1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Pool import support functions. 30 * 31 * To import a pool, we rely on reading the configuration information from the 32 * ZFS label of each device. If we successfully read the label, then we 33 * organize the configuration information in the following hierarchy: 34 * 35 * pool guid -> toplevel vdev guid -> label txg 36 * 37 * Duplicate entries matching this same tuple will be discarded. Once we have 38 * examined every device, we pick the best label txg config for each toplevel 39 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 40 * update any paths that have changed. Finally, we attempt to import the pool 41 * using our derived config, and record the results. 42 */ 43 44 #include <devid.h> 45 #include <dirent.h> 46 #include <errno.h> 47 #include <libintl.h> 48 #include <stdlib.h> 49 #include <string.h> 50 #include <sys/stat.h> 51 #include <unistd.h> 52 #include <fcntl.h> 53 54 #include <sys/vdev_impl.h> 55 56 #include "libzfs.h" 57 #include "libzfs_impl.h" 58 59 /* 60 * Intermediate structures used to gather configuration information. 61 */ 62 typedef struct config_entry { 63 uint64_t ce_txg; 64 nvlist_t *ce_config; 65 struct config_entry *ce_next; 66 } config_entry_t; 67 68 typedef struct vdev_entry { 69 uint64_t ve_guid; 70 config_entry_t *ve_configs; 71 struct vdev_entry *ve_next; 72 } vdev_entry_t; 73 74 typedef struct pool_entry { 75 uint64_t pe_guid; 76 vdev_entry_t *pe_vdevs; 77 struct pool_entry *pe_next; 78 } pool_entry_t; 79 80 typedef struct name_entry { 81 char *ne_name; 82 uint64_t ne_guid; 83 struct name_entry *ne_next; 84 } name_entry_t; 85 86 typedef struct pool_list { 87 pool_entry_t *pools; 88 name_entry_t *names; 89 } pool_list_t; 90 91 static char * 92 get_devid(const char *path) 93 { 94 int fd; 95 ddi_devid_t devid; 96 char *minor, *ret; 97 98 if ((fd = open(path, O_RDONLY)) < 0) 99 return (NULL); 100 101 minor = NULL; 102 ret = NULL; 103 if (devid_get(fd, &devid) == 0) { 104 if (devid_get_minor_name(fd, &minor) == 0) 105 ret = devid_str_encode(devid, minor); 106 if (minor != NULL) 107 devid_str_free(minor); 108 devid_free(devid); 109 } 110 (void) close(fd); 111 112 return (ret); 113 } 114 115 116 /* 117 * Go through and fix up any path and/or devid information for the given vdev 118 * configuration. 119 */ 120 static int 121 fix_paths(nvlist_t *nv, name_entry_t *names) 122 { 123 nvlist_t **child; 124 uint_t c, children; 125 uint64_t guid; 126 name_entry_t *ne, *best; 127 char *path, *devid; 128 int matched; 129 130 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 131 &child, &children) == 0) { 132 for (c = 0; c < children; c++) 133 if (fix_paths(child[c], names) != 0) 134 return (-1); 135 return (0); 136 } 137 138 /* 139 * This is a leaf (file or disk) vdev. In either case, go through 140 * the name list and see if we find a matching guid. If so, replace 141 * the path and see if we can calculate a new devid. 142 * 143 * There may be multiple names associated with a particular guid, in 144 * which case we have overlapping slices or multiple paths to the same 145 * disk. If this is the case, then we want to pick the path that is 146 * the most similar to the original, where "most similar" is the number 147 * of matching characters starting from the end of the path. This will 148 * preserve slice numbers even if the disks have been reorganized, and 149 * will also catch preferred disk names if multiple paths exist. 150 */ 151 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 152 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 153 path = NULL; 154 155 matched = 0; 156 best = NULL; 157 for (ne = names; ne != NULL; ne = ne->ne_next) { 158 if (ne->ne_guid == guid) { 159 const char *src, *dst; 160 int count; 161 162 if (path == NULL) { 163 best = ne; 164 break; 165 } 166 167 src = ne->ne_name + strlen(ne->ne_name) - 1; 168 dst = path + strlen(path) - 1; 169 for (count = 0; src >= ne->ne_name && dst >= path; 170 src--, dst--, count++) 171 if (*src != *dst) 172 break; 173 174 /* 175 * At this point, 'count' is the number of characters 176 * matched from the end. 177 */ 178 if (count > matched || best == NULL) { 179 best = ne; 180 matched = count; 181 } 182 } 183 } 184 185 if (best == NULL) 186 return (0); 187 188 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 189 return (-1); 190 191 if ((devid = get_devid(best->ne_name)) == NULL) { 192 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); 193 } else { 194 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) 195 return (-1); 196 devid_str_free(devid); 197 } 198 199 return (0); 200 } 201 202 /* 203 * Add the given configuration to the list of known devices. 