1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Pool import support functions. 30 * 31 * To import a pool, we rely on reading the configuration information from the 32 * ZFS label of each device. If we successfully read the label, then we 33 * organize the configuration information in the following hierarchy: 34 * 35 * pool guid -> toplevel vdev guid -> label txg 36 * 37 * Duplicate entries matching this same tuple will be discarded. Once we have 38 * examined every device, we pick the best label txg config for each toplevel 39 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 40 * update any paths that have changed. Finally, we attempt to import the pool 41 * using our derived config, and record the results. 42 */ 43 44 #include <devid.h> 45 #include <dirent.h> 46 #include <errno.h> 47 #include <libintl.h> 48 #include <stdlib.h> 49 #include <string.h> 50 #include <sys/stat.h> 51 #include <unistd.h> 52 #include <fcntl.h> 53 54 #include <sys/vdev_impl.h> 55 56 #include "libzfs.h" 57 #include "libzfs_impl.h" 58 59 /* 60 * Intermediate structures used to gather configuration information. 61 */ 62 typedef struct config_entry { 63 uint64_t ce_txg; 64 nvlist_t *ce_config; 65 struct config_entry *ce_next; 66 } config_entry_t; 67 68 typedef struct vdev_entry { 69 uint64_t ve_guid; 70 config_entry_t *ve_configs; 71 struct vdev_entry *ve_next; 72 } vdev_entry_t; 73 74 typedef struct pool_entry { 75 uint64_t pe_guid; 76 vdev_entry_t *pe_vdevs; 77 struct pool_entry *pe_next; 78 } pool_entry_t; 79 80 typedef struct name_entry { 81 char *ne_name; 82 uint64_t ne_guid; 83 struct name_entry *ne_next; 84 } name_entry_t; 85 86 typedef struct pool_list { 87 pool_entry_t *pools; 88 name_entry_t *names; 89 } pool_list_t; 90 91 static char * 92 get_devid(const char *path) 93 { 94 int fd; 95 ddi_devid_t devid; 96 char *minor, *ret; 97 98 if ((fd = open(path, O_RDONLY)) < 0) 99 return (NULL); 100 101 minor = NULL; 102 ret = NULL; 103 if (devid_get(fd, &devid) == 0) { 104 if (devid_get_minor_name(fd, &minor) == 0) 105 ret = devid_str_encode(devid, minor); 106 if (minor != NULL) 107 devid_str_free(minor); 108 devid_free(devid); 109 } 110 (void) close(fd); 111 112 return (ret); 113 } 114 115 116 /* 117 * Go through and fix up any path and/or devid information for the given vdev 118 * configuration. 119 */ 120 static int 121 fix_paths(nvlist_t *nv, name_entry_t *names) 122 { 123 nvlist_t **child; 124 uint_t c, children; 125 uint64_t guid; 126 name_entry_t *ne, *best; 127 char *path, *devid; 128 int matched; 129 130 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 131 &child, &children) == 0) { 132 for (c = 0; c < children; c++) 133 if (fix_paths(child[c], names) != 0) 134 return (-1); 135 return (0); 136 } 137 138 /* 139 * This is a leaf (file or disk) vdev. In either case, go through 140 * the name list and see if we find a matching guid. If so, replace 141 * the path and see if we can calculate a new devid. 142 * 143 * There may be multiple names associated with a particular guid, in 144 * which case we have overlapping slices or multiple paths to the same 145 * disk. If this is the case, then we want to pick the path that is 146 * the most similar to the original, where "most similar" is the number 147 * of matching characters starting from the end of the path. This will 148 * preserve slice numbers even if the disks have been reorganized, and 149 * will also catch preferred disk names if multiple paths exist. 150 */ 151 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 152 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 153 path = NULL; 154 155 matched = 0; 156 best = NULL; 157 for (ne = names; ne != NULL; ne = ne->ne_next) { 158 if (ne->ne_guid == guid) { 159 const char *src, *dst; 160 int count; 161 162 if (path == NULL) { 163 best = ne; 164 break; 165 } 166 167 src = ne->ne_name + strlen(ne->ne_name) - 1; 168 dst = path + strlen(path) - 1; 169 for (count = 0; src >= ne->ne_name && dst >= path; 170 src--, dst--, count++) 171 if (*src != *dst) 172 break; 173 174 /* 175 * At this point, 'count' is the number of characters 176 * matched from the end. 177 */ 178 if (count > matched || best == NULL) { 179 best = ne; 180 matched = count; 181 } 182 } 183 } 184 185 if (best == NULL) 186 return (0); 187 188 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 189 return (-1); 190 191 if ((devid = get_devid(best->ne_name)) == NULL) { 192 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); 193 } else { 194 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) 195 return (-1); 196 devid_str_free(devid); 197 } 198 199 return (0); 200 } 201 202 /* 203 * Add the given configuration to the list of known devices. 