1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 /* 31 * This file and its contents are supplied under the terms of the 32 * Common Development and Distribution License ("CDDL"), version 1.0. 33 * You may only use this file in accordance with the terms of version 34 * 1.0 of the CDDL. 35 * 36 * A full copy of the text of the CDDL should have accompanied this 37 * source. A copy of the CDDL is also available via the Internet at 38 * http://www.illumos.org/license/CDDL. 39 * 40 * Copyright 2015 Pluribus Networks Inc. 41 * Copyright 2019 Joyent, Inc. 42 * Copyright 2020 Oxide Computer Company 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include <sys/param.h> 49 #include <sys/sysctl.h> 50 #include <sys/ioctl.h> 51 #ifdef __FreeBSD__ 52 #include <sys/linker.h> 53 #endif 54 #include <sys/mman.h> 55 #include <sys/module.h> 56 #include <sys/_iovec.h> 57 #include <sys/cpuset.h> 58 59 #include <x86/segments.h> 60 #include <machine/specialreg.h> 61 62 #include <errno.h> 63 #include <stdio.h> 64 #include <stdlib.h> 65 #include <assert.h> 66 #include <string.h> 67 #include <fcntl.h> 68 #include <unistd.h> 69 70 #include <libutil.h> 71 72 #include <machine/vmm.h> 73 #include <machine/vmm_dev.h> 74 75 #include "vmmapi.h" 76 77 #define MB (1024 * 1024UL) 78 #define GB (1024 * 1024 * 1024UL) 79 80 #ifndef __FreeBSD__ 81 /* shim to no-op for now */ 82 #define MAP_NOCORE 0 83 #define MAP_ALIGNED_SUPER 0 84 85 /* Rely on PROT_NONE for guard purposes */ 86 #define MAP_GUARD (MAP_PRIVATE | MAP_ANON | MAP_NORESERVE) 87 #endif 88 89 /* 90 * Size of the guard region before and after the virtual address space 91 * mapping the guest physical memory. This must be a multiple of the 92 * superpage size for performance reasons. 93 */ 94 #define VM_MMAP_GUARD_SIZE (4 * MB) 95 96 #define PROT_RW (PROT_READ | PROT_WRITE) 97 #define PROT_ALL (PROT_READ | PROT_WRITE | PROT_EXEC) 98 99 struct vmctx { 100 int fd; 101 uint32_t lowmem_limit; 102 int memflags; 103 size_t lowmem; 104 size_t highmem; 105 char *baseaddr; 106 char *name; 107 }; 108 109 #ifdef __FreeBSD__ 110 #define CREATE(x) sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x))) 111 #define DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x))) 112 #else 113 #define CREATE(x) vm_do_ctl(VMM_CREATE_VM, (x)) 114 #define DESTROY(x) vm_do_ctl(VMM_DESTROY_VM, (x)) 115 116 static int 117 vm_do_ctl(int cmd, const char *name) 118 { 119 int ctl_fd; 120 121 ctl_fd = open(VMM_CTL_DEV, O_EXCL | O_RDWR); 122 if (ctl_fd < 0) { 123 return (-1); 124 } 125 126 if (ioctl(ctl_fd, cmd, name) == -1) { 127 int err = errno; 128 129 /* Do not lose ioctl errno through the close(2) */ 130 (void) close(ctl_fd); 131 errno = err; 132 return (-1); 133 } 134 (void) close(ctl_fd); 135 136 return (0); 137 } 138 #endif 139 140 static int 141 vm_device_open(const char *name) 142 { 143 int fd, len; 144 char *vmfile; 145 146 len = strlen("/dev/vmm/") + strlen(name) + 1; 147 vmfile = malloc(len); 148 assert(vmfile != NULL); 149 snprintf(vmfile, len, "/dev/vmm/%s", name); 150 151 /* Open the device file */ 152 fd = open(vmfile, O_RDWR, 0); 153 154 free(vmfile); 155 return (fd); 156 } 157 158 int 159 vm_create(const char *name) 160 { 161 #ifdef __FreeBSD__ 162 /* Try to load vmm(4) module before creating a guest. */ 163 if (modfind("vmm") < 0) 164 kldload("vmm"); 165 #endif 166 return (CREATE((char *)name)); 167 } 168 169 struct vmctx * 170 vm_open(const char *name) 171 { 172 struct vmctx *vm; 173 174 vm = malloc(sizeof(struct vmctx) + strlen(name) + 1); 175 assert(vm != NULL); 176 177 vm->fd = -1; 178 vm->memflags = 0; 179 vm->lowmem_limit = 3 * GB; 180 vm->name = (char *)(vm + 1); 181 strcpy(vm->name, name); 182 183 if ((vm->fd = vm_device_open(vm->name)) < 0) 184 goto err; 185 186 return (vm); 187 err: 188 #ifdef __FreeBSD__ 189 vm_destroy(vm); 190 #else 191 /* 192 * As libvmmapi is used by other programs to query and control bhyve 193 * VMs, destroying a VM just because the open failed isn't useful. We 194 * have to free what we have allocated, though. 195 */ 196 free(vm); 197 #endif 198 return (NULL); 199 } 200 201 #ifndef __FreeBSD__ 202 void 203 vm_close(struct vmctx *vm) 204 { 205 assert(vm != NULL); 206 assert(vm->fd >= 0); 207 208 (void) close(vm->fd); 209 210 free(vm); 211 } 212 #endif 213 214 void 215 vm_destroy(struct vmctx *vm) 216 { 217 assert(vm != NULL); 218 219 if (vm->fd >= 0) 220 close(vm->fd); 221 DESTROY(vm->name); 222 223 free(vm); 224 } 225 226 int 227 vm_parse_memsize(const char *optarg, size_t *ret_memsize) 228 { 229 char *endptr; 230 size_t optval; 231 int error; 232 233 optval = strtoul(optarg, &endptr, 0); 234 if (*optarg != '\0' && *endptr == '\0') { 235 /* 236 * For the sake of backward compatibility if the memory size 237 * specified on the command line is less than a megabyte then 238 * it is interpreted as being in units of MB. 239 */ 240 if (optval < MB) 241 optval *= MB; 242 *ret_memsize = optval; 243 error = 0; 244 } else 245 error = expand_number(optarg, ret_memsize); 246 247 return (error); 248 } 249 250 uint32_t 251 vm_get_lowmem_limit(struct vmctx *ctx) 252 { 253 254 return (ctx->lowmem_limit); 255 } 256 257 void 258 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit) 259 { 260 261 ctx->lowmem_limit = limit; 262 } 263 264 void 265 vm_set_memflags(struct vmctx *ctx, int flags) 266 { 267 268 ctx->memflags = flags; 269 } 270 271 int 272 vm_get_memflags(struct vmctx *ctx) 273 { 274 275 return (ctx->memflags); 276 } 277 278 /* 279 * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len). 