xref: /illumos-gate/usr/src/lib/libvmmapi/common/vmmapi.c (revision 609febc9a48c79a089214cb5d882759a72a38513)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 /*
31  * This file and its contents are supplied under the terms of the
32  * Common Development and Distribution License ("CDDL"), version 1.0.
33  * You may only use this file in accordance with the terms of version
34  * 1.0 of the CDDL.
35  *
36  * A full copy of the text of the CDDL should have accompanied this
37  * source.  A copy of the CDDL is also available via the Internet at
38  * http://www.illumos.org/license/CDDL.
39  *
40  * Copyright 2015 Pluribus Networks Inc.
41  * Copyright 2019 Joyent, Inc.
42  * Copyright 2022 Oxide Computer Company
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include <sys/param.h>
49 #include <sys/sysctl.h>
50 #include <sys/ioctl.h>
51 #ifdef	__FreeBSD__
52 #include <sys/linker.h>
53 #endif
54 #include <sys/mman.h>
55 #include <sys/module.h>
56 #include <sys/_iovec.h>
57 #include <sys/cpuset.h>
58 
59 #include <x86/segments.h>
60 #include <machine/specialreg.h>
61 
62 #include <errno.h>
63 #include <stdio.h>
64 #include <stdlib.h>
65 #include <assert.h>
66 #include <string.h>
67 #include <fcntl.h>
68 #include <unistd.h>
69 
70 #include <libutil.h>
71 
72 #include <machine/vmm.h>
73 #include <machine/vmm_dev.h>
74 
75 #include "vmmapi.h"
76 
77 #define	MB	(1024 * 1024UL)
78 #define	GB	(1024 * 1024 * 1024UL)
79 
80 #ifndef __FreeBSD__
81 /* shim to no-op for now */
82 #define	MAP_NOCORE		0
83 #define	MAP_ALIGNED_SUPER	0
84 
85 /* Rely on PROT_NONE for guard purposes */
86 #define	MAP_GUARD		(MAP_PRIVATE | MAP_ANON | MAP_NORESERVE)
87 
88 #define	_Thread_local		__thread
89 #endif
90 
91 /*
92  * Size of the guard region before and after the virtual address space
93  * mapping the guest physical memory. This must be a multiple of the
94  * superpage size for performance reasons.
95  */
96 #define	VM_MMAP_GUARD_SIZE	(4 * MB)
97 
98 #define	PROT_RW		(PROT_READ | PROT_WRITE)
99 #define	PROT_ALL	(PROT_READ | PROT_WRITE | PROT_EXEC)
100 
101 struct vmctx {
102 	int	fd;
103 	uint32_t lowmem_limit;
104 	int	memflags;
105 	size_t	lowmem;
106 	size_t	highmem;
107 	char	*baseaddr;
108 	char	*name;
109 };
110 
111 #ifdef	__FreeBSD__
112 #define	CREATE(x)  sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x)))
113 #define	DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x)))
114 
115 int
116 vm_create(const char *name)
117 {
118 	/* Try to load vmm(4) module before creating a guest. */
119 	if (modfind("vmm") < 0)
120 		kldload("vmm");
121 	return (CREATE(name));
122 }
123 
124 void
125 vm_destroy(struct vmctx *vm)
126 {
127 	assert(vm != NULL);
128 
129 	if (vm->fd >= 0)
130 		close(vm->fd);
131 	DESTROY(vm->name);
132 
133 	free(vm);
134 }
135 
136 #else
137 static int
138 vm_do_ctl(int cmd, void *req)
139 {
140 	int ctl_fd;
141 
142 	ctl_fd = open(VMM_CTL_DEV, O_EXCL | O_RDWR);
143 	if (ctl_fd < 0) {
144 		return (-1);
145 	}
146 
147 	if (ioctl(ctl_fd, cmd, req) == -1) {
148 		int err = errno;
149 
150 		/* Do not lose ioctl errno through the close(2) */
151 		(void) close(ctl_fd);
152 		errno = err;
153 		return (-1);
154 	}
155 	(void) close(ctl_fd);
156 
157 	return (0);
158 }
159 
160 int
161 vm_create(const char *name, uint64_t flags)
162 {
163 	struct vm_create_req req;
164 
165 	(void) strncpy(req.name, name, VM_MAX_NAMELEN);
166 	req.flags = flags;
167 
168 	return (vm_do_ctl(VMM_CREATE_VM, &req));
169 }
170 
171 void
172 vm_close(struct vmctx *vm)
173 {
174 	assert(vm != NULL);
175 	assert(vm->fd >= 0);
176 
177 	(void) close(vm->fd);
178 
179 	free(vm);
180 }
181 
182 void
183 vm_destroy(struct vmctx *vm)
184 {
185 	assert(vm != NULL);
186 
187 	if (vm->fd >= 0) {
188 		(void) ioctl(vm->fd, VM_DESTROY_SELF, 0);
189 		(void) close(vm->fd);
190 		vm->fd = -1;
191 	}
192 
193 	free(vm);
194 }
195 #endif
196 
197 static int
198 vm_device_open(const char *name)
199 {
200 	int fd, len;
201 	char *vmfile;
202 
203 	len = strlen("/dev/vmm/") + strlen(name) + 1;
204 	vmfile = malloc(len);
205 	assert(vmfile != NULL);
206 	snprintf(vmfile, len, "/dev/vmm/%s", name);
207 
208 	/* Open the device file */
209 	fd = open(vmfile, O_RDWR, 0);
210 
211 	free(vmfile);
212 	return (fd);
213 }
214 
215 struct vmctx *
216 vm_open(const char *name)
217 {
218 	struct vmctx *vm;
219 	int saved_errno;
220 
221 	vm = malloc(sizeof(struct vmctx) + strlen(name) + 1);
222 	assert(vm != NULL);
223 
224 	vm->fd = -1;
225 	vm->memflags = 0;
226 	vm->lowmem_limit = 3 * GB;
227 	vm->name = (char *)(vm + 1);
228 	strcpy(vm->name, name);
229 
230 	if ((vm->fd = vm_device_open(vm->name)) < 0)
231 		goto err;
232 
233 	return (vm);
234 err:
235 	saved_errno = errno;
236 	free(vm);
237 	errno = saved_errno;
238 	return (NULL);
239 }
240 
241 
242 int
243 vm_parse_memsize(const char *opt, size_t *ret_memsize)
244 {
245 	char *endptr;
246 	size_t optval;
247 	int error;
248 
249 	optval = strtoul(opt, &endptr, 0);
250 	if (*opt != '\0' && *endptr == '\0') {
251 		/*
252 		 * For the sake of backward compatibility if the memory size
253 		 * specified on the command line is less than a megabyte then
254 		 * it is interpreted as being in units of MB.
255 		 */
256 		if (optval < MB)
257 			optval *= MB;
258 		*ret_memsize = optval;
259 		error = 0;
260 	} else
261 		error = expand_number(opt, ret_memsize);
262 
263 	return (error);
264 }
265 
266 uint32_t
267 vm_get_lowmem_limit(struct vmctx *ctx)
268 {
269 
270 	return (ctx->lowmem_limit);
271 }
272 
273 void
274 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit)
275 {
276 
277 	ctx->lowmem_limit = limit;
278 }
279 
280 void
281 vm_set_memflags(struct vmctx *ctx, int flags)
282 {
283 
284 	ctx->memflags = flags;
285 }
286 
287 int
288 vm_get_memflags(struct vmctx *ctx)
289 {
290 
291 	return (ctx->memflags);
292 }
293 
294 /*
295  * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len).