204 */ 205 static int 206 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path, 207 nvlist_t *config) 208 { 209 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 210 pool_entry_t *pe; 211 vdev_entry_t *ve; 212 config_entry_t *ce; 213 name_entry_t *ne; 214 215 /* 216 * If this is a hot spare not currently in use, add it to the list of 217 * names to translate, but don't do anything else. 218 */ 219 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 220 &state) == 0 && state == POOL_STATE_SPARE && 221 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 222 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 223 return (-1); 224 225 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 226 free(ne); 227 return (-1); 228 } 229 ne->ne_guid = vdev_guid; 230 ne->ne_next = pl->names; 231 pl->names = ne; 232 return (0); 233 } 234 235 /* 236 * If we have a valid config but cannot read any of these fields, then 237 * it means we have a half-initialized label. In vdev_label_init() 238 * we write a label with txg == 0 so that we can identify the device 239 * in case the user refers to the same disk later on. If we fail to 240 * create the pool, we'll be left with a label in this state 241 * which should not be considered part of a valid pool. 242 */ 243 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 244 &pool_guid) != 0 || 245 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 246 &vdev_guid) != 0 || 247 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 248 &top_guid) != 0 || 249 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 250 &txg) != 0 || txg == 0) { 251 nvlist_free(config); 252 return (0); 253 } 254 255 /* 256 * First, see if we know about this pool. If not, then add it to the 257 * list of known pools. 258 */ 259 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 260 if (pe->pe_guid == pool_guid) 261 break; 262 } 263 264 if (pe == NULL) { 265 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 266 nvlist_free(config); 267 return (-1); 268 } 269 pe->pe_guid = pool_guid; 270 pe->pe_next = pl->pools; 271 pl->pools = pe; 272 } 273 274 /* 275 * Second, see if we know about this toplevel vdev. Add it if its 276 * missing. 277 */ 278 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 279 if (ve->ve_guid == top_guid) 280 break; 281 } 282 283 if (ve == NULL) { 284 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 285 nvlist_free(config); 286 return (-1); 287 } 288 ve->ve_guid = top_guid; 289 ve->ve_next = pe->pe_vdevs; 290 pe->pe_vdevs = ve; 291 } 292 293 /* 294 * Third, see if we have a config with a matching transaction group. If 295 * so, then we do nothing. Otherwise, add it to the list of known 296 * configs. 297 */ 298 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 299 if (ce->ce_txg == txg) 300 break; 301 } 302 303 if (ce == NULL) { 304 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { 305 nvlist_free(config); 306 return (-1); 307 } 308 ce->ce_txg = txg; 309 ce->ce_config = config; 310 ce->ce_next = ve->ve_configs; 311 ve->ve_configs = ce; 312 } else { 313 nvlist_free(config); 314 } 315 316 /* 317 * At this point we've successfully added our config to the list of 318 * known configs. The last thing to do is add the vdev guid -> path 319 * mappings so that we can fix up the configuration as necessary before 320 * doing the import. 