1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 /* 31 * This file and its contents are supplied under the terms of the 32 * Common Development and Distribution License ("CDDL"), version 1.0. 33 * You may only use this file in accordance with the terms of version 34 * 1.0 of the CDDL. 35 * 36 * A full copy of the text of the CDDL should have accompanied this 37 * source. A copy of the CDDL is also available via the Internet at 38 * http://www.illumos.org/license/CDDL. 39 * 40 * Copyright 2015 Pluribus Networks Inc. 41 * Copyright 2019 Joyent, Inc. 42 * Copyright 2020 Oxide Computer Company 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include <sys/param.h> 49 #include <sys/sysctl.h> 50 #include <sys/ioctl.h> 51 #ifdef __FreeBSD__ 52 #include <sys/linker.h> 53 #endif 54 #include <sys/mman.h> 55 #include <sys/module.h> 56 #include <sys/_iovec.h> 57 #include <sys/cpuset.h> 58 59 #include <x86/segments.h> 60 #include <machine/specialreg.h> 61 62 #include <errno.h> 63 #include <stdio.h> 64 #include <stdlib.h> 65 #include <assert.h> 66 #include <string.h> 67 #include <fcntl.h> 68 #include <unistd.h> 69 70 #include <libutil.h> 71 72 #include <machine/vmm.h> 73 #include <machine/vmm_dev.h> 74 75 #include "vmmapi.h" 76 77 #define MB (1024 * 1024UL) 78 #define GB (1024 * 1024 * 1024UL) 79 80 #ifndef __FreeBSD__ 81 /* shim to no-op for now */ 82 #define MAP_NOCORE 0 83 #define MAP_ALIGNED_SUPER 0 84 85 /* Rely on PROT_NONE for guard purposes */ 86 #define MAP_GUARD (MAP_PRIVATE | MAP_ANON | MAP_NORESERVE) 87 #endif 88 89 /* 90 * Size of the guard region before and after the virtual address space 91 * mapping the guest physical memory. This must be a multiple of the 92 * superpage size for performance reasons. 93 */ 94 #define VM_MMAP_GUARD_SIZE (4 * MB) 95 96 #define PROT_RW (PROT_READ | PROT_WRITE) 97 #define PROT_ALL (PROT_READ | PROT_WRITE | PROT_EXEC) 98 99 struct vmctx { 100 int fd; 101 uint32_t lowmem_limit; 102 int memflags; 103 size_t lowmem; 104 size_t highmem; 105 char *baseaddr; 106 char *name; 107 }; 108 109 #ifdef __FreeBSD__ 110 #define CREATE(x) sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x))) 111 #define DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x))) 112 #else 113 #define CREATE(x) vm_do_ctl(VMM_CREATE_VM, (x)) 114 #define DESTROY(x) vm_do_ctl(VMM_DESTROY_VM, (x)) 115 116 static int 117 vm_do_ctl(int cmd, const char *name) 118 { 119 int ctl_fd; 120 121 ctl_fd = open(VMM_CTL_DEV, O_EXCL | O_RDWR); 122 if (ctl_fd < 0) { 123 return (-1); 124 } 125 126 if (ioctl(ctl_fd, cmd, name) == -1) { 127 int err = errno; 128 129 /* Do not lose ioctl errno through the close(2) */ 130 (void) close(ctl_fd); 131 errno = err; 132 return (-1); 133 } 134 (void) close(ctl_fd); 135 136 return (0); 137 } 138 #endif 139 140 static int 141 vm_device_open(const char *name) 142 { 143 int fd, len; 144 char *vmfile; 145 146 len = strlen("/dev/vmm/") + strlen(name) + 1; 147 vmfile = malloc(len); 148 assert(vmfile != NULL); 149 snprintf(vmfile, len, "/dev/vmm/%s", name); 150 151 /* Open the device file */ 152 fd = open(vmfile, O_RDWR, 0); 153 154 free(vmfile); 155 return (fd); 156 } 157 158 int 159 vm_create(const char *name) 160 { 161 #ifdef __FreeBSD__ 162 /* Try to load vmm(4) module before creating a guest. */ 163 if (modfind("vmm") < 0) 164 kldload("vmm"); 165 #endif 166 return (CREATE((char *)name)); 167 } 168 169 struct vmctx * 170 vm_open(const char *name) 171 { 172 struct vmctx *vm; 173 174 vm = malloc(sizeof(struct vmctx) + strlen(name) + 1); 175 assert(vm != NULL); 176 177 vm->fd = -1; 178 vm->memflags = 0; 179 vm->lowmem_limit = 3 * GB; 180 vm->name = (char *)(vm + 1); 181 strcpy(vm->name, name); 182 183 if ((vm->fd = vm_device_open(vm->name)) < 0) 184 goto err; 185 186 return (vm); 187 err: 188 free(vm); 189 return (NULL); 190 } 191 192 #ifndef __FreeBSD__ 193 void 194 vm_close(struct vmctx *vm) 195 { 196 assert(vm != NULL); 197 assert(vm->fd >= 0); 198 199 (void) close(vm->fd); 200 201 free(vm); 202 } 203 #endif 204 205 void 206 vm_destroy(struct vmctx *vm) 207 { 208 assert(vm != NULL); 209 210 if (vm->fd >= 0) 211 close(vm->fd); 212 DESTROY(vm->name); 213 214 free(vm); 215 } 216 217 int 218 vm_parse_memsize(const char *optarg, size_t *ret_memsize) 219 { 220 char *endptr; 221 size_t optval; 222 int error; 223 224 optval = strtoul(optarg, &endptr, 0); 225 if (*optarg != '\0' && *endptr == '\0') { 226 /* 227 * For the sake of backward compatibility if the memory size 228 * specified on the command line is less than a megabyte then 229 * it is interpreted as being in units of MB. 230 */ 231 if (optval < MB) 232 optval *= MB; 233 *ret_memsize = optval; 234 error = 0; 235 } else 236 error = expand_number(optarg, ret_memsize); 237 238 return (error); 239 } 240 241 uint32_t 242 vm_get_lowmem_limit(struct vmctx *ctx) 243 { 244 245 return (ctx->lowmem_limit); 246 } 247 248 void 249 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit) 250 { 251 252 ctx->lowmem_limit = limit; 253 } 254 255 void 256 vm_set_memflags(struct vmctx *ctx, int flags) 257 { 258 259 ctx->memflags = flags; 260 } 261 262 int 263 vm_get_memflags(struct vmctx *ctx) 264 { 265 266 return (ctx->memflags); 267 } 268 269 /* 270 * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len). 271 */ 272 int 273 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off, 274 size_t len, int prot) 275 { 276 struct vm_memmap memmap; 277 int error, flags; 278 279 memmap.gpa = gpa; 280 memmap.segid = segid; 281 memmap.segoff = off; 282 memmap.len = len; 283 memmap.prot = prot; 284 memmap.flags = 0; 285 286 if (ctx->memflags & VM_MEM_F_WIRED) 287 memmap.flags |= VM_MEMMAP_F_WIRED; 288 289 /* 290 * If this mapping already exists then don't create it again. This 291 * is the common case for SYSMEM mappings created by bhyveload(8). 