280 */ 281 int 282 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off, 283 size_t len, int prot) 284 { 285 struct vm_memmap memmap; 286 int error, flags; 287 288 memmap.gpa = gpa; 289 memmap.segid = segid; 290 memmap.segoff = off; 291 memmap.len = len; 292 memmap.prot = prot; 293 memmap.flags = 0; 294 295 if (ctx->memflags & VM_MEM_F_WIRED) 296 memmap.flags |= VM_MEMMAP_F_WIRED; 297 298 /* 299 * If this mapping already exists then don't create it again. This 300 * is the common case for SYSMEM mappings created by bhyveload(8). 301 */ 302 error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags); 303 if (error == 0 && gpa == memmap.gpa) { 304 if (segid != memmap.segid || off != memmap.segoff || 305 prot != memmap.prot || flags != memmap.flags) { 306 errno = EEXIST; 307 return (-1); 308 } else { 309 return (0); 310 } 311 } 312 313 error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap); 314 return (error); 315 } 316 317 int 318 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid, 319 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 320 { 321 struct vm_memmap memmap; 322 int error; 323 324 bzero(&memmap, sizeof(struct vm_memmap)); 325 memmap.gpa = *gpa; 326 error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap); 327 if (error == 0) { 328 *gpa = memmap.gpa; 329 *segid = memmap.segid; 330 *segoff = memmap.segoff; 331 *len = memmap.len; 332 *prot = memmap.prot; 333 *flags = memmap.flags; 334 } 335 return (error); 336 } 337 338 /* 339 * Return 0 if the segments are identical and non-zero otherwise. 340 * 341 * This is slightly complicated by the fact that only device memory segments 342 * are named. 343 */ 344 static int 345 cmpseg(size_t len, const char *str, size_t len2, const char *str2) 346 { 347 348 if (len == len2) { 349 if ((!str && !str2) || (str && str2 && !strcmp(str, str2))) 350 return (0); 351 } 352 return (-1); 353 } 354 355 static int 356 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name) 357 { 358 struct vm_memseg memseg; 359 size_t n; 360 int error; 361 362 /* 363 * If the memory segment has already been created then just return. 364 * This is the usual case for the SYSMEM segment created by userspace 365 * loaders like bhyveload(8). 366 */ 367 error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name, 368 sizeof(memseg.name)); 369 if (error) 370 return (error); 371 372 if (memseg.len != 0) { 373 if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) { 374 errno = EINVAL; 375 return (-1); 376 } else { 377 return (0); 378 } 379 } 380 381 bzero(&memseg, sizeof(struct vm_memseg)); 382 memseg.segid = segid; 383 memseg.len = len; 384 if (name != NULL) { 385 n = strlcpy(memseg.name, name, sizeof(memseg.name)); 386 if (n >= sizeof(memseg.name)) { 387 errno = ENAMETOOLONG; 388 return (-1); 389 } 390 } 391 392 error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg); 393 return (error); 394 } 395 396 int 397 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf, 398 size_t bufsize) 399 { 400 struct vm_memseg memseg; 401 size_t n; 402 int error; 403 404 memseg.segid = segid; 405 error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg); 406 if (error == 0) { 407 *lenp = memseg.len; 408 n = strlcpy(namebuf, memseg.name, bufsize); 409 if (n >= bufsize) { 410 errno = ENAMETOOLONG; 411 error = -1; 412 } 413 } 414 return (error); 415 } 416 417 static int 418 #ifdef __FreeBSD__ 419 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base) 420 #else 421 setup_memory_segment(struct vmctx *ctx, int segid, vm_paddr_t gpa, size_t len, 422 char *base) 423 #endif 424 { 425 char *ptr; 426 int error, flags; 427 428 /* Map 'len' bytes starting at 'gpa' in the guest address space */ 429 #ifdef __FreeBSD__ 430 error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL); 431 #else 432 /* 433 * As we use two segments for lowmem/highmem the offset within the 434 * segment is 0 on illumos. 435 */ 436 error = vm_mmap_memseg(ctx, gpa, segid, 0, len, PROT_ALL); 437 #endif 438 if (error) 439 return (error); 440 441 flags = MAP_SHARED | MAP_FIXED; 442 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 443 flags |= MAP_NOCORE; 444 445 /* mmap into the process address space on the host */ 446 ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa); 447 if (ptr == MAP_FAILED) 448 return (-1); 449 450 return (0); 451 } 452 453 int 454 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms) 455 { 456 size_t objsize, len; 457 vm_paddr_t gpa; 458 char *baseaddr, *ptr; 459 int error; 460 461 assert(vms == VM_MMAP_ALL); 462 463 /* 464 * If 'memsize' cannot fit entirely in the 'lowmem' segment then 465 * create another 'highmem' segment above 4GB for the remainder. 466 */ 467 if (memsize > ctx->lowmem_limit) { 468 ctx->lowmem = ctx->lowmem_limit; 469 ctx->highmem = memsize - ctx->lowmem_limit; 470 objsize = 4*GB + ctx->highmem; 471 } else { 472 ctx->lowmem = memsize; 473 ctx->highmem = 0; 474 objsize = ctx->lowmem; 475 } 476 477 #ifdef __FreeBSD__ 478 error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL); 479 if (error) 480 return (error); 481 #endif 482 483 /* 484 * Stake out a contiguous region covering the guest physical memory 485 * and the adjoining guard regions. 