1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2019 Joyent, Inc. 29 * Copyright (c) 2015 by Delphix. All rights reserved. 30 */ 31 32 /* 33 * based on usr/src/uts/common/os/kmem.c r1.64 from 2001/12/18 34 * 35 * The slab allocator, as described in the following two papers: 36 * 37 * Jeff Bonwick, 38 * The Slab Allocator: An Object-Caching Kernel Memory Allocator. 39 * Proceedings of the Summer 1994 Usenix Conference. 40 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. 41 * 42 * Jeff Bonwick and Jonathan Adams, 43 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 44 * Arbitrary Resources. 45 * Proceedings of the 2001 Usenix Conference. 46 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. 47 * 48 * 1. Overview 49 * ----------- 50 * umem is very close to kmem in implementation. There are seven major 51 * areas of divergence: 52 * 53 * * Initialization 54 * 55 * * CPU handling 56 * 57 * * umem_update() 58 * 59 * * KM_SLEEP v.s. UMEM_NOFAIL 60 * 61 * * lock ordering 62 * 63 * * changing UMEM_MAXBUF 64 * 65 * * Per-thread caching for malloc/free 66 * 67 * 2. Initialization 68 * ----------------- 69 * kmem is initialized early on in boot, and knows that no one will call 70 * into it before it is ready. umem does not have these luxuries. Instead, 71 * initialization is divided into two phases: 72 * 73 * * library initialization, and 74 * 75 * * first use 76 * 77 * umem's full initialization happens at the time of the first allocation 78 * request (via malloc() and friends, umem_alloc(), or umem_zalloc()), 79 * or the first call to umem_cache_create(). 80 * 81 * umem_free(), and umem_cache_alloc() do not require special handling, 82 * since the only way to get valid arguments for them is to successfully 83 * call a function from the first group. 84 * 85 * 2.1. Library Initialization: umem_startup() 86 * ------------------------------------------- 87 * umem_startup() is libumem.so's .init section. It calls pthread_atfork() 88 * to install the handlers necessary for umem's Fork1-Safety. Because of 89 * race condition issues, all other pre-umem_init() initialization is done 90 * statically (i.e. by the dynamic linker). 91 * 92 * For standalone use, umem_startup() returns everything to its initial 93 * state. 94 * 95 * 2.2. First use: umem_init() 96 * ------------------------------ 97 * The first time any memory allocation function is used, we have to 98 * create the backing caches and vmem arenas which are needed for it. 99 * umem_init() is the central point for that task. When it completes, 100 * umem_ready is either UMEM_READY (all set) or UMEM_READY_INIT_FAILED (unable 101 * to initialize, probably due to lack of memory). 102 * 103 * There are four different paths from which umem_init() is called: 104 * 105 * * from umem_alloc() or umem_zalloc(), with 0 < size < UMEM_MAXBUF, 106 * 107 * * from umem_alloc() or umem_zalloc(), with size > UMEM_MAXBUF, 108 * 109 * * from umem_cache_create(), and 110 * 111 * * from memalign(), with align > UMEM_ALIGN. 112 * 113 * The last three just check if umem is initialized, and call umem_init() 114 * if it is not. For performance reasons, the first case is more complicated. 115 * 116 * 2.2.1. umem_alloc()/umem_zalloc(), with 0 < size < UMEM_MAXBUF 117 * ----------------------------------------------------------------- 118 * In this case, umem_cache_alloc(&umem_null_cache, ...) is called. 119 * There is special case code in which causes any allocation on 120 * &umem_null_cache to fail by returning (NULL), regardless of the 121 * flags argument. 122 * 123 * So umem_cache_alloc() returns NULL, and umem_alloc()/umem_zalloc() call 124 * umem_alloc_retry(). umem_alloc_retry() sees that the allocation 125 * was agains &umem_null_cache, and calls umem_init(). 126 * 127 * If initialization is successful, umem_alloc_retry() returns 1, which 128 * causes umem_alloc()/umem_zalloc() to start over, which causes it to load 129 * the (now valid) cache pointer from umem_alloc_table. 130 * 131 * 2.2.2. Dealing with race conditions 132 * ----------------------------------- 133 * There are a couple race conditions resulting from the initialization 134 * code that we have to guard against: 135 * 136 * * In umem_cache_create(), there is a special UMC_INTERNAL cflag 137 * that is passed for caches created during initialization. It 138 * is illegal for a user to try to create a UMC_INTERNAL cache. 139 * This allows initialization to proceed, but any other 140 * umem_cache_create()s will block by calling umem_init(). 141 * 142 * * Since umem_null_cache has a 1-element cache_cpu, it's cache_cpu_mask 143 * is always zero. umem_cache_alloc uses cp->cache_cpu_mask to 144 * mask the cpu number. This prevents a race between grabbing a 145 * cache pointer out of umem_alloc_table and growing the cpu array. 146 * 147 * 148 * 3. CPU handling 149 * --------------- 150 * kmem uses the CPU's sequence number to determine which "cpu cache" to 151 * use for an allocation. Currently, there is no way to get the sequence 152 * number in userspace. 153 * 154 * umem keeps track of cpu information in umem_cpus, an array of umem_max_ncpus 155 * umem_cpu_t structures. CURCPU() is a a "hint" function, which we then mask 156 * with either umem_cpu_mask or cp->cache_cpu_mask to find the actual "cpu" id. 157 * The mechanics of this is all in the CPU(mask) macro. 158 * 159 * Currently, umem uses _lwp_self() as its hint. 160 * 161 * 162 * 4. The update thread 163 * -------------------- 164 * kmem uses a task queue, kmem_taskq, to do periodic maintenance on 165 * every kmem cache. vmem has a periodic timeout for hash table resizing. 166 * The kmem_taskq also provides a separate context for kmem_cache_reap()'s 167 * to be done in, avoiding issues of the context of kmem_reap() callers. 168 * 169 * Instead, umem has the concept of "updates", which are asynchronous requests 170 * for work attached to single caches. All caches with pending work are 171 * on a doubly linked list rooted at the umem_null_cache. All update state 172 * is protected by the umem_update_lock mutex, and the umem_update_cv is used 173 * for notification between threads. 174 * 175 * 4.1. Cache states with regards to updates 176 * ----------------------------------------- 177 * A given cache is in one of three states: 178 * 179 * Inactive cache_uflags is zero, cache_u{next,prev} are NULL 180 * 181 * Work Requested cache_uflags is non-zero (but UMU_ACTIVE is not set), 182 * cache_u{next,prev} link the cache onto the global 183 * update list 184 * 185 * Active cache_uflags has UMU_ACTIVE set, cache_u{next,prev} 186 * are NULL, and either umem_update_thr or 187 * umem_st_update_thr are actively doing work on the 188 * cache. 189 * 190 * An update can be added to any cache in any state -- if the cache is 191 * Inactive, it transitions to being Work Requested. If the cache is 192 * Active, the worker will notice the new update and act on it before 193 * transitioning the cache to the Inactive state. 194 * 195 * If a cache is in the Active state, UMU_NOTIFY can be set, which asks 196 * the worker to broadcast the umem_update_cv when it has finished. 197 * 198 * 4.2. Update interface 199 * --------------------- 200 * umem_add_update() adds an update to a particular cache. 201 * umem_updateall() adds an update to all caches. 202 * umem_remove_updates() returns a cache to the Inactive state. 203 * 204 * umem_process_updates() process all caches in the Work Requested state. 205 * 206 * 4.3. Reaping 207 * ------------ 208 * When umem_reap() is called (at the time of heap growth), it schedule 209 * UMU_REAP updates on every cache. It then checks to see if the update 210 * thread exists (umem_update_thr != 0). If it is, it broadcasts 211 * the umem_update_cv to wake the update thread up, and returns. 212 * 213 * If the update thread does not exist (umem_update_thr == 0), and the 214 * program currently has multiple threads, umem_reap() attempts to create 215 * a new update thread. 216 * 217 * If the process is not multithreaded, or the creation fails, umem_reap() 218 * calls umem_st_update() to do an inline update. 219 * 220 * 4.4. The update thread 221 * ---------------------- 222 * The update thread spends most of its time in cond_timedwait() on the 223 * umem_update_cv. It wakes up under two conditions: 224 * 225 * * The timedwait times out, in which case it needs to run a global 226 * update, or 227 * 228 * * someone cond_broadcast(3THR)s the umem_update_cv, in which case 229 * it needs to check if there are any caches in the Work Requested 230 * state. 231 * 232 * When it is time for another global update, umem calls umem_cache_update() 233 * on every cache, then calls vmem_update(), which tunes the vmem structures. 234 * umem_cache_update() can request further work using umem_add_update(). 235 * 236 * After any work from the global update completes, the update timer is 237 * reset to umem_reap_interval seconds in the future. This makes the 238 * updates self-throttling. 239 * 240 * Reaps are similarly self-throttling. After a UMU_REAP update has 241 * been scheduled on all caches, umem_reap() sets a flag and wakes up the 242 * update thread. The update thread notices the flag, and resets the 243 * reap state. 244 * 245 * 4.5. Inline updates 246 * ------------------- 247 * If the update thread is not running, umem_st_update() is used instead. It 248 * immediately does a global update (as above), then calls 249 * umem_process_updates() to process both the reaps that umem_reap() added and 250 * any work generated by the global update. Afterwards, it resets the reap 251 * state. 252 * 253 * While the umem_st_update() is running, umem_st_update_thr holds the thread 254 * id of the thread performing the update. 255 * 256 * 4.6. Updates and fork1() 257 * ------------------------ 258 * umem has fork1() pre- and post-handlers which lock up (and release) every 259 * mutex in every cache. They also lock up the umem_update_lock. Since 260 * fork1() only copies over a single lwp, other threads (including the update 261 * thread) could have been actively using a cache in the parent. This 262 * can lead to inconsistencies in the child process. 263 * 264 * Because we locked all of the mutexes, the only possible inconsistancies are: 265 * 266 * * a umem_cache_alloc() could leak its buffer. 267 * 268 * * a caller of umem_depot_alloc() could leak a magazine, and all the 269 * buffers contained in it. 270 * 271 * * a cache could be in the Active update state. In the child, there 272 * would be no thread actually working on it. 273 * 274 * * a umem_hash_rescale() could leak the new hash table. 275 * 276 * * a umem_magazine_resize() could be in progress. 277 * 278 * * a umem_reap() could be in progress. 279 * 280 * The memory leaks we can't do anything about. umem_release_child() resets 281 * the update state, moves any caches in the Active state to the Work Requested 282 * state. This might cause some updates to be re-run, but UMU_REAP and 283 * UMU_HASH_RESCALE are effectively idempotent, and the worst that can 284 * happen from umem_magazine_resize() is resizing the magazine twice in close 285 * succession. 286 * 287 * Much of the cleanup in umem_release_child() is skipped if 288 * umem_st_update_thr == thr_self(). This is so that applications which call 289 * fork1() from a cache callback does not break. Needless to say, any such 290 * application is tremendously broken. 291 * 292 * 293 * 5. KM_SLEEP v.s. UMEM_NOFAIL 294 * ---------------------------- 295 * Allocations against kmem and vmem have two basic modes: SLEEP and 296 * NOSLEEP. A sleeping allocation is will go to sleep (waiting for 297 * more memory) instead of failing (returning NULL). 298 * 299 * SLEEP allocations presume an extremely multithreaded model, with 300 * a lot of allocation and deallocation activity. umem cannot presume 301 * that its clients have any particular type of behavior. Instead, 302 * it provides two types of allocations: 303 * 304 * * UMEM_DEFAULT, equivalent to KM_NOSLEEP (i.e. return NULL on 305 * failure) 306 * 307 * * UMEM_NOFAIL, which, on failure, calls an optional callback 308 * (registered with umem_nofail_callback()). 309 * 310 * The callback is invoked with no locks held, and can do an arbitrary 311 * amount of work. It then has a choice between: 312 * 313 * * Returning UMEM_CALLBACK_RETRY, which will cause the allocation 314 * to be restarted. 