296  */
297 int
298 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off,
299     size_t len, int prot)
300 {
301 	struct vm_memmap memmap;
302 	int error, flags;
303 
304 	memmap.gpa = gpa;
305 	memmap.segid = segid;
306 	memmap.segoff = off;
307 	memmap.len = len;
308 	memmap.prot = prot;
309 	memmap.flags = 0;
310 
311 	if (ctx->memflags & VM_MEM_F_WIRED)
312 		memmap.flags |= VM_MEMMAP_F_WIRED;
313 
314 	/*
315 	 * If this mapping already exists then don't create it again. This
316 	 * is the common case for SYSMEM mappings created by bhyveload(8).
317 	 */
318 	error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags);
319 	if (error == 0 && gpa == memmap.gpa) {
320 		if (segid != memmap.segid || off != memmap.segoff ||
321 		    prot != memmap.prot || flags != memmap.flags) {
322 			errno = EEXIST;
323 			return (-1);
324 		} else {
325 			return (0);
326 		}
327 	}
328 
329 	error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap);
330 	return (error);
331 }
332 
333 int
334 vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len)
335 {
336 	struct vm_munmap munmap;
337 	int error;
338 
339 	munmap.gpa = gpa;
340 	munmap.len = len;
341 
342 	error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap);
343 	return (error);
344 }
345 
346 int
347 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid,
348     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
349 {
350 	struct vm_memmap memmap;
351 	int error;
352 
353 	bzero(&memmap, sizeof(struct vm_memmap));
354 	memmap.gpa = *gpa;
355 	error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap);
356 	if (error == 0) {
357 		*gpa = memmap.gpa;
358 		*segid = memmap.segid;
359 		*segoff = memmap.segoff;
360 		*len = memmap.len;
361 		*prot = memmap.prot;
362 		*flags = memmap.flags;
363 	}
364 	return (error);
365 }
366 
367 /*
368  * Return 0 if the segments are identical and non-zero otherwise.
369  *
370  * This is slightly complicated by the fact that only device memory segments
371  * are named.
372  */
373 static int
374 cmpseg(size_t len, const char *str, size_t len2, const char *str2)
375 {
376 
377 	if (len == len2) {
378 		if ((!str && !str2) || (str && str2 && !strcmp(str, str2)))
379 			return (0);
380 	}
381 	return (-1);
382 }
383 
384 static int
385 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name)
386 {
387 	struct vm_memseg memseg;
388 	size_t n;
389 	int error;
390 
391 	/*
392 	 * If the memory segment has already been created then just return.
393 	 * This is the usual case for the SYSMEM segment created by userspace
394 	 * loaders like bhyveload(8).
395 	 */
396 	error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name,
397 	    sizeof(memseg.name));
398 	if (error)
399 		return (error);
400 
401 	if (memseg.len != 0) {
402 		if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) {
403 			errno = EINVAL;
404 			return (-1);
405 		} else {
406 			return (0);
407 		}
408 	}
409 
410 	bzero(&memseg, sizeof(struct vm_memseg));
411 	memseg.segid = segid;
412 	memseg.len = len;
413 	if (name != NULL) {
414 		n = strlcpy(memseg.name, name, sizeof(memseg.name));
415 		if (n >= sizeof(memseg.name)) {
416 			errno = ENAMETOOLONG;
417 			return (-1);
418 		}
419 	}
420 
421 	error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg);
422 	return (error);
423 }
424 
425 int
426 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf,
427     size_t bufsize)
428 {
429 	struct vm_memseg memseg;
430 	size_t n;
431 	int error;
432 
433 	memseg.segid = segid;
434 	error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg);
435 	if (error == 0) {
436 		*lenp = memseg.len;
437 		n = strlcpy(namebuf, memseg.name, bufsize);
438 		if (n >= bufsize) {
439 			errno = ENAMETOOLONG;
440 			error = -1;
441 		}
442 	}
443 	return (error);
444 }
445 
446 static int
447 #ifdef __FreeBSD__
448 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base)
449 #else
450 setup_memory_segment(struct vmctx *ctx, int segid, vm_paddr_t gpa, size_t len,
451     char *base)
452 #endif
453 {
454 	char *ptr;
455 	int error, flags;
456 
457 	/* Map 'len' bytes starting at 'gpa' in the guest address space */
458 #ifdef __FreeBSD__
459 	error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL);
460 #else
461 	/*
462 	 * As we use two segments for lowmem/highmem the offset within the
463 	 * segment is 0 on illumos.
464 	 */
465 	error = vm_mmap_memseg(ctx, gpa, segid, 0, len, PROT_ALL);
466 #endif
467 	if (error)
468 		return (error);
469 
470 	flags = MAP_SHARED | MAP_FIXED;
471 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
472 		flags |= MAP_NOCORE;
473 
474 	/* mmap into the process address space on the host */
475 	ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa);
476 	if (ptr == MAP_FAILED)
477 		return (-1);
478 
479 	return (0);
480 }
481 
482 int
483 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms)
484 {
485 	size_t objsize, len;
486 	vm_paddr_t gpa;
487 	char *baseaddr, *ptr;
488 	int error;
489 
490 	assert(vms == VM_MMAP_ALL);
491 
492 	/*
493 	 * If 'memsize' cannot fit entirely in the 'lowmem' segment then
494 	 * create another 'highmem' segment above 4GB for the remainder.
495 	 */
496 	if (memsize > ctx->lowmem_limit) {
497 		ctx->lowmem = ctx->lowmem_limit;
498 		ctx->highmem = memsize - ctx->lowmem_limit;
499 		objsize = 4*GB + ctx->highmem;
500 	} else {
501 		ctx->lowmem = memsize;
502 		ctx->highmem = 0;
503 		objsize = ctx->lowmem;
504 	}
505 
506 #ifdef __FreeBSD__
507 	error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL);
508 	if (error)
509 		return (error);
510 #endif
511 
512 	/*
513 	 * Stake out a contiguous region covering the guest physical memory
514 	 * and the adjoining guard regions.
515 	 */
516 	len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE;
517 	ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0);
518 	if (ptr == MAP_FAILED)
519 		return (-1);
520 
521 	baseaddr = ptr + VM_MMAP_GUARD_SIZE;
522 
523 #ifdef __FreeBSD__
524 	if (ctx->highmem > 0) {
525 		gpa = 4*GB;
526 		len = ctx->highmem;
527 		error = setup_memory_segment(ctx, gpa, len, baseaddr);
528 		if (error)
529 			return (error);
530 	}
531 
532 	if (ctx->lowmem > 0) {
533 		gpa = 0;
534 		len = ctx->lowmem;
535 		error = setup_memory_segment(ctx, gpa, len, baseaddr);
536 		if (error)
537 			return (error);
538 	}
539 #else
540 	if (ctx->highmem > 0) {
541 		error = vm_alloc_memseg(ctx, VM_HIGHMEM, ctx->highmem, NULL);
542 		if (error)
543 			return (error);
544 		gpa = 4*GB;
545 		len = ctx->highmem;
546 		error = setup_memory_segment(ctx, VM_HIGHMEM, gpa, len, baseaddr);
547 		if (error)
548 			return (error);
549 	}
550 
551 	if (ctx->lowmem > 0) {
552 		error = vm_alloc_memseg(ctx, VM_LOWMEM, ctx->lowmem, NULL);
553 		if (error)
554 			return (error);
555 		gpa = 0;
556 		len = ctx->lowmem;
557 		error = setup_memory_segment(ctx, VM_LOWMEM, gpa, len, baseaddr);
558 		if (error)
559 			return (error);
560 	}
561 #endif
562 
563 	ctx->baseaddr = baseaddr;
564 
565 	return (0);
566 }
567 
568 /*
569  * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in
570  * the lowmem or highmem regions.