321 */ 322 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 323 return (-1); 324 325 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 326 free(ne); 327 return (-1); 328 } 329 330 ne->ne_guid = vdev_guid; 331 ne->ne_next = pl->names; 332 pl->names = ne; 333 334 return (0); 335 } 336 337 /* 338 * Returns true if the named pool matches the given GUID. 339 */ 340 static int 341 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid, 342 boolean_t *isactive) 343 { 344 zpool_handle_t *zhp; 345 uint64_t theguid; 346 347 if (zpool_open_silent(hdl, name, &zhp) != 0) 348 return (-1); 349 350 if (zhp == NULL) { 351 *isactive = B_FALSE; 352 return (0); 353 } 354 355 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, 356 &theguid) == 0); 357 358 zpool_close(zhp); 359 360 *isactive = (theguid == guid); 361 return (0); 362 } 363 364 /* 365 * Convert our list of pools into the definitive set of configurations. We 366 * start by picking the best config for each toplevel vdev. Once that's done, 367 * we assemble the toplevel vdevs into a full config for the pool. We make a 368 * pass to fix up any incorrect paths, and then add it to the main list to 369 * return to the user. 370 */ 371 static nvlist_t * 372 get_configs(libzfs_handle_t *hdl, pool_list_t *pl) 373 { 374 pool_entry_t *pe; 375 vdev_entry_t *ve; 376 config_entry_t *ce; 377 nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot; 378 nvlist_t **spares; 379 uint_t i, nspares; 380 boolean_t config_seen; 381 uint64_t best_txg; 382 char *name; 383 zfs_cmd_t zc = { 0 }; 384 uint64_t version, guid; 385 size_t len; 386 int err; 387 uint_t children = 0; 388 nvlist_t **child = NULL; 389 uint_t c; 390 boolean_t isactive; 391 392 if (nvlist_alloc(&ret, 0, 0) != 0) 393 goto nomem; 394 395 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 396 uint64_t id; 397 398 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 399 goto nomem; 400 config_seen = B_FALSE; 401 402 /* 403 * Iterate over all toplevel vdevs. Grab the pool configuration 404 * from the first one we find, and then go through the rest and 405 * add them as necessary to the 'vdevs' member of the config. 406 */ 407 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 408 409 /* 410 * Determine the best configuration for this vdev by 411 * selecting the config with the latest transaction 412 * group. 413 */ 414 best_txg = 0; 415 for (ce = ve->ve_configs; ce != NULL; 416 ce = ce->ce_next) { 417 418 if (ce->ce_txg > best_txg) { 419 tmp = ce->ce_config; 420 best_txg = ce->ce_txg; 421 } 422 } 423 424 if (!config_seen) { 425 /* 426 * Copy the relevant pieces of data to the pool 427 * configuration: 428 * 429 * version 430 * pool guid 431 * name 432 * pool state 433 */ 434 uint64_t state; 435 436 verify(nvlist_lookup_uint64(tmp, 437 ZPOOL_CONFIG_VERSION, &version) == 0); 438 if (nvlist_add_uint64(config, 439 ZPOOL_CONFIG_VERSION, version) != 0) 440 goto nomem; 441 verify(nvlist_lookup_uint64(tmp, 442 ZPOOL_CONFIG_POOL_GUID, &guid) == 0); 443 if (nvlist_add_uint64(config, 444 ZPOOL_CONFIG_POOL_GUID, guid) != 0) 445 goto nomem; 446 verify(nvlist_lookup_string(tmp, 447 ZPOOL_CONFIG_POOL_NAME, &name) == 0); 448 if (nvlist_add_string(config, 449 ZPOOL_CONFIG_POOL_NAME, name) != 0) 450 goto nomem; 451 verify(nvlist_lookup_uint64(tmp, 452 ZPOOL_CONFIG_POOL_STATE, &state) == 0); 453 if (nvlist_add_uint64(config, 454 ZPOOL_CONFIG_POOL_STATE, state) != 0) 455 goto nomem; 456 457 config_seen = B_TRUE; 458 } 459 460 /* 461 * Add this top-level vdev to the child array. 462 */ 463 verify(nvlist_lookup_nvlist(tmp, 464 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 465 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 466 &id) == 0); 467 if (id >= children) { 468 nvlist_t **newchild; 469 470 newchild = zfs_alloc(hdl, (id + 1) * 471 sizeof (nvlist_t *)); 472 if (newchild == NULL) 473 goto nomem; 474 475 for (c = 0; c < children; c++) 476 newchild[c] = child[c]; 477 478 free(child); 479 child = newchild; 480 children = id + 1; 481 } 482 if (nvlist_dup(nvtop, &child[id], 0) != 0) 483 goto nomem; 484 485 } 486 487 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 488 &guid) == 0); 489 490 /* 491 * Look for any missing top-level vdevs. If this is the case, 492 * create a faked up 'missing' vdev as a placeholder. We cannot 493 * simply compress the child array, because the kernel performs 494 * certain checks to make sure the vdev IDs match their location 495 * in the configuration. 