292 */ 293 error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags); 294 if (error == 0 && gpa == memmap.gpa) { 295 if (segid != memmap.segid || off != memmap.segoff || 296 prot != memmap.prot || flags != memmap.flags) { 297 errno = EEXIST; 298 return (-1); 299 } else { 300 return (0); 301 } 302 } 303 304 error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap); 305 return (error); 306 } 307 308 int 309 vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len) 310 { 311 struct vm_munmap munmap; 312 int error; 313 314 munmap.gpa = gpa; 315 munmap.len = len; 316 317 error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap); 318 return (error); 319 } 320 321 int 322 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid, 323 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 324 { 325 struct vm_memmap memmap; 326 int error; 327 328 bzero(&memmap, sizeof(struct vm_memmap)); 329 memmap.gpa = *gpa; 330 error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap); 331 if (error == 0) { 332 *gpa = memmap.gpa; 333 *segid = memmap.segid; 334 *segoff = memmap.segoff; 335 *len = memmap.len; 336 *prot = memmap.prot; 337 *flags = memmap.flags; 338 } 339 return (error); 340 } 341 342 /* 343 * Return 0 if the segments are identical and non-zero otherwise. 344 * 345 * This is slightly complicated by the fact that only device memory segments 346 * are named. 347 */ 348 static int 349 cmpseg(size_t len, const char *str, size_t len2, const char *str2) 350 { 351 352 if (len == len2) { 353 if ((!str && !str2) || (str && str2 && !strcmp(str, str2))) 354 return (0); 355 } 356 return (-1); 357 } 358 359 static int 360 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name) 361 { 362 struct vm_memseg memseg; 363 size_t n; 364 int error; 365 366 /* 367 * If the memory segment has already been created then just return. 368 * This is the usual case for the SYSMEM segment created by userspace 369 * loaders like bhyveload(8). 370 */ 371 error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name, 372 sizeof(memseg.name)); 373 if (error) 374 return (error); 375 376 if (memseg.len != 0) { 377 if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) { 378 errno = EINVAL; 379 return (-1); 380 } else { 381 return (0); 382 } 383 } 384 385 bzero(&memseg, sizeof(struct vm_memseg)); 386 memseg.segid = segid; 387 memseg.len = len; 388 if (name != NULL) { 389 n = strlcpy(memseg.name, name, sizeof(memseg.name)); 390 if (n >= sizeof(memseg.name)) { 391 errno = ENAMETOOLONG; 392 return (-1); 393 } 394 } 395 396 error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg); 397 return (error); 398 } 399 400 int 401 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf, 402 size_t bufsize) 403 { 404 struct vm_memseg memseg; 405 size_t n; 406 int error; 407 408 memseg.segid = segid; 409 error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg); 410 if (error == 0) { 411 *lenp = memseg.len; 412 n = strlcpy(namebuf, memseg.name, bufsize); 413 if (n >= bufsize) { 414 errno = ENAMETOOLONG; 415 error = -1; 416 } 417 } 418 return (error); 419 } 420 421 static int 422 #ifdef __FreeBSD__ 423 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base) 424 #else 425 setup_memory_segment(struct vmctx *ctx, int segid, vm_paddr_t gpa, size_t len, 426 char *base) 427 #endif 428 { 429 char *ptr; 430 int error, flags; 431 432 /* Map 'len' bytes starting at 'gpa' in the guest address space */ 433 #ifdef __FreeBSD__ 434 error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL); 435 #else 436 /* 437 * As we use two segments for lowmem/highmem the offset within the 438 * segment is 0 on illumos. 439 */ 440 error = vm_mmap_memseg(ctx, gpa, segid, 0, len, PROT_ALL); 441 #endif 442 if (error) 443 return (error); 444 445 flags = MAP_SHARED | MAP_FIXED; 446 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 447 flags |= MAP_NOCORE; 448 449 /* mmap into the process address space on the host */ 450 ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa); 451 if (ptr == MAP_FAILED) 452 return (-1); 453 454 return (0); 455 } 456 457 int 458 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms) 459 { 460 size_t objsize, len; 461 vm_paddr_t gpa; 462 char *baseaddr, *ptr; 463 int error; 464 465 assert(vms == VM_MMAP_ALL); 466 467 /* 468 * If 'memsize' cannot fit entirely in the 'lowmem' segment then 469 * create another 'highmem' segment above 4GB for the remainder. 470 */ 471 if (memsize > ctx->lowmem_limit) { 472 ctx->lowmem = ctx->lowmem_limit; 473 ctx->highmem = memsize - ctx->lowmem_limit; 474 objsize = 4*GB + ctx->highmem; 475 } else { 476 ctx->lowmem = memsize; 477 ctx->highmem = 0; 478 objsize = ctx->lowmem; 479 } 480 481 #ifdef __FreeBSD__ 482 error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL); 483 if (error) 484 return (error); 485 #endif 486 487 /* 488 * Stake out a contiguous region covering the guest physical memory 489 * and the adjoining guard regions. 490 */ 491 len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE; 492 ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0); 493 if (ptr == MAP_FAILED) 494 return (-1); 495 496 baseaddr = ptr + VM_MMAP_GUARD_SIZE; 497 498 #ifdef __FreeBSD__ 499 if (ctx->highmem > 0) { 500 gpa = 4*GB; 501 len = ctx->highmem; 502 error = setup_memory_segment(ctx, gpa, len, baseaddr); 503 if (error) 504 return (error); 505 } 506 507 if (ctx->lowmem > 0) { 508 gpa = 0; 509 len = ctx->lowmem; 510 error = setup_memory_segment(ctx, gpa, len, baseaddr); 511 if (error) 512 return (error); 513 } 514 #else 515 if (ctx->highmem > 0) { 516 error = vm_alloc_memseg(ctx, VM_HIGHMEM, ctx->highmem, NULL); 517 if (error) 518 return (error); 519 gpa = 4*GB; 520 len = ctx->highmem; 521 error = setup_memory_segment(ctx, VM_HIGHMEM, gpa, len, baseaddr); 522 if (error) 523 return (error); 524 } 525 526 if (ctx->lowmem > 0) { 527 error = vm_alloc_memseg(ctx, VM_LOWMEM, ctx->lowmem, NULL); 528 if (error) 529 return (error); 530 gpa = 0; 531 len = ctx->lowmem; 532 error = setup_memory_segment(ctx, VM_LOWMEM, gpa, len, baseaddr); 533 if (error) 534 return (error); 535 } 536 #endif 537 538 ctx->baseaddr = baseaddr; 539 540 return (0); 541 } 542 543 /* 544 * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in 545 * the lowmem or highmem regions. 