486 */ 487 len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE; 488 ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0); 489 if (ptr == MAP_FAILED) 490 return (-1); 491 492 baseaddr = ptr + VM_MMAP_GUARD_SIZE; 493 494 #ifdef __FreeBSD__ 495 if (ctx->highmem > 0) { 496 gpa = 4*GB; 497 len = ctx->highmem; 498 error = setup_memory_segment(ctx, gpa, len, baseaddr); 499 if (error) 500 return (error); 501 } 502 503 if (ctx->lowmem > 0) { 504 gpa = 0; 505 len = ctx->lowmem; 506 error = setup_memory_segment(ctx, gpa, len, baseaddr); 507 if (error) 508 return (error); 509 } 510 #else 511 if (ctx->highmem > 0) { 512 error = vm_alloc_memseg(ctx, VM_HIGHMEM, ctx->highmem, NULL); 513 if (error) 514 return (error); 515 gpa = 4*GB; 516 len = ctx->highmem; 517 error = setup_memory_segment(ctx, VM_HIGHMEM, gpa, len, baseaddr); 518 if (error) 519 return (error); 520 } 521 522 if (ctx->lowmem > 0) { 523 error = vm_alloc_memseg(ctx, VM_LOWMEM, ctx->lowmem, NULL); 524 if (error) 525 return (error); 526 gpa = 0; 527 len = ctx->lowmem; 528 error = setup_memory_segment(ctx, VM_LOWMEM, gpa, len, baseaddr); 529 if (error) 530 return (error); 531 } 532 #endif 533 534 ctx->baseaddr = baseaddr; 535 536 return (0); 537 } 538 539 /* 540 * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in 541 * the lowmem or highmem regions. 542 * 543 * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region. 544 * The instruction emulation code depends on this behavior. 545 */ 546 void * 547 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len) 548 { 549 550 if (ctx->lowmem > 0) { 551 if (gaddr < ctx->lowmem && len <= ctx->lowmem && 552 gaddr + len <= ctx->lowmem) 553 return (ctx->baseaddr + gaddr); 554 } 555 556 if (ctx->highmem > 0) { 557 if (gaddr >= 4*GB) { 558 if (gaddr < 4*GB + ctx->highmem && 559 len <= ctx->highmem && 560 gaddr + len <= 4*GB + ctx->highmem) 561 return (ctx->baseaddr + gaddr); 562 } 563 } 564 565 return (NULL); 566 } 567 568 size_t 569 vm_get_lowmem_size(struct vmctx *ctx) 570 { 571 572 return (ctx->lowmem); 573 } 574 575 size_t 576 vm_get_highmem_size(struct vmctx *ctx) 577 { 578 579 return (ctx->highmem); 580 } 581 582 #ifndef __FreeBSD__ 583 int 584 vm_get_devmem_offset(struct vmctx *ctx, int segid, off_t *mapoff) 585 { 586 struct vm_devmem_offset vdo; 587 int error; 588 589 vdo.segid = segid; 590 error = ioctl(ctx->fd, VM_DEVMEM_GETOFFSET, &vdo); 591 if (error == 0) 592 *mapoff = vdo.offset; 593 594 return (error); 595 } 596 #endif 597 598 void * 599 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len) 600 { 601 #ifdef __FreeBSD__ 602 char pathname[MAXPATHLEN]; 603 #endif 604 size_t len2; 605 char *base, *ptr; 606 int fd, error, flags; 607 off_t mapoff; 608 609 fd = -1; 610 ptr = MAP_FAILED; 611 if (name == NULL || strlen(name) == 0) { 612 errno = EINVAL; 613 goto done; 614 } 615 616 error = vm_alloc_memseg(ctx, segid, len, name); 617 if (error) 618 goto done; 619 620 #ifdef __FreeBSD__ 621 strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname)); 622 strlcat(pathname, ctx->name, sizeof(pathname)); 623 strlcat(pathname, ".", sizeof(pathname)); 624 strlcat(pathname, name, sizeof(pathname)); 625 626 fd = open(pathname, O_RDWR); 627 if (fd < 0) 628 goto done; 629 #else 630 if (vm_get_devmem_offset(ctx, segid, &mapoff) != 0) 631 goto done; 632 #endif 633 634 /* 635 * Stake out a contiguous region covering the device memory and the 636 * adjoining guard regions. 637 */ 638 len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE; 639 base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 640 0); 641 if (base == MAP_FAILED) 642 goto done; 643 644 flags = MAP_SHARED | MAP_FIXED; 645 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 646 flags |= MAP_NOCORE; 647 648 #ifdef __FreeBSD__ 649 /* mmap the devmem region in the host address space */ 650 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0); 651 #else 652 /* mmap the devmem region in the host address space */ 653 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, ctx->fd, 654 mapoff); 655 #endif 656 done: 657 if (fd >= 0) 658 close(fd); 659 return (ptr); 660 } 661 662 int 663 vm_set_desc(struct vmctx *ctx, int vcpu, int reg, 664 uint64_t base, uint32_t limit, uint32_t access) 665 { 666 int error; 667 struct vm_seg_desc vmsegdesc; 668 669 bzero(&vmsegdesc, sizeof(vmsegdesc)); 670 vmsegdesc.cpuid = vcpu; 671 vmsegdesc.regnum = reg; 672 vmsegdesc.desc.base = base; 673 vmsegdesc.desc.limit = limit; 674 vmsegdesc.desc.access = access; 675 676 error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc); 677 return (error); 678 } 679 680 int 681 vm_get_desc(struct vmctx *ctx, int vcpu, int reg, 682 uint64_t *base, uint32_t *limit, uint32_t *access) 683 { 684 int error; 685 struct vm_seg_desc vmsegdesc; 686 687 bzero(&vmsegdesc, sizeof(vmsegdesc)); 688 vmsegdesc.cpuid = vcpu; 689 vmsegdesc.regnum = reg; 690 691 error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc); 692 if (error == 0) { 693 *base = vmsegdesc.desc.base; 694 *limit = vmsegdesc.desc.limit; 695 *access = vmsegdesc.desc.access; 696 } 697 return (error); 698 } 699 700 int 701 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc) 702 { 703 int error; 704 705 error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit, 706 &seg_desc->access); 707 return (error); 708 } 709 710 int 711 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val) 712 { 713 int error; 714 struct vm_register vmreg; 715 716 bzero(&vmreg, sizeof(vmreg)); 717 vmreg.cpuid = vcpu; 718 vmreg.regnum = reg; 719 vmreg.regval = val; 720 721 error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg); 722 return (error); 723 } 724 725 int 726 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val) 727 { 728 int error; 729 struct vm_register vmreg; 730 731 bzero(&vmreg, sizeof(vmreg)); 732 vmreg.cpuid = vcpu; 733 vmreg.regnum = reg; 734 735 error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg); 736 *ret_val = vmreg.regval; 737 return (error); 738 } 739 740 int 741 vm_set_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 742 const int *regnums, uint64_t *regvals) 743 { 744 int error; 745 struct vm_register_set vmregset; 746 747 bzero(&vmregset, sizeof(vmregset)); 748 vmregset.cpuid = vcpu; 749 vmregset.count = count; 750 vmregset.regnums = regnums; 751 vmregset.regvals = regvals; 