204 */ 205 static int 206 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path, 207 nvlist_t *config) 208 { 209 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 210 pool_entry_t *pe; 211 vdev_entry_t *ve; 212 config_entry_t *ce; 213 name_entry_t *ne; 214 215 /* 216 * If this is a hot spare not currently in use or level 2 cache 217 * device, add it to the list of names to translate, but don't do 218 * anything else. 219 */ 220 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 221 &state) == 0 && 222 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 223 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 224 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 225 return (-1); 226 227 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 228 free(ne); 229 return (-1); 230 } 231 ne->ne_guid = vdev_guid; 232 ne->ne_next = pl->names; 233 pl->names = ne; 234 return (0); 235 } 236 237 /* 238 * If we have a valid config but cannot read any of these fields, then 239 * it means we have a half-initialized label. In vdev_label_init() 240 * we write a label with txg == 0 so that we can identify the device 241 * in case the user refers to the same disk later on. If we fail to 242 * create the pool, we'll be left with a label in this state 243 * which should not be considered part of a valid pool. 244 */ 245 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 246 &pool_guid) != 0 || 247 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 248 &vdev_guid) != 0 || 249 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 250 &top_guid) != 0 || 251 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 252 &txg) != 0 || txg == 0) { 253 nvlist_free(config); 254 return (0); 255 } 256 257 /* 258 * First, see if we know about this pool. If not, then add it to the 259 * list of known pools. 260 */ 261 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 262 if (pe->pe_guid == pool_guid) 263 break; 264 } 265 266 if (pe == NULL) { 267 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 268 nvlist_free(config); 269 return (-1); 270 } 271 pe->pe_guid = pool_guid; 272 pe->pe_next = pl->pools; 273 pl->pools = pe; 274 } 275 276 /* 277 * Second, see if we know about this toplevel vdev. Add it if its 278 * missing. 279 */ 280 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 281 if (ve->ve_guid == top_guid) 282 break; 283 } 284 285 if (ve == NULL) { 286 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 287 nvlist_free(config); 288 return (-1); 289 } 290 ve->ve_guid = top_guid; 291 ve->ve_next = pe->pe_vdevs; 292 pe->pe_vdevs = ve; 293 } 294 295 /* 296 * Third, see if we have a config with a matching transaction group. If 297 * so, then we do nothing. Otherwise, add it to the list of known 298 * configs. 299 */ 300 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 301 if (ce->ce_txg == txg) 302 break; 303 } 304 305 if (ce == NULL) { 306 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { 307 nvlist_free(config); 308 return (-1); 309 } 310 ce->ce_txg = txg; 311 ce->ce_config = config; 312 ce->ce_next = ve->ve_configs; 313 ve->ve_configs = ce; 314 } else { 315 nvlist_free(config); 316 } 317 318 /* 319 * At this point we've successfully added our config to the list of 320 * known configs. The last thing to do is add the vdev guid -> path 321 * mappings so that we can fix up the configuration as necessary before 322 * doing the import. 