571  *
572  * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region.
573  * The instruction emulation code depends on this behavior.
574  */
575 void *
576 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
577 {
578 
579 	if (ctx->lowmem > 0) {
580 		if (gaddr < ctx->lowmem && len <= ctx->lowmem &&
581 		    gaddr + len <= ctx->lowmem)
582 			return (ctx->baseaddr + gaddr);
583 	}
584 
585 	if (ctx->highmem > 0) {
586                 if (gaddr >= 4*GB) {
587 			if (gaddr < 4*GB + ctx->highmem &&
588 			    len <= ctx->highmem &&
589 			    gaddr + len <= 4*GB + ctx->highmem)
590 				return (ctx->baseaddr + gaddr);
591 		}
592 	}
593 
594 	return (NULL);
595 }
596 
597 size_t
598 vm_get_lowmem_size(struct vmctx *ctx)
599 {
600 
601 	return (ctx->lowmem);
602 }
603 
604 size_t
605 vm_get_highmem_size(struct vmctx *ctx)
606 {
607 
608 	return (ctx->highmem);
609 }
610 
611 #ifndef __FreeBSD__
612 int
613 vm_get_devmem_offset(struct vmctx *ctx, int segid, off_t *mapoff)
614 {
615 	struct vm_devmem_offset vdo;
616 	int error;
617 
618 	vdo.segid = segid;
619 	error = ioctl(ctx->fd, VM_DEVMEM_GETOFFSET, &vdo);
620 	if (error == 0)
621 		*mapoff = vdo.offset;
622 
623 	return (error);
624 }
625 #endif
626 
627 void *
628 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len)
629 {
630 #ifdef	__FreeBSD__
631 	char pathname[MAXPATHLEN];
632 #endif
633 	size_t len2;
634 	char *base, *ptr;
635 	int fd, error, flags;
636 	off_t mapoff;
637 
638 	fd = -1;
639 	ptr = MAP_FAILED;
640 	if (name == NULL || strlen(name) == 0) {
641 		errno = EINVAL;
642 		goto done;
643 	}
644 
645 	error = vm_alloc_memseg(ctx, segid, len, name);
646 	if (error)
647 		goto done;
648 
649 #ifdef	__FreeBSD__
650 	strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname));
651 	strlcat(pathname, ctx->name, sizeof(pathname));
652 	strlcat(pathname, ".", sizeof(pathname));
653 	strlcat(pathname, name, sizeof(pathname));
654 
655 	fd = open(pathname, O_RDWR);
656 	if (fd < 0)
657 		goto done;
658 #else
659 	if (vm_get_devmem_offset(ctx, segid, &mapoff) != 0)
660 		goto done;
661 #endif
662 
663 	/*
664 	 * Stake out a contiguous region covering the device memory and the
665 	 * adjoining guard regions.
666 	 */
667 	len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE;
668 	base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1,
669 	    0);
670 	if (base == MAP_FAILED)
671 		goto done;
672 
673 	flags = MAP_SHARED | MAP_FIXED;
674 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
675 		flags |= MAP_NOCORE;
676 
677 #ifdef	__FreeBSD__
678 	/* mmap the devmem region in the host address space */
679 	ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0);
680 #else
681 	/* mmap the devmem region in the host address space */
682 	ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, ctx->fd,
683 	    mapoff);
684 #endif
685 done:
686 	if (fd >= 0)
687 		close(fd);
688 	return (ptr);
689 }
690 
691 int
692 vm_set_desc(struct vmctx *ctx, int vcpu, int reg,
693 	    uint64_t base, uint32_t limit, uint32_t access)
694 {
695 	int error;
696 	struct vm_seg_desc vmsegdesc;
697 
698 	bzero(&vmsegdesc, sizeof(vmsegdesc));
699 	vmsegdesc.cpuid = vcpu;
700 	vmsegdesc.regnum = reg;
701 	vmsegdesc.desc.base = base;
702 	vmsegdesc.desc.limit = limit;
703 	vmsegdesc.desc.access = access;
704 
705 	error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc);
706 	return (error);
707 }
708 
709 int
710 vm_get_desc(struct vmctx *ctx, int vcpu, int reg,
711 	    uint64_t *base, uint32_t *limit, uint32_t *access)
712 {
713 	int error;
714 	struct vm_seg_desc vmsegdesc;
715 
716 	bzero(&vmsegdesc, sizeof(vmsegdesc));
717 	vmsegdesc.cpuid = vcpu;
718 	vmsegdesc.regnum = reg;
719 
720 	error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc);
721 	if (error == 0) {
722 		*base = vmsegdesc.desc.base;
723 		*limit = vmsegdesc.desc.limit;
724 		*access = vmsegdesc.desc.access;
725 	}
726 	return (error);
727 }
728 
729 int
730 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc)
731 {
732 	int error;
733 
734 	error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit,
735 	    &seg_desc->access);
736 	return (error);
737 }
738 
739 int
740 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val)
741 {
742 	int error;
743 	struct vm_register vmreg;
744 
745 	bzero(&vmreg, sizeof(vmreg));
746 	vmreg.cpuid = vcpu;
747 	vmreg.regnum = reg;
748 	vmreg.regval = val;
749 
750 	error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg);
751 	return (error);
752 }
753 
754 int
755 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val)
756 {
757 	int error;
758 	struct vm_register vmreg;
759 
760 	bzero(&vmreg, sizeof(vmreg));
761 	vmreg.cpuid = vcpu;
762 	vmreg.regnum = reg;
763 
764 	error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg);
765 	*ret_val = vmreg.regval;
766 	return (error);
767 }
768 
769 int
770 vm_set_register_set(struct vmctx *ctx, int vcpu, unsigned int count,
771     const int *regnums, uint64_t *regvals)
772 {
773 	int error;
774 	struct vm_register_set vmregset;
775 
776 	bzero(&vmregset, sizeof(vmregset));
777 	vmregset.cpuid = vcpu;
778 	vmregset.count = count;
779 	vmregset.regnums = regnums;
780 	vmregset.regvals = regvals;
781 
782 	error = ioctl(ctx->fd, VM_SET_REGISTER_SET, &vmregset);
783 	return (error);
784 }
785 
786 int
787 vm_get_register_set(struct vmctx *ctx, int vcpu, unsigned int count,
788     const int *regnums, uint64_t *regvals)
789 {
790 	int error;
791 	struct vm_register_set vmregset;
792 
793 	bzero(&vmregset, sizeof(vmregset));
794 	vmregset.cpuid = vcpu;
795 	vmregset.count = count;
796 	vmregset.regnums = regnums;
797 	vmregset.regvals = regvals;
798 
799 	error = ioctl(ctx->fd, VM_GET_REGISTER_SET, &vmregset);
800 	return (error);
801 }
802 
803 int
804 vm_run(struct vmctx *ctx, int vcpu, const struct vm_entry *vm_entry,
805     struct vm_exit *vm_exit)
806 {
807 	struct vm_entry entry;
808 
809 	bcopy(vm_entry, &entry, sizeof (entry));
810 	entry.cpuid = vcpu;
811 	entry.exit_data = vm_exit;
812 
813 	return (ioctl(ctx->fd, VM_RUN, &entry));
814 }
815 
816 int
817 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how)
818 {
819 	struct vm_suspend vmsuspend;
820 
821 	bzero(&vmsuspend, sizeof(vmsuspend));
822 	vmsuspend.how = how;
823 	return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend));
824 }
825 
826 #ifndef __FreeBSD__
827 int