752 753 error = ioctl(ctx->fd, VM_SET_REGISTER_SET, &vmregset); 754 return (error); 755 } 756 757 int 758 vm_get_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 759 const int *regnums, uint64_t *regvals) 760 { 761 int error; 762 struct vm_register_set vmregset; 763 764 bzero(&vmregset, sizeof(vmregset)); 765 vmregset.cpuid = vcpu; 766 vmregset.count = count; 767 vmregset.regnums = regnums; 768 vmregset.regvals = regvals; 769 770 error = ioctl(ctx->fd, VM_GET_REGISTER_SET, &vmregset); 771 return (error); 772 } 773 774 int 775 vm_run(struct vmctx *ctx, int vcpu, const struct vm_entry *vm_entry, 776 struct vm_exit *vm_exit) 777 { 778 struct vm_entry entry; 779 780 bcopy(vm_entry, &entry, sizeof (entry)); 781 entry.cpuid = vcpu; 782 entry.exit_data = vm_exit; 783 784 return (ioctl(ctx->fd, VM_RUN, &entry)); 785 } 786 787 int 788 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how) 789 { 790 struct vm_suspend vmsuspend; 791 792 bzero(&vmsuspend, sizeof(vmsuspend)); 793 vmsuspend.how = how; 794 return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend)); 795 } 796 797 int 798 vm_reinit(struct vmctx *ctx) 799 { 800 801 return (ioctl(ctx->fd, VM_REINIT, 0)); 802 } 803 804 int 805 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid, 806 uint32_t errcode, int restart_instruction) 807 { 808 struct vm_exception exc; 809 810 exc.cpuid = vcpu; 811 exc.vector = vector; 812 exc.error_code = errcode; 813 exc.error_code_valid = errcode_valid; 814 exc.restart_instruction = restart_instruction; 815 816 return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc)); 817 } 818 819 #ifndef __FreeBSD__ 820 void 821 vm_inject_fault(struct vmctx *ctx, int vcpu, int vector, int errcode_valid, 822 int errcode) 823 { 824 int error; 825 struct vm_exception exc; 826 827 exc.cpuid = vcpu; 828 exc.vector = vector; 829 exc.error_code = errcode; 830 exc.error_code_valid = errcode_valid; 831 exc.restart_instruction = 1; 832 error = ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc); 833 834 assert(error == 0); 835 } 836 #endif /* __FreeBSD__ */ 837 838 int 839 vm_apicid2vcpu(struct vmctx *ctx, int apicid) 840 { 841 /* 842 * The apic id associated with the 'vcpu' has the same numerical value 843 * as the 'vcpu' itself. 844 */ 845 return (apicid); 846 } 847 848 int 849 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector) 850 { 851 struct vm_lapic_irq vmirq; 852 853 bzero(&vmirq, sizeof(vmirq)); 854 vmirq.cpuid = vcpu; 855 vmirq.vector = vector; 856 857 return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq)); 858 } 859 860 int 861 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector) 862 { 863 struct vm_lapic_irq vmirq; 864 865 bzero(&vmirq, sizeof(vmirq)); 866 vmirq.cpuid = vcpu; 867 vmirq.vector = vector; 868 869 return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq)); 870 } 871 872 int 873 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg) 874 { 875 struct vm_lapic_msi vmmsi; 876 877 bzero(&vmmsi, sizeof(vmmsi)); 878 vmmsi.addr = addr; 879 vmmsi.msg = msg; 880 881 return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi)); 882 } 883 884 int 885 vm_ioapic_assert_irq(struct vmctx *ctx, int irq) 886 { 887 struct vm_ioapic_irq ioapic_irq; 888 889 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 890 ioapic_irq.irq = irq; 891 892 return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq)); 893 } 894 895 int 896 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq) 897 { 898 struct vm_ioapic_irq ioapic_irq; 899 900 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 901 ioapic_irq.irq = irq; 902 903 return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq)); 904 } 905 906 int 907 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq) 908 { 909 struct vm_ioapic_irq ioapic_irq; 910 911 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 912 ioapic_irq.irq = irq; 913 914 return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq)); 915 } 916 917 int 918 vm_ioapic_pincount(struct vmctx *ctx, int *pincount) 919 { 920 921 return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount)); 922 } 923 924 int 925 vm_readwrite_kernemu_device(struct vmctx *ctx, int vcpu, vm_paddr_t gpa, 926 bool write, int size, uint64_t *value) 927 { 928 struct vm_readwrite_kernemu_device irp = { 929 .vcpuid = vcpu, 930 .access_width = fls(size) - 1, 931 .gpa = gpa, 932 .value = write ? *value : ~0ul, 933 }; 934 long cmd = (write ? VM_SET_KERNEMU_DEV : VM_GET_KERNEMU_DEV); 935 int rc; 936 937 rc = ioctl(ctx->fd, cmd, &irp); 938 if (rc == 0 && !write) 939 *value = irp.value; 940 return (rc); 941 } 942 943 int 944 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 945 { 946 struct vm_isa_irq isa_irq; 947 948 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 949 isa_irq.atpic_irq = atpic_irq; 950 isa_irq.ioapic_irq = ioapic_irq; 951 952 return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq)); 953 } 954 955 int 956 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 957 { 958 struct vm_isa_irq isa_irq; 959 960 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 961 isa_irq.atpic_irq = atpic_irq; 962 isa_irq.ioapic_irq = ioapic_irq; 963 964 return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq)); 965 } 966 967 int 968 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 969 { 970 struct vm_isa_irq isa_irq; 971 972 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 973 isa_irq.atpic_irq = atpic_irq; 974 isa_irq.ioapic_irq = ioapic_irq; 975 976 return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq)); 977 } 978 979 int 980 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq, 981 enum vm_intr_trigger trigger) 982 { 983 struct