323 */ 324 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 325 return (-1); 326 327 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 328 free(ne); 329 return (-1); 330 } 331 332 ne->ne_guid = vdev_guid; 333 ne->ne_next = pl->names; 334 pl->names = ne; 335 336 return (0); 337 } 338 339 /* 340 * Returns true if the named pool matches the given GUID. 341 */ 342 static int 343 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid, 344 boolean_t *isactive) 345 { 346 zpool_handle_t *zhp; 347 uint64_t theguid; 348 349 if (zpool_open_silent(hdl, name, &zhp) != 0) 350 return (-1); 351 352 if (zhp == NULL) { 353 *isactive = B_FALSE; 354 return (0); 355 } 356 357 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, 358 &theguid) == 0); 359 360 zpool_close(zhp); 361 362 *isactive = (theguid == guid); 363 return (0); 364 } 365 366 static nvlist_t * 367 refresh_config(libzfs_handle_t *hdl, nvlist_t *config) 368 { 369 nvlist_t *nvl; 370 zfs_cmd_t zc = { 0 }; 371 int err; 372 373 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0) 374 return (NULL); 375 376 if (zcmd_alloc_dst_nvlist(hdl, &zc, 377 zc.zc_nvlist_conf_size * 2) != 0) { 378 zcmd_free_nvlists(&zc); 379 return (NULL); 380 } 381 382 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT, 383 &zc)) != 0 && errno == ENOMEM) { 384 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { 385 zcmd_free_nvlists(&zc); 386 return (NULL); 387 } 388 } 389 390 if (err) { 391 (void) zpool_standard_error(hdl, errno, 392 dgettext(TEXT_DOMAIN, "cannot discover pools")); 393 zcmd_free_nvlists(&zc); 394 return (NULL); 395 } 396 397 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) { 398 zcmd_free_nvlists(&zc); 399 return (NULL); 400 } 401 402 zcmd_free_nvlists(&zc); 403 return (nvl); 404 } 405 406 /* 407 * Convert our list of pools into the definitive set of configurations. We 408 * start by picking the best config for each toplevel vdev. Once that's done, 409 * we assemble the toplevel vdevs into a full config for the pool. We make a 410 * pass to fix up any incorrect paths, and then add it to the main list to 411 * return to the user. 412 */ 413 static nvlist_t * 414 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok) 415 { 416 pool_entry_t *pe; 417 vdev_entry_t *ve; 418 config_entry_t *ce; 419 nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot; 420 nvlist_t **spares, **l2cache; 421 uint_t i, nspares, nl2cache; 422 boolean_t config_seen; 423 uint64_t best_txg; 424 char *name, *hostname; 425 uint64_t version, guid; 426 uint_t children = 0; 427 nvlist_t **child = NULL; 428 uint_t c; 429 boolean_t isactive; 430 uint64_t hostid; 431 nvlist_t *nvl; 432 boolean_t found_one = B_FALSE; 433 434 if (nvlist_alloc(&ret, 0, 0) != 0) 435 goto nomem; 436 437 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 438 uint64_t id; 439 440 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 441 goto nomem; 442 config_seen = B_FALSE; 443 444 /* 445 * Iterate over all toplevel vdevs. Grab the pool configuration 446 * from the first one we find, and then go through the rest and 447 * add them as necessary to the 'vdevs' member of the config. 448 */ 449 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 450 451 /* 452 * Determine the best configuration for this vdev by 453 * selecting the config with the latest transaction 454 * group. 455 */ 456 best_txg = 0; 457 for (ce = ve->ve_configs; ce != NULL; 458 ce = ce->ce_next) { 459 460 if (ce->ce_txg > best_txg) { 461 tmp = ce->ce_config; 462 best_txg = ce->ce_txg; 463 } 464 } 465 466 if (!config_seen) { 467 /* 468 * Copy the relevant pieces of data to the pool 469 * configuration: 470 * 471 * version 472 * pool guid 473 * name 474 * pool state 475 * hostid (if available) 476 * hostname (if available) 477 */ 478 uint64_t state; 479 480 verify(nvlist_lookup_uint64(tmp, 481 ZPOOL_CONFIG_VERSION, &version) == 0); 482 if (nvlist_add_uint64(config, 483 ZPOOL_CONFIG_VERSION, version) != 0) 484 goto nomem; 485 verify(nvlist_lookup_uint64(tmp, 486 ZPOOL_CONFIG_POOL_GUID, &guid) == 0); 487 if (nvlist_add_uint64(config, 488 ZPOOL_CONFIG_POOL_GUID, guid) != 0) 489 goto nomem; 490 verify(nvlist_lookup_string(tmp, 491 ZPOOL_CONFIG_POOL_NAME, &name) == 0); 492 if (nvlist_add_string(config, 493 ZPOOL_CONFIG_POOL_NAME, name) != 0) 494 goto nomem; 495 verify(nvlist_lookup_uint64(tmp, 496 ZPOOL_CONFIG_POOL_STATE, &state) == 0); 497 if (nvlist_add_uint64(config, 498 ZPOOL_CONFIG_POOL_STATE, state) != 0) 499 goto nomem; 500 hostid = 0; 501 if (nvlist_lookup_uint64(tmp, 502 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 503 if (nvlist_add_uint64(config, 504 ZPOOL_CONFIG_HOSTID, hostid) != 0) 505 goto nomem; 506 verify(nvlist_lookup_string(tmp, 507 ZPOOL_CONFIG_HOSTNAME, 508 &hostname) == 0); 509 if (nvlist_add_string(config, 510 ZPOOL_CONFIG_HOSTNAME, 511 hostname) != 0) 512 goto nomem; 513 } 514 515 config_seen = B_TRUE; 516 } 517 518 /* 519 * Add this top-level vdev to the child array. 