546 * 547 * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region. 548 * The instruction emulation code depends on this behavior. 549 */ 550 void * 551 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len) 552 { 553 554 if (ctx->lowmem > 0) { 555 if (gaddr < ctx->lowmem && len <= ctx->lowmem && 556 gaddr + len <= ctx->lowmem) 557 return (ctx->baseaddr + gaddr); 558 } 559 560 if (ctx->highmem > 0) { 561 if (gaddr >= 4*GB) { 562 if (gaddr < 4*GB + ctx->highmem && 563 len <= ctx->highmem && 564 gaddr + len <= 4*GB + ctx->highmem) 565 return (ctx->baseaddr + gaddr); 566 } 567 } 568 569 return (NULL); 570 } 571 572 size_t 573 vm_get_lowmem_size(struct vmctx *ctx) 574 { 575 576 return (ctx->lowmem); 577 } 578 579 size_t 580 vm_get_highmem_size(struct vmctx *ctx) 581 { 582 583 return (ctx->highmem); 584 } 585 586 #ifndef __FreeBSD__ 587 int 588 vm_get_devmem_offset(struct vmctx *ctx, int segid, off_t *mapoff) 589 { 590 struct vm_devmem_offset vdo; 591 int error; 592 593 vdo.segid = segid; 594 error = ioctl(ctx->fd, VM_DEVMEM_GETOFFSET, &vdo); 595 if (error == 0) 596 *mapoff = vdo.offset; 597 598 return (error); 599 } 600 #endif 601 602 void * 603 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len) 604 { 605 #ifdef __FreeBSD__ 606 char pathname[MAXPATHLEN]; 607 #endif 608 size_t len2; 609 char *base, *ptr; 610 int fd, error, flags; 611 off_t mapoff; 612 613 fd = -1; 614 ptr = MAP_FAILED; 615 if (name == NULL || strlen(name) == 0) { 616 errno = EINVAL; 617 goto done; 618 } 619 620 error = vm_alloc_memseg(ctx, segid, len, name); 621 if (error) 622 goto done; 623 624 #ifdef __FreeBSD__ 625 strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname)); 626 strlcat(pathname, ctx->name, sizeof(pathname)); 627 strlcat(pathname, ".", sizeof(pathname)); 628 strlcat(pathname, name, sizeof(pathname)); 629 630 fd = open(pathname, O_RDWR); 631 if (fd < 0) 632 goto done; 633 #else 634 if (vm_get_devmem_offset(ctx, segid, &mapoff) != 0) 635 goto done; 636 #endif 637 638 /* 639 * Stake out a contiguous region covering the device memory and the 640 * adjoining guard regions. 641 */ 642 len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE; 643 base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 644 0); 645 if (base == MAP_FAILED) 646 goto done; 647 648 flags = MAP_SHARED | MAP_FIXED; 649 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 650 flags |= MAP_NOCORE; 651 652 #ifdef __FreeBSD__ 653 /* mmap the devmem region in the host address space */ 654 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0); 655 #else 656 /* mmap the devmem region in the host address space */ 657 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, ctx->fd, 658 mapoff); 659 #endif 660 done: 661 if (fd >= 0) 662 close(fd); 663 return (ptr); 664 } 665 666 int 667 vm_set_desc(struct vmctx *ctx, int vcpu, int reg, 668 uint64_t base, uint32_t limit, uint32_t access) 669 { 670 int error; 671 struct vm_seg_desc vmsegdesc; 672 673 bzero(&vmsegdesc, sizeof(vmsegdesc)); 674 vmsegdesc.cpuid = vcpu; 675 vmsegdesc.regnum = reg; 676 vmsegdesc.desc.base = base; 677 vmsegdesc.desc.limit = limit; 678 vmsegdesc.desc.access = access; 679 680 error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc); 681 return (error); 682 } 683 684 int 685 vm_get_desc(struct vmctx *ctx, int vcpu, int reg, 686 uint64_t *base, uint32_t *limit, uint32_t *access) 687 { 688 int error; 689 struct vm_seg_desc vmsegdesc; 690 691 bzero(&vmsegdesc, sizeof(vmsegdesc)); 692 vmsegdesc.cpuid = vcpu; 693 vmsegdesc.regnum = reg; 694 695 error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc); 696 if (error == 0) { 697 *base = vmsegdesc.desc.base; 698 *limit = vmsegdesc.desc.limit; 699 *access = vmsegdesc.desc.access; 700 } 701 return (error); 702 } 703 704 int 705 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc) 706 { 707 int error; 708 709 error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit, 710 &seg_desc->access); 711 return (error); 712 } 713 714 int 715 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val) 716 { 717 int error; 718 struct vm_register vmreg; 719 720 bzero(&vmreg, sizeof(vmreg)); 721 vmreg.cpuid = vcpu; 722 vmreg.regnum = reg; 723 vmreg.regval = val; 724 725 error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg); 726 return (error); 727 } 728 729 int 730 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val) 731 { 732 int error; 733 struct vm_register vmreg; 734 735 bzero(&vmreg, sizeof(vmreg)); 736 vmreg.cpuid = vcpu; 737 vmreg.regnum = reg; 738 739 error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg); 740 *ret_val = vmreg.regval; 741 return (error); 742 } 743 744 int 745 vm_set_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 746 const int *regnums, uint64_t *regvals) 747 { 748 int error; 749 struct vm_register_set vmregset; 750 751 bzero(&vmregset, sizeof(vmregset)); 752 vmregset.cpuid = vcpu; 753 vmregset.count = count; 754 vmregset.regnums = regnums; 755 vmregset.regvals = regvals; 756 757 error = ioctl(ctx->fd, VM_SET_REGISTER_SET, &vmregset); 758 return (error); 759 } 760 761 int 762 vm_get_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 763 const int *regnums, uint64_t *regvals) 764 { 765 int error; 766 struct vm_register_set vmregset; 767 768 bzero(&vmregset, sizeof(vmregset)); 769 vmregset.cpuid = vcpu; 770 vmregset.count = count; 771 vmregset.regnums = regnums; 772 vmregset.regvals = regvals; 773 774 error = ioctl(ctx->fd, VM_GET_REGISTER_SET, &vmregset); 775 return (error); 776 } 777 778 int 779 vm_run(struct vmctx *ctx, int vcpu, const struct vm_entry *vm_entry, 780 struct vm_exit *vm_exit) 781 { 782 struct vm_entry entry; 783 784 bcopy(vm_entry, &entry, sizeof (entry)); 785 entry.cpuid = vcpu; 786 entry.exit_data = vm_exit; 787 788 return (ioctl(ctx->fd, VM_RUN, &entry)); 789 } 790 791 int 792 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how) 