vm_isa_irq_trigger isa_irq_trigger; 984 985 bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger)); 986 isa_irq_trigger.atpic_irq = atpic_irq; 987 isa_irq_trigger.trigger = trigger; 988 989 return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger)); 990 } 991 992 int 993 vm_inject_nmi(struct vmctx *ctx, int vcpu) 994 { 995 struct vm_nmi vmnmi; 996 997 bzero(&vmnmi, sizeof(vmnmi)); 998 vmnmi.cpuid = vcpu; 999 1000 return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi)); 1001 } 1002 1003 static const char *capstrmap[] = { 1004 [VM_CAP_HALT_EXIT] = "hlt_exit", 1005 [VM_CAP_MTRAP_EXIT] = "mtrap_exit", 1006 [VM_CAP_PAUSE_EXIT] = "pause_exit", 1007 #ifdef __FreeBSD__ 1008 [VM_CAP_UNRESTRICTED_GUEST] = "unrestricted_guest", 1009 #endif 1010 [VM_CAP_ENABLE_INVPCID] = "enable_invpcid", 1011 [VM_CAP_BPT_EXIT] = "bpt_exit", 1012 }; 1013 1014 int 1015 vm_capability_name2type(const char *capname) 1016 { 1017 int i; 1018 1019 for (i = 0; i < nitems(capstrmap); i++) { 1020 if (strcmp(capstrmap[i], capname) == 0) 1021 return (i); 1022 } 1023 1024 return (-1); 1025 } 1026 1027 const char * 1028 vm_capability_type2name(int type) 1029 { 1030 if (type >= 0 && type < nitems(capstrmap)) 1031 return (capstrmap[type]); 1032 1033 return (NULL); 1034 } 1035 1036 int 1037 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, 1038 int *retval) 1039 { 1040 int error; 1041 struct vm_capability vmcap; 1042 1043 bzero(&vmcap, sizeof(vmcap)); 1044 vmcap.cpuid = vcpu; 1045 vmcap.captype = cap; 1046 1047 error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap); 1048 *retval = vmcap.capval; 1049 return (error); 1050 } 1051 1052 int 1053 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val) 1054 { 1055 struct vm_capability vmcap; 1056 1057 bzero(&vmcap, sizeof(vmcap)); 1058 vmcap.cpuid = vcpu; 1059 vmcap.captype = cap; 1060 vmcap.capval = val; 1061 1062 return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap)); 1063 } 1064 1065 #ifdef __FreeBSD__ 1066 int 1067 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 1068 { 1069 struct vm_pptdev pptdev; 1070 1071 bzero(&pptdev, sizeof(pptdev)); 1072 pptdev.bus = bus; 1073 pptdev.slot = slot; 1074 pptdev.func = func; 1075 1076 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev)); 1077 } 1078 1079 int 1080 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 1081 { 1082 struct vm_pptdev pptdev; 1083 1084 bzero(&pptdev, sizeof(pptdev)); 1085 pptdev.bus = bus; 1086 pptdev.slot = slot; 1087 pptdev.func = func; 1088 1089 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev)); 1090 } 1091 1092 int 1093 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 1094 vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 1095 { 1096 struct vm_pptdev_mmio pptmmio; 1097 1098 bzero(&pptmmio, sizeof(pptmmio)); 1099 pptmmio.bus = bus; 1100 pptmmio.slot = slot; 1101 pptmmio.func = func; 1102 pptmmio.gpa = gpa; 1103 pptmmio.len = len; 1104 pptmmio.hpa = hpa; 1105 1106 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio)); 1107 } 1108 1109 int 1110 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 1111 uint64_t addr, uint64_t msg, int numvec) 1112 { 1113 struct vm_pptdev_msi pptmsi; 1114 1115 bzero(&pptmsi, sizeof(pptmsi)); 1116 pptmsi.vcpu = vcpu; 1117 pptmsi.bus = bus; 1118 pptmsi.slot = slot; 1119 pptmsi.func = func; 1120 pptmsi.msg = msg; 1121 pptmsi.addr = addr; 1122 pptmsi.numvec = numvec; 1123 1124 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi)); 1125 } 1126 1127 int 1128 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 1129 int idx, uint64_t addr, uint64_t msg, uint32_t vector_control) 1130 { 1131 struct vm_pptdev_msix pptmsix; 1132 1133 bzero(&pptmsix, sizeof(pptmsix)); 1134 pptmsix.vcpu = vcpu; 1135 pptmsix.bus = bus; 1136 pptmsix.slot = slot; 1137 pptmsix.func = func; 1138 pptmsix.idx = idx; 1139 pptmsix.msg = msg; 1140 pptmsix.addr = addr; 1141 pptmsix.vector_control = vector_control; 1142 1143 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix); 1144 } 1145 1146 int 1147 vm_get_pptdev_limits(struct vmctx *ctx, int bus, int slot, int func, 1148 int *msi_limit, int *msix_limit) 1149 { 1150 struct vm_pptdev_limits pptlimits; 1151 int error; 1152 1153 bzero(&pptlimits, sizeof (pptlimits)); 1154 pptlimits.bus = bus; 1155 pptlimits.slot = slot; 1156 pptlimits.func = func; 1157 1158 error = ioctl(ctx->fd, VM_GET_PPTDEV_LIMITS, &pptlimits); 1159 1160 *msi_limit = pptlimits.msi_limit; 1161 *msix_limit = pptlimits.msix_limit; 1162 1163 return (error); 1164 } 1165 #else /* __FreeBSD__ */ 1166 int 1167 vm_assign_pptdev(struct vmctx *ctx, int pptfd) 1168 { 1169 struct vm_pptdev pptdev; 1170 1171 pptdev.pptfd = pptfd; 1172 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev)); 1173 } 1174 1175 int 1176 vm_unassign_pptdev(struct vmctx *ctx, int pptfd) 1177 { 1178 struct vm_pptdev pptdev; 1179 1180 pptdev.pptfd = pptfd; 1181 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev)); 1182 } 1183 1184 int 1185 vm_map_pptdev_mmio(struct vmctx *ctx, int pptfd, vm_paddr_t gpa, size_t len, 1186 vm_paddr_t hpa) 1187 { 1188 struct vm_pptdev_mmio pptmmio; 1189 1190 pptmmio.pptfd = pptfd; 1191 pptmmio.gpa = gpa; 1192 pptmmio.len = len; 1193 pptmmio.hpa = hpa; 1194 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio)); 1195 } 1196 1197 int 1198 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int pptfd, uint64_t addr, 1199 uint64_t msg, int numvec) 1200 { 1201 struct vm_pptdev_msi pptmsi; 1202 1203 pptmsi.vcpu = vcpu; 1204 pptmsi.pptfd = pptfd; 1205 pptmsi.msg = msg; 1206 pptmsi.addr = addr; 1207 pptmsi.numvec = numvec; 1208 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi)); 1209 } 1210 1211 int 1212 