xref: /illumos-gate/usr/src/lib/libvmmapi/common/vmmapi.c (revision fdb2a7e9480266dfaa0b5aaa0e1237456552f332)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 /*
31  * This file and its contents are supplied under the terms of the
32  * Common Development and Distribution License ("CDDL"), version 1.0.
33  * You may only use this file in accordance with the terms of version
34  * 1.0 of the CDDL.
35  *
36  * A full copy of the text of the CDDL should have accompanied this
37  * source.  A copy of the CDDL is also available via the Internet at
38  * http://www.illumos.org/license/CDDL.
39  *
40  * Copyright 2015 Pluribus Networks Inc.
41  * Copyright 2019 Joyent, Inc.
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include <sys/param.h>
48 #include <sys/sysctl.h>
49 #include <sys/ioctl.h>
50 #ifdef	__FreeBSD__
51 #include <sys/linker.h>
52 #endif
53 #include <sys/mman.h>
54 #include <sys/module.h>
55 #include <sys/_iovec.h>
56 #include <sys/cpuset.h>
57 
58 #include <x86/segments.h>
59 #include <machine/specialreg.h>
60 
61 #include <errno.h>
62 #include <stdio.h>
63 #include <stdlib.h>
64 #include <assert.h>
65 #include <string.h>
66 #include <fcntl.h>
67 #include <unistd.h>
68 
69 #include <libutil.h>
70 
71 #include <machine/vmm.h>
72 #include <machine/vmm_dev.h>
73 
74 #include "vmmapi.h"
75 
76 #define	MB	(1024 * 1024UL)
77 #define	GB	(1024 * 1024 * 1024UL)
78 
79 #ifndef __FreeBSD__
80 /* shim to no-op for now */
81 #define	MAP_NOCORE		0
82 #define	MAP_ALIGNED_SUPER	0
83 
84 /* Rely on PROT_NONE for guard purposes */
85 #define	MAP_GUARD		(MAP_PRIVATE | MAP_ANON | MAP_NORESERVE)
86 #endif
87 
88 /*
89  * Size of the guard region before and after the virtual address space
90  * mapping the guest physical memory. This must be a multiple of the
91  * superpage size for performance reasons.
92  */
93 #define	VM_MMAP_GUARD_SIZE	(4 * MB)
94 
95 #define	PROT_RW		(PROT_READ | PROT_WRITE)
96 #define	PROT_ALL	(PROT_READ | PROT_WRITE | PROT_EXEC)
97 
98 struct vmctx {
99 	int	fd;
100 	uint32_t lowmem_limit;
101 	int	memflags;
102 	size_t	lowmem;
103 	size_t	highmem;
104 	char	*baseaddr;
105 	char	*name;
106 };
107 
108 #ifdef	__FreeBSD__
109 #define	CREATE(x)  sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x)))
110 #define	DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x)))
111 #else
112 #define	CREATE(x)	vm_do_ctl(VMM_CREATE_VM, (x))
113 #define	DESTROY(x)	vm_do_ctl(VMM_DESTROY_VM, (x))
114 
115 static int
116 vm_do_ctl(int cmd, const char *name)
117 {
118 	int ctl_fd;
119 
120 	ctl_fd = open(VMM_CTL_DEV, O_EXCL | O_RDWR);
121 	if (ctl_fd < 0) {
122 		return (-1);
123 	}
124 
125 	if (ioctl(ctl_fd, cmd, name) == -1) {
126 		int err = errno;
127 
128 		/* Do not lose ioctl errno through the close(2) */
129 		(void) close(ctl_fd);
130 		errno = err;
131 		return (-1);
132 	}
133 	(void) close(ctl_fd);
134 
135 	return (0);
136 }
137 #endif
138 
139 static int
140 vm_device_open(const char *name)
141 {
142 	int fd, len;
143 	char *vmfile;
144 
145 	len = strlen("/dev/vmm/") + strlen(name) + 1;
146 	vmfile = malloc(len);
147 	assert(vmfile != NULL);
148 	snprintf(vmfile, len, "/dev/vmm/%s", name);
149 
150 	/* Open the device file */
151 	fd = open(vmfile, O_RDWR, 0);
152 
153 	free(vmfile);
154 	return (fd);
155 }
156 
157 int
158 vm_create(const char *name)
159 {
160 #ifdef __FreeBSD__
161 	/* Try to load vmm(4) module before creating a guest. */
162 	if (modfind("vmm") < 0)
163 		kldload("vmm");
164 #endif
165 	return (CREATE((char *)name));
166 }
167 
168 struct vmctx *
169 vm_open(const char *name)
170 {
171 	struct vmctx *vm;
172 
173 	vm = malloc(sizeof(struct vmctx) + strlen(name) + 1);
174 	assert(vm != NULL);
175 
176 	vm->fd = -1;
177 	vm->memflags = 0;
178 	vm->lowmem_limit = 3 * GB;
179 	vm->name = (char *)(vm + 1);
180 	strcpy(vm->name, name);
181 
182 	if ((vm->fd = vm_device_open(vm->name)) < 0)
183 		goto err;
184 
185 	return (vm);
186 err:
187 #ifdef __FreeBSD__
188 	vm_destroy(vm);
189 #else
190 	/*
191 	 * As libvmmapi is used by other programs to query and control bhyve
192 	 * VMs, destroying a VM just because the open failed isn't useful. We
193 	 * have to free what we have allocated, though.
194 	 */
195 	free(vm);
196 #endif
197 	return (NULL);
198 }
199 
200 #ifndef __FreeBSD__
201 void
202 vm_close(struct vmctx *vm)
203 {
204 	assert(vm != NULL);
205 	assert(vm->fd >= 0);
206 
207 	(void) close(vm->fd);
208 
209 	free(vm);
210 }
211 #endif
212 
213 void
214 vm_destroy(struct vmctx *vm)
215 {
216 	assert(vm != NULL);
217 
218 	if (vm->fd >= 0)
219 		close(vm->fd);
220 	DESTROY(vm->name);
221 
222 	free(vm);
223 }
224 
225 int
226 vm_parse_memsize(const char *optarg, size_t *ret_memsize)
227 {
228 	char *endptr;
229 	size_t optval;
230 	int error;
231 
232 	optval = strtoul(optarg, &endptr, 0);
233 	if (*optarg != '\0' && *endptr == '\0') {
234 		/*
235 		 * For the sake of backward compatibility if the memory size
236 		 * specified on the command line is less than a megabyte then
237 		 * it is interpreted as being in units of MB.