315 * 316 * * Returning UMEM_CALLBACK_EXIT(status), which will cause exit(2) 317 * to be invoked with status. If multiple threads attempt to do 318 * this simultaneously, only one will call exit(2). 319 * 320 * * Doing some kind of non-local exit (thr_exit(3thr), longjmp(3C), 321 * etc.) 322 * 323 * The default callback returns UMEM_CALLBACK_EXIT(255). 324 * 325 * To have these callbacks without risk of state corruption (in the case of 326 * a non-local exit), we have to ensure that the callbacks get invoked 327 * close to the original allocation, with no inconsistent state or held 328 * locks. The following steps are taken: 329 * 330 * * All invocations of vmem are VM_NOSLEEP. 331 * 332 * * All constructor callbacks (which can themselves to allocations) 333 * are passed UMEM_DEFAULT as their required allocation argument. This 334 * way, the constructor will fail, allowing the highest-level allocation 335 * invoke the nofail callback. 336 * 337 * If a constructor callback _does_ do a UMEM_NOFAIL allocation, and 338 * the nofail callback does a non-local exit, we will leak the 339 * partially-constructed buffer. 340 * 341 * 342 * 6. Lock Ordering 343 * ---------------- 344 * umem has a few more locks than kmem does, mostly in the update path. The 345 * overall lock ordering (earlier locks must be acquired first) is: 346 * 347 * umem_init_lock 348 * 349 * vmem_list_lock 350 * vmem_nosleep_lock.vmpl_mutex 351 * vmem_t's: 352 * vm_lock 353 * sbrk_lock 354 * 355 * umem_cache_lock 356 * umem_update_lock 357 * umem_flags_lock 358 * umem_cache_t's: 359 * cache_cpu[*].cc_lock 360 * cache_depot_lock 361 * cache_lock 362 * umem_log_header_t's: 363 * lh_cpu[*].clh_lock 364 * lh_lock 365 * 366 * 7. Changing UMEM_MAXBUF 367 * ----------------------- 368 * 369 * When changing UMEM_MAXBUF extra care has to be taken. It is not sufficient to 370 * simply increase this number. First, one must update the umem_alloc_table to 371 * have the appropriate number of entires based upon the new size. If this is 372 * not done, this will lead to libumem blowing an assertion. 373 * 374 * The second place to update, which is not required, is the umem_alloc_sizes. 375 * These determine the default cache sizes that we're going to support. 376 * 377 * 8. Per-thread caching for malloc/free 378 * ------------------------------------- 379 * 380 * "Time is an illusion. Lunchtime doubly so." -- Douglas Adams 381 * 382 * Time may be an illusion, but CPU cycles aren't. While libumem is designed 383 * to be a highly scalable allocator, that scalability comes with a fixed cycle 384 * penalty even in the absence of contention: libumem must acquire (and release 385 * a per-CPU lock for each allocation. When contention is low and malloc(3C) 386 * frequency is high, this overhead can dominate execution time. To alleviate 387 * this, we allow for per-thread caching, a lock-free means of caching recent 388 * deallocations on a per-thread basis for use in satisfying subsequent calls 389 * 390 * In addition to improving performance, we also want to: 391 * * Minimize fragmentation 392 * * Not add additional memory overhead (no larger malloc tags) 393 * 394 * In the ulwp_t of each thread there is a private data structure called a 395 * umem_t that looks like: 396 * 397 * typedef struct { 398 * size_t tm_size; 399 * void *tm_roots[NTMEMBASE]; (Currently 16) 400 * } tmem_t; 401 * 402 * Each of the roots is treated as the head of a linked list. Each entry in the 403 * list can be thought of as a void ** which points to the next entry, until one 404 * of them points to NULL. If the head points to NULL, the list is empty. 405 * 406 * Each head corresponds to a umem_cache. Currently there is a linear mapping 407 * where the first root corresponds to the first cache, second root to the 408 * second cache, etc. This works because every allocation that malloc makes to 409 * umem_alloc that can be satisified by a umem_cache will actually return a 410 * number of bytes equal to the size of that cache. Because of this property and 411 * a one to one mapping between caches and roots we can guarantee that every 412 * entry in a given root's list will be able to satisfy the same requests as the 413 * corresponding cache. 414 * 415 * The choice of sixteen roots is based on where we believe we get the biggest 416 * bang for our buck. The per-thread caches will cache up to 256 byte and 448 417 * byte allocations on ILP32 and LP64 respectively. Generally applications plan 418 * more carefully how they do larger allocations than smaller ones. Therefore 419 * sixteen roots is a reasonable compromise between the amount of additional 420 * overhead per thread, and the likelihood of a program to benefit from it. 421 * 422 * The maximum amount of memory that can be cached in each thread is determined 423 * by the perthread_cache UMEM_OPTION. It corresponds to the umem_ptc_size 424 * value. The default value for this is currently 1 MB. Once umem_init() has 425 * finished this cannot be directly tuned without directly modifying the 426 * instruction text. If, upon calling free(3C), the amount cached would exceed 427 * this maximum, we instead actually return the buffer to the umem_cache instead 428 * of holding onto it in the thread. 429 * 430 * When a thread calls malloc(3C) it first determines which umem_cache it 431 * would be serviced by. If the allocation is not covered by ptcumem it goes to 432 * the normal malloc instead. Next, it checks if the tmem_root's list is empty 433 * or not. If it is empty, we instead go and allocate the memory from 434 * umem_alloc. If it is not empty, we remove the head of the list, set the 435 * appropriate malloc tags, and return that buffer. 436 * 437 * When a thread calls free(3C) it first looks at the malloc tag and if it is 438 * invalid or the allocation exceeds the largest cache in ptcumem and sends it 439 * off to the original free() to handle and clean up appropriately. Next, it 440 * checks if the allocation size is covered by one of the per-thread roots and 441 * if it isn't, it passes it off to the original free() to be released. Finally, 442 * before it inserts this buffer as the head, it checks if adding this buffer 443 * would put the thread over its maximum cache size. If it would, it frees the 444 * buffer back to the umem_cache. Otherwise it increments the threads total 445 * cached amount and makes the buffer the new head of the appropriate tm_root. 446 * 447 * When a thread exits, all of the buffers that it has in its per-thread cache 448 * will be passed to umem_free() and returned to the appropriate umem_cache. 449 * 450 * 8.1 Handling addition and removal of umem_caches 451 * ------------------------------------------------ 452 * 453 * The set of umem_caches that are used to back calls to umem_alloc() and 454 * ultimately malloc() are determined at program execution time. The default set 455 * of caches is defined below in umem_alloc_sizes[]. Various umem_options exist 456 * that modify the set of caches: size_add, size_clear, and size_remove. Because 457 * the set of caches can only be determined once umem_init() has been called and 458 * we have the additional goals of minimizing additional fragmentation and 459 * metadata space overhead in the malloc tags, this forces our hand to go down a 460 * slightly different path: the one tread by fasttrap and trapstat. 461 * 462 * During umem_init we're going to dynamically construct a new version of 463 * malloc(3C) and free(3C) that utilizes the known cache sizes and then ensure 464 * that ptcmalloc and ptcfree replace malloc and free as entries in the plt. If 465 * ptcmalloc and ptcfree cannot handle a request, they simply jump to the 466 * original libumem implementations. 467 * 468 * After creating all of the umem_caches, but before making them visible, 469 * umem_cache_init checks that umem_genasm_supported is non-zero. This value is 470 * set by each architecture in $ARCH/umem_genasm.c to indicate whether or not 471 * they support this. If the value is zero, then this process is skipped. 472 * Similarly, if the cache size has been tuned to zero by UMEM_OPTIONS, then 473 * this is also skipped. 474 * 475 * In umem_genasm.c, each architecture's implementation implements a single 476 * function called umem_genasm() that is responsible for generating the 477 * appropriate versions of ptcmalloc() and ptcfree(), placing them in the 478 * appropriate memory location, and finally doing the switch from malloc() and 479 * free() to ptcmalloc() and ptcfree(). Once the change has been made, there is 480 * no way to switch back, short of restarting the program or modifying program 481 * text with mdb. 482 * 483 * 8.2 Modifying the Procedure Linkage Table (PLT) 484 * ----------------------------------------------- 485 * 486 * The last piece of this puzzle is how we actually jam ptcmalloc() into the 487 * PLT. To handle this, we have defined two functions, _malloc and _free and 488 * used a special mapfile directive to place them into the a readable, 489 * writeable, and executable segment. Next we use a standard #pragma weak for 490 * malloc and free and direct them to those symbols. By default, those symbols 491 * have text defined as nops for our generated functions and when they're 492 * invoked, they jump to the default malloc and free functions. 493 * 494 * When umem_genasm() is called, it goes through and generates new malloc() and 495 * free() functions in the text provided for by _malloc and _free just after the 496 * jump. Once both have been successfully generated, umem_genasm() nops over the 497 * original jump so that we now call into the genasm versions of these 498 * functions. 499 * 500 * 8.3 umem_genasm() 501 * ----------------- 502 * 503 * umem_genasm() is currently implemented for i386 and amd64. This section 504 * describes the theory behind the construction. For specific byte code to 505 * assembly instructions and niceish C and asm versions of ptcmalloc and 506 * ptcfree, see the individual umem_genasm.c files. The layout consists of the 507 * following sections: 508 * 509 * o. function-specfic prologue 510 * o. function-generic cache-selecting elements 511 * o. function-specific epilogue 512 * 513 * There are three different generic cache elements that exist: 514 * 515 * o. the last or only cache 516 * o. the intermediary caches if more than two 517 * o. the first one if more than one cache 518 * 519 * The malloc and free prologues and epilogues mimic the necessary portions of 520 * libumem's malloc and free. This includes things like checking for size 521 * overflow, setting and verifying the malloc tags. 522 * 523 * It is an important constraint that these functions do not make use of the 524 * call instruction. The only jmp outside of the individual functions is to the 525 * original libumem malloc and free respectively. Because doing things like 526 * setting errno or raising an internal umem error on improper malloc tags would 527 * require using calls into the PLT, whenever we encounter one of those cases we 528 * just jump to the original malloc and free functions reusing the same stack 529 * frame. 530 * 531 * Each of the above sections, the three caches, and the malloc and free 532 * prologue and epilogue are implemented as blocks of machine code with the 533 * corresponding assembly in comments. There are known offsets into each block 534 * that corresponds to locations of data and addresses that we only know at run 535 * time. These blocks are copied as necessary and the blanks filled in 536 * appropriately. 537 * 538 * As mentioned in section 8.2, the trampoline library uses specifically named 539 * variables to communicate the buffers and size to use. These variables are: 540 * 541 * o. umem_genasm_mptr: The buffer for ptcmalloc 542 * o. umem_genasm_msize: The size in bytes of the above buffer 543 * o. umem_genasm_fptr: The buffer for ptcfree 544 * o. umem_genasm_fsize: The size in bytes of the above buffer 545 * 546 * Finally, to enable the generated assembly we need to remove the previous jump 547 * to the actual malloc that exists at the start of these buffers. On x86, this 548 * is a five byte region. We could zero out the jump offset to be a jmp +0, but 549 * using nops can be faster. We specifically use a single five byte nop on x86 550 * as it is faster. When porting ptcumem to other architectures, the various 551 * opcode changes and options should be analyzed. 