793 { 794 struct vm_suspend vmsuspend; 795 796 bzero(&vmsuspend, sizeof(vmsuspend)); 797 vmsuspend.how = how; 798 return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend)); 799 } 800 801 int 802 vm_reinit(struct vmctx *ctx) 803 { 804 805 return (ioctl(ctx->fd, VM_REINIT, 0)); 806 } 807 808 int 809 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid, 810 uint32_t errcode, int restart_instruction) 811 { 812 struct vm_exception exc; 813 814 exc.cpuid = vcpu; 815 exc.vector = vector; 816 exc.error_code = errcode; 817 exc.error_code_valid = errcode_valid; 818 exc.restart_instruction = restart_instruction; 819 820 return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc)); 821 } 822 823 #ifndef __FreeBSD__ 824 void 825 vm_inject_fault(struct vmctx *ctx, int vcpu, int vector, int errcode_valid, 826 int errcode) 827 { 828 int error; 829 struct vm_exception exc; 830 831 exc.cpuid = vcpu; 832 exc.vector = vector; 833 exc.error_code = errcode; 834 exc.error_code_valid = errcode_valid; 835 exc.restart_instruction = 1; 836 error = ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc); 837 838 assert(error == 0); 839 } 840 #endif /* __FreeBSD__ */ 841 842 int 843 vm_apicid2vcpu(struct vmctx *ctx, int apicid) 844 { 845 /* 846 * The apic id associated with the 'vcpu' has the same numerical value 847 * as the 'vcpu' itself. 848 */ 849 return (apicid); 850 } 851 852 int 853 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector) 854 { 855 struct vm_lapic_irq vmirq; 856 857 bzero(&vmirq, sizeof(vmirq)); 858 vmirq.cpuid = vcpu; 859 vmirq.vector = vector; 860 861 return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq)); 862 } 863 864 int 865 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector) 866 { 867 struct vm_lapic_irq vmirq; 868 869 bzero(&vmirq, sizeof(vmirq)); 870 vmirq.cpuid = vcpu; 871 vmirq.vector = vector; 872 873 return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq)); 874 } 875 876 int 877 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg) 878 { 879 struct vm_lapic_msi vmmsi; 880 881 bzero(&vmmsi, sizeof(vmmsi)); 882 vmmsi.addr = addr; 883 vmmsi.msg = msg; 884 885 return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi)); 886 } 887 888 int 889 vm_ioapic_assert_irq(struct vmctx *ctx, int irq) 890 { 891 struct vm_ioapic_irq ioapic_irq; 892 893 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 894 ioapic_irq.irq = irq; 895 896 return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq)); 897 } 898 899 int 900 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq) 901 { 902 struct vm_ioapic_irq ioapic_irq; 903 904 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 905 ioapic_irq.irq = irq; 906 907 return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq)); 908 } 909 910 int 911 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq) 912 { 913 struct vm_ioapic_irq ioapic_irq; 914 915 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 916 ioapic_irq.irq = irq; 917 918 return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq)); 919 } 920 921 int 922 vm_ioapic_pincount(struct vmctx *ctx, int *pincount) 923 { 924 925 return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount)); 926 } 927 928 int 929 vm_readwrite_kernemu_device(struct vmctx *ctx, int vcpu, vm_paddr_t gpa, 930 bool write, int size, uint64_t *value) 931 { 932 struct vm_readwrite_kernemu_device irp = { 933 .vcpuid = vcpu, 934 .access_width = fls(size) - 1, 935 .gpa = gpa, 936 .value = write ? *value : ~0ul, 937 }; 938 long cmd = (write ? VM_SET_KERNEMU_DEV : VM_GET_KERNEMU_DEV); 939 int rc; 940 941 rc = ioctl(ctx->fd, cmd, &irp); 942 if (rc == 0 && !write) 943 *value = irp.value; 944 return (rc); 945 } 946 947 int 948 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 949 { 950 struct vm_isa_irq isa_irq; 951 952 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 953 isa_irq.atpic_irq = atpic_irq; 954 isa_irq.ioapic_irq = ioapic_irq; 955 956 return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq)); 957 } 958 959 int 960 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 961 { 962 struct vm_isa_irq isa_irq; 963 964 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 965 isa_irq.atpic_irq = atpic_irq; 966 isa_irq.ioapic_irq = ioapic_irq; 967 968 return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq)); 969 } 970 971 int 972 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 973 { 974 struct vm_isa_irq isa_irq; 975 976 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 977 isa_irq.atpic_irq = atpic_irq; 978 isa_irq.ioapic_irq = ioapic_irq; 979 980 return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq)); 981 } 982 983 int 984 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq, 985 enum vm_intr_trigger trigger) 986 { 987 struct vm_isa_irq_trigger isa_irq_trigger; 988 989 bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger)); 990 isa_irq_trigger.atpic_irq = atpic_irq; 991 isa_irq_trigger.trigger = trigger; 992 993 return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger)); 994 } 995 996 int 997 vm_inject_nmi(struct vmctx *ctx, int vcpu) 998 { 999 struct vm_nmi vmnmi; 1000 1001 bzero(&vmnmi, sizeof(vmnmi)); 1002 vmnmi.cpuid = vcpu; 1003 1004 return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi)); 1005 } 1006 1007 static const char *capstrmap[] = { 1008 [VM_CAP_HALT_EXIT] = "hlt_exit", 1009 [VM_CAP_MTRAP_EXIT] = "mtrap_exit", 1010 [VM_CAP_PAUSE_EXIT] = "pause_exit", 1011 #ifdef __FreeBSD__ 1012 [VM_CAP_UNRESTRICTED_GUEST] = "unrestricted_guest", 1013 #endif 1014 [VM_CAP_ENABLE_INVPCID] = "enable_invpcid", 1015 [VM_CAP_BPT_EXIT] = "bpt_exit", 1016 }; 1017 1018 int 1019 vm_capability_name2type(const char *capname) 1020 { 1021 int i; 1022 1023 for (i = 0; i < nitems(capstrmap); i++) { 1024 if (strcmp(capstrmap[i], capname) == 0) 1025 return (i); 1026 } 1027 1028 return (-1); 1029 } 1030 1031 const char * 1032 vm_capability_type2name(int type) 1033 { 1034 if (type >= 0 && type < nitems(capstrmap)) 