238 		 */
239 		if (optval < MB)
240 			optval *= MB;
241 		*ret_memsize = optval;
242 		error = 0;
243 	} else
244 		error = expand_number(optarg, ret_memsize);
245 
246 	return (error);
247 }
248 
249 uint32_t
250 vm_get_lowmem_limit(struct vmctx *ctx)
251 {
252 
253 	return (ctx->lowmem_limit);
254 }
255 
256 void
257 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit)
258 {
259 
260 	ctx->lowmem_limit = limit;
261 }
262 
263 void
264 vm_set_memflags(struct vmctx *ctx, int flags)
265 {
266 
267 	ctx->memflags = flags;
268 }
269 
270 int
271 vm_get_memflags(struct vmctx *ctx)
272 {
273 
274 	return (ctx->memflags);
275 }
276 
277 /*
278  * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len).
279  */
280 int
281 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off,
282     size_t len, int prot)
283 {
284 	struct vm_memmap memmap;
285 	int error, flags;
286 
287 	memmap.gpa = gpa;
288 	memmap.segid = segid;
289 	memmap.segoff = off;
290 	memmap.len = len;
291 	memmap.prot = prot;
292 	memmap.flags = 0;
293 
294 	if (ctx->memflags & VM_MEM_F_WIRED)
295 		memmap.flags |= VM_MEMMAP_F_WIRED;
296 
297 	/*
298 	 * If this mapping already exists then don't create it again. This
299 	 * is the common case for SYSMEM mappings created by bhyveload(8).
300 	 */
301 	error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags);
302 	if (error == 0 && gpa == memmap.gpa) {
303 		if (segid != memmap.segid || off != memmap.segoff ||
304 		    prot != memmap.prot || flags != memmap.flags) {
305 			errno = EEXIST;
306 			return (-1);
307 		} else {
308 			return (0);
309 		}
310 	}
311 
312 	error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap);
313 	return (error);
314 }
315 
316 int
317 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid,
318     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
319 {
320 	struct vm_memmap memmap;
321 	int error;
322 
323 	bzero(&memmap, sizeof(struct vm_memmap));
324 	memmap.gpa = *gpa;
325 	error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap);
326 	if (error == 0) {
327 		*gpa = memmap.gpa;
328 		*segid = memmap.segid;
329 		*segoff = memmap.segoff;
330 		*len = memmap.len;
331 		*prot = memmap.prot;
332 		*flags = memmap.flags;
333 	}
334 	return (error);
335 }
336 
337 /*
338  * Return 0 if the segments are identical and non-zero otherwise.
339  *
340  * This is slightly complicated by the fact that only device memory segments
341  * are named.
342  */
343 static int
344 cmpseg(size_t len, const char *str, size_t len2, const char *str2)
345 {
346 
347 	if (len == len2) {
348 		if ((!str && !str2) || (str && str2 && !strcmp(str, str2)))
349 			return (0);
350 	}
351 	return (-1);
352 }
353 
354 static int
355 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name)
356 {
357 	struct vm_memseg memseg;
358 	size_t n;
359 	int error;
360 
361 	/*
362 	 * If the memory segment has already been created then just return.
363 	 * This is the usual case for the SYSMEM segment created by userspace
364 	 * loaders like bhyveload(8).
365 	 */
366 	error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name,
367 	    sizeof(memseg.name));
368 	if (error)
369 		return (error);
370 
371 	if (memseg.len != 0) {
372 		if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) {
373 			errno = EINVAL;
374 			return (-1);
375 		} else {
376 			return (0);
377 		}
378 	}
379 
380 	bzero(&memseg, sizeof(struct vm_memseg));
381 	memseg.segid = segid;
382 	memseg.len = len;
383 	if (name != NULL) {
384 		n = strlcpy(memseg.name, name, sizeof(memseg.name));
385 		if (n >= sizeof(memseg.name)) {
386 			errno = ENAMETOOLONG;
387 			return (-1);
388 		}
389 	}
390 
391 	error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg);
392 	return (error);
393 }
394 
395 int
396 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf,
397     size_t bufsize)
398 {
399 	struct vm_memseg memseg;
400 	size_t n;
401 	int error;
402 
403 	memseg.segid = segid;
404 	error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg);
405 	if (error == 0) {
406 		*lenp = memseg.len;
407 		n = strlcpy(namebuf, memseg.name, bufsize);
408 		if (n >= bufsize) {
409 			errno = ENAMETOOLONG;
410 			error = -1;
411 		}
412 	}
413 	return (error);
414 }
415 
416 static int
417 #ifdef __FreeBSD__
418 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base)
419 #else
420 setup_memory_segment(struct vmctx *ctx, int segid, vm_paddr_t gpa, size_t len,
421     char *base)
422 #endif
423 {
424 	char *ptr;
425 	int error, flags;
426 
427 	/* Map 'len' bytes starting at 'gpa' in the guest address space */
428 #ifdef __FreeBSD__
429 	error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL);
430 #else
431 	/*
432 	 * As we use two segments for lowmem/highmem the offset within the
433 	 * segment is 0 on illumos.
434 	 */
435 	error = vm_mmap_memseg(ctx, gpa, segid, 0, len, PROT_ALL);
436 #endif
437 	if (error)
438 		return (error);
439 
440 	flags = MAP_SHARED | MAP_FIXED;
441 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
442 		flags |= MAP_NOCORE;
443 
444 	/* mmap into the process address space on the host */
445 	ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa);
446 	if (ptr == MAP_FAILED)
447 		return (-1);
448 
449 	return (0);
450 }
451 
452 int
453 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms)
454 {
455 	size_t objsize, len;
456 	vm_paddr_t gpa;
457 	char *baseaddr, *ptr;
458 	int error;
459 
460 	assert(vms == VM_MMAP_ALL);
461 
462 	/*
463 	 * If 'memsize' cannot fit entirely in the 'lowmem' segment then
464 	 * create another 'highmem' segment above 4GB for the remainder.
465 	 */
466 	if (memsize > ctx->lowmem_limit) {
467 		ctx->lowmem = ctx->lowmem_limit;
468 		ctx->highmem = memsize - ctx->lowmem_limit;
469 		objsize = 4*GB + ctx->highmem;
470 	} else {
471 		ctx->lowmem = memsize;
472 		ctx->highmem = 0;
473 		objsize = ctx->lowmem;
474 	}
475 
476 #ifdef __FreeBSD__
477 	error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL);
478 	if (error)
479 		return (error);
480 #endif
481 
482 	/*
483 	 * Stake out a contiguous region covering the guest physical memory
484 	 * and the adjoining guard regions.