520 */ 521 verify(nvlist_lookup_nvlist(tmp, 522 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 523 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 524 &id) == 0); 525 if (id >= children) { 526 nvlist_t **newchild; 527 528 newchild = zfs_alloc(hdl, (id + 1) * 529 sizeof (nvlist_t *)); 530 if (newchild == NULL) 531 goto nomem; 532 533 for (c = 0; c < children; c++) 534 newchild[c] = child[c]; 535 536 free(child); 537 child = newchild; 538 children = id + 1; 539 } 540 if (nvlist_dup(nvtop, &child[id], 0) != 0) 541 goto nomem; 542 543 } 544 545 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 546 &guid) == 0); 547 548 /* 549 * Look for any missing top-level vdevs. If this is the case, 550 * create a faked up 'missing' vdev as a placeholder. We cannot 551 * simply compress the child array, because the kernel performs 552 * certain checks to make sure the vdev IDs match their location 553 * in the configuration. 554 */ 555 for (c = 0; c < children; c++) 556 if (child[c] == NULL) { 557 nvlist_t *missing; 558 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 559 0) != 0) 560 goto nomem; 561 if (nvlist_add_string(missing, 562 ZPOOL_CONFIG_TYPE, 563 VDEV_TYPE_MISSING) != 0 || 564 nvlist_add_uint64(missing, 565 ZPOOL_CONFIG_ID, c) != 0 || 566 nvlist_add_uint64(missing, 567 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 568 nvlist_free(missing); 569 goto nomem; 570 } 571 child[c] = missing; 572 } 573 574 /* 575 * Put all of this pool's top-level vdevs into a root vdev. 576 */ 577 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 578 goto nomem; 579 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 580 VDEV_TYPE_ROOT) != 0 || 581 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 582 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 583 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 584 child, children) != 0) { 585 nvlist_free(nvroot); 586 goto nomem; 587 } 588 589 for (c = 0; c < children; c++) 590 nvlist_free(child[c]); 591 free(child); 592 children = 0; 593 child = NULL; 594 595 /* 596 * Go through and fix up any paths and/or devids based on our 597 * known list of vdev GUID -> path mappings. 598 */ 599 if (fix_paths(nvroot, pl->names) != 0) { 600 nvlist_free(nvroot); 601 goto nomem; 602 } 603 604 /* 605 * Add the root vdev to this pool's configuration. 606 */ 607 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 608 nvroot) != 0) { 609 nvlist_free(nvroot); 610 goto nomem; 611 } 612 nvlist_free(nvroot); 613 614 /* 615 * zdb uses this path to report on active pools that were 616 * imported or created using -R. 617 */ 618 if (active_ok) 619 goto add_pool; 620 621 /* 622 * Determine if this pool is currently active, in which case we 623 * can't actually import it. 624 */ 625 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 626 &name) == 0); 627 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 628 &guid) == 0); 629 630 if (pool_active(hdl, name, guid, &isactive) != 0) 631 goto error; 632 633 if (isactive) { 634 nvlist_free(config); 635 config = NULL; 636 continue; 637 } 638 639 if ((nvl = refresh_config(hdl, config)) == NULL) 640 goto error; 641 642 nvlist_free(config); 643 config = nvl; 644 645 /* 646 * Go through and update the paths for spares, now that we have 647 * them. 648 */ 649 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 650 &nvroot) == 0); 651 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 652 &spares, &nspares) == 0) { 653 for (i = 0; i < nspares; i++) { 654 if (fix_paths(spares[i], pl->names) != 0) 655 goto nomem; 656 } 657 } 658 659 /* 660 * Update the paths for l2cache devices. 