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int pptfd, int idx, 1213 uint64_t addr, uint64_t msg, uint32_t vector_control) 1214 { 1215 struct vm_pptdev_msix pptmsix; 1216 1217 pptmsix.vcpu = vcpu; 1218 pptmsix.pptfd = pptfd; 1219 pptmsix.idx = idx; 1220 pptmsix.msg = msg; 1221 pptmsix.addr = addr; 1222 pptmsix.vector_control = vector_control; 1223 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix); 1224 } 1225 1226 int 1227 vm_get_pptdev_limits(struct vmctx *ctx, int pptfd, int *msi_limit, 1228 int *msix_limit) 1229 { 1230 struct vm_pptdev_limits pptlimits; 1231 int error; 1232 1233 bzero(&pptlimits, sizeof (pptlimits)); 1234 pptlimits.pptfd = pptfd; 1235 error = ioctl(ctx->fd, VM_GET_PPTDEV_LIMITS, &pptlimits); 1236 1237 *msi_limit = pptlimits.msi_limit; 1238 *msix_limit = pptlimits.msix_limit; 1239 return (error); 1240 } 1241 #endif /* __FreeBSD__ */ 1242 1243 uint64_t * 1244 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv, 1245 int *ret_entries) 1246 { 1247 int error; 1248 1249 static struct vm_stats vmstats; 1250 1251 vmstats.cpuid = vcpu; 1252 1253 error = ioctl(ctx->fd, VM_STATS_IOC, &vmstats); 1254 if (error == 0) { 1255 if (ret_entries) 1256 *ret_entries = vmstats.num_entries; 1257 if (ret_tv) 1258 *ret_tv = vmstats.tv; 1259 return (vmstats.statbuf); 1260 } else 1261 return (NULL); 1262 } 1263 1264 const char * 1265 vm_get_stat_desc(struct vmctx *ctx, int index) 1266 { 1267 static struct vm_stat_desc statdesc; 1268 1269 statdesc.index = index; 1270 if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0) 1271 return (statdesc.desc); 1272 else 1273 return (NULL); 1274 } 1275 1276 int 1277 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state) 1278 { 1279 int error; 1280 struct vm_x2apic x2apic; 1281 1282 bzero(&x2apic, sizeof(x2apic)); 1283 x2apic.cpuid = vcpu; 1284 1285 error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic); 1286 *state = x2apic.state; 1287 return (error); 1288 } 1289 1290 int 1291 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state) 1292 { 1293 int error; 1294 struct vm_x2apic x2apic; 1295 1296 bzero(&x2apic, sizeof(x2apic)); 1297 x2apic.cpuid = vcpu; 1298 x2apic.state = state; 1299 1300 error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic); 1301 1302 return (error); 1303 } 1304 1305 /* 1306 * From Intel Vol 3a: 1307 * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT 1308 */ 1309 int 1310 vcpu_reset(struct vmctx *vmctx, int vcpu) 1311 { 1312 int error; 1313 uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx; 1314 uint32_t desc_access, desc_limit; 1315 uint16_t sel; 1316 1317 zero = 0; 1318 1319 rflags = 0x2; 1320 error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags); 1321 if (error) 1322 goto done; 1323 1324 rip = 0xfff0; 1325 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0) 1326 goto done; 1327 1328 cr0 = CR0_NE; 1329 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0) 1330 goto done; 1331 1332 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0) 1333 goto done; 1334 1335 cr4 = 0; 1336 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0) 1337 goto done; 1338 1339 /* 1340 * CS: present, r/w, accessed, 16-bit, byte granularity, usable 1341 */ 1342 desc_base = 0xffff0000; 1343 desc_limit = 0xffff; 1344 desc_access = 0x0093; 1345 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS, 1346 desc_base, desc_limit, desc_access); 1347 if (error) 1348 goto done; 1349 1350 sel = 0xf000; 1351 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0) 1352 goto done; 1353 1354 /* 1355 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity 1356 */ 1357 desc_base = 0; 1358 desc_limit = 0xffff; 1359 desc_access = 0x0093; 1360 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS, 1361 desc_base, desc_limit, desc_access); 1362 if (error) 1363 goto done; 1364 1365 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS, 1366 desc_base, desc_limit, desc_access); 1367 if (error) 1368 goto done; 1369 1370 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES, 1371 desc_base, desc_limit, desc_access); 1372 if (error) 1373 goto done; 1374 1375 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS, 1376 desc_base, desc_limit, desc_access); 1377 if (error) 1378 goto done; 1379 1380 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS, 1381 desc_base, desc_limit, desc_access); 1382 if (error) 1383 goto done; 1384 1385 sel = 0; 1386 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0) 1387 goto done; 1388 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0) 1389 goto done; 1390 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0) 1391 goto done; 1392 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0) 1393 goto done; 1394 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0) 1395 goto done; 1396 1397 /* General purpose registers */ 1398 rdx = 0xf00; 1399 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0) 1400 goto done; 1401 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0) 1402 goto done; 1403 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0) 1404 goto done; 1405 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0) 1406 goto done; 1407 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0) 1408 goto done; 1409 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0) 1410 goto done; 1411 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0) 1412 goto done; 1413 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0) 1414 goto done; 1415 1416 /* GDTR, IDTR */ 1417 desc_base = 0; 1418 desc_limit = 0xffff; 1419 desc_access = 0; 1420 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR, 1421 desc_base, desc_limit, desc_access); 1422 if (error != 0) 1423 goto done; 1424 