552 * 553 * 8.4 Interface with libc.so 554 * -------------------------- 555 * 556 * The tmem_t structure as described in the beginning of section 8, is part of a 557 * private interface with libc. There are three functions that exist to cover 558 * this. They are not documented in man pages or header files. They are in the 559 * SUNWprivate part of libc's mapfile. 560 * 561 * o. _tmem_get_base(void) 562 * 563 * Returns the offset from the ulwp_t (curthread) to the tmem_t structure. 564 * This is a constant for all threads and is effectively a way to to do 565 * ::offsetof ulwp_t ul_tmem without having to know the specifics of the 566 * structure outside of libc. 567 * 568 * o. _tmem_get_nentries(void) 569 * 570 * Returns the number of roots that exist in the tmem_t. This is one part 571 * of the cap on the number of umem_caches that we can back with tmem. 572 * 573 * o. _tmem_set_cleanup(void (*)(void *, int)) 574 * 575 * This sets a clean up handler that gets called back when a thread exits. 576 * There is one call per buffer, the void * is a pointer to the buffer on 577 * the list, the int is the index into the roots array for this buffer. 578 * 579 * 8.5 Tuning and disabling per-thread caching 580 * ------------------------------------------- 581 * 582 * There is only one tunable for per-thread caching: the amount of memory each 583 * thread should be able to cache. This is specified via the perthread_cache 584 * UMEM_OPTION option. No attempt is made to to sanity check the specified 585 * value; the limit is simply the maximum value of a size_t. 586 * 587 * If the perthread_cache UMEM_OPTION is set to zero, nomagazines was requested, 588 * or UMEM_DEBUG has been turned on then we will never call into umem_genasm; 589 * however, the trampoline audit library and jump will still be in place. 590 * 591 * 8.6 Observing efficacy of per-thread caching 592 * -------------------------------------------- 593 * 594 * To understand the efficacy of per-thread caching, use the ::umastat dcmd 595 * to see the percentage of capacity consumed on a per-thread basis, the 596 * degree to which each umem cache contributes to per-thread cache consumption, 597 * and the number of buffers in per-thread caches on a per-umem cache basis. 598 * If more detail is required, the specific buffers in a per-thread cache can 599 * be iterated over with the umem_ptc_* walkers. (These walkers allow an 600 * optional ulwp_t to be specified to iterate only over a particular thread's 601 * cache.) 602 */ 603 604 #include <umem_impl.h> 605 #include <sys/vmem_impl_user.h> 606 #include "umem_base.h" 607 #include "vmem_base.h" 608 609 #include <sys/processor.h> 610 #include <sys/sysmacros.h> 611 612 #include <alloca.h> 613 #include <errno.h> 614 #include <limits.h> 615 #include <stdio.h> 616 #include <stdlib.h> 617 #include <string.h> 618 #include <strings.h> 619 #include <signal.h> 620 #include <unistd.h> 621 #include <atomic.h> 622 623 #include "misc.h" 624 625 #define UMEM_VMFLAGS(umflag) (VM_NOSLEEP) 626 627 size_t pagesize; 628 629 /* 630 * The default set of caches to back umem_alloc(). 631 * These sizes should be reevaluated periodically. 632 * 633 * We want allocations that are multiples of the coherency granularity 634 * (64 bytes) to be satisfied from a cache which is a multiple of 64 635 * bytes, so that it will be 64-byte aligned. For all multiples of 64, 636 * the next kmem_cache_size greater than or equal to it must be a 637 * multiple of 64. 638 * 639 * This table must be in sorted order, from smallest to highest. The 640 * highest slot must be UMEM_MAXBUF, and every slot afterwards must be 641 * zero. 642 */ 643 static int umem_alloc_sizes[] = { 644 #ifdef _LP64 645 1 * 8, 646 1 * 16, 647 2 * 16, 648 3 * 16, 649 #else 650 1 * 8, 651 2 * 8, 652 3 * 8, 653 4 * 8, 5 * 8, 6 * 8, 7 * 8, 654 #endif 655 4 * 16, 5 * 16, 6 * 16, 7 * 16, 656 4 * 32, 5 * 32, 6 * 32, 7 * 32, 657 4 * 64, 5 * 64, 6 * 64, 7 * 64, 658 4 * 128, 5 * 128, 6 * 128, 7 * 128, 659 P2ALIGN(8192 / 7, 64), 660 P2ALIGN(8192 / 6, 64), 661 P2ALIGN(8192 / 5, 64), 662 P2ALIGN(8192 / 4, 64), 2304, 663 P2ALIGN(8192 / 3, 64), 664 P2ALIGN(8192 / 2, 64), 4544, 665 P2ALIGN(8192 / 1, 64), 9216, 666 4096 * 3, 667 8192 * 2, /* = 8192 * 2 */ 668 24576, 32768, 40960, 49152, 57344, 65536, 73728, 81920, 669 90112, 98304, 106496, 114688, 122880, UMEM_MAXBUF, /* 128k */ 670 /* 24 slots for user expansion */ 671 0, 0, 0, 0, 0, 0, 0, 0, 672 0, 0, 0, 0, 0, 0, 0, 0, 673 0, 0, 0, 0, 0, 0, 0, 0, 674 }; 675 #define NUM_ALLOC_SIZES (sizeof (umem_alloc_sizes) / sizeof (*umem_alloc_sizes)) 676 677 static umem_magtype_t umem_magtype[] = { 678 { 1, 8, 3200, 65536 }, 679 { 3, 16, 256, 32768 }, 680 { 7, 32, 64, 16384 }, 681 { 15, 64, 0, 8192 }, 682 { 31, 64, 0, 4096 }, 683 { 47, 64, 0, 2048 }, 684 { 63, 64, 0, 1024 }, 685 { 95, 64, 0, 512 }, 686 { 143, 64, 0, 0 }, 687 }; 688 689 /* 690 * umem tunables 691 */ 692 uint32_t umem_max_ncpus; /* # of CPU caches. */ 693 694 uint32_t umem_stack_depth = 15; /* # stack frames in a bufctl_audit */ 695 uint32_t umem_reap_interval = 10; /* max reaping rate (seconds) */ 696 uint_t umem_depot_contention = 2; /* max failed trylocks per real interval */ 697 uint_t umem_abort = 1; /* whether to abort on error */ 698 uint_t umem_output = 0; /* whether to write to standard error */ 699 uint_t umem_logging = 0; /* umem_log_enter() override */ 700 uint32_t umem_mtbf = 0; /* mean time between failures [default: off] */ 701 size_t umem_transaction_log_size; /* size of transaction log */ 702 size_t umem_content_log_size; /* size of content log */ 703 size_t umem_failure_log_size; /* failure log [4 pages per CPU] */ 704 size_t umem_slab_log_size; /* slab create log [4 pages per CPU] */ 705 size_t umem_content_maxsave = 256; /* UMF_CONTENTS max bytes to log */ 706 size_t umem_lite_minsize = 0; /* minimum buffer size for UMF_LITE */ 707 size_t umem_lite_maxalign = 1024; /* maximum buffer alignment for UMF_LITE */ 708 size_t umem_maxverify; /* maximum bytes to inspect in debug routines */ 709 size_t umem_minfirewall; /* hardware-enforced redzone threshold */ 710 size_t umem_ptc_size = 1048576; /* size of per-thread cache (in bytes) */ 711 712 uint_t umem_flags = 0; 713 uintptr_t umem_tmem_off; 714 715 mutex_t umem_init_lock; /* locks initialization */ 716 cond_t umem_init_cv; /* initialization CV */ 717 thread_t umem_init_thr; /* thread initializing */ 718 int umem_init_env_ready; /* environ pre-initted */ 719 int umem_ready = UMEM_READY_STARTUP; 720 721 int umem_ptc_enabled; /* per-thread caching enabled */ 722 723 static umem_nofail_callback_t *nofail_callback; 724 static mutex_t umem_nofail_exit_lock; 725 static thread_t umem_nofail_exit_thr; 726 727 static umem_cache_t *umem_slab_cache; 728 static umem_cache_t *umem_bufctl_cache; 729 static umem_cache_t *umem_bufctl_audit_cache; 730 731 mutex_t umem_flags_lock; 732 733 static vmem_t *heap_arena; 734 static vmem_alloc_t *heap_alloc; 735 static vmem_free_t *heap_free; 736 737 static vmem_t *umem_internal_arena; 738 static vmem_t *umem_cache_arena; 739 static vmem_t *umem_hash_arena; 740 static vmem_t *umem_log_arena; 741 static vmem_t *umem_oversize_arena; 742 static vmem_t *umem_va_arena; 743 static vmem_t *umem_default_arena; 744 static vmem_t *umem_firewall_va_arena; 745 static vmem_t *umem_firewall_arena; 746 747 vmem_t *umem_memalign_arena; 748 749 umem_log_header_t *umem_transaction_log; 750 umem_log_header_t *umem_content_log; 751 umem_log_header_t *umem_failure_log; 752 umem_log_header_t *umem_slab_log; 753 754 #define CPUHINT() (thr_self()) 755 #define CPUHINT_MAX() INT_MAX 756 757 #define CPU(mask) (umem_cpus + (CPUHINT() & (mask))) 758 static umem_cpu_t umem_startup_cpu = { /* initial, single, cpu */ 759 UMEM_CACHE_SIZE(0), 760 0 761 }; 762 763 static uint32_t umem_cpu_mask = 0; /* global cpu mask */ 764 static umem_cpu_t *umem_cpus = &umem_startup_cpu; /* cpu list */ 765 766 volatile uint32_t umem_reaping; 767 768 thread_t umem_update_thr; 769 struct timeval umem_update_next; /* timeofday of next update */ 770 volatile thread_t umem_st_update_thr; /* only used when single-thd */ 771 772 #define IN_UPDATE() (thr_self() == umem_update_thr || \ 773 thr_self() == umem_st_update_thr) 774 #define IN_REAP() IN_UPDATE() 775 776 mutex_t umem_update_lock; /* cache_u{next,prev,flags} */ 777 cond_t umem_update_cv; 778 779 volatile hrtime_t umem_reap_next; /* min hrtime of next reap */ 780 781 mutex_t umem_cache_lock; /* inter-cache linkage only */ 782 783 #ifdef UMEM_STANDALONE 784 umem_cache_t umem_null_cache; 785 static const umem_cache_t umem_null_cache_template = { 786 #else 787 umem_cache_t umem_null_cache = { 788 #endif 789 0, 0, 0, 0, 0, 790 0, 0, 791 0, 0, 792 0, 0, 793 "invalid_cache", 794 0, 0, 795 NULL, NULL, NULL, NULL, 796 NULL, 797 0, 0, 0, 0, 798 &umem_null_cache, &umem_null_cache, 799 &umem_null_cache, &umem_null_cache, 800 0, 801 DEFAULTMUTEX, /* start of slab layer */ 802 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 803 &umem_null_cache.cache_nullslab, 804 { 805 &umem_null_cache, 806 NULL, 807 &umem_null_cache.cache_nullslab, 808 &umem_null_cache.cache_nullslab, 809 NULL, 810 -1, 811 0 812 }, 813 NULL, 814 NULL, 815 DEFAULTMUTEX, /* start of depot layer */ 816 NULL, { 817 NULL, 0, 0, 0, 0 818 }, { 819 NULL, 0, 0, 0, 0 820 }, { 821 { 822 DEFAULTMUTEX, /* start of CPU cache */ 823 0, 0, NULL, NULL, -1, -1, 0 824 } 825 } 826 }; 827 828 #define ALLOC_TABLE_4 \ 829 &umem_null_cache, &umem_null_cache, &umem_null_cache, &umem_null_cache 830 831 #define ALLOC_TABLE_64 \ 832 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \ 833 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \ 834 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \ 835 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4 836 837 #define ALLOC_TABLE_1024 \ 838 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \ 839 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \ 840 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \ 841 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64 842 843 static umem_cache_t *umem_alloc_table[UMEM_MAXBUF >> UMEM_ALIGN_SHIFT] = { 844 ALLOC_TABLE_1024, 845 ALLOC_TABLE_1024, 846 ALLOC_TABLE_1024, 847 ALLOC_TABLE_1024, 848 ALLOC_TABLE_1024, 849 ALLOC_TABLE_1024, 850 ALLOC_TABLE_1024, 851 ALLOC_TABLE_1024, 852 ALLOC_TABLE_1024, 853 ALLOC_TABLE_1024, 854 ALLOC_TABLE_1024, 855 ALLOC_TABLE_1024, 856 ALLOC_TABLE_1024, 857 ALLOC_TABLE_1024, 858 ALLOC_TABLE_1024, 859 ALLOC_TABLE_1024 860 }; 861 862 863 /* Used to constrain audit-log stack traces */ 864 caddr_t umem_min_stack; 865 caddr_t umem_max_stack; 866 867 868 #define UMERR_MODIFIED 0 /* buffer modified while on freelist */ 869 #define UMERR_REDZONE 1 /* redzone violation (write past end of buf) */ 870 #define UMERR_DUPFREE 2 /* freed a buffer twice */ 871 #define UMERR_BADADDR 3 /* freed a bad (unallocated) address */ 872 #define UMERR_BADBUFTAG 4 /* buftag corrupted */ 873 #define UMERR_BADBUFCTL 5 /* bufctl corrupted */ 874 #define UMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ 875 #define UMERR_BADSIZE 7 /* alloc size != free size */ 876 #define UMERR_BADBASE 8 /* buffer base address wrong */ 877 878 struct { 879 hrtime_t ump_timestamp; /* timestamp of error */ 880 int ump_error; /* type of umem error (UMERR_*) */ 881 void *ump_buffer; /* buffer that induced abort */ 882 void *ump_realbuf; /* real start address for buffer */ 883 umem_cache_t *ump_cache; /* buffer's cache according to client */ 884 umem_cache_t *ump_realcache; /* actual cache containing buffer */ 885 umem_slab_t *ump_slab; /* slab accoring to umem_findslab() */ 886 umem_bufctl_t *ump_bufctl; /* bufctl */ 887 } umem_abort_info; 888 889 static void 890 copy_pattern(uint64_t pattern, void *buf_arg, size_t size) 891 { 892 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 893 uint64_t *buf = buf_arg; 894 895 while (buf < bufend) 896 *buf++ = pattern; 897 } 898 899 static void * 900 verify_pattern(uint64_t pattern, void *buf_arg, size_t size) 901 { 902 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 903 uint64_t *buf; 904 905 for (buf = buf_arg; buf < bufend; buf++) 906 if (*buf != pattern) 907 return (buf); 908 return (NULL); 909 } 910 911 static void * 912 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) 913 { 914 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 915 uint64_t *buf; 916 917 for (buf = buf_arg; buf < bufend; buf++) { 918 if (*buf != old) { 919 copy_pattern(old, buf_arg, 920 (char *)buf - (char *)buf_arg); 921 return (buf); 922 } 923 *buf = new; 924 } 925 926 return (NULL); 927 } 928 929 void 930 umem_cache_applyall(void (*func)(umem_cache_t *)) 931 { 932 umem_cache_t *cp; 933 934 (void) mutex_lock(&umem_cache_lock); 935 for (cp = umem_null_cache.cache_next; cp != &umem_null_cache; 936 cp = cp->cache_next) 937 func(cp); 938 (void) mutex_unlock(&umem_cache_lock); 939 } 940 941 static void 942 umem_add_update_unlocked(umem_cache_t *cp, int flags) 943 { 944 umem_cache_t *cnext, *cprev; 945 946 flags &= ~UMU_ACTIVE; 947 948 if (!flags) 949 return; 950 951 if (cp->cache_uflags & UMU_ACTIVE) { 952 cp->cache_uflags |= flags; 953 } else { 954 if (cp->cache_unext != NULL) { 955 ASSERT(cp->cache_uflags != 0); 956 cp->cache_uflags |= flags; 957 } else { 958 ASSERT(cp->cache_uflags == 0); 959 cp->cache_uflags = flags; 960 cp->cache_unext = cnext = &umem_null_cache; 961 cp->cache_uprev = cprev = umem_null_cache.cache_uprev; 962 cnext->cache_uprev = cp; 963 cprev->cache_unext = cp; 964 } 965 } 966 } 967 968 static void 969 umem_add_update(umem_cache_t *cp, int flags) 970 { 971 (void) mutex_lock(&umem_update_lock); 972 973 umem_add_update_unlocked(cp, flags); 974 975 if (!IN_UPDATE()) 976 (void) cond_broadcast(&umem_update_cv); 977 978 (void) mutex_unlock(&umem_update_lock); 979 } 980 981 /* 982 * Remove a cache from the update list, waiting for any in-progress work to 983 * complete first. 