661 */ 662 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 663 &l2cache, &nl2cache) == 0) { 664 for (i = 0; i < nl2cache; i++) { 665 if (fix_paths(l2cache[i], pl->names) != 0) 666 goto nomem; 667 } 668 } 669 670 /* 671 * Restore the original information read from the actual label. 672 */ 673 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 674 DATA_TYPE_UINT64); 675 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 676 DATA_TYPE_STRING); 677 if (hostid != 0) { 678 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 679 hostid) == 0); 680 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 681 hostname) == 0); 682 } 683 684 add_pool: 685 /* 686 * Add this pool to the list of configs. 687 */ 688 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 689 &name) == 0); 690 if (nvlist_add_nvlist(ret, name, config) != 0) 691 goto nomem; 692 693 found_one = B_TRUE; 694 nvlist_free(config); 695 config = NULL; 696 } 697 698 if (!found_one) { 699 nvlist_free(ret); 700 ret = NULL; 701 } 702 703 return (ret); 704 705 nomem: 706 (void) no_memory(hdl); 707 error: 708 nvlist_free(config); 709 nvlist_free(ret); 710 for (c = 0; c < children; c++) 711 nvlist_free(child[c]); 712 free(child); 713 714 return (NULL); 715 } 716 717 /* 718 * Return the offset of the given label. 719 */ 720 static uint64_t 721 label_offset(uint64_t size, int l) 722 { 723 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 724 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 725 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 726 } 727 728 /* 729 * Given a file descriptor, read the label information and return an nvlist 730 * describing the configuration, if there is one. 731 */ 732 int 733 zpool_read_label(int fd, nvlist_t **config) 734 { 735 struct stat64 statbuf; 736 int l; 737 vdev_label_t *label; 738 uint64_t state, txg, size; 739 740 *config = NULL; 741 742 if (fstat64(fd, &statbuf) == -1) 743 return (0); 744 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 745 746 if ((label = malloc(sizeof (vdev_label_t))) == NULL) 747 return (-1); 748 749 for (l = 0; l < VDEV_LABELS; l++) { 750 if (pread64(fd, label, sizeof (vdev_label_t), 751 label_offset(size, l)) != sizeof (vdev_label_t)) 752 continue; 753 754 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 755 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) 756 continue; 757 758 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 759 &state) != 0 || state > POOL_STATE_L2CACHE) { 760 nvlist_free(*config); 761 continue; 762 } 763 764 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 765 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 766 &txg) != 0 || txg == 0)) { 767 nvlist_free(*config); 768 continue; 769 } 770 771 free(label); 772 return (0); 773 } 774 775 free(label); 776 *config = NULL; 777 return (0); 778 } 779 780 /* 781 * Given a list of directories to search, find all pools stored on disk. This 782 * includes partial pools which are not available to import. If no args are 783 * given (argc is 0), then the default directory (/dev/dsk) is searched. 784 * poolname or guid (but not both) are provided by the caller when trying 785 * to import a specific pool. 786 */ 787 static nvlist_t * 788 zpool_find_import_impl(libzfs_handle_t *hdl, int argc, char **argv, 789 boolean_t active_ok, char *poolname, uint64_t guid) 790 { 791 int i; 792 DIR *dirp = NULL; 793 struct dirent64 *dp; 794 char path[MAXPATHLEN]; 795 char *end; 796 size_t pathleft; 797 struct stat64 statbuf; 798 nvlist_t *ret = NULL, *config; 799 static char *default_dir = "/dev/dsk"; 800 int fd; 801 pool_list_t pools = { 0 }; 802 pool_entry_t *pe, *penext; 803 vdev_entry_t *ve, *venext; 804 config_entry_t *ce, *cenext; 805 name_entry_t *ne, *nenext; 806 807 verify(poolname == NULL || guid == 0); 808 809 if (argc == 0) { 810 argc = 1; 811 argv = &default_dir; 812 } 813 814 /* 815 * Go through and read the label configuration information from every 816 * possible device, organizing the information according to pool GUID 817 * and toplevel GUID. 818 */ 819 for (i = 0; i < argc; i++) { 820 char *rdsk; 821 int dfd; 822 823 /* use realpath to normalize the path */ 824 if (realpath(argv[i], path) == 0) { 825 