485 	 */
486 	len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE;
487 	ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0);
488 	if (ptr == MAP_FAILED)
489 		return (-1);
490 
491 	baseaddr = ptr + VM_MMAP_GUARD_SIZE;
492 
493 #ifdef __FreeBSD__
494 	if (ctx->highmem > 0) {
495 		gpa = 4*GB;
496 		len = ctx->highmem;
497 		error = setup_memory_segment(ctx, gpa, len, baseaddr);
498 		if (error)
499 			return (error);
500 	}
501 
502 	if (ctx->lowmem > 0) {
503 		gpa = 0;
504 		len = ctx->lowmem;
505 		error = setup_memory_segment(ctx, gpa, len, baseaddr);
506 		if (error)
507 			return (error);
508 	}
509 #else
510 	if (ctx->highmem > 0) {
511 		error = vm_alloc_memseg(ctx, VM_HIGHMEM, ctx->highmem, NULL);
512 		if (error)
513 			return (error);
514 		gpa = 4*GB;
515 		len = ctx->highmem;
516 		error = setup_memory_segment(ctx, VM_HIGHMEM, gpa, len, baseaddr);
517 		if (error)
518 			return (error);
519 	}
520 
521 	if (ctx->lowmem > 0) {
522 		error = vm_alloc_memseg(ctx, VM_LOWMEM, ctx->lowmem, NULL);
523 		if (error)
524 			return (error);
525 		gpa = 0;
526 		len = ctx->lowmem;
527 		error = setup_memory_segment(ctx, VM_LOWMEM, gpa, len, baseaddr);
528 		if (error)
529 			return (error);
530 	}
531 #endif
532 
533 	ctx->baseaddr = baseaddr;
534 
535 	return (0);
536 }
537 
538 /*
539  * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in
540  * the lowmem or highmem regions.
541  *
542  * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region.
543  * The instruction emulation code depends on this behavior.
544  */
545 void *
546 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
547 {
548 
549 	if (ctx->lowmem > 0) {
550 		if (gaddr < ctx->lowmem && len <= ctx->lowmem &&
551 		    gaddr + len <= ctx->lowmem)
552 			return (ctx->baseaddr + gaddr);
553 	}
554 
555 	if (ctx->highmem > 0) {
556                 if (gaddr >= 4*GB) {
557 			if (gaddr < 4*GB + ctx->highmem &&
558 			    len <= ctx->highmem &&
559 			    gaddr + len <= 4*GB + ctx->highmem)
560 				return (ctx->baseaddr + gaddr);
561 		}
562 	}
563 
564 	return (NULL);
565 }
566 
567 size_t
568 vm_get_lowmem_size(struct vmctx *ctx)
569 {
570 
571 	return (ctx->lowmem);
572 }
573 
574 size_t
575 vm_get_highmem_size(struct vmctx *ctx)
576 {
577 
578 	return (ctx->highmem);
579 }
580 
581 #ifndef __FreeBSD__
582 int
583 vm_get_devmem_offset(struct vmctx *ctx, int segid, off_t *mapoff)
584 {
585 	struct vm_devmem_offset vdo;
586 	int error;
587 
588 	vdo.segid = segid;
589 	error = ioctl(ctx->fd, VM_DEVMEM_GETOFFSET, &vdo);
590 	if (error == 0)
591 		*mapoff = vdo.offset;
592 
593 	return (error);
594 }
595 #endif
596 
597 void *
598 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len)
599 {
600 #ifdef	__FreeBSD__
601 	char pathname[MAXPATHLEN];
602 #endif
603 	size_t len2;
604 	char *base, *ptr;
605 	int fd, error, flags;
606 	off_t mapoff;
607 
608 	fd = -1;
609 	ptr = MAP_FAILED;
610 	if (name == NULL || strlen(name) == 0) {
611 		errno = EINVAL;
612 		goto done;
613 	}
614 
615 	error = vm_alloc_memseg(ctx, segid, len, name);
616 	if (error)
617 		goto done;
618 
619 #ifdef	__FreeBSD__
620 	strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname));
621 	strlcat(pathname, ctx->name, sizeof(pathname));
622 	strlcat(pathname, ".", sizeof(pathname));
623 	strlcat(pathname, name, sizeof(pathname));
624 
625 	fd = open(pathname, O_RDWR);
626 	if (fd < 0)
627 		goto done;
628 #else
629 	if (vm_get_devmem_offset(ctx, segid, &mapoff) != 0)
630 		goto done;
631 #endif
632 
633 	/*
634 	 * Stake out a contiguous region covering the device memory and the
635 	 * adjoining guard regions.
636 	 */
637 	len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE;
638 	base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1,
639 	    0);
640 	if (base == MAP_FAILED)
641 		goto done;
642 
643 	flags = MAP_SHARED | MAP_FIXED;
644 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
645 		flags |= MAP_NOCORE;
646 
647 #ifdef	__FreeBSD__
648 	/* mmap the devmem region in the host address space */
649 	ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0);
650 #else
651 	/* mmap the devmem region in the host address space */
652 	ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, ctx->fd,
653 	    mapoff);
654 #endif
655 done:
656 	if (fd >= 0)
657 		close(fd);
658 	return (ptr);
659 }
660 
661 int
662 vm_set_desc(struct vmctx *ctx, int vcpu, int reg,
663 	    uint64_t base, uint32_t limit, uint32_t access)
664 {
665 	int error;
666 	struct vm_seg_desc vmsegdesc;
667 
668 	bzero(&vmsegdesc, sizeof(vmsegdesc));
669 	vmsegdesc.cpuid = vcpu;
670 	vmsegdesc.regnum = reg;
671 	vmsegdesc.desc.base = base;
672 	vmsegdesc.desc.limit = limit;
673 	vmsegdesc.desc.access = access;
674 
675 	error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc);
676 	return (error);
677 }
678 
679 int
680 vm_get_desc(struct vmctx *ctx, int vcpu, int reg,
681 	    uint64_t *base, uint32_t *limit, uint32_t *access)
682 {
683 	int error;
684 	struct vm_seg_desc vmsegdesc;
685 
686 	bzero(&vmsegdesc, sizeof(vmsegdesc));
687 	vmsegdesc.cpuid = vcpu;
688 	vmsegdesc.regnum = reg;
689 
690 	error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc);
691 	if (error == 0) {
692 		*base = vmsegdesc.desc.base;
693 		*limit = vmsegdesc.desc.limit;
694 		*access = vmsegdesc.desc.access;
695 	}
696 	return (error);
697 }
698 
699 int
700 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc)
701 {
702 	int error;
703 
704 	error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit,
705 	    &seg_desc->access);
706 	return (error);
707 }
708 
709 int
710 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val)
711 {
712 	int error;
713 	struct vm_register vmreg;
714 
715 	bzero(&vmreg, sizeof(vmreg));
716 	vmreg.cpuid = vcpu;
717 	vmreg.regnum = reg;
718 	vmreg.regval = val;
719 
720 	error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg);
721 	return (error);
722 }
723 
724 int
725 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val)