828 vm_reinit(struct vmctx *ctx, uint64_t flags)
829 {
830 	struct vm_reinit reinit = {
831 		.flags = flags
832 	};
833 
834 	return (ioctl(ctx->fd, VM_REINIT, &reinit));
835 }
836 #else
837 int
838 vm_reinit(struct vmctx *ctx)
839 {
840 
841 	return (ioctl(ctx->fd, VM_REINIT, 0));
842 }
843 #endif
844 
845 int
846 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid,
847     uint32_t errcode, int restart_instruction)
848 {
849 	struct vm_exception exc;
850 
851 	exc.cpuid = vcpu;
852 	exc.vector = vector;
853 	exc.error_code = errcode;
854 	exc.error_code_valid = errcode_valid;
855 	exc.restart_instruction = restart_instruction;
856 
857 	return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc));
858 }
859 
860 #ifndef __FreeBSD__
861 void
862 vm_inject_fault(struct vmctx *ctx, int vcpu, int vector, int errcode_valid,
863     int errcode)
864 {
865 	int error;
866 	struct vm_exception exc;
867 
868 	exc.cpuid = vcpu;
869 	exc.vector = vector;
870 	exc.error_code = errcode;
871 	exc.error_code_valid = errcode_valid;
872 	exc.restart_instruction = 1;
873 	error = ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc);
874 
875 	assert(error == 0);
876 }
877 #endif /* __FreeBSD__ */
878 
879 int
880 vm_apicid2vcpu(struct vmctx *ctx __unused, int apicid)
881 {
882 	/*
883 	 * The apic id associated with the 'vcpu' has the same numerical value
884 	 * as the 'vcpu' itself.
885 	 */
886 	return (apicid);
887 }
888 
889 int
890 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector)
891 {
892 	struct vm_lapic_irq vmirq;
893 
894 	bzero(&vmirq, sizeof(vmirq));
895 	vmirq.cpuid = vcpu;
896 	vmirq.vector = vector;
897 
898 	return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq));
899 }
900 
901 int
902 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector)
903 {
904 	struct vm_lapic_irq vmirq;
905 
906 	bzero(&vmirq, sizeof(vmirq));
907 	vmirq.cpuid = vcpu;
908 	vmirq.vector = vector;
909 
910 	return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq));
911 }
912 
913 int
914 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg)
915 {
916 	struct vm_lapic_msi vmmsi;
917 
918 	bzero(&vmmsi, sizeof(vmmsi));
919 	vmmsi.addr = addr;
920 	vmmsi.msg = msg;
921 
922 	return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi));
923 }
924 
925 int
926 vm_ioapic_assert_irq(struct vmctx *ctx, int irq)
927 {
928 	struct vm_ioapic_irq ioapic_irq;
929 
930 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
931 	ioapic_irq.irq = irq;
932 
933 	return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq));
934 }
935 
936 int
937 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq)
938 {
939 	struct vm_ioapic_irq ioapic_irq;
940 
941 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
942 	ioapic_irq.irq = irq;
943 
944 	return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq));
945 }
946 
947 int
948 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq)
949 {
950 	struct vm_ioapic_irq ioapic_irq;
951 
952 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
953 	ioapic_irq.irq = irq;
954 
955 	return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq));
956 }
957 
958 int
959 vm_ioapic_pincount(struct vmctx *ctx, int *pincount)
960 {
961 
962 	return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount));
963 }
964 
965 int
966 vm_readwrite_kernemu_device(struct vmctx *ctx, int vcpu, vm_paddr_t gpa,
967     bool write, int size, uint64_t *value)
968 {
969 	struct vm_readwrite_kernemu_device irp = {
970 		.vcpuid = vcpu,
971 		.access_width = fls(size) - 1,
972 		.gpa = gpa,
973 		.value = write ? *value : ~0ul,
974 	};
975 	long cmd = (write ? VM_SET_KERNEMU_DEV : VM_GET_KERNEMU_DEV);
976 	int rc;
977 
978 	rc = ioctl(ctx->fd, cmd, &irp);
979 	if (rc == 0 && !write)
980 		*value = irp.value;
981 	return (rc);
982 }
983 
984 int
985 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
986 {
987 	struct vm_isa_irq isa_irq;
988 
989 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
990 	isa_irq.atpic_irq = atpic_irq;
991 	isa_irq.ioapic_irq = ioapic_irq;
992 
993 	return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq));
994 }
995 
996 int
997 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
998 {
999 	struct vm_isa_irq isa_irq;
1000 
1001 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
1002 	isa_irq.atpic_irq = atpic_irq;
1003 	isa_irq.ioapic_irq = ioapic_irq;
1004 
1005 	return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq));
1006 }
1007 
1008 int
1009 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
1010 {
1011 	struct vm_isa_irq isa_irq;
1012 
1013 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
1014 	isa_irq.atpic_irq = atpic_irq;
1015 	isa_irq.ioapic_irq = ioapic_irq;
1016 
1017 	return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq));
1018 }
1019 
1020 int
1021 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq,
1022     enum vm_intr_trigger trigger)
1023 {
1024 	struct vm_isa_irq_trigger isa_irq_trigger;
1025 
1026 	bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger));
1027 	isa_irq_trigger.atpic_irq = atpic_irq;
1028 	isa_irq_trigger.trigger = trigger;
1029 
1030 	return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger));
1031 }
1032 
1033 int
1034 vm_inject_nmi(struct vmctx *ctx, int vcpu)
1035 {
1036 	struct vm_nmi vmnmi;
1037 
1038 	bzero(&vmnmi, sizeof(vmnmi));
1039 	vmnmi.cpuid = vcpu;
1040 
1041 	return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi));
1042 }
1043 
1044 static const char *capstrmap[] = {
1045 	[VM_CAP_HALT_EXIT]  = "hlt_exit",
1046 	[VM_CAP_MTRAP_EXIT] = "mtrap_exit",
1047 	[VM_CAP_PAUSE_EXIT] = "pause_exit",
1048 #ifdef __FreeBSD__
1049 	[VM_CAP_UNRESTRICTED_GUEST] = "unrestricted_guest",
1050 #endif
1051 	[VM_CAP_ENABLE_INVPCID] = "enable_invpcid",
1052 	[VM_CAP_BPT_EXIT] = "bpt_exit",
1053 };
1054 
1055 int
1056 vm_capability_name2type(const char *capname)
1057 {
1058 	int i;
1059 
1060 	for (i = 0; i < (int)nitems(capstrmap); i++) {
1061 		if (strcmp(capstrmap[i], capname) == 0)
1062 			return (i);
1063 	}
1064 
1065 	return (-1);
1066 }
1067 
1068 const char *
1069 vm_capability_type2name(int type)
1070 {
1071 	if (type >= 0 && type < (int)nitems(capstrmap))
1072 		return (capstrmap[type]);
1073 
1074 	return (NULL);
1075 }
1076 
1077 int
1078 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap,
1079 		  int *retval)
1080 {
1081 	int error;
1082 	struct vm_capability vmcap;