496 */ 497 for (c = 0; c < children; c++) 498 if (child[c] == NULL) { 499 nvlist_t *missing; 500 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 501 0) != 0) 502 goto nomem; 503 if (nvlist_add_string(missing, 504 ZPOOL_CONFIG_TYPE, 505 VDEV_TYPE_MISSING) != 0 || 506 nvlist_add_uint64(missing, 507 ZPOOL_CONFIG_ID, c) != 0 || 508 nvlist_add_uint64(missing, 509 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 510 nvlist_free(missing); 511 goto nomem; 512 } 513 child[c] = missing; 514 } 515 516 /* 517 * Put all of this pool's top-level vdevs into a root vdev. 518 */ 519 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 520 goto nomem; 521 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 522 VDEV_TYPE_ROOT) != 0 || 523 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 524 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 525 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 526 child, children) != 0) { 527 nvlist_free(nvroot); 528 goto nomem; 529 } 530 531 for (c = 0; c < children; c++) 532 nvlist_free(child[c]); 533 free(child); 534 children = 0; 535 child = NULL; 536 537 /* 538 * Go through and fix up any paths and/or devids based on our 539 * known list of vdev GUID -> path mappings. 540 */ 541 if (fix_paths(nvroot, pl->names) != 0) { 542 nvlist_free(nvroot); 543 goto nomem; 544 } 545 546 /* 547 * Add the root vdev to this pool's configuration. 548 */ 549 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 550 nvroot) != 0) { 551 nvlist_free(nvroot); 552 goto nomem; 553 } 554 nvlist_free(nvroot); 555 556 /* 557 * Determine if this pool is currently active, in which case we 558 * can't actually import it. 559 */ 560 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 561 &name) == 0); 562 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 563 &guid) == 0); 564 565 if (pool_active(hdl, name, guid, &isactive) != 0) 566 goto error; 567 568 if (isactive) { 569 nvlist_free(config); 570 config = NULL; 571 continue; 572 } 573 574 /* 575 * Try to do the import in order to get vdev state. 576 */ 577 if (zcmd_write_src_nvlist(hdl, &zc, config, &len) != 0) 578 goto error; 579 580 nvlist_free(config); 581 config = NULL; 582 583 if (zcmd_alloc_dst_nvlist(hdl, &zc, len * 2) != 0) { 584 zcmd_free_nvlists(&zc); 585 goto error; 586 } 587 588 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT, 589 &zc)) != 0 && errno == ENOMEM) { 590 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { 591 zcmd_free_nvlists(&zc); 592 goto error; 593 } 594 } 595 596 if (err) { 597 (void) zpool_standard_error(hdl, errno, 598 dgettext(TEXT_DOMAIN, "cannot discover pools")); 599 zcmd_free_nvlists(&zc); 600 goto error; 601 } 602 603 if (zcmd_read_dst_nvlist(hdl, &zc, &config) != 0) { 604 zcmd_free_nvlists(&zc); 605 goto error; 606 } 607 608 zcmd_free_nvlists(&zc); 609 610 /* 611 * Go through and update the paths for spares, now that we have 612 * them. 613 */ 614 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 615 &nvroot) == 0); 616 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 617 &spares, &nspares) == 0) { 618 for (i = 0; i < nspares; i++) { 619 if (fix_paths(spares[i], pl->names) != 0) 620 goto nomem; 621 } 622 } 623 624 if (set_pool_health(config) != 0) 625 goto nomem; 626 627 /* 628 * Add this pool to the list of configs. 629 */ 630 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 631 &name) == 0); 632 if (nvlist_add_nvlist(ret, name, config) != 0) 633 goto nomem; 634 635 nvlist_free(config); 636 config = NULL; 637 } 638 639 return (ret); 640 641 nomem: 642 (void) no_memory(hdl); 643 error: 644 nvlist_free(config); 645 nvlist_free(ret); 646 for (c = 0; c < children; c++) 647 nvlist_free(child[c]); 648 free(child); 649 650 return (NULL); 651 } 652 653 /* 654 * Return the offset of the given label. 