 if (import->cachefile != NULL) 1447 return (zpool_find_import_cached(hdl, import->cachefile, 1448 import->poolname, import->guid)); 1449 1450 return (zpool_find_import_impl(hdl, import)); 1451 } 1452 1453 boolean_t 1454 find_guid(nvlist_t *nv, uint64_t guid) 1455 { 1456 uint64_t tmp; 1457 nvlist_t **child; 1458 uint_t c, children; 1459 1460 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0); 1461 if (tmp == guid) 1462 return (B_TRUE); 1463 1464 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1465 &child, &children) == 0) { 1466 for (c = 0; c < children; c++) 1467 if (find_guid(child[c], guid)) 1468 return (B_TRUE); 1469 } 1470 1471 return (B_FALSE); 1472 } 1473 1474 typedef struct aux_cbdata { 1475 const char *cb_type; 1476 uint64_t cb_guid; 1477 zpool_handle_t *cb_zhp; 1478 } aux_cbdata_t; 1479 1480 static int 1481 find_aux(zpool_handle_t *zhp, void *data) 1482 { 1483 aux_cbdata_t *cbp = data; 1484 nvlist_t **list; 1485 uint_t i, count; 1486 uint64_t guid; 1487 nvlist_t *nvroot; 1488 1489 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, 1490 &nvroot) == 0); 1491 1492 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type, 1493 &list, &count) == 0) { 1494 for (i = 0; i < count; i++) { 1495 verify(nvlist_lookup_uint64(list[i], 1496 ZPOOL_CONFIG_GUID, &guid) == 0); 1497 if (guid == cbp->cb_guid) { 1498 cbp->cb_zhp = zhp; 1499 return (1); 1500 } 1501 } 1502 } 1503 1504 zpool_close(zhp); 1505 return (0); 1506 } 1507 1508 /* 1509 * Determines if the pool is in use. If so, it returns true and the state of 1510 * the pool as well as the name of the pool. Both strings are allocated and 1511 * must be freed by the caller. 1512 */ 1513 int 1514 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, 1515 boolean_t *inuse) 1516 { 1517 nvlist_t *config; 1518 char *name; 1519 boolean_t ret; 1520 uint64_t guid, vdev_guid; 1521 zpool_handle_t *zhp; 1522 nvlist_t *pool_config; 1523 uint64_t stateval, isspare; 1524 aux_cbdata_t cb = { 0 }; 1525 boolean_t isactive; 1526 1527 *inuse = B_FALSE; 1528 1529 if (zpool_read_label(fd, &config) != 0 && errno == ENOMEM) { 1530 (void) no_memory(hdl); 1531 return (-1); 1532 } 1533 1534 if (config == NULL) 1535 return (0); 1536 1537 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 1538 &stateval) == 0); 1539 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 1540 &vdev_guid) == 0); 1541 1542 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) { 1543 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 1544 &name) == 0); 1545 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 1546 &guid) == 0); 1547 } 1548 1549 switch (stateval) { 1550 case POOL_STATE_EXPORTED: 1551 /* 1552 * A pool with an exported state may in fact be imported 1553 * read-only, so check the in-core state to see if it's 1554 * active and imported read-only. If it is, set 1555 * its state to active. 1556 */ 1557 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive && 1558 (zhp = zpool_open_canfail(hdl, name)) != NULL) { 1559 if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL)) 1560 stateval = POOL_STATE_ACTIVE; 1561 1562 /* 1563 * All we needed the zpool handle for is the 1564 * readonly prop check. 1565 */ 1566 zpool_close(zhp); 1567 } 1568 1569 ret = B_TRUE; 1570 break; 1571 1572 case POOL_STATE_ACTIVE: 1573 /* 1574 * For an active pool, we have to determine if it's really part 1575 * of a currently active pool (in which case the pool will exist 1576 * and the guid will be the same), or whether it's part of an 1577 * active pool that was disconnected without being explicitly 1578 * exported. 1579 */ 1580 if (pool_active(hdl, name, guid, &isactive) != 0) { 1581 nvlist_free(config); 1582 return (-1); 1583 } 1584 1585 if (isactive) { 1586 /* 1587 * Because the device may have been removed while 1588 * offlined, we only report it as active if the vdev is 1589 * still present in the config. Otherwise, pretend like 1590 * it's not in use. 1591 */ 1592 if ((zhp = zpool_open_canfail(hdl, name)) != NULL && 1593 (pool_config = zpool_get_config(zhp, NULL)) 1594 != NULL) { 1595 nvlist_t *nvroot; 1596 1597 verify(nvlist_lookup_nvlist(pool_config, 1598 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1599 ret = find_guid(nvroot, vdev_guid); 1600 } else { 1601 ret = B_FALSE; 1602 } 1603 1604 /* 1605 * If this is an active spare within another pool, we 1606 * treat it like an unused hot spare. This allows the 1607 * user to create a pool with a hot spare that currently 1608 * in use within another pool. Since we return B_TRUE, 1609 * libdiskmgt will continue to prevent generic consumers 1610 * from using the device. 1611 */ 1612 if (ret && nvlist_lookup_uint64(config, 1613 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) 1614 stateval = POOL_STATE_SPARE; 1615 1616 if (zhp != NULL) 1617 zpool_close(zhp); 1618 } else { 1619 stateval = POOL_STATE_POTENTIALLY_ACTIVE; 1620 ret = B_TRUE; 1621 } 1622 break; 1623 1624 case POOL_STATE_SPARE: 1625 /* 1626 * For a hot spare, it can be either definitively in use, or 1627 * potentially active. To determine if it's in use, we iterate 1628 * over all pools in the system and search for one with a spare 1629 * with a matching guid. 1630 * 1631 * Due to the shared nature of spares, we don't actually report 1632 * the potentially active case as in use. This means the user 1633 * can freely create pools on the hot spares of exported pools, 1634 * but to do otherwise makes the resulting code complicated, and 1635 * we end up having to deal with this case anyway. 1636 */ 1637 cb.cb_zhp = NULL; 1638 cb.cb_guid = vdev_guid; 1639 cb.cb_type = ZPOOL_CONFIG_SPARES; 1640 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1641 name = (char *)zpool_get_name(cb.cb_zhp); 1642 ret = B_TRUE; 1643 } else { 1644 ret = B_FALSE; 1645 } 1646 break; 1647 1648 case POOL_STATE_L2CACHE: 1649 1650 /* 1651 * Check if any pool is currently using this l2cache device. 1652 */ 1653 cb.cb_zhp = NULL; 1654 cb.cb_guid = vdev_guid; 1655 cb.cb_type = ZPOOL_CONFIG_L2CACHE; 1656 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1657 name = (char *)zpool_get_name(cb.cb_zhp); 1658 ret = B_TRUE; 1659 } else { 1660 ret = B_FALSE; 1661 } 1662 break; 1663 1664 default: 1665 ret = B_FALSE; 1666 } 1667 1668 1669 if (ret) { 1670 if ((*namestr = zfs_strdup(hdl, name)) == NULL) { 1671 if (cb.cb_zhp) 1672 zpool_close(cb.cb_zhp); 1673 nvlist_free(config); 1674 return (-1); 1675 } 1676 *state = (pool_state_t)stateval; 1677 } 1678 1679 if (cb.cb_zhp) 1680 zpool_close(cb.cb_zhp); 1681 1682 nvlist_free(config); 1683 *inuse = ret; 1684 return (0); 1685 } 1686