984 */ 985 static void 986 umem_remove_updates(umem_cache_t *cp) 987 { 988 (void) mutex_lock(&umem_update_lock); 989 990 /* 991 * Get it out of the active state 992 */ 993 while (cp->cache_uflags & UMU_ACTIVE) { 994 int cancel_state; 995 996 ASSERT(cp->cache_unext == NULL); 997 998 cp->cache_uflags |= UMU_NOTIFY; 999 1000 /* 1001 * Make sure the update state is sane, before we wait 1002 */ 1003 ASSERT(umem_update_thr != 0 || umem_st_update_thr != 0); 1004 ASSERT(umem_update_thr != thr_self() && 1005 umem_st_update_thr != thr_self()); 1006 1007 (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, 1008 &cancel_state); 1009 (void) cond_wait(&umem_update_cv, &umem_update_lock); 1010 (void) pthread_setcancelstate(cancel_state, NULL); 1011 } 1012 /* 1013 * Get it out of the Work Requested state 1014 */ 1015 if (cp->cache_unext != NULL) { 1016 cp->cache_uprev->cache_unext = cp->cache_unext; 1017 cp->cache_unext->cache_uprev = cp->cache_uprev; 1018 cp->cache_uprev = cp->cache_unext = NULL; 1019 cp->cache_uflags = 0; 1020 } 1021 /* 1022 * Make sure it is in the Inactive state 1023 */ 1024 ASSERT(cp->cache_unext == NULL && cp->cache_uflags == 0); 1025 (void) mutex_unlock(&umem_update_lock); 1026 } 1027 1028 static void 1029 umem_updateall(int flags) 1030 { 1031 umem_cache_t *cp; 1032 1033 /* 1034 * NOTE: To prevent deadlock, umem_cache_lock is always acquired first. 1035 * 1036 * (umem_add_update is called from things run via umem_cache_applyall) 1037 */ 1038 (void) mutex_lock(&umem_cache_lock); 1039 (void) mutex_lock(&umem_update_lock); 1040 1041 for (cp = umem_null_cache.cache_next; cp != &umem_null_cache; 1042 cp = cp->cache_next) 1043 umem_add_update_unlocked(cp, flags); 1044 1045 if (!IN_UPDATE()) 1046 (void) cond_broadcast(&umem_update_cv); 1047 1048 (void) mutex_unlock(&umem_update_lock); 1049 (void) mutex_unlock(&umem_cache_lock); 1050 } 1051 1052 /* 1053 * Debugging support. Given a buffer address, find its slab. 1054 */ 1055 static umem_slab_t * 1056 umem_findslab(umem_cache_t *cp, void *buf) 1057 { 1058 umem_slab_t *sp; 1059 1060 (void) mutex_lock(&cp->cache_lock); 1061 for (sp = cp->cache_nullslab.slab_next; 1062 sp != &cp->cache_nullslab; sp = sp->slab_next) { 1063 if (UMEM_SLAB_MEMBER(sp, buf)) { 1064 (void) mutex_unlock(&cp->cache_lock); 1065 return (sp); 1066 } 1067 } 1068 (void) mutex_unlock(&cp->cache_lock); 1069 1070 return (NULL); 1071 } 1072 1073 static void 1074 umem_error(int error, umem_cache_t *cparg, void *bufarg) 1075 { 1076 umem_buftag_t *btp = NULL; 1077 umem_bufctl_t *bcp = NULL; 1078 umem_cache_t *cp = cparg; 1079 umem_slab_t *sp; 1080 uint64_t *off; 1081 void *buf = bufarg; 1082 1083 int old_logging = umem_logging; 1084 1085 umem_logging = 0; /* stop logging when a bad thing happens */ 1086 1087 umem_abort_info.ump_timestamp = gethrtime(); 1088 1089 sp = umem_findslab(cp, buf); 1090 if (sp == NULL) { 1091 for (cp = umem_null_cache.cache_prev; cp != &umem_null_cache; 1092 cp = cp->cache_prev) { 1093 if ((sp = umem_findslab(cp, buf)) != NULL) 1094 break; 1095 } 1096 } 1097 1098 if (sp == NULL) { 1099 cp = NULL; 1100 error = UMERR_BADADDR; 1101 } else { 1102 if (cp != cparg) 1103 error = UMERR_BADCACHE; 1104 else 1105 buf = (char *)bufarg - ((uintptr_t)bufarg - 1106 (uintptr_t)sp->slab_base) % cp->cache_chunksize; 1107 if (buf != bufarg) 1108 error = UMERR_BADBASE; 1109 if (cp->cache_flags & UMF_BUFTAG) 1110 btp = UMEM_BUFTAG(cp, buf); 1111 if (cp->cache_flags & UMF_HASH) { 1112 (void) mutex_lock(&cp->cache_lock); 1113 for (bcp = *UMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) 1114 if (bcp->bc_addr == buf) 1115 break; 1116 (void) mutex_unlock(&cp->cache_lock); 1117 if (bcp == NULL && btp != NULL) 1118 bcp = btp->bt_bufctl; 1119 if (umem_findslab(cp->cache_bufctl_cache, bcp) == 1120 NULL || P2PHASE((uintptr_t)bcp, UMEM_ALIGN) || 1121 bcp->bc_addr != buf) { 1122 error = UMERR_BADBUFCTL; 1123 bcp = NULL; 1124 } 1125 } 1126 } 1127 1128 umem_abort_info.ump_error = error; 1129 umem_abort_info.ump_buffer = bufarg; 1130 umem_abort_info.ump_realbuf = buf; 1131 umem_abort_info.ump_cache = cparg; 1132 umem_abort_info.ump_realcache = cp; 1133 umem_abort_info.ump_slab = sp; 1134 umem_abort_info.ump_bufctl = bcp; 1135 1136 umem_printf("umem allocator: "); 1137 1138 switch (error) { 1139 1140 case UMERR_MODIFIED: 1141 umem_printf("buffer modified after being freed\n"); 1142 off = verify_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify); 1143 if (off == NULL) /* shouldn't happen */ 1144 off = buf; 1145 umem_printf("modification occurred at offset 0x%lx " 1146 "(0x%llx replaced by 0x%llx)\n", 1147 (uintptr_t)off - (uintptr_t)buf, 1148 (longlong_t)UMEM_FREE_PATTERN, (longlong_t)*off); 1149 break; 1150 1151 case UMERR_REDZONE: 1152 umem_printf("redzone violation: write past end of buffer\n"); 1153 break; 1154 1155 case UMERR_BADADDR: 1156 umem_printf("invalid free: buffer not in cache\n"); 1157 break; 1158 1159 case UMERR_DUPFREE: 1160 umem_printf("duplicate free: buffer freed twice\n"); 1161 break; 1162 1163 case UMERR_BADBUFTAG: 1164 umem_printf("boundary tag corrupted\n"); 1165 umem_printf("bcp ^ bxstat = %lx, should be %lx\n", 1166 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, 1167 UMEM_BUFTAG_FREE); 1168 break; 1169 1170 case UMERR_BADBUFCTL: 1171 umem_printf("bufctl corrupted\n"); 1172 break; 1173 1174 case UMERR_BADCACHE: 1175 umem_printf("buffer freed to wrong cache\n"); 1176 umem_printf("buffer was allocated from %s,\n", cp->cache_name); 1177 umem_printf("caller attempting free to %s.\n", 1178 cparg->cache_name); 1179 break; 1180 1181 case UMERR_BADSIZE: 1182 umem_printf("bad free: free size (%u) != alloc size (%u)\n", 1183 UMEM_SIZE_DECODE(((uint32_t *)btp)[0]), 1184 UMEM_SIZE_DECODE(((uint32_t *)btp)[1])); 1185 break; 1186 1187 case UMERR_BADBASE: 1188 umem_printf("bad free: free address (%p) != alloc address " 1189 "(%p)\n", bufarg, buf); 1190 break; 1191 } 1192 1193 umem_printf("buffer=%p bufctl=%p cache: %s\n", 1194 bufarg, (void *)bcp, cparg->cache_name); 1195 1196 if (bcp != NULL && (cp->cache_flags & UMF_AUDIT) && 1197 error != UMERR_BADBUFCTL) { 1198 int d; 1199 timespec_t ts; 1200 hrtime_t diff; 1201 umem_bufctl_audit_t *bcap = (umem_bufctl_audit_t *)bcp; 1202 1203 diff = umem_abort_info.ump_timestamp - bcap->bc_timestamp; 1204 ts.tv_sec = diff / NANOSEC; 1205 ts.tv_nsec = diff % NANOSEC; 1206 1207 umem_printf("previous transaction on buffer %p:\n", buf); 1208 umem_printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", 1209 (void *)(intptr_t)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, 1210 (void *)sp, cp->cache_name); 1211 for (d = 0; d < MIN(bcap->bc_depth, umem_stack_depth); d++) { 1212 (void) print_sym((void *)bcap->bc_stack[d]); 1213 umem_printf("\n"); 1214 } 1215 } 1216 1217 umem_err_recoverable("umem: heap corruption detected"); 1218 1219 umem_logging = old_logging; /* resume logging */ 1220 } 1221 1222 void 1223 umem_nofail_callback(umem_nofail_callback_t *cb) 1224 { 1225 nofail_callback = cb; 1226 } 1227 1228 static int 1229 umem_alloc_retry(umem_cache_t *cp, int umflag) 1230 { 1231 if (cp == &umem_null_cache) { 1232 if (umem_init()) 1233 return (1); /* retry */ 1234 /* 1235 * Initialization failed. Do normal failure processing. 1236 */ 1237 } 1238 if (umem_flags & UMF_CHECKNULL) { 1239 umem_err_recoverable("umem: out of heap space"); 1240 } 1241 if (umflag & UMEM_NOFAIL) { 1242 int def_result = UMEM_CALLBACK_EXIT(255); 1243 int result = def_result; 1244 umem_nofail_callback_t *callback = nofail_callback; 1245 1246 if (callback != NULL) 1247 result = callback(); 1248 1249 if (result == UMEM_CALLBACK_RETRY) 1250 return (1); 1251 1252 if ((result & ~0xFF) != UMEM_CALLBACK_EXIT(0)) { 1253 log_message("nofail callback returned %x\n", result); 1254 result = def_result; 1255 } 1256 1257 /* 1258 * only one thread will call exit 1259 */ 1260 if (umem_nofail_exit_thr == thr_self()) 1261 umem_panic("recursive UMEM_CALLBACK_EXIT()\n"); 1262 1263 (void) mutex_lock(&umem_nofail_exit_lock); 1264 umem_nofail_exit_thr = thr_self(); 1265 exit(result & 0xFF); 1266 /*NOTREACHED*/ 1267 } 1268 return (0); 1269 } 1270 1271 static umem_log_header_t * 1272 umem_log_init(size_t logsize) 1273 { 1274 umem_log_header_t *lhp; 1275 int nchunks = 4 * umem_max_ncpus; 1276 size_t lhsize = offsetof(umem_log_header_t, lh_cpu[umem_max_ncpus]); 1277 int i; 1278 1279 if (logsize == 0) 1280 return (NULL); 1281 1282 /* 1283 * Make sure that lhp->lh_cpu[] is nicely aligned 1284 * to prevent false sharing of cache lines. 1285 */ 1286 lhsize = P2ROUNDUP(lhsize, UMEM_ALIGN); 1287 lhp = vmem_xalloc(umem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, 1288 NULL, NULL, VM_NOSLEEP); 1289 if (lhp == NULL) 1290 goto fail; 1291 1292 bzero(lhp, lhsize); 1293 1294 (void) mutex_init(&lhp->lh_lock, USYNC_THREAD, NULL); 1295 lhp->lh_nchunks = nchunks; 1296 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks, PAGESIZE); 1297 if (lhp->lh_chunksize == 0) 1298 lhp->lh_chunksize = PAGESIZE; 1299 1300 lhp->lh_base = vmem_alloc(umem_log_arena, 1301 lhp->lh_chunksize * nchunks, VM_NOSLEEP); 1302 if (lhp->lh_base == NULL) 1303 goto fail; 1304 1305 lhp->lh_free = vmem_alloc(umem_log_arena, 1306 nchunks * sizeof (int), VM_NOSLEEP); 1307 if (lhp->lh_free == NULL) 1308 goto fail; 1309 1310 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); 1311 1312 for (i = 0; i < umem_max_ncpus; i++) { 1313 umem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; 1314 (void) mutex_init(&clhp->clh_lock, USYNC_THREAD, NULL); 1315 clhp->clh_chunk = i; 1316 } 1317 1318 for (i = umem_max_ncpus; i < nchunks; i++) 1319 lhp->lh_free[i] = i; 1320 1321 lhp->lh_head = umem_max_ncpus; 1322 lhp->lh_tail = 0; 1323 1324 return (lhp); 1325 1326 fail: 1327 if (lhp != NULL) { 1328 if (lhp->lh_base != NULL) 1329 vmem_free(umem_log_arena, lhp->lh_base, 1330 lhp->lh_chunksize * nchunks); 1331 1332 vmem_xfree(umem_log_arena, lhp, lhsize); 1333 } 1334 return (NULL); 1335 } 1336 1337 static void * 1338 umem_log_enter(umem_log_header_t *lhp, void *data, size_t size) 1339 { 1340 void *logspace; 1341 umem_cpu_log_header_t *clhp; 1342 1343 if (lhp == NULL || umem_logging == 0) 1344 return (NULL); 1345 1346 clhp = &lhp->lh_cpu[CPU(umem_cpu_mask)->cpu_number]; 1347 1348 (void) mutex_lock(&clhp->clh_lock); 1349 clhp->clh_hits++; 1350 if (size > clhp->clh_avail) { 1351 (void) mutex_lock(&lhp->lh_lock); 1352 lhp->lh_hits++; 1353 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; 1354 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; 1355 clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; 1356 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; 1357 clhp->clh_current = lhp->lh_base + 1358 clhp->clh_chunk * lhp->lh_chunksize; 1359 clhp->clh_avail = lhp->lh_chunksize; 1360 if (size > lhp->lh_chunksize) 1361 size = lhp->lh_chunksize; 1362 (void) mutex_unlock(&lhp->lh_lock); 1363 } 1364 logspace = clhp->clh_current; 1365 clhp->clh_current += size; 1366 clhp->clh_avail -= size; 1367 bcopy(data, logspace, size); 1368 (void) mutex_unlock(&clhp->clh_lock); 1369 return (logspace); 1370 } 1371 1372 #define UMEM_AUDIT(lp, cp, bcp) \ 1373 { \ 1374 umem_bufctl_audit_t *_bcp = (umem_bufctl_audit_t *)(bcp); \ 1375 _bcp->bc_timestamp = gethrtime(); \ 1376 _bcp->bc_thread = thr_self(); \ 1377 _bcp->bc_depth = getpcstack(_bcp->bc_stack, umem_stack_depth, \ 1378 (cp != NULL) && (cp->cache_flags & UMF_CHECKSIGNAL)); \ 1379 _bcp->bc_lastlog = umem_log_enter((lp), _bcp, \ 1380 UMEM_BUFCTL_AUDIT_SIZE); \ 1381 } 1382 1383 static void 1384 umem_log_event(umem_log_header_t *lp, umem_cache_t *cp, 1385 umem_slab_t *sp, void *addr) 1386 { 1387 umem_bufctl_audit_t *bcp; 1388 UMEM_LOCAL_BUFCTL_AUDIT(&bcp); 1389 1390 bzero(bcp, UMEM_BUFCTL_AUDIT_SIZE); 1391 bcp->bc_addr = addr; 1392 bcp->bc_slab = sp; 1393 bcp->bc_cache = cp; 1394 UMEM_AUDIT(lp, cp, bcp); 1395 } 1396 1397 /* 1398 * Create a new slab for cache cp. 1399 */ 1400 static umem_slab_t * 1401 umem_slab_create(umem_cache_t *cp, int umflag) 1402 { 1403 size_t slabsize = cp->cache_slabsize; 1404 size_t chunksize = cp->cache_chunksize; 1405 int cache_flags = cp->cache_flags; 1406 size_t color, chunks; 1407 char *buf, *slab; 1408 umem_slab_t *sp; 1409 umem_bufctl_t *bcp; 1410 vmem_t *vmp = cp->cache_arena; 1411 1412 color = cp->cache_color + cp->cache_align; 1413 if (color > cp->cache_maxcolor) 1414 color = cp->cache_mincolor; 1415 cp->cache_color = color; 1416 1417 slab = vmem_alloc(vmp, slabsize, UMEM_VMFLAGS(umflag)); 1418 1419 if (slab == NULL) 1420 goto vmem_alloc_failure; 1421 1422 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); 1423 1424 if (!(cp->cache_cflags & UMC_NOTOUCH) && 1425 (cp->cache_flags & UMF_DEADBEEF)) 1426 copy_pattern(UMEM_UNINITIALIZED_PATTERN, slab, slabsize); 1427 1428 if (cache_flags & UMF_HASH) { 1429 if ((sp = _umem_cache_alloc(umem_slab_cache, umflag)) == NULL) 1430 goto slab_alloc_failure; 1431 chunks = (slabsize - color) / chunksize; 1432 } else { 1433 sp = UMEM_SLAB(cp, slab); 1434 chunks = (slabsize - sizeof (umem_slab_t) - color) / chunksize; 1435 } 1436 1437 sp->slab_cache = cp; 1438 sp->slab_head = NULL; 1439 sp->slab_refcnt = 0; 1440 sp->slab_base = buf = slab + color; 1441 sp->slab_chunks = chunks; 1442 1443 ASSERT(chunks > 0); 1444 while (chunks-- != 0) { 1445 if (cache_flags & UMF_HASH) { 1446 bcp = _umem_cache_alloc(cp->cache_bufctl_cache, umflag); 1447 if (bcp == NULL) 1448 goto bufctl_alloc_failure; 1449 if (cache_flags & UMF_AUDIT) { 1450 umem_bufctl_audit_t *bcap = 1451 (umem_bufctl_audit_t *)bcp; 1452 bzero(bcap, UMEM_BUFCTL_AUDIT_SIZE); 1453 bcap->bc_cache = cp; 1454 } 1455 bcp->bc_addr = buf; 1456 bcp->bc_slab = sp; 1457 } else { 1458 bcp = UMEM_BUFCTL(cp, buf); 1459 } 1460 if (cache_flags & UMF_BUFTAG) { 1461 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1462 btp->bt_redzone = UMEM_REDZONE_PATTERN; 1463 btp->bt_bufctl = bcp; 1464 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE; 1465 if (cache_flags & UMF_DEADBEEF) { 1466 copy_pattern(UMEM_FREE_PATTERN, buf, 1467 cp->cache_verify); 1468 } 1469 } 1470 bcp->bc_next = sp->slab_head; 1471 sp->slab_head = bcp; 1472 buf += chunksize; 1473 } 1474 1475 umem_log_event(umem_slab_log, cp, sp, slab); 1476 1477 return (sp); 1478 1479 bufctl_alloc_failure: 1480 1481 while ((bcp = sp->slab_head) != NULL) { 1482 sp->slab_head = bcp->bc_next; 1483 _umem_cache_free(cp->cache_bufctl_cache, bcp); 1484 } 1485 _umem_cache_free(umem_slab_cache, sp); 1486 1487 slab_alloc_failure: 1488 1489 vmem_free(vmp, slab, slabsize); 1490 1491 vmem_alloc_failure: 1492 1493 umem_log_event(umem_failure_log, cp, NULL, NULL); 1494 atomic_add_64(&cp->cache_alloc_fail, 1); 1495 1496 return (NULL); 1497 } 1498 1499 /* 1500 * Destroy a slab. 1501 */ 1502 static void 1503 umem_slab_destroy(umem_cache_t *cp, umem_slab_t *sp) 1504 { 1505 vmem_t *vmp = cp->cache_arena; 1506 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); 1507 1508 if (cp->cache_flags & UMF_HASH) { 1509 umem_bufctl_t *bcp; 1510 while ((bcp = sp->slab_head) != NULL) { 1511 sp->slab_head = bcp->bc_next; 1512 _umem_cache_free(cp->cache_bufctl_cache, bcp); 1513 } 1514 _umem_cache_free(umem_slab_cache, sp); 1515 } 1516 vmem_free(vmp, slab, cp->cache_slabsize); 1517 } 1518 1519 /* 1520 * Allocate a raw (unconstructed) buffer from cp's slab layer. 1521 */ 1522 static void * 1523 umem_slab_alloc(umem_cache_t *cp, int umflag) 1524 { 1525 umem_bufctl_t *bcp, **hash_bucket; 1526 umem_slab_t *sp; 1527 void *buf; 1528 1529 (void) mutex_lock(&cp->cache_lock); 1530 cp->cache_slab_alloc++; 1531 sp = cp->cache_freelist; 1532 ASSERT(sp->slab_cache == cp); 1533 if (sp->slab_head == NULL) { 1534 /* 1535 * The freelist is empty. Create a new slab. 1536 */ 1537 (void) mutex_unlock(&cp->cache_lock); 1538 if (cp == &umem_null_cache) 1539 return (NULL); 1540 if ((sp = umem_slab_create(cp, umflag)) == NULL) 1541 return (NULL); 1542 (void) mutex_lock(&cp->cache_lock); 1543 cp->cache_slab_create++; 1544 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) 1545 cp->cache_bufmax = cp->cache_buftotal; 1546 sp->slab_next = cp->cache_freelist; 1547 sp->slab_prev = cp->cache_freelist->slab_prev; 1548 sp->slab_next->slab_prev = sp; 1549 sp->slab_prev->slab_next = sp; 1550 cp->cache_freelist = sp; 1551 } 1552 1553 sp->slab_refcnt++; 1554 ASSERT(sp->slab_refcnt <= sp->slab_chunks); 1555 1556 /* 1557 * If we're taking the last buffer in the slab, 1558 * remove the slab from the cache's freelist. 1559 */ 1560 bcp = sp->slab_head; 1561 if ((sp->slab_head = bcp->bc_next) == NULL) { 1562 cp->cache_freelist = sp->slab_next; 1563 ASSERT(sp->slab_refcnt == sp->slab_chunks); 1564 } 1565 1566 if (cp->cache_flags & UMF_HASH) { 1567 /* 1568 * Add buffer to allocated-address hash table. 1569 */ 1570 buf = bcp->bc_addr; 1571 hash_bucket = UMEM_HASH(cp, buf); 1572 bcp->bc_next = *hash_bucket; 1573 *hash_bucket = bcp; 1574 if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) { 1575 UMEM_AUDIT(umem_transaction_log, cp, bcp); 1576 } 1577 } else { 1578 buf = UMEM_BUF(cp, bcp); 1579 } 1580 1581 ASSERT(UMEM_SLAB_MEMBER(sp, buf)); 1582 1583 (void) mutex_unlock(&cp->cache_lock); 1584 1585 return (buf); 1586 } 1587 1588 /* 1589 * Free a raw (unconstructed) buffer to cp's slab layer. 1590 */ 1591 static void 1592 umem_slab_free(umem_cache_t *cp, void *buf) 1593 { 1594 umem_slab_t *sp; 1595 umem_bufctl_t *bcp, **prev_bcpp; 1596 1597 ASSERT(buf != NULL); 1598 1599 (void) mutex_lock(&cp->cache_lock); 1600 cp->cache_slab_free++; 1601 1602 if (cp->cache_flags & UMF_HASH) { 1603 /* 1604 * Look up buffer in allocated-address hash table. 1605 */ 1606 prev_bcpp = UMEM_HASH(cp, buf); 1607 while ((bcp = *prev_bcpp) != NULL) { 1608 if (bcp->bc_addr == buf) { 1609 *prev_bcpp = bcp->bc_next; 1610 sp = bcp->bc_slab; 1611 break; 1612 } 1613 cp->cache_lookup_depth++; 1614 prev_bcpp = &bcp->bc_next; 1615 } 1616 } else { 1617 bcp = UMEM_BUFCTL(cp, buf); 1618 sp = UMEM_SLAB(cp, buf); 1619 } 1620 1621 if (bcp == NULL || sp->slab_cache != cp || !UMEM_SLAB_MEMBER(sp, buf)) { 1622 (void) mutex_unlock(&cp->cache_lock); 1623 umem_error(UMERR_BADADDR, cp, buf); 1624 return; 1625 } 1626 1627 if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) { 1628 if (cp->cache_flags & UMF_CONTENTS) 1629 ((umem_bufctl_audit_t *)bcp)->bc_contents = 1630 umem_log_enter(umem_content_log, buf, 1631 cp->cache_contents); 1632 UMEM_AUDIT(umem_transaction_log, cp, bcp); 1633 } 1634 1635 /* 1636 * If this slab isn't currently on the freelist, put it there. 1637 */ 1638 if (sp->slab_head == NULL) { 1639 ASSERT(sp->slab_refcnt == sp->slab_chunks); 1640 ASSERT(cp->cache_freelist != sp); 1641 sp->slab_next->slab_prev = sp->slab_prev; 1642 sp->slab_prev->slab_next = sp->slab_next; 1643 sp->slab_next = cp->cache_freelist; 1644 sp->slab_prev = cp->cache_freelist->slab_prev; 1645 sp->slab_next->slab_prev = sp; 1646 sp->slab_prev->slab_next = sp; 1647 cp->cache_freelist = sp; 1648 } 1649 1650 bcp->bc_next = sp->slab_head; 1651 sp->slab_head = bcp; 1652 1653 ASSERT(sp->slab_refcnt >= 1); 1654 if (--sp->slab_refcnt == 0) { 1655 /* 1656 * There are no outstanding allocations from this slab, 1657 * so we can reclaim the memory. 1658 */ 1659 sp->slab_next->slab_prev = sp->slab_prev; 1660 sp->slab_prev->slab_next = sp->slab_next; 1661 if (sp == cp->cache_freelist) 1662 cp->cache_freelist = sp->slab_next; 1663 cp->cache_slab_destroy++; 1664 cp->cache_buftotal -= sp->slab_chunks; 1665 (void) mutex_unlock(&cp->cache_lock); 1666 umem_slab_destroy(cp, sp); 1667 return; 1668 } 1669 (void) mutex_unlock(&cp->cache_lock); 1670 } 1671 1672 static int 1673 umem_cache_alloc_debug(umem_cache_t *cp, void *buf, int umflag) 1674 { 1675 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1676 umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl; 1677 uint32_t mtbf; 1678 int flags_nfatal; 1679 1680 if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) { 1681 umem_error(UMERR_BADBUFTAG, cp, buf); 1682 return (-1); 1683 } 1684 1685 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_ALLOC; 1686 1687 if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) { 1688 umem_error(UMERR_BADBUFCTL, cp, buf); 1689 return (-1); 1690 } 1691 1692 btp->bt_redzone = UMEM_REDZONE_PATTERN; 1693 1694 if (cp->cache_flags & UMF_DEADBEEF) { 1695 if (verify_and_copy_pattern(UMEM_FREE_PATTERN, 1696 UMEM_UNINITIALIZED_PATTERN, buf, cp->cache_verify)) { 1697 umem_error(UMERR_MODIFIED, cp, buf); 1698 return (-1); 1699 } 1700 } 1701 1702 if ((mtbf = umem_mtbf | cp->cache_mtbf) != 0 && 1703 gethrtime() % mtbf == 0 && 1704 (umflag & (UMEM_FATAL_FLAGS)) == 0) { 1705 umem_log_event(umem_failure_log, cp, NULL, NULL); 1706 } else { 1707 mtbf = 0; 1708 } 1709 1710 /* 1711 * We do not pass fatal flags on to the constructor. This prevents 1712 * leaking buffers in the event of a subordinate constructor failing. 1713 */ 1714 flags_nfatal = UMEM_DEFAULT; 1715 if (mtbf || (cp->cache_constructor != NULL && 1716 cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0)) { 1717 atomic_add_64(&cp->cache_alloc_fail, 1); 1718 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE; 1719 copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify); 1720 umem_slab_free(cp, buf); 1721 return (-1); 1722 } 1723 1724 if (cp->cache_flags & UMF_AUDIT) { 1725 UMEM_AUDIT(umem_transaction_log, cp, bcp); 1726 } 1727 1728 return (0); 1729 } 1730 1731 static int 1732 umem_cache_free_debug(umem_cache_t *cp, void *buf) 1733 { 1734 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1735 umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl; 1736 umem_slab_t *sp; 1737 1738 if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_ALLOC)) { 1739 if (btp->bt_bxstat == ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) { 1740 umem_error(UMERR_DUPFREE, cp, buf); 1741 return (-1); 1742 } 1743 sp = umem_findslab(cp, buf); 1744 if (sp == NULL || sp->slab_cache != cp) 1745 umem_error(UMERR_BADADDR, cp, buf); 1746 else 1747 umem_error(UMERR_REDZONE, cp, buf); 1748 return (-1); 1749 } 1750 1751 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE; 1752 1753 if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) { 1754 umem_error(UMERR_BADBUFCTL, cp, buf); 1755 return (-1); 1756 } 1757 1758 if (btp->bt_redzone != UMEM_REDZONE_PATTERN) { 1759 umem_error(UMERR_REDZONE, cp, buf); 1760 return (-1); 1761 } 1762 1763 if (cp->cache_flags & UMF_AUDIT) { 1764 if (cp->cache_flags & UMF_CONTENTS) 1765 bcp->bc_contents = umem_log_enter(umem_content_log, 1766 buf, cp->cache_contents); 1767 UMEM_AUDIT(umem_transaction_log, cp, bcp); 1768 } 1769 1770 if (cp->cache_destructor != NULL) 1771 cp->cache_destructor(buf, cp->cache_private); 1772 1773 if (cp->cache_flags & UMF_DEADBEEF) 1774 copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify); 1775 1776 return (0); 1777 } 1778 1779 /* 1780 * Free each object in magazine mp to cp's slab layer, and free mp itself. 