655 */ 656 static uint64_t 657 label_offset(size_t size, int l) 658 { 659 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 660 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 661 } 662 663 /* 664 * Given a file descriptor, read the label information and return an nvlist 665 * describing the configuration, if there is one. 666 */ 667 int 668 zpool_read_label(int fd, nvlist_t **config) 669 { 670 struct stat64 statbuf; 671 int l; 672 vdev_label_t *label; 673 uint64_t state, txg; 674 675 *config = NULL; 676 677 if (fstat64(fd, &statbuf) == -1) 678 return (0); 679 680 if ((label = malloc(sizeof (vdev_label_t))) == NULL) 681 return (-1); 682 683 for (l = 0; l < VDEV_LABELS; l++) { 684 if (pread(fd, label, sizeof (vdev_label_t), 685 label_offset(statbuf.st_size, l)) != sizeof (vdev_label_t)) 686 continue; 687 688 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 689 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) 690 continue; 691 692 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 693 &state) != 0 || state > POOL_STATE_SPARE) { 694 nvlist_free(*config); 695 continue; 696 } 697 698 if (state != POOL_STATE_SPARE && 699 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 700 &txg) != 0 || txg == 0)) { 701 nvlist_free(*config); 702 continue; 703 } 704 705 free(label); 706 return (0); 707 } 708 709 free(label); 710 *config = NULL; 711 return (0); 712 } 713 714 /* 715 * Given a list of directories to search, find all pools stored on disk. This 716 * includes partial pools which are not available to import. If no args are 717 * given (argc is 0), then the default directory (/dev/dsk) is searched. 718 */ 719 nvlist_t * 720 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv) 721 { 722 int i; 723 DIR *dirp; 724 struct dirent64 *dp; 725 char path[MAXPATHLEN]; 726 struct stat64 statbuf; 727 nvlist_t *ret = NULL, *config; 728 static char *default_dir = "/dev/dsk"; 729 int fd; 730 pool_list_t pools = { 0 }; 731 pool_entry_t *pe, *penext; 732 vdev_entry_t *ve, *venext; 733 config_entry_t *ce, *cenext; 734 name_entry_t *ne, *nenext; 735 736 737 if (argc == 0) { 738 argc = 1; 739 argv = &default_dir; 740 } 741 742 /* 743 * Go through and read the label configuration information from every 744 * possible device, organizing the information according to pool GUID 745 * and toplevel GUID. 746 */ 747 for (i = 0; i < argc; i++) { 748 if (argv[i][0] != '/') { 749 (void) zfs_error(hdl, EZFS_BADPATH, 750 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 751 argv[i]); 752 goto error; 753 } 754 755 if ((dirp = opendir(argv[i])) == NULL) { 756 zfs_error_aux(hdl, strerror(errno)); 757 (void) zfs_error(hdl, EZFS_BADPATH, 758 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 759 argv[i]); 760 goto error; 761 } 762 763 /* 764 * This is not MT-safe, but we have no MT consumers of libzfs 765 */ 766 while ((dp = readdir64(dirp)) != NULL) { 767 768 (void) snprintf(path, sizeof (path), "%s/%s", 769 argv[i], dp->d_name); 770 771 if (stat64(path, &statbuf) != 0) 772 continue; 773 774 /* 775 * Ignore directories (which includes "." and ".."). 776 */ 777 if (S_ISDIR(statbuf.st_mode)) 778 continue; 779 780 /* 781 * Ignore special (non-character or non-block) files. 782 */ 783 if (!S_ISREG(statbuf.st_mode) && 784 !S_ISBLK(statbuf.st_mode)) 785 continue; 786 787 if ((fd = open64(path, O_RDONLY)) < 0) 788 continue; 789 790 if ((zpool_read_label(fd, &config)) != 0) { 791 (void) no_memory(hdl); 792 goto error; 793 } 794 795 (void) close(fd); 796 797 if (config != NULL) 798 if (add_config(hdl, &pools, path, config) != 0) 799 goto error; 800 } 801 } 802 803 ret = get_configs(hdl, &pools); 804 805 error: 806 for (pe = pools.pools; pe != NULL; pe = penext) { 807 penext = pe->pe_next; 808 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 809 venext = ve->ve_next; 810 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 811 cenext = ce->ce_next; 812 if (ce->ce_config) 813 nvlist_free(ce->ce_config); 814 free(ce); 815 } 816 free(ve); 817 } 818 free(pe); 819 } 820 821 for (ne = pools.names; ne != NULL; ne = nenext) { 822 nenext = ne->ne_next; 823 if (ne->ne_name) 824 free(ne->ne_name); 825 free(ne); 826 } 827 828 829 return (ret); 830 } 831 832 boolean_t 833 find_guid(nvlist_t *nv, uint64_t guid) 834 { 835 uint64_t tmp; 836 nvlist_t **child; 837 uint_t c, children; 838 839 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0); 840 if (tmp == guid) 841 return (B_TRUE); 842 843 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 844 &child, &children) == 0) { 845 for (c = 0; c < children; c++) 846 if (find_guid(child[c], guid)) 847 return (B_TRUE); 848 } 849 850 