1035 return (capstrmap[type]); 1036 1037 return (NULL); 1038 } 1039 1040 int 1041 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, 1042 int *retval) 1043 { 1044 int error; 1045 struct vm_capability vmcap; 1046 1047 bzero(&vmcap, sizeof(vmcap)); 1048 vmcap.cpuid = vcpu; 1049 vmcap.captype = cap; 1050 1051 error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap); 1052 *retval = vmcap.capval; 1053 return (error); 1054 } 1055 1056 int 1057 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val) 1058 { 1059 struct vm_capability vmcap; 1060 1061 bzero(&vmcap, sizeof(vmcap)); 1062 vmcap.cpuid = vcpu; 1063 vmcap.captype = cap; 1064 vmcap.capval = val; 1065 1066 return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap)); 1067 } 1068 1069 #ifdef __FreeBSD__ 1070 int 1071 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 1072 { 1073 struct vm_pptdev pptdev; 1074 1075 bzero(&pptdev, sizeof(pptdev)); 1076 pptdev.bus = bus; 1077 pptdev.slot = slot; 1078 pptdev.func = func; 1079 1080 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev)); 1081 } 1082 1083 int 1084 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 1085 { 1086 struct vm_pptdev pptdev; 1087 1088 bzero(&pptdev, sizeof(pptdev)); 1089 pptdev.bus = bus; 1090 pptdev.slot = slot; 1091 pptdev.func = func; 1092 1093 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev)); 1094 } 1095 1096 int 1097 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 1098 vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 1099 { 1100 struct vm_pptdev_mmio pptmmio; 1101 1102 bzero(&pptmmio, sizeof(pptmmio)); 1103 pptmmio.bus = bus; 1104 pptmmio.slot = slot; 1105 pptmmio.func = func; 1106 pptmmio.gpa = gpa; 1107 pptmmio.len = len; 1108 pptmmio.hpa = hpa; 1109 1110 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio)); 1111 } 1112 1113 int 1114 vm_unmap_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 1115 vm_paddr_t gpa, size_t len) 1116 { 1117 struct vm_pptdev_mmio pptmmio; 1118 1119 bzero(&pptmmio, sizeof(pptmmio)); 1120 pptmmio.bus = bus; 1121 pptmmio.slot = slot; 1122 pptmmio.func = func; 1123 pptmmio.gpa = gpa; 1124 pptmmio.len = len; 1125 1126 return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio)); 1127 } 1128 1129 int 1130 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 1131 uint64_t addr, uint64_t msg, int numvec) 1132 { 1133 struct vm_pptdev_msi pptmsi; 1134 1135 bzero(&pptmsi, sizeof(pptmsi)); 1136 pptmsi.vcpu = vcpu; 1137 pptmsi.bus = bus; 1138 pptmsi.slot = slot; 1139 pptmsi.func = func; 1140 pptmsi.msg = msg; 1141 pptmsi.addr = addr; 1142 pptmsi.numvec = numvec; 1143 1144 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi)); 1145 } 1146 1147 int 1148 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 1149 int idx, uint64_t addr, uint64_t msg, uint32_t vector_control) 1150 { 1151 struct vm_pptdev_msix pptmsix; 1152 1153 bzero(&pptmsix, sizeof(pptmsix)); 1154 pptmsix.vcpu = vcpu; 1155 pptmsix.bus = bus; 1156 pptmsix.slot = slot; 1157 pptmsix.func = func; 1158 pptmsix.idx = idx; 1159 pptmsix.msg = msg; 1160 pptmsix.addr = addr; 1161 pptmsix.vector_control = vector_control; 1162 1163 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix); 1164 } 1165 1166 int 1167 vm_get_pptdev_limits(struct vmctx *ctx, int bus, int slot, int func, 1168 int *msi_limit, int *msix_limit) 1169 { 1170 struct vm_pptdev_limits pptlimits; 1171 int error; 1172 1173 bzero(&pptlimits, sizeof (pptlimits)); 1174 pptlimits.bus = bus; 1175 pptlimits.slot = slot; 1176 pptlimits.func = func; 1177 1178 error = ioctl(ctx->fd, VM_GET_PPTDEV_LIMITS, &pptlimits); 1179 1180 *msi_limit = pptlimits.msi_limit; 1181 *msix_limit = pptlimits.msix_limit; 1182 1183 return (error); 1184 } 1185 1186 int 1187 vm_disable_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func) 1188 { 1189 struct vm_pptdev ppt; 1190 1191 bzero(&ppt, sizeof(ppt)); 1192 ppt.bus = bus; 1193 ppt.slot = slot; 1194 ppt.func = func; 1195 1196 return ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &ppt); 1197 } 1198 1199 #else /* __FreeBSD__ */ 1200 1201 int 1202 vm_assign_pptdev(struct vmctx *ctx, int pptfd) 1203 { 1204 struct vm_pptdev pptdev; 1205 1206 pptdev.pptfd = pptfd; 1207 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev)); 1208 } 1209 1210 int 1211 vm_unassign_pptdev(struct vmctx *ctx, int pptfd) 1212 { 1213 struct vm_pptdev pptdev; 1214 1215 pptdev.pptfd = pptfd; 1216 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev)); 1217 } 1218 1219 int 1220 vm_map_pptdev_mmio(struct vmctx *ctx, int pptfd, vm_paddr_t gpa, size_t len, 1221 vm_paddr_t hpa) 1222 { 1223 struct vm_pptdev_mmio pptmmio; 1224 1225 pptmmio.pptfd = pptfd; 1226 pptmmio.gpa = gpa; 1227 pptmmio.len = len; 1228 pptmmio.hpa = hpa; 1229 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio)); 1230 } 1231 1232 int 1233 vm_unmap_pptdev_mmio(struct vmctx *ctx, int pptfd, vm_paddr_t gpa, size_t len) 1234 { 1235 struct vm_pptdev_mmio pptmmio; 1236 1237 bzero(&pptmmio, sizeof(pptmmio)); 1238 pptmmio.pptfd = pptfd; 1239 pptmmio.gpa = gpa; 1240 pptmmio.len = len; 1241 1242 return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio)); 1243 } 1244 1245 int 1246 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int pptfd, uint64_t addr, 1247 uint64_t msg, int numvec) 1248 { 1249 struct vm_pptdev_msi pptmsi; 1250 1251 pptmsi.vcpu = vcpu; 1252 pptmsi.pptfd = pptfd; 1253 pptmsi.msg = msg; 1254 pptmsi.addr = addr; 1255 pptmsi.numvec = numvec; 1256 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi)); 1257 } 1258 1259 int 1260 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int pptfd, int idx, 1261 uint64_t addr, uint64_t msg, uint32_t vector_control) 1262 { 1263 struct vm_pptdev_msix pptmsix; 1264 1265 pptmsix.vcpu = vcpu; 1266 pptmsix.pptfd = pptfd; 1267 pptmsix.idx = idx; 1268 pptmsix.msg = msg; 1269 pptmsix.addr = addr; 1270 pptmsix.vector_control = vector_control; 1271 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix); 1272 } 1273 1274 int 1275 