1781 */ 1782 static void 1783 umem_magazine_destroy(umem_cache_t *cp, umem_magazine_t *mp, int nrounds) 1784 { 1785 int round; 1786 1787 ASSERT(cp->cache_next == NULL || IN_UPDATE()); 1788 1789 for (round = 0; round < nrounds; round++) { 1790 void *buf = mp->mag_round[round]; 1791 1792 if ((cp->cache_flags & UMF_DEADBEEF) && 1793 verify_pattern(UMEM_FREE_PATTERN, buf, 1794 cp->cache_verify) != NULL) { 1795 umem_error(UMERR_MODIFIED, cp, buf); 1796 continue; 1797 } 1798 1799 if (!(cp->cache_flags & UMF_BUFTAG) && 1800 cp->cache_destructor != NULL) 1801 cp->cache_destructor(buf, cp->cache_private); 1802 1803 umem_slab_free(cp, buf); 1804 } 1805 ASSERT(UMEM_MAGAZINE_VALID(cp, mp)); 1806 _umem_cache_free(cp->cache_magtype->mt_cache, mp); 1807 } 1808 1809 /* 1810 * Allocate a magazine from the depot. 1811 */ 1812 static umem_magazine_t * 1813 umem_depot_alloc(umem_cache_t *cp, umem_maglist_t *mlp) 1814 { 1815 umem_magazine_t *mp; 1816 1817 /* 1818 * If we can't get the depot lock without contention, 1819 * update our contention count. We use the depot 1820 * contention rate to determine whether we need to 1821 * increase the magazine size for better scalability. 1822 */ 1823 if (mutex_trylock(&cp->cache_depot_lock) != 0) { 1824 (void) mutex_lock(&cp->cache_depot_lock); 1825 cp->cache_depot_contention++; 1826 } 1827 1828 if ((mp = mlp->ml_list) != NULL) { 1829 ASSERT(UMEM_MAGAZINE_VALID(cp, mp)); 1830 mlp->ml_list = mp->mag_next; 1831 if (--mlp->ml_total < mlp->ml_min) 1832 mlp->ml_min = mlp->ml_total; 1833 mlp->ml_alloc++; 1834 } 1835 1836 (void) mutex_unlock(&cp->cache_depot_lock); 1837 1838 return (mp); 1839 } 1840 1841 /* 1842 * Free a magazine to the depot. 1843 */ 1844 static void 1845 umem_depot_free(umem_cache_t *cp, umem_maglist_t *mlp, umem_magazine_t *mp) 1846 { 1847 (void) mutex_lock(&cp->cache_depot_lock); 1848 ASSERT(UMEM_MAGAZINE_VALID(cp, mp)); 1849 mp->mag_next = mlp->ml_list; 1850 mlp->ml_list = mp; 1851 mlp->ml_total++; 1852 (void) mutex_unlock(&cp->cache_depot_lock); 1853 } 1854 1855 /* 1856 * Update the working set statistics for cp's depot. 1857 */ 1858 static void 1859 umem_depot_ws_update(umem_cache_t *cp) 1860 { 1861 (void) mutex_lock(&cp->cache_depot_lock); 1862 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; 1863 cp->cache_full.ml_min = cp->cache_full.ml_total; 1864 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; 1865 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 1866 (void) mutex_unlock(&cp->cache_depot_lock); 1867 } 1868 1869 /* 1870 * Reap all magazines that have fallen out of the depot's working set. 1871 */ 1872 static void 1873 umem_depot_ws_reap(umem_cache_t *cp) 1874 { 1875 long reap; 1876 umem_magazine_t *mp; 1877 1878 ASSERT(cp->cache_next == NULL || IN_REAP()); 1879 1880 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 1881 while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_full)) != NULL) 1882 umem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); 1883 1884 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); 1885 while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_empty)) != NULL) 1886 umem_magazine_destroy(cp, mp, 0); 1887 } 1888 1889 static void 1890 umem_cpu_reload(umem_cpu_cache_t *ccp, umem_magazine_t *mp, int rounds) 1891 { 1892 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || 1893 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); 1894 ASSERT(ccp->cc_magsize > 0); 1895 1896 ccp->cc_ploaded = ccp->cc_loaded; 1897 ccp->cc_prounds = ccp->cc_rounds; 1898 ccp->cc_loaded = mp; 1899 ccp->cc_rounds = rounds; 1900 } 1901 1902 /* 1903 * Allocate a constructed object from cache cp. 1904 */ 1905 #pragma weak umem_cache_alloc = _umem_cache_alloc 1906 void * 1907 _umem_cache_alloc(umem_cache_t *cp, int umflag) 1908 { 1909 umem_cpu_cache_t *ccp; 1910 umem_magazine_t *fmp; 1911 void *buf; 1912 int flags_nfatal; 1913 1914 retry: 1915 ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask)); 1916 (void) mutex_lock(&ccp->cc_lock); 1917 for (;;) { 1918 /* 1919 * If there's an object available in the current CPU's 1920 * loaded magazine, just take it and return. 1921 */ 1922 if (ccp->cc_rounds > 0) { 1923 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; 1924 ccp->cc_alloc++; 1925 (void) mutex_unlock(&ccp->cc_lock); 1926 if ((ccp->cc_flags & UMF_BUFTAG) && 1927 umem_cache_alloc_debug(cp, buf, umflag) == -1) { 1928 if (umem_alloc_retry(cp, umflag)) { 1929 goto retry; 1930 } 1931 1932 return (NULL); 1933 } 1934 return (buf); 1935 } 1936 1937 /* 1938 * The loaded magazine is empty. If the previously loaded 1939 * magazine was full, exchange them and try again. 1940 */ 1941 if (ccp->cc_prounds > 0) { 1942 umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 1943 continue; 1944 } 1945 1946 /* 1947 * If the magazine layer is disabled, break out now. 1948 */ 1949 if (ccp->cc_magsize == 0) 1950 break; 1951 1952 /* 1953 * Try to get a full magazine from the depot. 1954 */ 1955 fmp = umem_depot_alloc(cp, &cp->cache_full); 1956 if (fmp != NULL) { 1957 if (ccp->cc_ploaded != NULL) 1958 umem_depot_free(cp, &cp->cache_empty, 1959 ccp->cc_ploaded); 1960 umem_cpu_reload(ccp, fmp, ccp->cc_magsize); 1961 continue; 1962 } 1963 1964 /* 1965 * There are no full magazines in the depot, 1966 * so fall through to the slab layer. 1967 */ 1968 break; 1969 } 1970 (void) mutex_unlock(&ccp->cc_lock); 1971 1972 /* 1973 * We couldn't allocate a constructed object from the magazine layer, 1974 * so get a raw buffer from the slab layer and apply its constructor. 1975 */ 1976 buf = umem_slab_alloc(cp, umflag); 1977 1978 if (buf == NULL) { 1979 if (cp == &umem_null_cache) 1980 return (NULL); 1981 if (umem_alloc_retry(cp, umflag)) { 1982 goto retry; 1983 } 1984 1985 return (NULL); 1986 } 1987 1988 if (cp->cache_flags & UMF_BUFTAG) { 1989 /* 1990 * Let umem_cache_alloc_debug() apply the constructor for us. 1991 */ 1992 if (umem_cache_alloc_debug(cp, buf, umflag) == -1) { 1993 if (umem_alloc_retry(cp, umflag)) { 1994 goto retry; 1995 } 1996 return (NULL); 1997 } 1998 return (buf); 1999 } 2000 2001 /* 2002 * We do not pass fatal flags on to the constructor. This prevents 2003 * leaking buffers in the event of a subordinate constructor failing. 2004 */ 2005 flags_nfatal = UMEM_DEFAULT; 2006 if (cp->cache_constructor != NULL && 2007 cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0) { 2008 atomic_add_64(&cp->cache_alloc_fail, 1); 2009 umem_slab_free(cp, buf); 2010 2011 if (umem_alloc_retry(cp, umflag)) { 2012 goto retry; 2013 } 2014 return (NULL); 2015 } 2016 2017 return (buf); 2018 } 2019 2020 /* 2021 * Free a constructed object to cache cp. 2022 */ 2023 #pragma weak umem_cache_free = _umem_cache_free 2024 void 2025 _umem_cache_free(umem_cache_t *cp, void *buf) 2026 { 2027 umem_cpu_cache_t *ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask)); 2028 umem_magazine_t *emp; 2029 umem_magtype_t *mtp; 2030 2031 if (ccp->cc_flags & UMF_BUFTAG) 2032 if (umem_cache_free_debug(cp, buf) == -1) 2033 return; 2034 2035 (void) mutex_lock(&ccp->cc_lock); 2036 for (;;) { 2037 /* 2038 * If there's a slot available in the current CPU's 2039 * loaded magazine, just put the object there and return. 2040 */ 2041 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2042 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; 2043 ccp->cc_free++; 2044 (void) mutex_unlock(&ccp->cc_lock); 2045 return; 2046 } 2047 2048 /* 2049 * The loaded magazine is full. If the previously loaded 2050 * magazine was empty, exchange them and try again. 2051 */ 2052 if (ccp->cc_prounds == 0) { 2053 umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2054 continue; 2055 } 2056 2057 /* 2058 * If the magazine layer is disabled, break out now. 2059 */ 2060 if (ccp->cc_magsize == 0) 2061 break; 2062 2063 /* 2064 * Try to get an empty magazine from the depot. 2065 */ 2066 emp = umem_depot_alloc(cp, &cp->cache_empty); 2067 if (emp != NULL) { 2068 if (ccp->cc_ploaded != NULL) 2069 umem_depot_free(cp, &cp->cache_full, 2070 ccp->cc_ploaded); 2071 umem_cpu_reload(ccp, emp, 0); 2072 continue; 2073 } 2074 2075 /* 2076 * There are no empty magazines in the depot, 2077 * so try to allocate a new one. We must drop all locks 2078 * across umem_cache_alloc() because lower layers may 2079 * attempt to allocate from this cache. 2080 */ 2081 mtp = cp->cache_magtype; 2082 (void) mutex_unlock(&ccp->cc_lock); 2083 emp = _umem_cache_alloc(mtp->mt_cache, UMEM_DEFAULT); 2084 (void) mutex_lock(&ccp->cc_lock); 2085 2086 if (emp != NULL) { 2087 /* 2088 * We successfully allocated an empty magazine. 2089 * However, we had to drop ccp->cc_lock to do it, 2090 * so the cache's magazine size may have changed. 2091 * If so, free the magazine and try again. 2092 */ 2093 if (ccp->cc_magsize != mtp->mt_magsize) { 2094 (void) mutex_unlock(&ccp->cc_lock); 2095 _umem_cache_free(mtp->mt_cache, emp); 2096 (void) mutex_lock(&ccp->cc_lock); 2097 continue; 2098 } 2099 2100 /* 2101 * We got a magazine of the right size. Add it to 2102 * the depot and try the whole dance again. 2103 */ 2104 umem_depot_free(cp, &cp->cache_empty, emp); 2105 continue; 2106 } 2107 2108 /* 2109 * We couldn't allocate an empty magazine, 2110 * so fall through to the slab layer. 2111 */ 2112 break; 2113 } 2114 (void) mutex_unlock(&ccp->cc_lock); 2115 2116 /* 2117 * We couldn't free our constructed object to the magazine layer, 2118 * so apply its destructor and free it to the slab layer. 2119 * Note that if UMF_BUFTAG is in effect, umem_cache_free_debug() 2120 * will have already applied the destructor. 2121 */ 2122 if (!(cp->cache_flags & UMF_BUFTAG) && cp->cache_destructor != NULL) 2123 cp->cache_destructor(buf, cp->cache_private); 2124 2125 umem_slab_free(cp, buf); 2126 } 2127 2128 #pragma weak umem_zalloc = _umem_zalloc 2129 void * 2130 _umem_zalloc(size_t size, int umflag) 2131 { 2132 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT; 2133 void *buf; 2134 2135 retry: 2136 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) { 2137 umem_cache_t *cp = umem_alloc_table[index]; 2138 buf = _umem_cache_alloc(cp, umflag); 2139 if (buf != NULL) { 2140 if (cp->cache_flags & UMF_BUFTAG) { 2141 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 2142 ((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE; 2143 ((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size); 2144 } 2145 bzero(buf, size); 2146 } else if (umem_alloc_retry(cp, umflag)) 2147 goto retry; 2148 } else { 2149 buf = _umem_alloc(size, umflag); /* handles failure */ 2150 if (buf != NULL) 2151 bzero(buf, size); 2152 } 2153 return (buf); 2154 } 2155 2156 #pragma weak umem_alloc = _umem_alloc 2157 void * 2158 _umem_alloc(size_t size, int umflag) 2159 { 2160 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT; 2161 void *buf; 2162 umem_alloc_retry: 2163 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) { 2164 umem_cache_t *cp = umem_alloc_table[index]; 2165 buf = _umem_cache_alloc(cp, umflag); 2166 if ((cp->cache_flags & UMF_BUFTAG) && buf != NULL) { 2167 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 2168 ((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE; 2169 ((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size); 2170 } 2171 if (buf == NULL && umem_alloc_retry(cp, umflag)) 2172 goto umem_alloc_retry; 2173 return (buf); 2174 } 2175 if (size == 0) 2176 return (NULL); 2177 if (umem_oversize_arena == NULL) { 2178 if (umem_init()) 2179 ASSERT(umem_oversize_arena != NULL); 2180 else 2181 return (NULL); 2182 } 2183 buf = vmem_alloc(umem_oversize_arena, size, UMEM_VMFLAGS(umflag)); 2184 if (buf == NULL) { 2185 umem_log_event(umem_failure_log, NULL, NULL, (void *)size); 2186 if (umem_alloc_retry(NULL, umflag)) 2187 goto umem_alloc_retry; 2188 } 2189 return (buf); 2190 } 2191 2192 #pragma weak umem_alloc_align = _umem_alloc_align 2193 void * 2194 _umem_alloc_align(size_t size, size_t align, int umflag) 2195 { 2196 void *buf; 2197 2198 if (size == 0) 2199 return (NULL); 2200 if ((align & (align - 1)) != 0) 2201 return (NULL); 2202 if (align < UMEM_ALIGN) 2203 align = UMEM_ALIGN; 2204 2205 umem_alloc_align_retry: 2206 if (umem_memalign_arena == NULL) { 2207 if (umem_init()) 2208 ASSERT(umem_oversize_arena != NULL); 2209 else 2210 return (NULL); 2211 } 2212 buf = vmem_xalloc(umem_memalign_arena, size, align, 0, 0, NULL, NULL, 2213 UMEM_VMFLAGS(umflag)); 2214 if (buf == NULL) { 2215 umem_log_event(umem_failure_log, NULL, NULL, (void *)size); 2216 if (umem_alloc_retry(NULL, umflag)) 2217 goto umem_alloc_align_retry; 2218 } 2219 return (buf); 2220 } 2221 2222 #pragma weak umem_free = _umem_free 2223 void 2224 _umem_free(void *buf, size_t size) 2225 { 2226 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT; 2227 2228 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) { 2229 umem_cache_t *cp = umem_alloc_table[index]; 2230 if (cp->cache_flags & UMF_BUFTAG) { 2231 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 2232 uint32_t *ip = (uint32_t *)btp; 2233 if (ip[1] != UMEM_SIZE_ENCODE(size)) { 2234 if (*(uint64_t *)buf == UMEM_FREE_PATTERN) { 2235 umem_error(UMERR_DUPFREE, cp, buf); 2236 return; 2237 } 2238 if (UMEM_SIZE_VALID(ip[1])) { 2239 ip[0] = UMEM_SIZE_ENCODE(size); 2240 umem_error(UMERR_BADSIZE, cp, buf); 2241 } else { 2242 umem_error(UMERR_REDZONE, cp, buf); 2243 } 2244 return; 2245 } 2246 if (((uint8_t *)buf)[size] != UMEM_REDZONE_BYTE) { 2247 umem_error(UMERR_REDZONE, cp, buf); 2248 return; 2249 } 2250 btp->bt_redzone = UMEM_REDZONE_PATTERN; 2251 } 2252 _umem_cache_free(cp, buf); 2253 } else { 2254 if (buf == NULL && size == 0) 2255 return; 2256 vmem_free(umem_oversize_arena, buf, size); 2257 } 2258 } 2259 2260 #pragma weak umem_free_align = _umem_free_align 2261 void 2262 _umem_free_align(void *buf, size_t size) 2263 { 2264 if (buf == NULL && size == 0) 2265 return; 2266 vmem_xfree(umem_memalign_arena, buf, size); 2267 } 2268 2269 static void * 2270 umem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) 2271 { 2272 size_t realsize = size + vmp->vm_quantum; 2273 2274 /* 2275 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding 2276 * vm_quantum will cause integer wraparound. Check for this, and 2277 * blow off the firewall page in this case. Note that such a 2278 * giant allocation (the entire address space) can never be 2279 * satisfied, so it will either fail immediately (VM_NOSLEEP) 2280 * or sleep forever (VM_SLEEP). Thus, there is no need for a 2281 * corresponding check in umem_firewall_va_free(). 2282 */ 2283 if (realsize < size) 2284 realsize = size; 2285 2286 return (vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT)); 2287 } 2288 2289 static void 2290 umem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) 2291 { 2292 vmem_free(vmp, addr, size + vmp->vm_quantum); 2293 } 2294 2295 /* 2296 * Reclaim all unused memory from a cache. 2297 */ 2298 static void 2299 umem_cache_reap(umem_cache_t *cp) 2300 { 2301 /* 2302 * Ask the cache's owner to free some memory if possible. 2303 * The idea is to handle things like the inode cache, which 2304 * typically sits on a bunch of memory that it doesn't truly 2305 * *need*. Reclaim policy is entirely up to the owner; this 2306 * callback is just an advisory plea for help. 2307 */ 2308 if (cp->cache_reclaim != NULL) 2309 cp->cache_reclaim(cp->cache_private); 2310 2311 umem_depot_ws_reap(cp); 2312 } 2313 2314 /* 2315 * Purge all magazines from a cache and set its magazine limit to zero. 2316 * All calls are serialized by being done by the update thread, except for 2317 * the final call from umem_cache_destroy(). 2318 */ 2319 static void 2320 umem_cache_magazine_purge(umem_cache_t *cp) 2321 { 2322 umem_cpu_cache_t *ccp; 2323 umem_magazine_t *mp, *pmp; 2324 int rounds, prounds, cpu_seqid; 2325 2326 ASSERT(cp->cache_next == NULL || IN_UPDATE()); 2327 2328 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) { 2329 ccp = &cp->cache_cpu[cpu_seqid]; 2330 2331 (void) mutex_lock(&ccp->cc_lock); 2332 mp = ccp->cc_loaded; 2333 pmp = ccp->cc_ploaded; 2334 rounds = ccp->cc_rounds; 2335 prounds = ccp->cc_prounds; 2336 ccp->cc_loaded = NULL; 2337 ccp->cc_ploaded = NULL; 2338 ccp->cc_rounds = -1; 2339 ccp->cc_prounds = -1; 2340 ccp->cc_magsize = 0; 2341 (void) mutex_unlock(&ccp->cc_lock); 2342 2343 if (mp) 2344 umem_magazine_destroy(cp, mp, rounds); 2345 if (pmp) 2346 umem_magazine_destroy(cp, pmp, prounds); 2347 } 2348 2349 /* 2350 * Updating the working set statistics twice in a row has the 2351 * effect of setting the working set size to zero, so everything 2352 * is eligible for reaping. 2353 */ 2354 umem_depot_ws_update(cp); 2355 umem_depot_ws_update(cp); 2356 2357 umem_depot_ws_reap(cp); 2358 } 2359 2360 /* 2361 * Enable per-cpu magazines on a cache. 2362 */ 2363 static void 2364 umem_cache_magazine_enable(umem_cache_t *cp) 2365 { 2366 int cpu_seqid; 2367 2368 if (cp->cache_flags & UMF_NOMAGAZINE) 2369 return; 2370 2371 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) { 2372 umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 2373 (void) mutex_lock(&ccp->cc_lock); 2374 ccp->cc_magsize = cp->cache_magtype->mt_magsize; 2375 (void) mutex_unlock(&ccp->cc_lock); 2376 } 2377 2378 } 2379 2380 /* 2381 * Recompute a cache's magazine size. The trade-off is that larger magazines 2382 * provide a higher transfer rate with the depot, while smaller magazines 2383 * reduce memory consumption. Magazine resizing is an expensive operation; 2384 * it should not be done frequently. 2385 * 2386 * Changes to the magazine size are serialized by only having one thread 2387 * doing updates. (the update thread) 2388 * 2389 * Note: at present this only grows the magazine size. It might be useful 2390 * to allow shrinkage too. 2391 */ 2392 static void 2393 umem_cache_magazine_resize(umem_cache_t *cp) 2394 { 2395 umem_magtype_t *mtp = cp->cache_magtype; 2396 2397 ASSERT(IN_UPDATE()); 2398 2399 if (cp->cache_chunksize < mtp->mt_maxbuf) { 2400 umem_cache_magazine_purge(cp); 2401 (void) mutex_lock(&cp->cache_depot_lock); 2402 cp->cache_magtype = ++mtp; 2403 cp->cache_depot_contention_prev = 2404 cp->cache_depot_contention + INT_MAX; 2405 (void) mutex_unlock(&cp->cache_depot_lock); 2406 umem_cache_magazine_enable(cp); 2407 } 2408 } 2409 2410 /* 2411 * Rescale a cache's hash table, so that the table size is roughly the 2412 * cache size. We want the average lookup time to be extremely small. 2413 */ 2414 static void 2415 umem_hash_rescale(umem_cache_t *cp) 2416 { 2417 umem_bufctl_t **old_table, **new_table, *bcp; 2418 size_t old_size, new_size, h; 2419 2420 ASSERT(IN_UPDATE()); 2421 2422 new_size = MAX(UMEM_HASH_INITIAL, 2423 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); 2424 old_size = cp->cache_hash_mask + 1; 2425 2426 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 2427 return; 2428 2429 new_table = vmem_alloc(umem_hash_arena, new_size * sizeof (void *), 2430 VM_NOSLEEP); 2431 if (new_table == NULL) 2432 return; 2433 bzero(new_table, new_size * sizeof (void *)); 2434 2435 (void) mutex_lock(&cp->cache_lock); 2436 2437 old_size = cp->cache_hash_mask + 1; 2438 old_table = cp->cache_hash_table; 2439 2440 cp->cache_hash_mask = new_size - 1; 2441 cp->cache_hash_table = new_table; 2442 cp->cache_rescale++; 2443 2444 for (h = 0; h < old_size; h++) { 2445 bcp = old_table[h]; 2446 while (bcp != NULL) { 2447 void *addr = bcp->bc_addr; 2448 umem_bufctl_t *next_bcp = bcp->bc_next; 2449 umem_bufctl_t **hash_bucket = UMEM_HASH(cp, addr); 2450 bcp->bc_next = *hash_bucket; 2451 *hash_bucket = bcp; 2452 bcp = next_bcp; 2453 } 2454 } 2455 2456 (void) mutex_unlock(&cp->cache_lock); 2457 2458 vmem_free(umem_hash_arena, old_table, old_size * sizeof (void *)); 2459 } 2460 2461 /* 2462 * Perform periodic maintenance on a cache: hash rescaling, 2463 * depot working-set update, and magazine resizing. 2464 */ 2465 void 2466 umem_cache_update(umem_cache_t *cp) 2467 { 2468 int update_flags = 0; 2469 2470 ASSERT(MUTEX_HELD(&umem_cache_lock)); 2471 2472 /* 2473 * If the cache has become much larger or smaller than its hash table, 2474 * fire off a request to rescale the hash table. 2475 */ 2476 (void) mutex_lock(&cp->cache_lock); 2477 2478 if ((cp->cache_flags & UMF_HASH) && 2479 (cp->cache_buftotal > (cp->cache_hash_mask << 1) || 2480 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && 2481 cp->cache_hash_mask > UMEM_HASH_INITIAL))) 2482 update_flags |= UMU_HASH_RESCALE; 2483 2484 (void) mutex_unlock(&cp->cache_lock); 2485 2486 /* 2487 * Update the depot working set statistics. 2488 */ 2489 umem_depot_ws_update(cp); 2490 2491 /* 2492 * If there's a lot of contention in the depot, 2493 * increase the magazine size. 2494 */ 2495 (void) mutex_lock(&cp->cache_depot_lock); 2496 2497 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && 2498 (int)(cp->cache_depot_contention - 2499 cp->cache_depot_contention_prev) > umem_depot_contention) 2500 update_flags |= UMU_MAGAZINE_RESIZE; 2501 2502 cp->cache_depot_contention_prev = cp->cache_depot_contention; 2503 2504 (void) mutex_unlock(&cp->cache_depot_lock); 2505 2506 if (update_flags) 2507 umem_add_update(cp, update_flags); 2508 } 2509 2510 /* 2511 * Runs all pending updates. 2512 * 2513 * The update lock must be held on entrance, and will be held on exit. 2514 */ 2515 void 2516 umem_process_updates(void) 2517 { 2518 ASSERT(MUTEX_HELD(&umem_update_lock)); 2519 2520 while (umem_null_cache.cache_unext != &umem_null_cache) { 2521 int notify = 0; 2522 umem_cache_t *cp = umem_null_cache.cache_unext; 2523 2524 cp->cache_uprev->cache_unext = cp->cache_unext; 2525 cp->cache_unext->cache_uprev = cp->cache_uprev; 2526 cp->cache_uprev = cp->cache_unext = NULL; 2527 2528 ASSERT(!(cp->cache_uflags & UMU_ACTIVE)); 2529 2530 while (cp->cache_uflags) { 2531 int uflags = (cp->cache_uflags |= UMU_ACTIVE); 2532 (void) mutex_unlock(&umem_update_lock); 2533 2534 /* 2535 * The order here is important. Each step can speed up 2536 * later steps. 2537 */ 2538 2539 if (uflags & UMU_HASH_RESCALE) 2540 umem_hash_rescale(cp); 2541 2542 if (uflags & UMU_MAGAZINE_RESIZE) 2543 umem_cache_magazine_resize(cp); 2544 2545 if (uflags & UMU_REAP) 2546 umem_cache_reap(cp); 2547 2548 (void) mutex_lock(&umem_update_lock); 2549 2550 /* 2551 * check if anyone has requested notification 2552 */ 2553 if (cp->cache_uflags & UMU_NOTIFY) { 2554 uflags |= UMU_NOTIFY; 2555 notify = 1; 2556 } 2557 cp->cache_uflags &= ~uflags; 2558 } 2559 if (notify) 2560 (void) cond_broadcast(&umem_update_cv); 2561 } 2562 } 2563 2564 #ifndef UMEM_STANDALONE 2565 static void 2566 umem_st_update(void) 2567 { 2568 ASSERT(MUTEX_HELD(&umem_update_lock)); 2569 ASSERT(umem_update_thr == 0 && umem_st_update_thr == 0); 2570 2571 umem_st_update_thr = thr_self(); 2572 2573 (void) mutex_unlock(&umem_update_lock); 2574 2575 vmem_update(NULL); 2576 umem_cache_applyall(umem_cache_update); 2577 2578 (void) mutex_lock(&umem_update_lock); 2579 2580 umem_process_updates(); /* does all of the requested work */ 2581 2582 umem_reap_next = gethrtime() + 2583 (hrtime_t)umem_reap_interval * NANOSEC; 2584 2585 umem_reaping = UMEM_REAP_DONE; 2586 2587 umem_st_update_thr = 0; 2588 } 2589 #endif 2590 2591 /* 2592 * Reclaim all unused memory from all caches. Called from vmem when memory 2593 * gets tight. Must be called with no locks held. 2594 * 2595 * This just requests a reap on all caches, and notifies the update thread. 2596 */ 2597 void 2598 umem_reap(void) 2599 { 2600 #ifndef UMEM_STANDALONE 2601 extern int __nthreads(void); 2602 #endif 2603 2604 if (umem_ready != UMEM_READY || umem_reaping != UMEM_REAP_DONE || 2605 gethrtime() < umem_reap_next) 2606 return; 2607 2608 (void) mutex_lock(&umem_update_lock); 2609 2610 if (umem_reaping != UMEM_REAP_DONE || gethrtime() < umem_reap_next) { 2611 (void) mutex_unlock(&umem_update_lock); 2612 return; 2613 } 2614 umem_reaping = UMEM_REAP_ADDING; /* lock out other reaps */ 2615 2616 (void) mutex_unlock(&umem_update_lock); 2617 2618 umem_updateall(UMU_REAP); 2619 2620 (void) mutex_lock(&umem_update_lock); 2621 2622 umem_reaping = UMEM_REAP_ACTIVE; 2623 2624 /* Standalone is single-threaded */ 2625 #ifndef UMEM_STANDALONE 2626 if (umem_update_thr == 0) { 2627 /* 2628 * The update thread does not exist. If the process is 2629 * multi-threaded, create it. If not, or the creation fails, 2630 * do the update processing inline. 2631 */ 2632 ASSERT(umem_st_update_thr == 0); 2633 2634 if (__nthreads() <= 1 || umem_create_update_thread() == 0) 2635 umem_st_update(); 2636 } 2637 2638 (void) cond_broadcast(&umem_update_cv); /* wake up the update thread */ 2639 #endif 2640 2641 (void) mutex_unlock(&umem_update_lock); 2642 } 2643 2644 umem_cache_t * 2645 umem_cache_create( 2646 char *name, /* descriptive name for this cache */ 2647 size_t bufsize, /* size of the objects it manages */ 2648 size_t align, /* required object alignment */ 2649 umem_constructor_t *constructor, /* object constructor */ 2650 umem_destructor_t *destructor, /* object destructor */ 2651 umem_reclaim_t *reclaim, /* memory reclaim callback */ 2652 void *private, /* pass-thru arg for constr/destr/reclaim */ 2653 vmem_t *vmp, /* vmem source for slab allocation */ 2654 int cflags) /* cache creation flags */ 2655 { 2656 int cpu_seqid; 2657 size_t chunksize; 2658 umem_cache_t *cp, *cnext, *cprev; 2659 umem_magtype_t *mtp; 2660 size_t csize; 2661 size_t phase; 2662 2663 /* 2664 * The init thread is allowed to create internal and quantum caches. 