1083 
1084 	bzero(&vmcap, sizeof(vmcap));
1085 	vmcap.cpuid = vcpu;
1086 	vmcap.captype = cap;
1087 
1088 	error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap);
1089 	*retval = vmcap.capval;
1090 	return (error);
1091 }
1092 
1093 int
1094 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val)
1095 {
1096 	struct vm_capability vmcap;
1097 
1098 	bzero(&vmcap, sizeof(vmcap));
1099 	vmcap.cpuid = vcpu;
1100 	vmcap.captype = cap;
1101 	vmcap.capval = val;
1102 
1103 	return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap));
1104 }
1105 
1106 #ifdef __FreeBSD__
1107 int
1108 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
1109 {
1110 	struct vm_pptdev pptdev;
1111 
1112 	bzero(&pptdev, sizeof(pptdev));
1113 	pptdev.bus = bus;
1114 	pptdev.slot = slot;
1115 	pptdev.func = func;
1116 
1117 	return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
1118 }
1119 
1120 int
1121 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
1122 {
1123 	struct vm_pptdev pptdev;
1124 
1125 	bzero(&pptdev, sizeof(pptdev));
1126 	pptdev.bus = bus;
1127 	pptdev.slot = slot;
1128 	pptdev.func = func;
1129 
1130 	return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
1131 }
1132 
1133 int
1134 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
1135 		   vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
1136 {
1137 	struct vm_pptdev_mmio pptmmio;
1138 
1139 	bzero(&pptmmio, sizeof(pptmmio));
1140 	pptmmio.bus = bus;
1141 	pptmmio.slot = slot;
1142 	pptmmio.func = func;
1143 	pptmmio.gpa = gpa;
1144 	pptmmio.len = len;
1145 	pptmmio.hpa = hpa;
1146 
1147 	return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
1148 }
1149 
1150 int
1151 vm_unmap_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
1152 		     vm_paddr_t gpa, size_t len)
1153 {
1154 	struct vm_pptdev_mmio pptmmio;
1155 
1156 	bzero(&pptmmio, sizeof(pptmmio));
1157 	pptmmio.bus = bus;
1158 	pptmmio.slot = slot;
1159 	pptmmio.func = func;
1160 	pptmmio.gpa = gpa;
1161 	pptmmio.len = len;
1162 
1163 	return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio));
1164 }
1165 
1166 int
1167 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
1168     uint64_t addr, uint64_t msg, int numvec)
1169 {
1170 	struct vm_pptdev_msi pptmsi;
1171 
1172 	bzero(&pptmsi, sizeof(pptmsi));
1173 	pptmsi.vcpu = vcpu;
1174 	pptmsi.bus = bus;
1175 	pptmsi.slot = slot;
1176 	pptmsi.func = func;
1177 	pptmsi.msg = msg;
1178 	pptmsi.addr = addr;
1179 	pptmsi.numvec = numvec;
1180 
1181 	return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
1182 }
1183 
1184 int
1185 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
1186     int idx, uint64_t addr, uint64_t msg, uint32_t vector_control)
1187 {
1188 	struct vm_pptdev_msix pptmsix;
1189 
1190 	bzero(&pptmsix, sizeof(pptmsix));
1191 	pptmsix.vcpu = vcpu;
1192 	pptmsix.bus = bus;
1193 	pptmsix.slot = slot;
1194 	pptmsix.func = func;
1195 	pptmsix.idx = idx;
1196 	pptmsix.msg = msg;
1197 	pptmsix.addr = addr;
1198 	pptmsix.vector_control = vector_control;
1199 
1200 	return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
1201 }
1202 
1203 int
1204 vm_get_pptdev_limits(struct vmctx *ctx, int bus, int slot, int func,
1205     int *msi_limit, int *msix_limit)
1206 {
1207 	struct vm_pptdev_limits pptlimits;
1208 	int error;
1209 
1210 	bzero(&pptlimits, sizeof (pptlimits));
1211 	pptlimits.bus = bus;
1212 	pptlimits.slot = slot;
1213 	pptlimits.func = func;
1214 
1215 	error = ioctl(ctx->fd, VM_GET_PPTDEV_LIMITS, &pptlimits);
1216 
1217 	*msi_limit = pptlimits.msi_limit;
1218 	*msix_limit = pptlimits.msix_limit;
1219 
1220 	return (error);
1221 }
1222 
1223 int
1224 vm_disable_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func)
1225 {
1226 	struct vm_pptdev ppt;
1227 
1228 	bzero(&ppt, sizeof(ppt));
1229 	ppt.bus = bus;
1230 	ppt.slot = slot;
1231 	ppt.func = func;
1232 
1233 	return ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &ppt);
1234 }
1235 
1236 #else /* __FreeBSD__ */
1237 
1238 int
1239 vm_assign_pptdev(struct vmctx *ctx, int pptfd)
1240 {
1241 	struct vm_pptdev pptdev;
1242 
1243 	pptdev.pptfd = pptfd;
1244 	return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
1245 }
1246 
1247 int
1248 vm_unassign_pptdev(struct vmctx *ctx, int pptfd)
1249 {
1250 	struct vm_pptdev pptdev;
1251 
1252 	pptdev.pptfd = pptfd;
1253 	return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
1254 }
1255 
1256 int
1257 vm_map_pptdev_mmio(struct vmctx *ctx, int pptfd, vm_paddr_t gpa, size_t len,
1258     vm_paddr_t hpa)
1259 {
1260 	struct vm_pptdev_mmio pptmmio;
1261 
1262 	pptmmio.pptfd = pptfd;
1263 	pptmmio.gpa = gpa;
1264 	pptmmio.len = len;
1265 	pptmmio.hpa = hpa;
1266 	return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
1267 }
1268 
1269 int
1270 vm_unmap_pptdev_mmio(struct vmctx *ctx, int pptfd, vm_paddr_t gpa, size_t len)
1271 {
1272 	struct vm_pptdev_mmio pptmmio;
1273 
1274 	bzero(&pptmmio, sizeof(pptmmio));
1275 	pptmmio.pptfd = pptfd;
1276 	pptmmio.gpa = gpa;
1277 	pptmmio.len = len;
1278 
1279 	return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio));
1280 }
1281 
1282 int
1283 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int pptfd, uint64_t addr,
1284     uint64_t msg, int numvec)
1285 {
1286 	struct vm_pptdev_msi pptmsi;
1287 
1288 	pptmsi.vcpu = vcpu;
1289 	pptmsi.pptfd = pptfd;
1290 	pptmsi.msg = msg;
1291 	pptmsi.addr = addr;
1292 	pptmsi.numvec = numvec;
1293 	return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
1294 }
1295 
1296 int
1297 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int pptfd, int idx,
1298     uint64_t addr, uint64_t msg, uint32_t vector_control)
1299 {
1300 	struct vm_pptdev_msix pptmsix;
1301 
1302 	pptmsix.vcpu = vcpu;
1303 	pptmsix.pptfd = pptfd;
1304 	pptmsix.idx = idx;
1305 	pptmsix.msg = msg;
1306 	pptmsix.addr = addr;
1307 	pptmsix.vector_control = vector_control;
1308 	return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
1309 }
1310 
1311 int
1312 vm_get_pptdev_limits(struct vmctx *ctx, int pptfd, int *msi_limit,
1313     int *msix_limit)
1314 {
1315 	struct vm_pptdev_limits pptlimits;
1316 	int error;
1317 
1318 	bzero(&pptlimits, sizeof (pptlimits));
1319 	pptlimits.pptfd = pptfd;
1320 	error = ioctl(ctx->fd, VM_GET_PPTDEV_LIMITS, &pptlimits);
1321 
1322 	*msi_limit = pptlimits.msi_limit;
1323 	*msix_limit = pptlimits.msix_limit;
1324 	return (error);
1325 }