vm_get_pptdev_limits(struct vmctx *ctx, int pptfd, int *msi_limit, 1276 int *msix_limit) 1277 { 1278 struct vm_pptdev_limits pptlimits; 1279 int error; 1280 1281 bzero(&pptlimits, sizeof (pptlimits)); 1282 pptlimits.pptfd = pptfd; 1283 error = ioctl(ctx->fd, VM_GET_PPTDEV_LIMITS, &pptlimits); 1284 1285 *msi_limit = pptlimits.msi_limit; 1286 *msix_limit = pptlimits.msix_limit; 1287 return (error); 1288 } 1289 1290 int 1291 vm_disable_pptdev_msix(struct vmctx *ctx, int pptfd) 1292 { 1293 struct vm_pptdev pptdev; 1294 1295 pptdev.pptfd = pptfd; 1296 return (ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &pptdev)); 1297 } 1298 #endif /* __FreeBSD__ */ 1299 1300 uint64_t * 1301 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv, 1302 int *ret_entries) 1303 { 1304 int error; 1305 1306 static struct vm_stats vmstats; 1307 1308 vmstats.cpuid = vcpu; 1309 1310 error = ioctl(ctx->fd, VM_STATS_IOC, &vmstats); 1311 if (error == 0) { 1312 if (ret_entries) 1313 *ret_entries = vmstats.num_entries; 1314 if (ret_tv) 1315 *ret_tv = vmstats.tv; 1316 return (vmstats.statbuf); 1317 } else 1318 return (NULL); 1319 } 1320 1321 const char * 1322 vm_get_stat_desc(struct vmctx *ctx, int index) 1323 { 1324 static struct vm_stat_desc statdesc; 1325 1326 statdesc.index = index; 1327 if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0) 1328 return (statdesc.desc); 1329 else 1330 return (NULL); 1331 } 1332 1333 int 1334 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state) 1335 { 1336 int error; 1337 struct vm_x2apic x2apic; 1338 1339 bzero(&x2apic, sizeof(x2apic)); 1340 x2apic.cpuid = vcpu; 1341 1342 error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic); 1343 *state = x2apic.state; 1344 return (error); 1345 } 1346 1347 int 1348 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state) 1349 { 1350 int error; 1351 struct vm_x2apic x2apic; 1352 1353 bzero(&x2apic, sizeof(x2apic)); 1354 x2apic.cpuid = vcpu; 1355 x2apic.state = state; 1356 1357 error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic); 1358 1359 return (error); 1360 } 1361 1362 #ifndef __FreeBSD__ 1363 int 1364 vcpu_reset(struct vmctx *vmctx, int vcpu) 1365 { 1366 struct vm_vcpu_reset vvr; 1367 1368 vvr.vcpuid = vcpu; 1369 vvr.kind = VRK_RESET; 1370 1371 return (ioctl(vmctx->fd, VM_RESET_CPU, &vvr)); 1372 } 1373 #else /* __FreeBSD__ */ 1374 /* 1375 * From Intel Vol 3a: 1376 * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT 1377 */ 1378 int 1379 vcpu_reset(struct vmctx *vmctx, int vcpu) 1380 { 1381 int error; 1382 uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx; 1383 uint32_t desc_access, desc_limit; 1384 uint16_t sel; 1385 1386 zero = 0; 1387 1388 rflags = 0x2; 1389 error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags); 1390 if (error) 1391 goto done; 1392 1393 rip = 0xfff0; 1394 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0) 1395 goto done; 1396 1397 cr0 = CR0_NE; 1398 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0) 1399 goto done; 1400 1401 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0) 1402 goto done; 1403 1404 cr4 = 0; 1405 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0) 1406 goto done; 1407 1408 /* 1409 * CS: present, r/w, accessed, 16-bit, byte granularity, usable 1410 */ 1411 desc_base = 0xffff0000; 1412 desc_limit = 0xffff; 1413 desc_access = 0x0093; 1414 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS, 1415 desc_base, desc_limit, desc_access); 1416 if (error) 1417 goto done; 1418 1419 sel = 0xf000; 1420 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0) 1421 goto done; 1422 1423 /* 1424 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity 1425 */ 1426 desc_base = 0; 1427 desc_limit = 0xffff; 1428 desc_access = 0x0093; 1429 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS, 1430 desc_base, desc_limit, desc_access); 1431 if (error) 1432 goto done; 1433 1434 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS, 1435 desc_base, desc_limit, desc_access); 1436 if (error) 1437 goto done; 1438 1439 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES, 1440 desc_base, desc_limit, desc_access); 1441 if (error) 1442 goto done; 1443 1444 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS, 1445 desc_base, desc_limit, desc_access); 1446 if (error) 1447 goto done; 1448 1449 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS, 1450 desc_base, desc_limit, desc_access); 1451 if (error) 1452 goto done; 1453 1454 sel = 0; 1455 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0) 1456 goto done; 1457 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0) 1458 goto done; 1459 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0) 1460 goto done; 1461 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0) 1462 goto done; 1463 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0) 1464 goto done; 1465 1466 /* General purpose registers */ 1467 rdx = 0xf00; 1468 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0) 1469 goto done; 1470 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0) 1471 goto done; 1472 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0) 1473 goto done; 1474 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0) 1475 goto done; 1476 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0) 1477 goto done; 1478 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0) 1479 goto done; 1480 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0) 1481 goto done; 1482 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0) 1483 goto done; 1484 1485 /* GDTR, IDTR */ 1486 desc_base = 0; 1487 desc_limit = 0xffff; 1488 desc_access = 0; 1489 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR, 1490 desc_base, desc_limit, desc_access); 1491 if (error != 0) 1492 goto done; 1493 1494 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR, 1495 desc_base, desc_limit, desc_access); 1496 if (error != 0) 1497 goto done; 1498 1499 /* TR */ 1500 desc_base = 0; 1501 desc_limit = 0xffff; 1502 desc_access = 0x0000008b; 