726 {
727 	int error;
728 	struct vm_register vmreg;
729 
730 	bzero(&vmreg, sizeof(vmreg));
731 	vmreg.cpuid = vcpu;
732 	vmreg.regnum = reg;
733 
734 	error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg);
735 	*ret_val = vmreg.regval;
736 	return (error);
737 }
738 
739 int
740 vm_set_register_set(struct vmctx *ctx, int vcpu, unsigned int count,
741     const int *regnums, uint64_t *regvals)
742 {
743 	int error;
744 	struct vm_register_set vmregset;
745 
746 	bzero(&vmregset, sizeof(vmregset));
747 	vmregset.cpuid = vcpu;
748 	vmregset.count = count;
749 	vmregset.regnums = regnums;
750 	vmregset.regvals = regvals;
751 
752 	error = ioctl(ctx->fd, VM_SET_REGISTER_SET, &vmregset);
753 	return (error);
754 }
755 
756 int
757 vm_get_register_set(struct vmctx *ctx, int vcpu, unsigned int count,
758     const int *regnums, uint64_t *regvals)
759 {
760 	int error;
761 	struct vm_register_set vmregset;
762 
763 	bzero(&vmregset, sizeof(vmregset));
764 	vmregset.cpuid = vcpu;
765 	vmregset.count = count;
766 	vmregset.regnums = regnums;
767 	vmregset.regvals = regvals;
768 
769 	error = ioctl(ctx->fd, VM_GET_REGISTER_SET, &vmregset);
770 	return (error);
771 }
772 
773 int
774 vm_run(struct vmctx *ctx, int vcpu, struct vm_exit *vmexit)
775 {
776 	int error;
777 	struct vm_run vmrun;
778 
779 	bzero(&vmrun, sizeof(vmrun));
780 	vmrun.cpuid = vcpu;
781 
782 	error = ioctl(ctx->fd, VM_RUN, &vmrun);
783 	bcopy(&vmrun.vm_exit, vmexit, sizeof(struct vm_exit));
784 	return (error);
785 }
786 
787 int
788 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how)
789 {
790 	struct vm_suspend vmsuspend;
791 
792 	bzero(&vmsuspend, sizeof(vmsuspend));
793 	vmsuspend.how = how;
794 	return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend));
795 }
796 
797 int
798 vm_reinit(struct vmctx *ctx)
799 {
800 
801 	return (ioctl(ctx->fd, VM_REINIT, 0));
802 }
803 
804 int
805 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid,
806     uint32_t errcode, int restart_instruction)
807 {
808 	struct vm_exception exc;
809 
810 	exc.cpuid = vcpu;
811 	exc.vector = vector;
812 	exc.error_code = errcode;
813 	exc.error_code_valid = errcode_valid;
814 	exc.restart_instruction = restart_instruction;
815 
816 	return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc));
817 }
818 
819 #ifndef __FreeBSD__
820 void
821 vm_inject_fault(struct vmctx *ctx, int vcpu, int vector, int errcode_valid,
822     int errcode)
823 {
824 	int error;
825 	struct vm_exception exc;
826 
827 	exc.cpuid = vcpu;
828 	exc.vector = vector;
829 	exc.error_code = errcode;
830 	exc.error_code_valid = errcode_valid;
831 	exc.restart_instruction = 1;
832 	error = ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc);
833 
834 	assert(error == 0);
835 }
836 #endif /* __FreeBSD__ */
837 
838 int
839 vm_apicid2vcpu(struct vmctx *ctx, int apicid)
840 {
841 	/*
842 	 * The apic id associated with the 'vcpu' has the same numerical value
843 	 * as the 'vcpu' itself.
844 	 */
845 	return (apicid);
846 }
847 
848 int
849 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector)
850 {
851 	struct vm_lapic_irq vmirq;
852 
853 	bzero(&vmirq, sizeof(vmirq));
854 	vmirq.cpuid = vcpu;
855 	vmirq.vector = vector;
856 
857 	return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq));
858 }
859 
860 int
861 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector)
862 {
863 	struct vm_lapic_irq vmirq;
864 
865 	bzero(&vmirq, sizeof(vmirq));
866 	vmirq.cpuid = vcpu;
867 	vmirq.vector = vector;
868 
869 	return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq));
870 }
871 
872 int
873 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg)
874 {
875 	struct vm_lapic_msi vmmsi;
876 
877 	bzero(&vmmsi, sizeof(vmmsi));
878 	vmmsi.addr = addr;
879 	vmmsi.msg = msg;
880 
881 	return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi));
882 }
883 
884 int
885 vm_ioapic_assert_irq(struct vmctx *ctx, int irq)
886 {
887 	struct vm_ioapic_irq ioapic_irq;
888 
889 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
890 	ioapic_irq.irq = irq;
891 
892 	return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq));
893 }
894 
895 int
896 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq)
897 {
898 	struct vm_ioapic_irq ioapic_irq;
899 
900 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
901 	ioapic_irq.irq = irq;
902 
903 	return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq));
904 }
905 
906 int
907 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq)
908 {
909 	struct vm_ioapic_irq ioapic_irq;
910 
911 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
912 	ioapic_irq.irq = irq;
913 
914 	return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq));
915 }
916 
917 int
918 vm_ioapic_pincount(struct vmctx *ctx, int *pincount)
919 {
920 
921 	return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount));
922 }
923 
924 int
925 vm_readwrite_kernemu_device(struct vmctx *ctx, int vcpu, vm_paddr_t gpa,
926     bool write, int size, uint64_t *value)
927 {
928 	struct vm_readwrite_kernemu_device irp = {
929 		.vcpuid = vcpu,
930 		.access_width = fls(size) - 1,
931 		.gpa = gpa,
932 		.value = write ? *value : ~0ul,
933 	};
934 	long cmd = (write ? VM_SET_KERNEMU_DEV : VM_GET_KERNEMU_DEV);
935 	int rc;
936 
937 	rc = ioctl(ctx->fd, cmd, &irp);
938 	if (rc == 0 && !write)
939 		*value = irp.value;
940 	return (rc);
941 }
942 
943 int
944 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
945 {
946 	struct vm_isa_irq isa_irq;
947 
948 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
949 	isa_irq.atpic_irq = atpic_irq;
950 	isa_irq.ioapic_irq = ioapic_irq;
951 
952 	return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq));
953 }
954 
955 int
956 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
957 {
958 	struct vm_isa_irq isa_irq;
959 
960 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
961 	isa_irq.atpic_irq = atpic_irq;
962 	isa_irq.ioapic_irq = ioapic_irq;
963 