1425 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR, 1426 desc_base, desc_limit, desc_access); 1427 if (error != 0) 1428 goto done; 1429 1430 /* TR */ 1431 desc_base = 0; 1432 desc_limit = 0xffff; 1433 desc_access = 0x0000008b; 1434 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access); 1435 if (error) 1436 goto done; 1437 1438 sel = 0; 1439 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0) 1440 goto done; 1441 1442 /* LDTR */ 1443 desc_base = 0; 1444 desc_limit = 0xffff; 1445 desc_access = 0x00000082; 1446 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base, 1447 desc_limit, desc_access); 1448 if (error) 1449 goto done; 1450 1451 sel = 0; 1452 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0) 1453 goto done; 1454 1455 /* XXX cr2, debug registers */ 1456 1457 error = 0; 1458 done: 1459 return (error); 1460 } 1461 1462 int 1463 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num) 1464 { 1465 int error, i; 1466 struct vm_gpa_pte gpapte; 1467 1468 bzero(&gpapte, sizeof(gpapte)); 1469 gpapte.gpa = gpa; 1470 1471 error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte); 1472 1473 if (error == 0) { 1474 *num = gpapte.ptenum; 1475 for (i = 0; i < gpapte.ptenum; i++) 1476 pte[i] = gpapte.pte[i]; 1477 } 1478 1479 return (error); 1480 } 1481 1482 int 1483 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities) 1484 { 1485 int error; 1486 struct vm_hpet_cap cap; 1487 1488 bzero(&cap, sizeof(struct vm_hpet_cap)); 1489 error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap); 1490 if (capabilities != NULL) 1491 *capabilities = cap.capabilities; 1492 return (error); 1493 } 1494 1495 int 1496 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1497 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1498 { 1499 struct vm_gla2gpa gg; 1500 int error; 1501 1502 bzero(&gg, sizeof(struct vm_gla2gpa)); 1503 gg.vcpuid = vcpu; 1504 gg.prot = prot; 1505 gg.gla = gla; 1506 gg.paging = *paging; 1507 1508 error = ioctl(ctx->fd, VM_GLA2GPA, &gg); 1509 if (error == 0) { 1510 *fault = gg.fault; 1511 *gpa = gg.gpa; 1512 } 1513 return (error); 1514 } 1515 1516 int 1517 vm_gla2gpa_nofault(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1518 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1519 { 1520 struct vm_gla2gpa gg; 1521 int error; 1522 1523 bzero(&gg, sizeof(struct vm_gla2gpa)); 1524 gg.vcpuid = vcpu; 1525 gg.prot = prot; 1526 gg.gla = gla; 1527 gg.paging = *paging; 1528 1529 error = ioctl(ctx->fd, VM_GLA2GPA_NOFAULT, &gg); 1530 if (error == 0) { 1531 *fault = gg.fault; 1532 *gpa = gg.gpa; 1533 } 1534 return (error); 1535 } 1536 1537 #ifndef min 1538 #define min(a,b) (((a) < (b)) ? (a) : (b)) 1539 #endif 1540 1541 int 1542 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1543 uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt, 1544 int *fault) 1545 { 1546 void *va; 1547 uint64_t gpa; 1548 int error, i, n, off; 1549 1550 for (i = 0; i < iovcnt; i++) { 1551 iov[i].iov_base = 0; 1552 iov[i].iov_len = 0; 1553 } 1554 1555 while (len) { 1556 assert(iovcnt > 0); 1557 error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault); 1558 if (error || *fault) 1559 return (error); 1560 1561 off = gpa & PAGE_MASK; 1562 n = min(len, PAGE_SIZE - off); 1563 1564 va = vm_map_gpa(ctx, gpa, n); 1565 if (va == NULL) 1566 return (EFAULT); 1567 1568 iov->iov_base = va; 1569 iov->iov_len = n; 1570 iov++; 1571 iovcnt--; 1572 1573 gla += n; 1574 len -= n; 1575 } 1576 return (0); 1577 } 1578 1579 void 1580 vm_copy_teardown(struct vmctx *ctx, int vcpu, struct iovec *iov, int iovcnt) 1581 { 1582 1583 return; 1584 } 1585 1586 void 1587 vm_copyin(struct vmctx *ctx, int vcpu, struct iovec *iov, void *vp, size_t len) 1588 { 1589 const char *src; 1590 char *dst; 1591 size_t n; 1592 1593 dst = vp; 1594 while (len) { 1595 assert(iov->iov_len); 1596 n = min(len, iov->iov_len); 1597 src = iov->iov_base; 1598 bcopy(src, dst, n); 1599 1600 iov++; 1601 dst += n; 1602 len -= n; 1603 } 1604 } 1605 1606 void 1607 vm_copyout(struct vmctx *ctx, int vcpu, const void *vp, struct iovec *iov, 1608 size_t len) 1609 { 1610 const char *src; 1611 char *dst; 1612 size_t n; 1613 1614 src = vp; 1615 while (len) { 1616 assert(iov->iov_len); 1617 n = min(len, iov->iov_len); 1618 dst = iov->iov_base; 1619 bcopy(src, dst, n); 1620 1621 iov++; 1622 src += n; 1623 len -= n; 1624 } 1625 } 1626 1627 static int 1628 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus) 1629 { 1630 struct vm_cpuset vm_cpuset; 1631 int error; 1632 1633 bzero(&vm_cpuset, sizeof(struct vm_cpuset)); 1634 vm_cpuset.which = which; 1635 vm_cpuset.cpusetsize = sizeof(cpuset_t); 1636 vm_cpuset.cpus = cpus; 1637 1638 error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset); 1639 return (error); 1640 } 1641 1642 int 1643 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus) 1644 { 1645 1646 return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus)); 1647 } 1648 1649 int 1650 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus) 1651 { 1652 1653 return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus)); 1654 } 1655 1656 int 1657 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus) 1658 { 1659 1660 return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus)); 1661 } 1662 1663 int 1664 vm_activate_cpu(struct vmctx *ctx, int vcpu) 1665 { 1666 struct vm_activate_cpu ac; 1667 int error; 1668 1669 bzero(&ac, sizeof(struct vm_activate_cpu)); 1670 ac.vcpuid = vcpu; 1671 error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac); 1672 return (error); 1673 } 1674 1675 int 1676 vm_suspend_cpu(struct vmctx *ctx, int vcpu) 1677 { 1678 struct vm_activate_cpu ac; 1679 int error; 1680 1681 bzero(&ac, sizeof(struct