1326 
1327 int
1328 vm_disable_pptdev_msix(struct vmctx *ctx, int pptfd)
1329 {
1330 	struct vm_pptdev pptdev;
1331 
1332 	pptdev.pptfd = pptfd;
1333 	return (ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &pptdev));
1334 }
1335 #endif /* __FreeBSD__ */
1336 
1337 uint64_t *
1338 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv,
1339 	     int *ret_entries)
1340 {
1341 	static _Thread_local uint64_t *stats_buf;
1342 	static _Thread_local uint32_t stats_count;
1343 	uint64_t *new_stats;
1344 	struct vm_stats vmstats;
1345 	uint32_t count, index;
1346 	bool have_stats;
1347 
1348 	have_stats = false;
1349 	vmstats.cpuid = vcpu;
1350 	count = 0;
1351 	for (index = 0;; index += nitems(vmstats.statbuf)) {
1352 		vmstats.index = index;
1353 		if (ioctl(ctx->fd, VM_STATS_IOC, &vmstats) != 0)
1354 			break;
1355 		if (stats_count < index + vmstats.num_entries) {
1356 			new_stats = reallocarray(stats_buf,
1357 			    index + vmstats.num_entries, sizeof(uint64_t));
1358 			if (new_stats == NULL) {
1359 				errno = ENOMEM;
1360 				return (NULL);
1361 			}
1362 			stats_count = index + vmstats.num_entries;
1363 			stats_buf = new_stats;
1364 		}
1365 		memcpy(stats_buf + index, vmstats.statbuf,
1366 		    vmstats.num_entries * sizeof(uint64_t));
1367 		count += vmstats.num_entries;
1368 		have_stats = true;
1369 
1370 		if (vmstats.num_entries != nitems(vmstats.statbuf))
1371 			break;
1372 	}
1373 
1374 	if (have_stats) {
1375 		if (ret_entries)
1376 			*ret_entries = count;
1377 		if (ret_tv)
1378 			*ret_tv = vmstats.tv;
1379 		return (stats_buf);
1380 	}
1381 
1382 	return (NULL);
1383 }
1384 
1385 const char *
1386 vm_get_stat_desc(struct vmctx *ctx, int index)
1387 {
1388 	static struct vm_stat_desc statdesc;
1389 
1390 	statdesc.index = index;
1391 	if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0)
1392 		return (statdesc.desc);
1393 	else
1394 		return (NULL);
1395 }
1396 
1397 int
1398 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state)
1399 {
1400 	int error;
1401 	struct vm_x2apic x2apic;
1402 
1403 	bzero(&x2apic, sizeof(x2apic));
1404 	x2apic.cpuid = vcpu;
1405 
1406 	error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic);
1407 	*state = x2apic.state;
1408 	return (error);
1409 }
1410 
1411 int
1412 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state)
1413 {
1414 	int error;
1415 	struct vm_x2apic x2apic;
1416 
1417 	bzero(&x2apic, sizeof(x2apic));
1418 	x2apic.cpuid = vcpu;
1419 	x2apic.state = state;
1420 
1421 	error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic);
1422 
1423 	return (error);
1424 }
1425 
1426 #ifndef __FreeBSD__
1427 int
1428 vcpu_reset(struct vmctx *vmctx, int vcpu)
1429 {
1430 	struct vm_vcpu_reset vvr;
1431 
1432 	vvr.vcpuid = vcpu;
1433 	vvr.kind = VRK_RESET;
1434 
1435 	return (ioctl(vmctx->fd, VM_RESET_CPU, &vvr));
1436 }
1437 #else /* __FreeBSD__ */
1438 /*
1439  * From Intel Vol 3a:
1440  * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT
1441  */
1442 int
1443 vcpu_reset(struct vmctx *vmctx, int vcpu)
1444 {
1445 	int error;
1446 	uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx;
1447 	uint32_t desc_access, desc_limit;
1448 	uint16_t sel;
1449 
1450 	zero = 0;
1451 
1452 	rflags = 0x2;
1453 	error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags);
1454 	if (error)
1455 		goto done;
1456 
1457 	rip = 0xfff0;
1458 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0)
1459 		goto done;
1460 
1461 	cr0 = CR0_NE;
1462 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0)
1463 		goto done;
1464 
1465 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0)
1466 		goto done;
1467 
1468 	cr4 = 0;
1469 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0)
1470 		goto done;
1471 
1472 	/*
1473 	 * CS: present, r/w, accessed, 16-bit, byte granularity, usable
1474 	 */
1475 	desc_base = 0xffff0000;
1476 	desc_limit = 0xffff;
1477 	desc_access = 0x0093;
1478 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS,
1479 			    desc_base, desc_limit, desc_access);
1480 	if (error)
1481 		goto done;
1482 
1483 	sel = 0xf000;
1484 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0)
1485 		goto done;
1486 
1487 	/*
1488 	 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity
1489 	 */
1490 	desc_base = 0;
1491 	desc_limit = 0xffff;
1492 	desc_access = 0x0093;
1493 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS,
1494 			    desc_base, desc_limit, desc_access);
1495 	if (error)
1496 		goto done;
1497 
1498 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS,
1499 			    desc_base, desc_limit, desc_access);
1500 	if (error)
1501 		goto done;
1502 
1503 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES,
1504 			    desc_base, desc_limit, desc_access);
1505 	if (error)
1506 		goto done;
1507 
1508 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS,
1509 			    desc_base, desc_limit, desc_access);
1510 	if (error)
1511 		goto done;
1512 
1513 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS,
1514 			    desc_base, desc_limit, desc_access);
1515 	if (error)
1516 		goto done;
1517 
1518 	sel = 0;
1519 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0)
1520 		goto done;
1521 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0)
1522 		goto done;
1523 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0)
1524 		goto done;
1525 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0)
1526 		goto done;
1527 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0)
1528 		goto done;
1529 
1530 	/* General purpose registers */
1531 	rdx = 0xf00;
1532 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0)
1533 		goto done;
1534 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0)
1535 		goto done;
1536 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0)
1537 		goto done;
1538 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0)
1539 		goto done;
1540 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0)
1541 		goto done;
1542 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0)
1543 		goto done;
1544 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0)
1545 		goto done;
1546 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0)
1547 		goto done;
1548 
1549 	/* GDTR, IDTR */
1550 	desc_base = 0;
1551 	desc_limit = 0xffff;
1552 	desc_access = 0;
1553 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR,
1554 			    desc_base, desc_limit, desc_access);