return (B_FALSE); 851 } 852 853 typedef struct spare_cbdata { 854 uint64_t cb_guid; 855 zpool_handle_t *cb_zhp; 856 } spare_cbdata_t; 857 858 static int 859 find_spare(zpool_handle_t *zhp, void *data) 860 { 861 spare_cbdata_t *cbp = data; 862 nvlist_t **spares; 863 uint_t i, nspares; 864 uint64_t guid; 865 nvlist_t *nvroot; 866 867 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, 868 &nvroot) == 0); 869 870 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 871 &spares, &nspares) == 0) { 872 for (i = 0; i < nspares; i++) { 873 verify(nvlist_lookup_uint64(spares[i], 874 ZPOOL_CONFIG_GUID, &guid) == 0); 875 if (guid == cbp->cb_guid) { 876 cbp->cb_zhp = zhp; 877 return (1); 878 } 879 } 880 } 881 882 zpool_close(zhp); 883 return (0); 884 } 885 886 /* 887 * Determines if the pool is in use. If so, it returns true and the state of 888 * the pool as well as the name of the pool. Both strings are allocated and 889 * must be freed by the caller. 890 */ 891 int 892 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, 893 boolean_t *inuse) 894 { 895 nvlist_t *config; 896 char *name; 897 boolean_t ret; 898 uint64_t guid, vdev_guid; 899 zpool_handle_t *zhp; 900 nvlist_t *pool_config; 901 uint64_t stateval; 902 spare_cbdata_t cb = { 0 }; 903 boolean_t isactive; 904 905 *inuse = B_FALSE; 906 907 if (zpool_read_label(fd, &config) != 0) { 908 (void) no_memory(hdl); 909 return (-1); 910 } 911 912 if (config == NULL) 913 return (0); 914 915 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 916 &stateval) == 0); 917 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 918 &vdev_guid) == 0); 919 920 if (stateval != POOL_STATE_SPARE) { 921 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 922 &name) == 0); 923 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 924 &guid) == 0); 925 } 926 927 switch (stateval) { 928 case POOL_STATE_EXPORTED: 929 ret = B_TRUE; 930 break; 931 932 case POOL_STATE_ACTIVE: 933 /* 934 * For an active pool, we have to determine if it's really part 935 * of a currently active pool (in which case the pool will exist 936 * and the guid will be the same), or whether it's part of an 937 * active pool that was disconnected without being explicitly 938 * exported. 939 */ 940 if (pool_active(hdl, name, guid, &isactive) != 0) { 941 nvlist_free(config); 942 return (-1); 943 } 944 945 if (isactive) { 946 /* 947 * Because the device may have been removed while 948 * offlined, we only report it as active if the vdev is 949 * still present in the config. Otherwise, pretend like 950 * it's not in use. 951 */ 952 if ((zhp = zpool_open_canfail(hdl, name)) != NULL && 953 (pool_config = zpool_get_config(zhp, NULL)) 954 != NULL) { 955 nvlist_t *nvroot; 956 957 verify(nvlist_lookup_nvlist(pool_config, 958 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 959 ret = find_guid(nvroot, vdev_guid); 960 } else { 961 ret = B_FALSE; 962 } 963 964 if (zhp != NULL) 965 zpool_close(zhp); 966 } else { 967 stateval = POOL_STATE_POTENTIALLY_ACTIVE; 968 ret = B_TRUE; 969 } 970 break; 971 972 case POOL_STATE_SPARE: 973 /* 974 * For a hot spare, it can be either definitively in use, or 975 * potentially active. To determine if it's in use, we iterate 976 * over all pools in the system and search for one with a spare 977 * with a matching guid. 978 * 979 * Due to the shared nature of spares, we don't actually report 980 * the potentially active case as in use. This means the user 981 * can freely create pools on the hot spares of exported pools, 982 * but to do otherwise makes the resulting code complicated, and 983 * we end up having to deal with this case anyway. 984 */ 985 cb.cb_zhp = NULL; 986 cb.cb_guid = vdev_guid; 987 if (zpool_iter(hdl, find_spare, &cb) == 1) { 988 name = (char *)zpool_get_name(cb.cb_zhp); 989 ret = TRUE; 990 } else { 991 ret = FALSE; 992 } 993 break; 994 995 default: 996 ret = B_FALSE; 997 } 998 999 1000 if (ret) { 1001 if ((*namestr = zfs_strdup(hdl, name)) == NULL) { 1002 nvlist_free(config); 1003 return (-1); 1004 } 1005 *state = (pool_state_t)stateval; 1006 } 1007 1008 if (cb.cb_zhp) 1009 zpool_close(cb.cb_zhp); 1010 1011 nvlist_free(config); 1012 *inuse = ret; 1013 return (0); 1014 } 1015