964 	return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq));
965 }
966 
967 int
968 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
969 {
970 	struct vm_isa_irq isa_irq;
971 
972 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
973 	isa_irq.atpic_irq = atpic_irq;
974 	isa_irq.ioapic_irq = ioapic_irq;
975 
976 	return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq));
977 }
978 
979 int
980 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq,
981     enum vm_intr_trigger trigger)
982 {
983 	struct vm_isa_irq_trigger isa_irq_trigger;
984 
985 	bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger));
986 	isa_irq_trigger.atpic_irq = atpic_irq;
987 	isa_irq_trigger.trigger = trigger;
988 
989 	return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger));
990 }
991 
992 int
993 vm_inject_nmi(struct vmctx *ctx, int vcpu)
994 {
995 	struct vm_nmi vmnmi;
996 
997 	bzero(&vmnmi, sizeof(vmnmi));
998 	vmnmi.cpuid = vcpu;
999 
1000 	return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi));
1001 }
1002 
1003 static const char *capstrmap[] = {
1004 	[VM_CAP_HALT_EXIT]  = "hlt_exit",
1005 	[VM_CAP_MTRAP_EXIT] = "mtrap_exit",
1006 	[VM_CAP_PAUSE_EXIT] = "pause_exit",
1007 	[VM_CAP_UNRESTRICTED_GUEST] = "unrestricted_guest",
1008 	[VM_CAP_ENABLE_INVPCID] = "enable_invpcid",
1009 	[VM_CAP_BPT_EXIT] = "bpt_exit",
1010 };
1011 
1012 int
1013 vm_capability_name2type(const char *capname)
1014 {
1015 	int i;
1016 
1017 	for (i = 0; i < nitems(capstrmap); i++) {
1018 		if (strcmp(capstrmap[i], capname) == 0)
1019 			return (i);
1020 	}
1021 
1022 	return (-1);
1023 }
1024 
1025 const char *
1026 vm_capability_type2name(int type)
1027 {
1028 	if (type >= 0 && type < nitems(capstrmap))
1029 		return (capstrmap[type]);
1030 
1031 	return (NULL);
1032 }
1033 
1034 int
1035 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap,
1036 		  int *retval)
1037 {
1038 	int error;
1039 	struct vm_capability vmcap;
1040 
1041 	bzero(&vmcap, sizeof(vmcap));
1042 	vmcap.cpuid = vcpu;
1043 	vmcap.captype = cap;
1044 
1045 	error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap);
1046 	*retval = vmcap.capval;
1047 	return (error);
1048 }
1049 
1050 int
1051 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val)
1052 {
1053 	struct vm_capability vmcap;
1054 
1055 	bzero(&vmcap, sizeof(vmcap));
1056 	vmcap.cpuid = vcpu;
1057 	vmcap.captype = cap;
1058 	vmcap.capval = val;
1059 
1060 	return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap));
1061 }
1062 
1063 #ifdef __FreeBSD__
1064 int
1065 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
1066 {
1067 	struct vm_pptdev pptdev;
1068 
1069 	bzero(&pptdev, sizeof(pptdev));
1070 	pptdev.bus = bus;
1071 	pptdev.slot = slot;
1072 	pptdev.func = func;
1073 
1074 	return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
1075 }
1076 
1077 int
1078 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
1079 {
1080 	struct vm_pptdev pptdev;
1081 
1082 	bzero(&pptdev, sizeof(pptdev));
1083 	pptdev.bus = bus;
1084 	pptdev.slot = slot;
1085 	pptdev.func = func;
1086 
1087 	return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
1088 }
1089 
1090 int
1091 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
1092 		   vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
1093 {
1094 	struct vm_pptdev_mmio pptmmio;
1095 
1096 	bzero(&pptmmio, sizeof(pptmmio));
1097 	pptmmio.bus = bus;
1098 	pptmmio.slot = slot;
1099 	pptmmio.func = func;
1100 	pptmmio.gpa = gpa;
1101 	pptmmio.len = len;
1102 	pptmmio.hpa = hpa;
1103 
1104 	return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
1105 }
1106 
1107 int
1108 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
1109     uint64_t addr, uint64_t msg, int numvec)
1110 {
1111 	struct vm_pptdev_msi pptmsi;
1112 
1113 	bzero(&pptmsi, sizeof(pptmsi));
1114 	pptmsi.vcpu = vcpu;
1115 	pptmsi.bus = bus;
1116 	pptmsi.slot = slot;
1117 	pptmsi.func = func;
1118 	pptmsi.msg = msg;
1119 	pptmsi.addr = addr;
1120 	pptmsi.numvec = numvec;
1121 
1122 	return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
1123 }
1124 
1125 int
1126 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
1127     int idx, uint64_t addr, uint64_t msg, uint32_t vector_control)
1128 {
1129 	struct vm_pptdev_msix pptmsix;
1130 
1131 	bzero(&pptmsix, sizeof(pptmsix));
1132 	pptmsix.vcpu = vcpu;
1133 	pptmsix.bus = bus;
1134 	pptmsix.slot = slot;
1135 	pptmsix.func = func;
1136 	pptmsix.idx = idx;
1137 	pptmsix.msg = msg;
1138 	pptmsix.addr = addr;
1139 	pptmsix.vector_control = vector_control;
1140 
1141 	return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
1142 }
1143 
1144 int
1145 vm_get_pptdev_limits(struct vmctx *ctx, int bus, int slot, int func,
1146     int *msi_limit, int *msix_limit)
1147 {
1148 	struct vm_pptdev_limits pptlimits;
1149 	int error;
1150 
1151 	bzero(&pptlimits, sizeof (pptlimits));
1152 	pptlimits.bus = bus;
1153 	pptlimits.slot = slot;
1154 	pptlimits.func = func;
1155 
1156 	error = ioctl(ctx->fd, VM_GET_PPTDEV_LIMITS, &pptlimits);
1157 
1158 	*msi_limit = pptlimits.msi_limit;
1159 	*msix_limit = pptlimits.msix_limit;
1160 
1161 	return (error);
1162 }
1163 #else /* __FreeBSD__ */
1164 int
1165 vm_assign_pptdev(struct vmctx *ctx, int pptfd)
1166 {
1167 	struct vm_pptdev pptdev;
1168 
1169 	pptdev.pptfd = pptfd;
1170 	return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
1171 }
1172 
1173 int
1174 vm_unassign_pptdev(struct vmctx *ctx, int pptfd)
1175 {
1176 	struct vm_pptdev pptdev;
1177 
1178 	pptdev.pptfd = pptfd;
1179 	return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
1180 }
1181 
1182 int
1183 vm_map_pptdev_mmio(struct vmctx *ctx, int pptfd, vm_paddr_t gpa, size_t len,
1184     vm_paddr_t hpa)
1185 {
1186 	struct vm_pptdev_mmio pptmmio;
1187 
1188 	pptmmio.pptfd = pptfd;
1189 	pptmmio.gpa = gpa;
1190 	pptmmio.len = len;
1191 	pptmmio.hpa = hpa;
1192 	return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
1193 }
1194 
1195 int
1196 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int pptfd, uint64_t addr,