1555 	if (error != 0)
1556 		goto done;
1557 
1558 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR,
1559 			    desc_base, desc_limit, desc_access);
1560 	if (error != 0)
1561 		goto done;
1562 
1563 	/* TR */
1564 	desc_base = 0;
1565 	desc_limit = 0xffff;
1566 	desc_access = 0x0000008b;
1567 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access);
1568 	if (error)
1569 		goto done;
1570 
1571 	sel = 0;
1572 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0)
1573 		goto done;
1574 
1575 	/* LDTR */
1576 	desc_base = 0;
1577 	desc_limit = 0xffff;
1578 	desc_access = 0x00000082;
1579 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base,
1580 			    desc_limit, desc_access);
1581 	if (error)
1582 		goto done;
1583 
1584 	sel = 0;
1585 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0)
1586 		goto done;
1587 
1588 	/* XXX cr2, debug registers */
1589 
1590 	error = 0;
1591 done:
1592 	return (error);
1593 }
1594 #endif /* __FreeBSD__ */
1595 
1596 int
1597 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num)
1598 {
1599 	int error, i;
1600 	struct vm_gpa_pte gpapte;
1601 
1602 	bzero(&gpapte, sizeof(gpapte));
1603 	gpapte.gpa = gpa;
1604 
1605 	error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte);
1606 
1607 	if (error == 0) {
1608 		*num = gpapte.ptenum;
1609 		for (i = 0; i < gpapte.ptenum; i++)
1610 			pte[i] = gpapte.pte[i];
1611 	}
1612 
1613 	return (error);
1614 }
1615 
1616 int
1617 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities)
1618 {
1619 	int error;
1620 	struct vm_hpet_cap cap;
1621 
1622 	bzero(&cap, sizeof(struct vm_hpet_cap));
1623 	error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap);
1624 	if (capabilities != NULL)
1625 		*capabilities = cap.capabilities;
1626 	return (error);
1627 }
1628 
1629 int
1630 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1631     uint64_t gla, int prot, uint64_t *gpa, int *fault)
1632 {
1633 	struct vm_gla2gpa gg;
1634 	int error;
1635 
1636 	bzero(&gg, sizeof(struct vm_gla2gpa));
1637 	gg.vcpuid = vcpu;
1638 	gg.prot = prot;
1639 	gg.gla = gla;
1640 	gg.paging = *paging;
1641 
1642 	error = ioctl(ctx->fd, VM_GLA2GPA, &gg);
1643 	if (error == 0) {
1644 		*fault = gg.fault;
1645 		*gpa = gg.gpa;
1646 	}
1647 	return (error);
1648 }
1649 
1650 int
1651 vm_gla2gpa_nofault(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1652     uint64_t gla, int prot, uint64_t *gpa, int *fault)
1653 {
1654 	struct vm_gla2gpa gg;
1655 	int error;
1656 
1657 	bzero(&gg, sizeof(struct vm_gla2gpa));
1658 	gg.vcpuid = vcpu;
1659 	gg.prot = prot;
1660 	gg.gla = gla;
1661 	gg.paging = *paging;
1662 
1663 	error = ioctl(ctx->fd, VM_GLA2GPA_NOFAULT, &gg);
1664 	if (error == 0) {
1665 		*fault = gg.fault;
1666 		*gpa = gg.gpa;
1667 	}
1668 	return (error);
1669 }
1670 
1671 #ifndef min
1672 #define	min(a,b)	(((a) < (b)) ? (a) : (b))
1673 #endif
1674 
1675 int
1676 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1677     uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt,
1678     int *fault)
1679 {
1680 	void *va;
1681 	uint64_t gpa, off;
1682 	int error, i, n;
1683 
1684 	for (i = 0; i < iovcnt; i++) {
1685 		iov[i].iov_base = 0;
1686 		iov[i].iov_len = 0;
1687 	}
1688 
1689 	while (len) {
1690 		assert(iovcnt > 0);
1691 		error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault);
1692 		if (error || *fault)
1693 			return (error);
1694 
1695 		off = gpa & PAGE_MASK;
1696 		n = MIN(len, PAGE_SIZE - off);
1697 
1698 		va = vm_map_gpa(ctx, gpa, n);
1699 		if (va == NULL)
1700 			return (EFAULT);
1701 
1702 		iov->iov_base = va;
1703 		iov->iov_len = n;
1704 		iov++;
1705 		iovcnt--;
1706 
1707 		gla += n;
1708 		len -= n;
1709 	}
1710 	return (0);
1711 }
1712 
1713 void
1714 vm_copy_teardown(struct vmctx *ctx __unused, int vcpu __unused,
1715     struct iovec *iov __unused, int iovcnt __unused)
1716 {
1717 }
1718 
1719 void
1720 vm_copyin(struct vmctx *ctx __unused, int vcpu __unused, struct iovec *iov,
1721     void *vp, size_t len)
1722 {
1723 	const char *src;
1724 	char *dst;
1725 	size_t n;
1726 
1727 	dst = vp;
1728 	while (len) {
1729 		assert(iov->iov_len);
1730 		n = min(len, iov->iov_len);
1731 		src = iov->iov_base;
1732 		bcopy(src, dst, n);
1733 
1734 		iov++;
1735 		dst += n;
1736 		len -= n;
1737 	}
1738 }
1739 
1740 void
1741 vm_copyout(struct vmctx *ctx __unused, int vcpu __unused, const void *vp,
1742     struct iovec *iov, size_t len)
1743 {
1744 	const char *src;
1745 	char *dst;
1746 	size_t n;
1747 
1748 	src = vp;
1749 	while (len) {
1750 		assert(iov->iov_len);
1751 		n = min(len, iov->iov_len);
1752 		dst = iov->iov_base;
1753 		bcopy(src, dst, n);
1754 
1755 		iov++;
1756 		src += n;
1757 		len -= n;
1758 	}
1759 }
1760 
1761 static int
1762 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus)
1763 {
1764 	struct vm_cpuset vm_cpuset;
1765 	int error;
1766 
1767 	bzero(&vm_cpuset, sizeof(struct vm_cpuset));
1768 	vm_cpuset.which = which;
1769 	vm_cpuset.cpusetsize = sizeof(cpuset_t);
1770 	vm_cpuset.cpus = cpus;
1771 
1772 	error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset);
1773 	return (error);
1774 }
1775 
1776 int
1777 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus)
1778 {
1779 
1780 	return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus));
1781 }
1782 
1783 int
1784 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus)
1785 {
1786 
1787 	return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus));
1788 }
1789 
1790 int
1791 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus)
1792 {
1793 
1794 	return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus));
1795 }
1796 
1797 int
1798 vm_activate_cpu(struct vmctx *ctx, int vcpu)
1799 {
1800 	struct vm_activate_cpu ac;
1801 	int error;
1802 
1803 	bzero(&ac, sizeof(struct vm_activate_cpu));
1804 	ac.vcpuid = vcpu;
1805 	error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac);
1806 	return (error);
1807 }
1808 
1809 int
1810 vm_suspend_cpu(struct vmctx *ctx, int vcpu)
1811 {
1812 	struct vm_activate_cpu ac;
1813 	int error;
1814 
1815 	bzero(&ac, sizeof(struct vm_activate_cpu));
1816 	ac.vcpuid = vcpu;
1817 	error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac);
1818 	return (error);
1819 }
1820 
1821 int
1822 vm_resume_cpu(struct vmctx *ctx, int vcpu)
1823 {
1824 	struct vm_activate_cpu ac;
1825 	int error;
1826 
1827 	bzero(&ac, sizeof(struct vm_activate_cpu));