vm_activate_cpu)); 1682 ac.vcpuid = vcpu; 1683 error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac); 1684 return (error); 1685 } 1686 1687 int 1688 vm_resume_cpu(struct vmctx *ctx, int vcpu) 1689 { 1690 struct vm_activate_cpu ac; 1691 int error; 1692 1693 bzero(&ac, sizeof(struct vm_activate_cpu)); 1694 ac.vcpuid = vcpu; 1695 error = ioctl(ctx->fd, VM_RESUME_CPU, &ac); 1696 return (error); 1697 } 1698 1699 int 1700 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2) 1701 { 1702 struct vm_intinfo vmii; 1703 int error; 1704 1705 bzero(&vmii, sizeof(struct vm_intinfo)); 1706 vmii.vcpuid = vcpu; 1707 error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii); 1708 if (error == 0) { 1709 *info1 = vmii.info1; 1710 *info2 = vmii.info2; 1711 } 1712 return (error); 1713 } 1714 1715 int 1716 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1) 1717 { 1718 struct vm_intinfo vmii; 1719 int error; 1720 1721 bzero(&vmii, sizeof(struct vm_intinfo)); 1722 vmii.vcpuid = vcpu; 1723 vmii.info1 = info1; 1724 error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii); 1725 return (error); 1726 } 1727 1728 int 1729 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value) 1730 { 1731 struct vm_rtc_data rtcdata; 1732 int error; 1733 1734 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1735 rtcdata.offset = offset; 1736 rtcdata.value = value; 1737 error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata); 1738 return (error); 1739 } 1740 1741 int 1742 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval) 1743 { 1744 struct vm_rtc_data rtcdata; 1745 int error; 1746 1747 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1748 rtcdata.offset = offset; 1749 error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata); 1750 if (error == 0) 1751 *retval = rtcdata.value; 1752 return (error); 1753 } 1754 1755 int 1756 vm_rtc_settime(struct vmctx *ctx, time_t secs) 1757 { 1758 struct vm_rtc_time rtctime; 1759 int error; 1760 1761 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1762 rtctime.secs = secs; 1763 error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime); 1764 return (error); 1765 } 1766 1767 int 1768 vm_rtc_gettime(struct vmctx *ctx, time_t *secs) 1769 { 1770 struct vm_rtc_time rtctime; 1771 int error; 1772 1773 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1774 error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime); 1775 if (error == 0) 1776 *secs = rtctime.secs; 1777 return (error); 1778 } 1779 1780 int 1781 vm_restart_instruction(void *arg, int vcpu) 1782 { 1783 struct vmctx *ctx = arg; 1784 1785 return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu)); 1786 } 1787 1788 int 1789 vm_set_topology(struct vmctx *ctx, 1790 uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus) 1791 { 1792 struct vm_cpu_topology topology; 1793 1794 bzero(&topology, sizeof (struct vm_cpu_topology)); 1795 topology.sockets = sockets; 1796 topology.cores = cores; 1797 topology.threads = threads; 1798 topology.maxcpus = maxcpus; 1799 return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology)); 1800 } 1801 1802 int 1803 vm_get_topology(struct vmctx *ctx, 1804 uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus) 1805 { 1806 struct vm_cpu_topology topology; 1807 int error; 1808 1809 bzero(&topology, sizeof (struct vm_cpu_topology)); 1810 error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology); 1811 if (error == 0) { 1812 *sockets = topology.sockets; 1813 *cores = topology.cores; 1814 *threads = topology.threads; 1815 *maxcpus = topology.maxcpus; 1816 } 1817 return (error); 1818 } 1819 1820 int 1821 vm_get_device_fd(struct vmctx *ctx) 1822 { 1823 1824 return (ctx->fd); 1825 } 1826 1827 #ifndef __FreeBSD__ 1828 int 1829 vm_pmtmr_set_location(struct vmctx *ctx, uint16_t ioport) 1830 { 1831 return (ioctl(ctx->fd, VM_PMTMR_LOCATE, ioport)); 1832 } 1833 1834 int 1835 vm_wrlock_cycle(struct vmctx *ctx) 1836 { 1837 if (ioctl(ctx->fd, VM_WRLOCK_CYCLE, 0) != 0) { 1838 return (errno); 1839 } 1840 return (0); 1841 } 1842 #endif /* __FreeBSD__ */ 1843 1844 #ifdef __FreeBSD__ 1845 const cap_ioctl_t * 1846 vm_get_ioctls(size_t *len) 1847 { 1848 cap_ioctl_t *cmds; 1849 /* keep in sync with machine/vmm_dev.h */ 1850 static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT, 1851 VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG, 1852 VM_MMAP_GETNEXT, VM_SET_REGISTER, VM_GET_REGISTER, 1853 VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR, 1854 VM_SET_REGISTER_SET, VM_GET_REGISTER_SET, 1855 VM_SET_KERNEMU_DEV, VM_GET_KERNEMU_DEV, 1856 VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ, 1857 VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ, 1858 VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ, 1859 VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER, 1860 VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV, 1861 VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI, 1862 VM_PPTDEV_MSIX, VM_INJECT_NMI, VM_STATS, VM_STAT_DESC, 1863 VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE, 1864 VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA, 1865 VM_GLA2GPA_NOFAULT, 1866 VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU, 1867 VM_SET_INTINFO, VM_GET_INTINFO, 1868 VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME, 1869 VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY }; 1870 1871 if (len == NULL) { 1872 cmds = malloc(sizeof(vm_ioctl_cmds)); 1873 if (cmds == NULL) 1874 return (NULL); 1875 bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds)); 1876 return (cmds); 1877 } 1878 1879 *len = nitems(vm_ioctl_cmds); 1880 return (NULL); 1881 } 1882 #endif /* __FreeBSD__ */ 1883