1197     uint64_t msg, int numvec)
1198 {
1199 	struct vm_pptdev_msi pptmsi;
1200 
1201 	pptmsi.vcpu = vcpu;
1202 	pptmsi.pptfd = pptfd;
1203 	pptmsi.msg = msg;
1204 	pptmsi.addr = addr;
1205 	pptmsi.numvec = numvec;
1206 	return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
1207 }
1208 
1209 int
1210 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int pptfd, int idx,
1211     uint64_t addr, uint64_t msg, uint32_t vector_control)
1212 {
1213 	struct vm_pptdev_msix pptmsix;
1214 
1215 	pptmsix.vcpu = vcpu;
1216 	pptmsix.pptfd = pptfd;
1217 	pptmsix.idx = idx;
1218 	pptmsix.msg = msg;
1219 	pptmsix.addr = addr;
1220 	pptmsix.vector_control = vector_control;
1221 	return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
1222 }
1223 
1224 int
1225 vm_get_pptdev_limits(struct vmctx *ctx, int pptfd, int *msi_limit,
1226     int *msix_limit)
1227 {
1228 	struct vm_pptdev_limits pptlimits;
1229 	int error;
1230 
1231 	bzero(&pptlimits, sizeof (pptlimits));
1232 	pptlimits.pptfd = pptfd;
1233 	error = ioctl(ctx->fd, VM_GET_PPTDEV_LIMITS, &pptlimits);
1234 
1235 	*msi_limit = pptlimits.msi_limit;
1236 	*msix_limit = pptlimits.msix_limit;
1237 	return (error);
1238 }
1239 #endif /* __FreeBSD__ */
1240 
1241 uint64_t *
1242 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv,
1243 	     int *ret_entries)
1244 {
1245 	int error;
1246 
1247 	static struct vm_stats vmstats;
1248 
1249 	vmstats.cpuid = vcpu;
1250 
1251 	error = ioctl(ctx->fd, VM_STATS_IOC, &vmstats);
1252 	if (error == 0) {
1253 		if (ret_entries)
1254 			*ret_entries = vmstats.num_entries;
1255 		if (ret_tv)
1256 			*ret_tv = vmstats.tv;
1257 		return (vmstats.statbuf);
1258 	} else
1259 		return (NULL);
1260 }
1261 
1262 const char *
1263 vm_get_stat_desc(struct vmctx *ctx, int index)
1264 {
1265 	static struct vm_stat_desc statdesc;
1266 
1267 	statdesc.index = index;
1268 	if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0)
1269 		return (statdesc.desc);
1270 	else
1271 		return (NULL);
1272 }
1273 
1274 int
1275 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state)
1276 {
1277 	int error;
1278 	struct vm_x2apic x2apic;
1279 
1280 	bzero(&x2apic, sizeof(x2apic));
1281 	x2apic.cpuid = vcpu;
1282 
1283 	error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic);
1284 	*state = x2apic.state;
1285 	return (error);
1286 }
1287 
1288 int
1289 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state)
1290 {
1291 	int error;
1292 	struct vm_x2apic x2apic;
1293 
1294 	bzero(&x2apic, sizeof(x2apic));
1295 	x2apic.cpuid = vcpu;
1296 	x2apic.state = state;
1297 
1298 	error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic);
1299 
1300 	return (error);
1301 }
1302 
1303 /*
1304  * From Intel Vol 3a:
1305  * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT
1306  */
1307 int
1308 vcpu_reset(struct vmctx *vmctx, int vcpu)
1309 {
1310 	int error;
1311 	uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx;
1312 	uint32_t desc_access, desc_limit;
1313 	uint16_t sel;
1314 
1315 	zero = 0;
1316 
1317 	rflags = 0x2;
1318 	error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags);
1319 	if (error)
1320 		goto done;
1321 
1322 	rip = 0xfff0;
1323 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0)
1324 		goto done;
1325 
1326 	cr0 = CR0_NE;
1327 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0)
1328 		goto done;
1329 
1330 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0)
1331 		goto done;
1332 
1333 	cr4 = 0;
1334 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0)
1335 		goto done;
1336 
1337 	/*
1338 	 * CS: present, r/w, accessed, 16-bit, byte granularity, usable
1339 	 */
1340 	desc_base = 0xffff0000;
1341 	desc_limit = 0xffff;
1342 	desc_access = 0x0093;
1343 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS,
1344 			    desc_base, desc_limit, desc_access);
1345 	if (error)
1346 		goto done;
1347 
1348 	sel = 0xf000;
1349 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0)
1350 		goto done;
1351 
1352 	/*
1353 	 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity
1354 	 */
1355 	desc_base = 0;
1356 	desc_limit = 0xffff;
1357 	desc_access = 0x0093;
1358 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS,
1359 			    desc_base, desc_limit, desc_access);
1360 	if (error)
1361 		goto done;
1362 
1363 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS,
1364 			    desc_base, desc_limit, desc_access);
1365 	if (error)
1366 		goto done;
1367 
1368 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES,
1369 			    desc_base, desc_limit, desc_access);
1370 	if (error)
1371 		goto done;
1372 
1373 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS,
1374 			    desc_base, desc_limit, desc_access);
1375 	if (error)
1376 		goto done;
1377 
1378 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS,
1379 			    desc_base, desc_limit, desc_access);
1380 	if (error)
1381 		goto done;
1382 
1383 	sel = 0;
1384 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0)
1385 		goto done;
1386 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0)
1387 		goto done;
1388 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0)
1389 		goto done;
1390 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0)
1391 		goto done;
1392 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0)
1393 		goto done;
1394 
1395 	/* General purpose registers */
1396 	rdx = 0xf00;
1397 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0)
1398 		goto done;
1399 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0)
1400 		goto done;
1401 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0)
1402 		goto done;
1403 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0)
1404 		goto done;
1405 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0)
1406 		goto done;
1407 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0)
1408 		goto done;
1409 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0)
1410 		goto done;