1828 	ac.vcpuid = vcpu;
1829 	error = ioctl(ctx->fd, VM_RESUME_CPU, &ac);
1830 	return (error);
1831 }
1832 
1833 int
1834 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2)
1835 {
1836 	struct vm_intinfo vmii;
1837 	int error;
1838 
1839 	bzero(&vmii, sizeof(struct vm_intinfo));
1840 	vmii.vcpuid = vcpu;
1841 	error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii);
1842 	if (error == 0) {
1843 		*info1 = vmii.info1;
1844 		*info2 = vmii.info2;
1845 	}
1846 	return (error);
1847 }
1848 
1849 int
1850 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1)
1851 {
1852 	struct vm_intinfo vmii;
1853 	int error;
1854 
1855 	bzero(&vmii, sizeof(struct vm_intinfo));
1856 	vmii.vcpuid = vcpu;
1857 	vmii.info1 = info1;
1858 	error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii);
1859 	return (error);
1860 }
1861 
1862 int
1863 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value)
1864 {
1865 	struct vm_rtc_data rtcdata;
1866 	int error;
1867 
1868 	bzero(&rtcdata, sizeof(struct vm_rtc_data));
1869 	rtcdata.offset = offset;
1870 	rtcdata.value = value;
1871 	error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata);
1872 	return (error);
1873 }
1874 
1875 int
1876 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval)
1877 {
1878 	struct vm_rtc_data rtcdata;
1879 	int error;
1880 
1881 	bzero(&rtcdata, sizeof(struct vm_rtc_data));
1882 	rtcdata.offset = offset;
1883 	error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata);
1884 	if (error == 0)
1885 		*retval = rtcdata.value;
1886 	return (error);
1887 }
1888 
1889 int
1890 vm_rtc_settime(struct vmctx *ctx, time_t secs)
1891 {
1892 	struct vm_rtc_time rtctime;
1893 	int error;
1894 
1895 	bzero(&rtctime, sizeof(struct vm_rtc_time));
1896 	rtctime.secs = secs;
1897 	error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime);
1898 	return (error);
1899 }
1900 
1901 int
1902 vm_rtc_gettime(struct vmctx *ctx, time_t *secs)
1903 {
1904 	struct vm_rtc_time rtctime;
1905 	int error;
1906 
1907 	bzero(&rtctime, sizeof(struct vm_rtc_time));
1908 	error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime);
1909 	if (error == 0)
1910 		*secs = rtctime.secs;
1911 	return (error);
1912 }
1913 
1914 int
1915 vm_restart_instruction(void *arg, int vcpu)
1916 {
1917 	struct vmctx *ctx = arg;
1918 
1919 	return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu));
1920 }
1921 
1922 int
1923 vm_set_topology(struct vmctx *ctx,
1924     uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus)
1925 {
1926 	struct vm_cpu_topology topology;
1927 
1928 	bzero(&topology, sizeof (struct vm_cpu_topology));
1929 	topology.sockets = sockets;
1930 	topology.cores = cores;
1931 	topology.threads = threads;
1932 	topology.maxcpus = maxcpus;
1933 	return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology));
1934 }
1935 
1936 int
1937 vm_get_topology(struct vmctx *ctx,
1938     uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus)
1939 {
1940 	struct vm_cpu_topology topology;
1941 	int error;
1942 
1943 	bzero(&topology, sizeof (struct vm_cpu_topology));
1944 	error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology);
1945 	if (error == 0) {
1946 		*sockets = topology.sockets;
1947 		*cores = topology.cores;
1948 		*threads = topology.threads;
1949 		*maxcpus = topology.maxcpus;
1950 	}
1951 	return (error);
1952 }
1953 
1954 int
1955 vm_get_device_fd(struct vmctx *ctx)
1956 {
1957 
1958 	return (ctx->fd);
1959 }
1960 
1961 #ifndef __FreeBSD__
1962 int
1963 vm_pmtmr_set_location(struct vmctx *ctx, uint16_t ioport)
1964 {
1965 	return (ioctl(ctx->fd, VM_PMTMR_LOCATE, ioport));
1966 }
1967 
1968 int
1969 vm_wrlock_cycle(struct vmctx *ctx)
1970 {
1971 	if (ioctl(ctx->fd, VM_WRLOCK_CYCLE, 0) != 0) {
1972 		return (errno);
1973 	}
1974 	return (0);
1975 }
1976 
1977 int
1978 vm_get_run_state(struct vmctx *ctx, int vcpu, enum vcpu_run_state *state,
1979     uint8_t *sipi_vector)
1980 {
1981 	struct vm_run_state data;
1982 
1983 	data.vcpuid = vcpu;
1984 	if (ioctl(ctx->fd, VM_GET_RUN_STATE, &data) != 0) {
1985 		return (errno);
1986 	}
1987 
1988 	*state = data.state;
1989 	*sipi_vector = data.sipi_vector;
1990 	return (0);
1991 }
1992 
1993 int
1994 vm_set_run_state(struct vmctx *ctx, int vcpu, enum vcpu_run_state state,
1995     uint8_t sipi_vector)
1996 {
1997 	struct vm_run_state data;
1998 
1999 	data.vcpuid = vcpu;
2000 	data.state = state;
2001 	data.sipi_vector = sipi_vector;
2002 	if (ioctl(ctx->fd, VM_SET_RUN_STATE, &data) != 0) {
2003 		return (errno);
2004 	}
2005 
2006 	return (0);
2007 }
2008 
2009 #endif /* __FreeBSD__ */
2010 
2011 #ifdef __FreeBSD__
2012 const cap_ioctl_t *
2013 vm_get_ioctls(size_t *len)
2014 {
2015 	cap_ioctl_t *cmds;
2016 	/* keep in sync with machine/vmm_dev.h */
2017 	static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT,
2018 	    VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG,
2019 	    VM_MMAP_GETNEXT, VM_MUNMAP_MEMSEG, VM_SET_REGISTER, VM_GET_REGISTER,
2020 	    VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR,
2021 	    VM_SET_REGISTER_SET, VM_GET_REGISTER_SET,
2022 	    VM_SET_KERNEMU_DEV, VM_GET_KERNEMU_DEV,
2023 	    VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ,
2024 	    VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ,
2025 	    VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ,
2026 	    VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER,
2027 	    VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV,
2028 	    VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI,
2029 	    VM_PPTDEV_MSIX, VM_UNMAP_PPTDEV_MMIO, VM_PPTDEV_DISABLE_MSIX,
2030 	    VM_INJECT_NMI, VM_STATS, VM_STAT_DESC,
2031 	    VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE,
2032 	    VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA,
2033 	    VM_GLA2GPA_NOFAULT,
2034 	    VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU,
2035 	    VM_SET_INTINFO, VM_GET_INTINFO,
2036 	    VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME,
2037 	    VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY };
2038 
2039 	if (len == NULL) {
2040 		cmds = malloc(sizeof(vm_ioctl_cmds));
2041 		if (cmds == NULL)
2042 			return (NULL);
2043 		bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds));
2044 		return (cmds);
2045 	}
2046 
2047 	*len = nitems(vm_ioctl_cmds);
2048 	return (NULL);
2049 }
2050 #endif /* __FreeBSD__ */
2051