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 826 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 827 argv[i]); 828 goto error; 829 } 830 end = &path[strlen(path)]; 831 *end++ = '/'; 832 *end = 0; 833 pathleft = &path[sizeof (path)] - end; 834 835 /* 836 * Using raw devices instead of block devices when we're 837 * reading the labels skips a bunch of slow operations during 838 * close(2) processing, so we replace /dev/dsk with /dev/rdsk. 839 */ 840 if (strcmp(path, "/dev/dsk/") == 0) 841 rdsk = "/dev/rdsk/"; 842 else 843 rdsk = path; 844 845 if ((dfd = open64(rdsk, O_RDONLY)) < 0 || 846 (dirp = fdopendir(dfd)) == NULL) { 847 zfs_error_aux(hdl, strerror(errno)); 848 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 849 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 850 rdsk); 851 goto error; 852 } 853 854 /* 855 * This is not MT-safe, but we have no MT consumers of libzfs 856 */ 857 while ((dp = readdir64(dirp)) != NULL) { 858 const char *name = dp->d_name; 859 if (name[0] == '.' && 860 (name[1] == 0 || (name[1] == '.' && name[2] == 0))) 861 continue; 862 863 if ((fd = openat64(dfd, name, O_RDONLY)) < 0) 864 continue; 865 866 /* 867 * Ignore failed stats. We only want regular 868 * files, character devs and block devs. 869 */ 870 if (fstat64(fd, &statbuf) != 0 || 871 (!S_ISREG(statbuf.st_mode) && 872 !S_ISCHR(statbuf.st_mode) && 873 !S_ISBLK(statbuf.st_mode))) { 874 (void) close(fd); 875 continue; 876 } 877 878 if ((zpool_read_label(fd, &config)) != 0) { 879 (void) close(fd); 880 (void) no_memory(hdl); 881 goto error; 882 } 883 884 (void) close(fd); 885 886 if (config != NULL) { 887 boolean_t matched = B_TRUE; 888 889 if (poolname != NULL) { 890 char *pname; 891 892 matched = nvlist_lookup_string(config, 893 ZPOOL_CONFIG_POOL_NAME, 894 &pname) == 0 && 895 strcmp(poolname, pname) == 0; 896 } else if (guid != 0) { 897 uint64_t this_guid; 898 verify(nvlist_lookup_uint64(config, 899 ZPOOL_CONFIG_POOL_GUID, 900 &this_guid) == 0); 901 matched = guid == this_guid; 902 } 903 if (!matched) { 904 nvlist_free(config); 905 config = NULL; 906 continue; 907 } 908 /* use the non-raw path for the config */ 909 (void) strlcpy(end, name, pathleft); 910 if (add_config(hdl, &pools, path, config) != 0) 911 goto error; 912 } 913 } 914 915 (void) closedir(dirp); 916 dirp = NULL; 917 } 918 919 ret = get_configs(hdl, &pools, active_ok); 920 921 error: 922 for (pe = pools.pools; pe != NULL; pe = penext) { 923 penext = pe->pe_next; 924 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 925 venext = ve->ve_next; 926 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 927 cenext = ce->ce_next; 928 if (ce->ce_config) 929 nvlist_free(ce->ce_config); 930 free(ce); 931 } 932 free(ve); 933 } 934 free(pe); 935 } 936 937 for (ne = pools.names; ne != NULL; ne = nenext) { 938 nenext = ne->ne_next; 939 if (ne->ne_name) 940 free(ne->ne_name); 941 free(ne); 942 } 943 944 if (dirp) 945 (void) closedir(dirp); 946 947 return (ret); 948 } 949 950 nvlist_t * 951 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv) 952 { 953 return (zpool_find_import_impl(hdl, argc, argv, B_FALSE, NULL, 0)); 954 } 955 956 nvlist_t * 957 zpool_find_import_byname(libzfs_handle_t *hdl, int argc, char **argv, 958 char *pool) 959 { 960 return (zpool_find_import_impl(hdl, argc, argv, B_FALSE, pool, 0)); 961 } 962 963 nvlist_t * 964 zpool_find_import_byguid(libzfs_handle_t *hdl, int argc, char **argv, 965 uint64_t guid) 966 { 967 return (zpool_find_import_impl(hdl, argc, argv, B_FALSE, NULL, guid)); 968 } 969 970 nvlist_t * 971 zpool_find_import_activeok(libzfs_handle_t *hdl, int argc, char **argv) 972 { 973 return (zpool_find_import_impl(hdl, argc, argv, B_TRUE, NULL, 0)); 974 } 975 976 /* 977 * Given a cache file, return the contents as a list of importable pools. 