1411 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0)
1412 		goto done;
1413 
1414 	/* GDTR, IDTR */
1415 	desc_base = 0;
1416 	desc_limit = 0xffff;
1417 	desc_access = 0;
1418 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR,
1419 			    desc_base, desc_limit, desc_access);
1420 	if (error != 0)
1421 		goto done;
1422 
1423 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR,
1424 			    desc_base, desc_limit, desc_access);
1425 	if (error != 0)
1426 		goto done;
1427 
1428 	/* TR */
1429 	desc_base = 0;
1430 	desc_limit = 0xffff;
1431 	desc_access = 0x0000008b;
1432 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access);
1433 	if (error)
1434 		goto done;
1435 
1436 	sel = 0;
1437 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0)
1438 		goto done;
1439 
1440 	/* LDTR */
1441 	desc_base = 0;
1442 	desc_limit = 0xffff;
1443 	desc_access = 0x00000082;
1444 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base,
1445 			    desc_limit, desc_access);
1446 	if (error)
1447 		goto done;
1448 
1449 	sel = 0;
1450 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0)
1451 		goto done;
1452 
1453 	/* XXX cr2, debug registers */
1454 
1455 	error = 0;
1456 done:
1457 	return (error);
1458 }
1459 
1460 int
1461 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num)
1462 {
1463 	int error, i;
1464 	struct vm_gpa_pte gpapte;
1465 
1466 	bzero(&gpapte, sizeof(gpapte));
1467 	gpapte.gpa = gpa;
1468 
1469 	error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte);
1470 
1471 	if (error == 0) {
1472 		*num = gpapte.ptenum;
1473 		for (i = 0; i < gpapte.ptenum; i++)
1474 			pte[i] = gpapte.pte[i];
1475 	}
1476 
1477 	return (error);
1478 }
1479 
1480 int
1481 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities)
1482 {
1483 	int error;
1484 	struct vm_hpet_cap cap;
1485 
1486 	bzero(&cap, sizeof(struct vm_hpet_cap));
1487 	error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap);
1488 	if (capabilities != NULL)
1489 		*capabilities = cap.capabilities;
1490 	return (error);
1491 }
1492 
1493 int
1494 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1495     uint64_t gla, int prot, uint64_t *gpa, int *fault)
1496 {
1497 	struct vm_gla2gpa gg;
1498 	int error;
1499 
1500 	bzero(&gg, sizeof(struct vm_gla2gpa));
1501 	gg.vcpuid = vcpu;
1502 	gg.prot = prot;
1503 	gg.gla = gla;
1504 	gg.paging = *paging;
1505 
1506 	error = ioctl(ctx->fd, VM_GLA2GPA, &gg);
1507 	if (error == 0) {
1508 		*fault = gg.fault;
1509 		*gpa = gg.gpa;
1510 	}
1511 	return (error);
1512 }
1513 
1514 int
1515 vm_gla2gpa_nofault(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1516     uint64_t gla, int prot, uint64_t *gpa, int *fault)
1517 {
1518 	struct vm_gla2gpa gg;
1519 	int error;
1520 
1521 	bzero(&gg, sizeof(struct vm_gla2gpa));
1522 	gg.vcpuid = vcpu;
1523 	gg.prot = prot;
1524 	gg.gla = gla;
1525 	gg.paging = *paging;
1526 
1527 	error = ioctl(ctx->fd, VM_GLA2GPA_NOFAULT, &gg);
1528 	if (error == 0) {
1529 		*fault = gg.fault;
1530 		*gpa = gg.gpa;
1531 	}
1532 	return (error);
1533 }
1534 
1535 #ifndef min
1536 #define	min(a,b)	(((a) < (b)) ? (a) : (b))
1537 #endif
1538 
1539 int
1540 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1541     uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt,
1542     int *fault)
1543 {
1544 	void *va;
1545 	uint64_t gpa;
1546 	int error, i, n, off;
1547 
1548 	for (i = 0; i < iovcnt; i++) {
1549 		iov[i].iov_base = 0;
1550 		iov[i].iov_len = 0;
1551 	}
1552 
1553 	while (len) {
1554 		assert(iovcnt > 0);
1555 		error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault);
1556 		if (error || *fault)
1557 			return (error);
1558 
1559 		off = gpa & PAGE_MASK;
1560 		n = min(len, PAGE_SIZE - off);
1561 
1562 		va = vm_map_gpa(ctx, gpa, n);
1563 		if (va == NULL)
1564 			return (EFAULT);
1565 
1566 		iov->iov_base = va;
1567 		iov->iov_len = n;
1568 		iov++;
1569 		iovcnt--;
1570 
1571 		gla += n;
1572 		len -= n;
1573 	}
1574 	return (0);
1575 }
1576 
1577 void
1578 vm_copy_teardown(struct vmctx *ctx, int vcpu, struct iovec *iov, int iovcnt)
1579 {
1580 
1581 	return;
1582 }
1583 
1584 void
1585 vm_copyin(struct vmctx *ctx, int vcpu, struct iovec *iov, void *vp, size_t len)
1586 {
1587 	const char *src;
1588 	char *dst;
1589 	size_t n;
1590 
1591 	dst = vp;
1592 	while (len) {
1593 		assert(iov->iov_len);
1594 		n = min(len, iov->iov_len);
1595 		src = iov->iov_base;
1596 		bcopy(src, dst, n);
1597 
1598 		iov++;
1599 		dst += n;
1600 		len -= n;
1601 	}
1602 }
1603 
1604 void
1605 vm_copyout(struct vmctx *ctx, int vcpu, const void *vp, struct iovec *iov,
1606     size_t len)
1607 {
1608 	const char *src;
1609 	char *dst;
1610 	size_t n;
1611 
1612 	src = vp;
1613 	while (len) {
1614 		assert(iov->iov_len);
1615 		n = min(len, iov->iov_len);
1616 		dst = iov->iov_base;
1617 		bcopy(src, dst, n);
1618 
1619 		iov++;
1620 		src += n;
1621 		len -= n;
1622 	}
1623 }
1624 
1625 static int
1626 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus)
1627 {
1628 	struct vm_cpuset vm_cpuset;
1629 	int error;
1630 
1631 	bzero(&vm_cpuset, sizeof(struct vm_cpuset));
1632 	vm_cpuset.which = which;
1633 	vm_cpuset.cpusetsize = sizeof(cpuset_t);
1634 	vm_cpuset.cpus = cpus;
1635 
1636 	error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset);
1637 	return (error);
1638 }
1639 
1640 int
1641 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus)
1642 {
1643 
1644 	return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus));
1645 }
1646 
1647 int
1648 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus)
1649 {
1650 
1651 	return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus));
1652 }
1653 
1654 int
1655 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus)
1656 {
1657 
1658 	return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus));
1659 }
1660 
1661 int
1662 vm_activate_cpu(struct vmctx *ctx, int vcpu)
1663 {
1664 	struct vm_activate_cpu ac;
1665 	int error;
1666 
1667 	bzero(&ac, sizeof(struct vm_activate_cpu));