1503 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access); 1504 if (error) 1505 goto done; 1506 1507 sel = 0; 1508 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0) 1509 goto done; 1510 1511 /* LDTR */ 1512 desc_base = 0; 1513 desc_limit = 0xffff; 1514 desc_access = 0x00000082; 1515 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base, 1516 desc_limit, desc_access); 1517 if (error) 1518 goto done; 1519 1520 sel = 0; 1521 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0) 1522 goto done; 1523 1524 /* XXX cr2, debug registers */ 1525 1526 error = 0; 1527 done: 1528 return (error); 1529 } 1530 #endif /* __FreeBSD__ */ 1531 1532 int 1533 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num) 1534 { 1535 int error, i; 1536 struct vm_gpa_pte gpapte; 1537 1538 bzero(&gpapte, sizeof(gpapte)); 1539 gpapte.gpa = gpa; 1540 1541 error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte); 1542 1543 if (error == 0) { 1544 *num = gpapte.ptenum; 1545 for (i = 0; i < gpapte.ptenum; i++) 1546 pte[i] = gpapte.pte[i]; 1547 } 1548 1549 return (error); 1550 } 1551 1552 int 1553 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities) 1554 { 1555 int error; 1556 struct vm_hpet_cap cap; 1557 1558 bzero(&cap, sizeof(struct vm_hpet_cap)); 1559 error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap); 1560 if (capabilities != NULL) 1561 *capabilities = cap.capabilities; 1562 return (error); 1563 } 1564 1565 int 1566 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1567 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1568 { 1569 struct vm_gla2gpa gg; 1570 int error; 1571 1572 bzero(&gg, sizeof(struct vm_gla2gpa)); 1573 gg.vcpuid = vcpu; 1574 gg.prot = prot; 1575 gg.gla = gla; 1576 gg.paging = *paging; 1577 1578 error = ioctl(ctx->fd, VM_GLA2GPA, &gg); 1579 if (error == 0) { 1580 *fault = gg.fault; 1581 *gpa = gg.gpa; 1582 } 1583 return (error); 1584 } 1585 1586 int 1587 vm_gla2gpa_nofault(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1588 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1589 { 1590 struct vm_gla2gpa gg; 1591 int error; 1592 1593 bzero(&gg, sizeof(struct vm_gla2gpa)); 1594 gg.vcpuid = vcpu; 1595 gg.prot = prot; 1596 gg.gla = gla; 1597 gg.paging = *paging; 1598 1599 error = ioctl(ctx->fd, VM_GLA2GPA_NOFAULT, &gg); 1600 if (error == 0) { 1601 *fault = gg.fault; 1602 *gpa = gg.gpa; 1603 } 1604 return (error); 1605 } 1606 1607 #ifndef min 1608 #define min(a,b) (((a) < (b)) ? (a) : (b)) 1609 #endif 1610 1611 int 1612 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1613 uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt, 1614 int *fault) 1615 { 1616 void *va; 1617 uint64_t gpa; 1618 int error, i, n, off; 1619 1620 for (i = 0; i < iovcnt; i++) { 1621 iov[i].iov_base = 0; 1622 iov[i].iov_len = 0; 1623 } 1624 1625 while (len) { 1626 assert(iovcnt > 0); 1627 error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault); 1628 if (error || *fault) 1629 return (error); 1630 1631 off = gpa & PAGE_MASK; 1632 n = min(len, PAGE_SIZE - off); 1633 1634 va = vm_map_gpa(ctx, gpa, n); 1635 if (va == NULL) 1636 return (EFAULT); 1637 1638 iov->iov_base = va; 1639 iov->iov_len = n; 1640 iov++; 1641 iovcnt--; 1642 1643 gla += n; 1644 len -= n; 1645 } 1646 return (0); 1647 } 1648 1649 void 1650 vm_copy_teardown(struct vmctx *ctx, int vcpu, struct iovec *iov, int iovcnt) 1651 { 1652 1653 return; 1654 } 1655 1656 void 1657 vm_copyin(struct vmctx *ctx, int vcpu, struct iovec *iov, void *vp, size_t len) 1658 { 1659 const char *src; 1660 char *dst; 1661 size_t n; 1662 1663 dst = vp; 1664 while (len) { 1665 assert(iov->iov_len); 1666 n = min(len, iov->iov_len); 1667 src = iov->iov_base; 1668 bcopy(src, dst, n); 1669 1670 iov++; 1671 dst += n; 1672 len -= n; 1673 } 1674 } 1675 1676 void 1677 vm_copyout(struct vmctx *ctx, int vcpu, const void *vp, struct iovec *iov, 1678 size_t len) 1679 { 1680 const char *src; 1681 char *dst; 1682 size_t n; 1683 1684 src = vp; 1685 while (len) { 1686 assert(iov->iov_len); 1687 n = min(len, iov->iov_len); 1688 dst = iov->iov_base; 1689 bcopy(src, dst, n); 1690 1691 iov++; 1692 src += n; 1693 len -= n; 1694 } 1695 } 1696 1697 static int 1698 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus) 1699 { 1700 struct vm_cpuset vm_cpuset; 1701 int error; 1702 1703 bzero(&vm_cpuset, sizeof(struct vm_cpuset)); 1704 vm_cpuset.which = which; 1705 vm_cpuset.cpusetsize = sizeof(cpuset_t); 1706 vm_cpuset.cpus = cpus; 1707 1708 error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset); 1709 return (error); 1710 } 1711 1712 int 1713 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus) 1714 { 1715 1716 return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus)); 1717 } 1718 1719 int 1720 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus) 1721 { 1722 1723 return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus)); 1724 } 1725 1726 int 1727 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus) 1728 { 1729 1730 return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus)); 1731 } 1732 1733 int 1734 vm_activate_cpu(struct vmctx *ctx, int vcpu) 1735 { 1736 struct vm_activate_cpu ac; 1737 int error; 1738 1739 bzero(&ac, sizeof(struct vm_activate_cpu)); 1740 ac.vcpuid = vcpu; 1741 error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac); 1742 return (error); 1743 } 1744 1745 int 1746 vm_suspend_cpu(struct vmctx *ctx, int vcpu) 1747 { 1748 struct vm_activate_cpu ac; 1749 int error; 1750 1751 bzero(&ac, sizeof(struct vm_activate_cpu)); 1752 ac.vcpuid = vcpu; 1753 error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac); 1754 return (error); 1755 } 1756 1757 int 1758 vm_resume_cpu(struct vmctx *ctx, int vcpu) 1759 { 1760 struct vm_activate_cpu ac; 1761 int error; 1762 1763 bzero(&ac, sizeof(struct vm_activate_cpu)); 1764 ac.vcpuid = vcpu; 1765 error = ioctl(ctx->fd, VM_RESUME_CPU, &ac); 1766 return (error); 1767 } 1768 1769 int 1770 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2) 1771 { 