978 * poolname or guid (but not both) are provided by the caller when trying 979 * to import a specific pool. 980 */ 981 nvlist_t * 982 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile, 983 char *poolname, uint64_t guid) 984 { 985 char *buf; 986 int fd; 987 struct stat64 statbuf; 988 nvlist_t *raw, *src, *dst; 989 nvlist_t *pools; 990 nvpair_t *elem; 991 char *name; 992 uint64_t this_guid; 993 boolean_t active; 994 995 verify(poolname == NULL || guid == 0); 996 997 if ((fd = open(cachefile, O_RDONLY)) < 0) { 998 zfs_error_aux(hdl, "%s", strerror(errno)); 999 (void) zfs_error(hdl, EZFS_BADCACHE, 1000 dgettext(TEXT_DOMAIN, "failed to open cache file")); 1001 return (NULL); 1002 } 1003 1004 if (fstat64(fd, &statbuf) != 0) { 1005 zfs_error_aux(hdl, "%s", strerror(errno)); 1006 (void) close(fd); 1007 (void) zfs_error(hdl, EZFS_BADCACHE, 1008 dgettext(TEXT_DOMAIN, "failed to get size of cache file")); 1009 return (NULL); 1010 } 1011 1012 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) { 1013 (void) close(fd); 1014 return (NULL); 1015 } 1016 1017 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1018 (void) close(fd); 1019 free(buf); 1020 (void) zfs_error(hdl, EZFS_BADCACHE, 1021 dgettext(TEXT_DOMAIN, 1022 "failed to read cache file contents")); 1023 return (NULL); 1024 } 1025 1026 (void) close(fd); 1027 1028 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1029 free(buf); 1030 (void) zfs_error(hdl, EZFS_BADCACHE, 1031 dgettext(TEXT_DOMAIN, 1032 "invalid or corrupt cache file contents")); 1033 return (NULL); 1034 } 1035 1036 free(buf); 1037 1038 /* 1039 * Go through and get the current state of the pools and refresh their 1040 * state. 1041 */ 1042 if (nvlist_alloc(&pools, 0, 0) != 0) { 1043 (void) no_memory(hdl); 1044 nvlist_free(raw); 1045 return (NULL); 1046 } 1047 1048 elem = NULL; 1049 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1050 verify(nvpair_value_nvlist(elem, &src) == 0); 1051 1052 verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME, 1053 &name) == 0); 1054 if (poolname != NULL && strcmp(poolname, name) != 0) 1055 continue; 1056 1057 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID, 1058 &this_guid) == 0); 1059 if (guid != 0) { 1060 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID, 1061 &this_guid) == 0); 1062 if (guid != this_guid) 1063 continue; 1064 } 1065 1066 if (pool_active(hdl, name, this_guid, &active) != 0) { 1067 nvlist_free(raw); 1068 nvlist_free(pools); 1069 return (NULL); 1070 } 1071 1072 if (active) 1073 continue; 1074 1075 if ((dst = refresh_config(hdl, src)) == NULL) { 1076 nvlist_free(raw); 1077 nvlist_free(pools); 1078 return (NULL); 1079 } 1080 1081 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1082 (void) no_memory(hdl); 1083 nvlist_free(dst); 1084 nvlist_free(raw); 1085 nvlist_free(pools); 1086 return (NULL); 1087 } 1088 nvlist_free(dst); 1089 } 1090 1091 nvlist_free(raw); 1092 return (pools); 1093 } 1094 1095 1096 boolean_t 1097 find_guid(nvlist_t *nv, uint64_t guid) 1098 { 1099 uint64_t tmp; 1100 nvlist_t **child; 1101 uint_t c, children; 1102 1103 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0); 1104 if (tmp == guid) 1105 return (B_TRUE); 1106 1107 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1108 &child, &children) == 0) { 1109 for (c = 0; c < children; c++) 1110 if (find_guid(child[c], guid)) 1111 return (B_TRUE); 1112 } 1113 1114 return (B_FALSE); 1115 } 1116 1117 typedef struct aux_cbdata { 1118 const char *cb_type; 1119 uint64_t cb_guid; 1120 zpool_handle_t *cb_zhp; 1121 } aux_cbdata_t; 1122 1123 static int 1124 find_aux(zpool_handle_t *zhp, void *data) 1125 { 1126 aux_cbdata_t *cbp = data; 1127 nvlist_t **list; 1128 uint_t i, count; 1129 uint64_t guid; 1130 nvlist_t *nvroot; 1131 1132 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, 1133 &nvroot) == 0); 1134 1135 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type, 1136 &list, &count) == 0) { 1137 for (i = 0; i < count; i++) { 1138 verify(nvlist_lookup_uint64(list[i], 1139 ZPOOL_CONFIG_GUID, &guid) == 0); 1140 if (guid == cbp->cb_guid) { 1141 cbp->cb_zhp = zhp; 1142 return (1); 1143 } 1144 } 1145 } 1146 1147 zpool_close(zhp); 1148 return (0); 1149 } 1150 1151 /* 1152 * Determines if the pool is in use. If so, it returns true and the state of 1153 * the pool as well as the name of the pool. Both strings are allocated and 1154 * must be freed by the caller. 