1668 	ac.vcpuid = vcpu;
1669 	error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac);
1670 	return (error);
1671 }
1672 
1673 int
1674 vm_suspend_cpu(struct vmctx *ctx, int vcpu)
1675 {
1676 	struct vm_activate_cpu ac;
1677 	int error;
1678 
1679 	bzero(&ac, sizeof(struct vm_activate_cpu));
1680 	ac.vcpuid = vcpu;
1681 	error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac);
1682 	return (error);
1683 }
1684 
1685 int
1686 vm_resume_cpu(struct vmctx *ctx, int vcpu)
1687 {
1688 	struct vm_activate_cpu ac;
1689 	int error;
1690 
1691 	bzero(&ac, sizeof(struct vm_activate_cpu));
1692 	ac.vcpuid = vcpu;
1693 	error = ioctl(ctx->fd, VM_RESUME_CPU, &ac);
1694 	return (error);
1695 }
1696 
1697 int
1698 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2)
1699 {
1700 	struct vm_intinfo vmii;
1701 	int error;
1702 
1703 	bzero(&vmii, sizeof(struct vm_intinfo));
1704 	vmii.vcpuid = vcpu;
1705 	error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii);
1706 	if (error == 0) {
1707 		*info1 = vmii.info1;
1708 		*info2 = vmii.info2;
1709 	}
1710 	return (error);
1711 }
1712 
1713 int
1714 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1)
1715 {
1716 	struct vm_intinfo vmii;
1717 	int error;
1718 
1719 	bzero(&vmii, sizeof(struct vm_intinfo));
1720 	vmii.vcpuid = vcpu;
1721 	vmii.info1 = info1;
1722 	error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii);
1723 	return (error);
1724 }
1725 
1726 int
1727 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value)
1728 {
1729 	struct vm_rtc_data rtcdata;
1730 	int error;
1731 
1732 	bzero(&rtcdata, sizeof(struct vm_rtc_data));
1733 	rtcdata.offset = offset;
1734 	rtcdata.value = value;
1735 	error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata);
1736 	return (error);
1737 }
1738 
1739 int
1740 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval)
1741 {
1742 	struct vm_rtc_data rtcdata;
1743 	int error;
1744 
1745 	bzero(&rtcdata, sizeof(struct vm_rtc_data));
1746 	rtcdata.offset = offset;
1747 	error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata);
1748 	if (error == 0)
1749 		*retval = rtcdata.value;
1750 	return (error);
1751 }
1752 
1753 int
1754 vm_rtc_settime(struct vmctx *ctx, time_t secs)
1755 {
1756 	struct vm_rtc_time rtctime;
1757 	int error;
1758 
1759 	bzero(&rtctime, sizeof(struct vm_rtc_time));
1760 	rtctime.secs = secs;
1761 	error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime);
1762 	return (error);
1763 }
1764 
1765 int
1766 vm_rtc_gettime(struct vmctx *ctx, time_t *secs)
1767 {
1768 	struct vm_rtc_time rtctime;
1769 	int error;
1770 
1771 	bzero(&rtctime, sizeof(struct vm_rtc_time));
1772 	error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime);
1773 	if (error == 0)
1774 		*secs = rtctime.secs;
1775 	return (error);
1776 }
1777 
1778 int
1779 vm_restart_instruction(void *arg, int vcpu)
1780 {
1781 	struct vmctx *ctx = arg;
1782 
1783 	return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu));
1784 }
1785 
1786 int
1787 vm_set_topology(struct vmctx *ctx,
1788     uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus)
1789 {
1790 	struct vm_cpu_topology topology;
1791 
1792 	bzero(&topology, sizeof (struct vm_cpu_topology));
1793 	topology.sockets = sockets;
1794 	topology.cores = cores;
1795 	topology.threads = threads;
1796 	topology.maxcpus = maxcpus;
1797 	return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology));
1798 }
1799 
1800 int
1801 vm_get_topology(struct vmctx *ctx,
1802     uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus)
1803 {
1804 	struct vm_cpu_topology topology;
1805 	int error;
1806 
1807 	bzero(&topology, sizeof (struct vm_cpu_topology));
1808 	error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology);
1809 	if (error == 0) {
1810 		*sockets = topology.sockets;
1811 		*cores = topology.cores;
1812 		*threads = topology.threads;
1813 		*maxcpus = topology.maxcpus;
1814 	}
1815 	return (error);
1816 }
1817 
1818 int
1819 vm_get_device_fd(struct vmctx *ctx)
1820 {
1821 
1822 	return (ctx->fd);
1823 }
1824 
1825 #ifndef __FreeBSD__
1826 int
1827 vm_wrlock_cycle(struct vmctx *ctx)
1828 {
1829 	if (ioctl(ctx->fd, VM_WRLOCK_CYCLE, 0) != 0) {
1830 		return (errno);
1831 	}
1832 	return (0);
1833 }
1834 #endif /* __FreeBSD__ */
1835 
1836 #ifdef __FreeBSD__
1837 const cap_ioctl_t *
1838 vm_get_ioctls(size_t *len)
1839 {
1840 	cap_ioctl_t *cmds;
1841 	/* keep in sync with machine/vmm_dev.h */
1842 	static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT,
1843 	    VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG,
1844 	    VM_MMAP_GETNEXT, VM_SET_REGISTER, VM_GET_REGISTER,
1845 	    VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR,
1846 	    VM_SET_REGISTER_SET, VM_GET_REGISTER_SET,
1847 	    VM_SET_KERNEMU_DEV, VM_GET_KERNEMU_DEV,
1848 	    VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ,
1849 	    VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ,
1850 	    VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ,
1851 	    VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER,
1852 	    VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV,
1853 	    VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI,
1854 	    VM_PPTDEV_MSIX, VM_INJECT_NMI, VM_STATS, VM_STAT_DESC,
1855 	    VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE,
1856 	    VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA,
1857 	    VM_GLA2GPA_NOFAULT,
1858 	    VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU,
1859 	    VM_SET_INTINFO, VM_GET_INTINFO,
1860 	    VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME,
1861 	    VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY };
1862 
1863 	if (len == NULL) {
1864 		cmds = malloc(sizeof(vm_ioctl_cmds));
1865 		if (cmds == NULL)
1866 			return (NULL);
1867 		bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds));
1868 		return (cmds);
1869 	}
1870 
1871 	*len = nitems(vm_ioctl_cmds);
1872 	return (NULL);
1873 }
1874 #endif /* __FreeBSD__ */
1875