1772 struct vm_intinfo vmii; 1773 int error; 1774 1775 bzero(&vmii, sizeof(struct vm_intinfo)); 1776 vmii.vcpuid = vcpu; 1777 error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii); 1778 if (error == 0) { 1779 *info1 = vmii.info1; 1780 *info2 = vmii.info2; 1781 } 1782 return (error); 1783 } 1784 1785 int 1786 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1) 1787 { 1788 struct vm_intinfo vmii; 1789 int error; 1790 1791 bzero(&vmii, sizeof(struct vm_intinfo)); 1792 vmii.vcpuid = vcpu; 1793 vmii.info1 = info1; 1794 error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii); 1795 return (error); 1796 } 1797 1798 int 1799 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value) 1800 { 1801 struct vm_rtc_data rtcdata; 1802 int error; 1803 1804 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1805 rtcdata.offset = offset; 1806 rtcdata.value = value; 1807 error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata); 1808 return (error); 1809 } 1810 1811 int 1812 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval) 1813 { 1814 struct vm_rtc_data rtcdata; 1815 int error; 1816 1817 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1818 rtcdata.offset = offset; 1819 error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata); 1820 if (error == 0) 1821 *retval = rtcdata.value; 1822 return (error); 1823 } 1824 1825 int 1826 vm_rtc_settime(struct vmctx *ctx, time_t secs) 1827 { 1828 struct vm_rtc_time rtctime; 1829 int error; 1830 1831 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1832 rtctime.secs = secs; 1833 error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime); 1834 return (error); 1835 } 1836 1837 int 1838 vm_rtc_gettime(struct vmctx *ctx, time_t *secs) 1839 { 1840 struct vm_rtc_time rtctime; 1841 int error; 1842 1843 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1844 error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime); 1845 if (error == 0) 1846 *secs = rtctime.secs; 1847 return (error); 1848 } 1849 1850 int 1851 vm_restart_instruction(void *arg, int vcpu) 1852 { 1853 struct vmctx *ctx = arg; 1854 1855 return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu)); 1856 } 1857 1858 int 1859 vm_set_topology(struct vmctx *ctx, 1860 uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus) 1861 { 1862 struct vm_cpu_topology topology; 1863 1864 bzero(&topology, sizeof (struct vm_cpu_topology)); 1865 topology.sockets = sockets; 1866 topology.cores = cores; 1867 topology.threads = threads; 1868 topology.maxcpus = maxcpus; 1869 return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology)); 1870 } 1871 1872 int 1873 vm_get_topology(struct vmctx *ctx, 1874 uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus) 1875 { 1876 struct vm_cpu_topology topology; 1877 int error; 1878 1879 bzero(&topology, sizeof (struct vm_cpu_topology)); 1880 error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology); 1881 if (error == 0) { 1882 *sockets = topology.sockets; 1883 *cores = topology.cores; 1884 *threads = topology.threads; 1885 *maxcpus = topology.maxcpus; 1886 } 1887 return (error); 1888 } 1889 1890 int 1891 vm_get_device_fd(struct vmctx *ctx) 1892 { 1893 1894 return (ctx->fd); 1895 } 1896 1897 #ifndef __FreeBSD__ 1898 int 1899 vm_pmtmr_set_location(struct vmctx *ctx, uint16_t ioport) 1900 { 1901 return (ioctl(ctx->fd, VM_PMTMR_LOCATE, ioport)); 1902 } 1903 1904 int 1905 vm_wrlock_cycle(struct vmctx *ctx) 1906 { 1907 if (ioctl(ctx->fd, VM_WRLOCK_CYCLE, 0) != 0) { 1908 return (errno); 1909 } 1910 return (0); 1911 } 1912 1913 int 1914 vm_get_run_state(struct vmctx *ctx, int vcpu, enum vcpu_run_state *state, 1915 uint8_t *sipi_vector) 1916 { 1917 struct vm_run_state data; 1918 1919 data.vcpuid = vcpu; 1920 if (ioctl(ctx->fd, VM_GET_RUN_STATE, &data) != 0) { 1921 return (errno); 1922 } 1923 1924 *state = data.state; 1925 *sipi_vector = data.sipi_vector; 1926 return (0); 1927 } 1928 1929 int 1930 vm_set_run_state(struct vmctx *ctx, int vcpu, enum vcpu_run_state state, 1931 uint8_t sipi_vector) 1932 { 1933 struct vm_run_state data; 1934 1935 data.vcpuid = vcpu; 1936 data.state = state; 1937 data.sipi_vector = sipi_vector; 1938 if (ioctl(ctx->fd, VM_SET_RUN_STATE, &data) != 0) { 1939 return (errno); 1940 } 1941 1942 return (0); 1943 } 1944 1945 #endif /* __FreeBSD__ */ 1946 1947 #ifdef __FreeBSD__ 1948 const cap_ioctl_t * 1949 vm_get_ioctls(size_t *len) 1950 { 1951 cap_ioctl_t *cmds; 1952 /* keep in sync with machine/vmm_dev.h */ 1953 static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT, 1954 VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG, 1955 VM_MMAP_GETNEXT, VM_MUNMAP_MEMSEG, VM_SET_REGISTER, VM_GET_REGISTER, 1956 VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR, 1957 VM_SET_REGISTER_SET, VM_GET_REGISTER_SET, 1958 VM_SET_KERNEMU_DEV, VM_GET_KERNEMU_DEV, 1959 VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ, 1960 VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ, 1961 VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ, 1962 VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER, 1963 VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV, 1964 VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI, 1965 VM_PPTDEV_MSIX, VM_UNMAP_PPTDEV_MMIO, VM_PPTDEV_DISABLE_MSIX, 1966 VM_INJECT_NMI, VM_STATS, VM_STAT_DESC, 1967 VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE, 1968 VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA, 1969 VM_GLA2GPA_NOFAULT, 1970 VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU, 1971 VM_SET_INTINFO, VM_GET_INTINFO, 1972 VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME, 1973 VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY }; 1974 1975 if (len == NULL) { 1976 cmds = malloc(sizeof(vm_ioctl_cmds)); 1977 if (cmds == NULL) 1978 return (NULL); 1979 bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds)); 1980 return (cmds); 1981 } 1982 1983 *len = nitems(vm_ioctl_cmds); 1984 return (NULL); 1985 } 1986 #endif /* __FreeBSD__ */ 1987