1155 */ 1156 int 1157 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, 1158 boolean_t *inuse) 1159 { 1160 nvlist_t *config; 1161 char *name; 1162 boolean_t ret; 1163 uint64_t guid, vdev_guid; 1164 zpool_handle_t *zhp; 1165 nvlist_t *pool_config; 1166 uint64_t stateval, isspare; 1167 aux_cbdata_t cb = { 0 }; 1168 boolean_t isactive; 1169 1170 *inuse = B_FALSE; 1171 1172 if (zpool_read_label(fd, &config) != 0) { 1173 (void) no_memory(hdl); 1174 return (-1); 1175 } 1176 1177 if (config == NULL) 1178 return (0); 1179 1180 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 1181 &stateval) == 0); 1182 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 1183 &vdev_guid) == 0); 1184 1185 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) { 1186 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 1187 &name) == 0); 1188 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 1189 &guid) == 0); 1190 } 1191 1192 switch (stateval) { 1193 case POOL_STATE_EXPORTED: 1194 ret = B_TRUE; 1195 break; 1196 1197 case POOL_STATE_ACTIVE: 1198 /* 1199 * For an active pool, we have to determine if it's really part 1200 * of a currently active pool (in which case the pool will exist 1201 * and the guid will be the same), or whether it's part of an 1202 * active pool that was disconnected without being explicitly 1203 * exported. 1204 */ 1205 if (pool_active(hdl, name, guid, &isactive) != 0) { 1206 nvlist_free(config); 1207 return (-1); 1208 } 1209 1210 if (isactive) { 1211 /* 1212 * Because the device may have been removed while 1213 * offlined, we only report it as active if the vdev is 1214 * still present in the config. Otherwise, pretend like 1215 * it's not in use. 1216 */ 1217 if ((zhp = zpool_open_canfail(hdl, name)) != NULL && 1218 (pool_config = zpool_get_config(zhp, NULL)) 1219 != NULL) { 1220 nvlist_t *nvroot; 1221 1222 verify(nvlist_lookup_nvlist(pool_config, 1223 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1224 ret = find_guid(nvroot, vdev_guid); 1225 } else { 1226 ret = B_FALSE; 1227 } 1228 1229 /* 1230 * If this is an active spare within another pool, we 1231 * treat it like an unused hot spare. This allows the 1232 * user to create a pool with a hot spare that currently 1233 * in use within another pool. Since we return B_TRUE, 1234 * libdiskmgt will continue to prevent generic consumers 1235 * from using the device. 1236 */ 1237 if (ret && nvlist_lookup_uint64(config, 1238 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) 1239 stateval = POOL_STATE_SPARE; 1240 1241 if (zhp != NULL) 1242 zpool_close(zhp); 1243 } else { 1244 stateval = POOL_STATE_POTENTIALLY_ACTIVE; 1245 ret = B_TRUE; 1246 } 1247 break; 1248 1249 case POOL_STATE_SPARE: 1250 /* 1251 * For a hot spare, it can be either definitively in use, or 1252 * potentially active. To determine if it's in use, we iterate 1253 * over all pools in the system and search for one with a spare 1254 * with a matching guid. 1255 * 1256 * Due to the shared nature of spares, we don't actually report 1257 * the potentially active case as in use. This means the user 1258 * can freely create pools on the hot spares of exported pools, 1259 * but to do otherwise makes the resulting code complicated, and 1260 * we end up having to deal with this case anyway. 1261 */ 1262 cb.cb_zhp = NULL; 1263 cb.cb_guid = vdev_guid; 1264 cb.cb_type = ZPOOL_CONFIG_SPARES; 1265 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1266 name = (char *)zpool_get_name(cb.cb_zhp); 1267 ret = TRUE; 1268 } else { 1269 ret = FALSE; 1270 } 1271 break; 1272 1273 case POOL_STATE_L2CACHE: 1274 1275 /* 1276 * Check if any pool is currently using this l2cache device. 1277 */ 1278 cb.cb_zhp = NULL; 1279 cb.cb_guid = vdev_guid; 1280 cb.cb_type = ZPOOL_CONFIG_L2CACHE; 1281 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1282 name = (char *)zpool_get_name(cb.cb_zhp); 1283 ret = TRUE; 1284 } else { 1285 ret = FALSE; 1286 } 1287 break; 1288 1289 default: 1290 ret = B_FALSE; 1291 } 1292 1293 1294 if (ret) { 1295 if ((*namestr = zfs_strdup(hdl, name)) == NULL) { 1296 if (cb.cb_zhp) 1297 zpool_close(cb.cb_zhp); 1298 nvlist_free(config); 1299 return (-1); 1300 } 1301 *state = (pool_state_t)stateval; 1302 } 1303 1304 if (cb.cb_zhp) 1305 zpool_close(cb.cb_zhp); 1306 1307 nvlist_free(config); 1308 *inuse = ret; 1309 return (0); 1310 } 1311