2665 * 2666 * Other threads must wait until until initialization is complete. 2667 */ 2668 if (umem_init_thr == thr_self()) 2669 ASSERT((cflags & (UMC_INTERNAL | UMC_QCACHE)) != 0); 2670 else { 2671 ASSERT(!(cflags & UMC_INTERNAL)); 2672 if (umem_ready != UMEM_READY && umem_init() == 0) { 2673 errno = EAGAIN; 2674 return (NULL); 2675 } 2676 } 2677 2678 csize = UMEM_CACHE_SIZE(umem_max_ncpus); 2679 phase = P2NPHASE(csize, UMEM_CPU_CACHE_SIZE); 2680 2681 if (vmp == NULL) 2682 vmp = umem_default_arena; 2683 2684 ASSERT(P2PHASE(phase, UMEM_ALIGN) == 0); 2685 2686 /* 2687 * Check that the arguments are reasonable 2688 */ 2689 if ((align & (align - 1)) != 0 || align > vmp->vm_quantum || 2690 ((cflags & UMC_NOHASH) && (cflags & UMC_NOTOUCH)) || 2691 name == NULL || bufsize == 0) { 2692 errno = EINVAL; 2693 return (NULL); 2694 } 2695 2696 /* 2697 * If align == 0, we set it to the minimum required alignment. 2698 * 2699 * If align < UMEM_ALIGN, we round it up to UMEM_ALIGN, unless 2700 * UMC_NOTOUCH was passed. 2701 */ 2702 if (align == 0) { 2703 if (P2ROUNDUP(bufsize, UMEM_ALIGN) >= UMEM_SECOND_ALIGN) 2704 align = UMEM_SECOND_ALIGN; 2705 else 2706 align = UMEM_ALIGN; 2707 } else if (align < UMEM_ALIGN && (cflags & UMC_NOTOUCH) == 0) 2708 align = UMEM_ALIGN; 2709 2710 2711 /* 2712 * Get a umem_cache structure. We arrange that cp->cache_cpu[] 2713 * is aligned on a UMEM_CPU_CACHE_SIZE boundary to prevent 2714 * false sharing of per-CPU data. 2715 */ 2716 cp = vmem_xalloc(umem_cache_arena, csize, UMEM_CPU_CACHE_SIZE, phase, 2717 0, NULL, NULL, VM_NOSLEEP); 2718 2719 if (cp == NULL) { 2720 errno = EAGAIN; 2721 return (NULL); 2722 } 2723 2724 bzero(cp, csize); 2725 2726 (void) mutex_lock(&umem_flags_lock); 2727 if (umem_flags & UMF_RANDOMIZE) 2728 umem_flags = (((umem_flags | ~UMF_RANDOM) + 1) & UMF_RANDOM) | 2729 UMF_RANDOMIZE; 2730 cp->cache_flags = umem_flags | (cflags & UMF_DEBUG); 2731 (void) mutex_unlock(&umem_flags_lock); 2732 2733 /* 2734 * Make sure all the various flags are reasonable. 2735 */ 2736 if (cp->cache_flags & UMF_LITE) { 2737 if (bufsize >= umem_lite_minsize && 2738 align <= umem_lite_maxalign && 2739 P2PHASE(bufsize, umem_lite_maxalign) != 0) { 2740 cp->cache_flags |= UMF_BUFTAG; 2741 cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL); 2742 } else { 2743 cp->cache_flags &= ~UMF_DEBUG; 2744 } 2745 } 2746 2747 if ((cflags & UMC_QCACHE) && (cp->cache_flags & UMF_AUDIT)) 2748 cp->cache_flags |= UMF_NOMAGAZINE; 2749 2750 if (cflags & UMC_NODEBUG) 2751 cp->cache_flags &= ~UMF_DEBUG; 2752 2753 if (cflags & UMC_NOTOUCH) 2754 cp->cache_flags &= ~UMF_TOUCH; 2755 2756 if (cflags & UMC_NOHASH) 2757 cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL); 2758 2759 if (cflags & UMC_NOMAGAZINE) 2760 cp->cache_flags |= UMF_NOMAGAZINE; 2761 2762 if ((cp->cache_flags & UMF_AUDIT) && !(cflags & UMC_NOTOUCH)) 2763 cp->cache_flags |= UMF_REDZONE; 2764 2765 if ((cp->cache_flags & UMF_BUFTAG) && bufsize >= umem_minfirewall && 2766 !(cp->cache_flags & UMF_LITE) && !(cflags & UMC_NOHASH)) 2767 cp->cache_flags |= UMF_FIREWALL; 2768 2769 if (vmp != umem_default_arena || umem_firewall_arena == NULL) 2770 cp->cache_flags &= ~UMF_FIREWALL; 2771 2772 if (cp->cache_flags & UMF_FIREWALL) { 2773 cp->cache_flags &= ~UMF_BUFTAG; 2774 cp->cache_flags |= UMF_NOMAGAZINE; 2775 ASSERT(vmp == umem_default_arena); 2776 vmp = umem_firewall_arena; 2777 } 2778 2779 /* 2780 * Set cache properties. 2781 */ 2782 (void) strncpy(cp->cache_name, name, sizeof (cp->cache_name) - 1); 2783 cp->cache_bufsize = bufsize; 2784 cp->cache_align = align; 2785 cp->cache_constructor = constructor; 2786 cp->cache_destructor = destructor; 2787 cp->cache_reclaim = reclaim; 2788 cp->cache_private = private; 2789 cp->cache_arena = vmp; 2790 cp->cache_cflags = cflags; 2791 cp->cache_cpu_mask = umem_cpu_mask; 2792 2793 /* 2794 * Determine the chunk size. 2795 */ 2796 chunksize = bufsize; 2797 2798 if (align >= UMEM_ALIGN) { 2799 chunksize = P2ROUNDUP(chunksize, UMEM_ALIGN); 2800 cp->cache_bufctl = chunksize - UMEM_ALIGN; 2801 } 2802 2803 if (cp->cache_flags & UMF_BUFTAG) { 2804 cp->cache_bufctl = chunksize; 2805 cp->cache_buftag = chunksize; 2806 chunksize += sizeof (umem_buftag_t); 2807 } 2808 2809 if (cp->cache_flags & UMF_DEADBEEF) { 2810 cp->cache_verify = MIN(cp->cache_buftag, umem_maxverify); 2811 if (cp->cache_flags & UMF_LITE) 2812 cp->cache_verify = MIN(cp->cache_verify, UMEM_ALIGN); 2813 } 2814 2815 cp->cache_contents = MIN(cp->cache_bufctl, umem_content_maxsave); 2816 2817 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); 2818 2819 if (chunksize < bufsize) { 2820 errno = ENOMEM; 2821 goto fail; 2822 } 2823 2824 /* 2825 * Now that we know the chunk size, determine the optimal slab size. 2826 */ 2827 if (vmp == umem_firewall_arena) { 2828 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); 2829 cp->cache_mincolor = cp->cache_slabsize - chunksize; 2830 cp->cache_maxcolor = cp->cache_mincolor; 2831 cp->cache_flags |= UMF_HASH; 2832 ASSERT(!(cp->cache_flags & UMF_BUFTAG)); 2833 } else if ((cflags & UMC_NOHASH) || (!(cflags & UMC_NOTOUCH) && 2834 !(cp->cache_flags & UMF_AUDIT) && 2835 chunksize < vmp->vm_quantum / UMEM_VOID_FRACTION)) { 2836 cp->cache_slabsize = vmp->vm_quantum; 2837 cp->cache_mincolor = 0; 2838 cp->cache_maxcolor = 2839 (cp->cache_slabsize - sizeof (umem_slab_t)) % chunksize; 2840 2841 if (chunksize + sizeof (umem_slab_t) > cp->cache_slabsize) { 2842 errno = EINVAL; 2843 goto fail; 2844 } 2845 ASSERT(!(cp->cache_flags & UMF_AUDIT)); 2846 } else { 2847 size_t chunks, waste, slabsize; 2848 size_t minwaste = LONG_MAX; 2849 size_t bestfit = SIZE_MAX; 2850 2851 for (chunks = 1; chunks <= UMEM_VOID_FRACTION; chunks++) { 2852 slabsize = P2ROUNDUP(chunksize * chunks, 2853 vmp->vm_quantum); 2854 /* 2855 * check for overflow 2856 */ 2857 if ((slabsize / chunks) < chunksize) { 2858 errno = ENOMEM; 2859 goto fail; 2860 } 2861 chunks = slabsize / chunksize; 2862 waste = (slabsize % chunksize) / chunks; 2863 if (waste < minwaste) { 2864 minwaste = waste; 2865 bestfit = slabsize; 2866 } 2867 } 2868 if (cflags & UMC_QCACHE) 2869 bestfit = MAX(1 << highbit(3 * vmp->vm_qcache_max), 64); 2870 if (bestfit == SIZE_MAX) { 2871 errno = ENOMEM; 2872 goto fail; 2873 } 2874 cp->cache_slabsize = bestfit; 2875 cp->cache_mincolor = 0; 2876 cp->cache_maxcolor = bestfit % chunksize; 2877 cp->cache_flags |= UMF_HASH; 2878 } 2879 2880 if (cp->cache_flags & UMF_HASH) { 2881 ASSERT(!(cflags & UMC_NOHASH)); 2882 cp->cache_bufctl_cache = (cp->cache_flags & UMF_AUDIT) ? 2883 umem_bufctl_audit_cache : umem_bufctl_cache; 2884 } 2885 2886 if (cp->cache_maxcolor >= vmp->vm_quantum) 2887 cp->cache_maxcolor = vmp->vm_quantum - 1; 2888 2889 cp->cache_color = cp->cache_mincolor; 2890 2891 /* 2892 * Initialize the rest of the slab layer. 2893 */ 2894 (void) mutex_init(&cp->cache_lock, USYNC_THREAD, NULL); 2895 2896 cp->cache_freelist = &cp->cache_nullslab; 2897 cp->cache_nullslab.slab_cache = cp; 2898 cp->cache_nullslab.slab_refcnt = -1; 2899 cp->cache_nullslab.slab_next = &cp->cache_nullslab; 2900 cp->cache_nullslab.slab_prev = &cp->cache_nullslab; 2901 2902 if (cp->cache_flags & UMF_HASH) { 2903 cp->cache_hash_table = vmem_alloc(umem_hash_arena, 2904 UMEM_HASH_INITIAL * sizeof (void *), VM_NOSLEEP); 2905 if (cp->cache_hash_table == NULL) { 2906 errno = EAGAIN; 2907 goto fail_lock; 2908 } 2909 bzero(cp->cache_hash_table, 2910 UMEM_HASH_INITIAL * sizeof (void *)); 2911 cp->cache_hash_mask = UMEM_HASH_INITIAL - 1; 2912 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; 2913 } 2914 2915 /* 2916 * Initialize the depot. 2917 */ 2918 (void) mutex_init(&cp->cache_depot_lock, USYNC_THREAD, NULL); 2919 2920 for (mtp = umem_magtype; chunksize <= mtp->mt_minbuf; mtp++) 2921 continue; 2922 2923 cp->cache_magtype = mtp; 2924 2925 /* 2926 * Initialize the CPU layer. 2927 */ 2928 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) { 2929 umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 2930 (void) mutex_init(&ccp->cc_lock, USYNC_THREAD, NULL); 2931 ccp->cc_flags = cp->cache_flags; 2932 ccp->cc_rounds = -1; 2933 ccp->cc_prounds = -1; 2934 } 2935 2936 /* 2937 * Add the cache to the global list. This makes it visible 2938 * to umem_update(), so the cache must be ready for business. 2939 */ 2940 (void) mutex_lock(&umem_cache_lock); 2941 cp->cache_next = cnext = &umem_null_cache; 2942 cp->cache_prev = cprev = umem_null_cache.cache_prev; 2943 cnext->cache_prev = cp; 2944 cprev->cache_next = cp; 2945 (void) mutex_unlock(&umem_cache_lock); 2946 2947 if (umem_ready == UMEM_READY) 2948 umem_cache_magazine_enable(cp); 2949 2950 return (cp); 2951 2952 fail_lock: 2953 (void) mutex_destroy(&cp->cache_lock); 2954 fail: 2955 vmem_xfree(umem_cache_arena, cp, csize); 2956 return (NULL); 2957 } 2958 2959 void 2960 umem_cache_destroy(umem_cache_t *cp) 2961 { 2962 int cpu_seqid; 2963 2964 /* 2965 * Remove the cache from the global cache list so that no new updates 2966 * will be scheduled on its behalf, wait for any pending tasks to 2967 * complete, purge the cache, and then destroy it. 2968 */ 2969 (void) mutex_lock(&umem_cache_lock); 2970 cp->cache_prev->cache_next = cp->cache_next; 2971 cp->cache_next->cache_prev = cp->cache_prev; 2972 cp->cache_prev = cp->cache_next = NULL; 2973 (void) mutex_unlock(&umem_cache_lock); 2974 2975 umem_remove_updates(cp); 2976 2977 umem_cache_magazine_purge(cp); 2978 2979 (void) mutex_lock(&cp->cache_lock); 2980 if (cp->cache_buftotal != 0) 2981 log_message("umem_cache_destroy: '%s' (%p) not empty\n", 2982 cp->cache_name, (void *)cp); 2983 cp->cache_reclaim = NULL; 2984 /* 2985 * The cache is now dead. There should be no further activity. 2986 * We enforce this by setting land mines in the constructor and 2987 * destructor routines that induce a segmentation fault if invoked. 2988 */ 2989 cp->cache_constructor = (umem_constructor_t *)1; 2990 cp->cache_destructor = (umem_destructor_t *)2; 2991 (void) mutex_unlock(&cp->cache_lock); 2992 2993 if (cp->cache_hash_table != NULL) 2994 vmem_free(umem_hash_arena, cp->cache_hash_table, 2995 (cp->cache_hash_mask + 1) * sizeof (void *)); 2996 2997 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) 2998 (void) mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); 2999 3000 (void) mutex_destroy(&cp->cache_depot_lock); 3001 (void) mutex_destroy(&cp->cache_lock); 3002 3003 vmem_free(umem_cache_arena, cp, UMEM_CACHE_SIZE(umem_max_ncpus)); 3004 } 3005 3006 void 3007 umem_alloc_sizes_clear(void) 3008 { 3009 int i; 3010 3011 umem_alloc_sizes[0] = UMEM_MAXBUF; 3012 for (i = 1; i < NUM_ALLOC_SIZES; i++) 3013 umem_alloc_sizes[i] = 0; 3014 } 3015 3016 void 3017 umem_alloc_sizes_add(size_t size_arg) 3018 { 3019 int i, j; 3020 size_t size = size_arg; 3021 3022 if (size == 0) { 3023 log_message("size_add: cannot add zero-sized cache\n", 3024 size, UMEM_MAXBUF); 3025 return; 3026 } 3027 3028 if (size > UMEM_MAXBUF) { 3029 log_message("size_add: %ld > %d, cannot add\n", size, 3030 UMEM_MAXBUF); 3031 return; 3032 } 3033 3034 if (umem_alloc_sizes[NUM_ALLOC_SIZES - 1] != 0) { 3035 log_message("size_add: no space in alloc_table for %d\n", 3036 size); 3037 return; 3038 } 3039 3040 if (P2PHASE(size, UMEM_ALIGN) != 0) { 3041 size = P2ROUNDUP(size, UMEM_ALIGN); 3042 log_message("size_add: rounding %d up to %d\n", size_arg, 3043 size); 3044 } 3045 3046 for (i = 0; i < NUM_ALLOC_SIZES; i++) { 3047 int cur = umem_alloc_sizes[i]; 3048 if (cur == size) { 3049 log_message("size_add: %ld already in table\n", 3050 size); 3051 return; 3052 } 3053 if (cur > size) 3054 break; 3055 } 3056 3057 for (j = NUM_ALLOC_SIZES - 1; j > i; j--) 3058 umem_alloc_sizes[j] = umem_alloc_sizes[j-1]; 3059 umem_alloc_sizes[i] = size; 3060 } 3061 3062 void 3063 umem_alloc_sizes_remove(size_t size) 3064 { 3065 int i; 3066 3067 if (size == UMEM_MAXBUF) { 3068 log_message("size_remove: cannot remove %ld\n", size); 3069 return; 3070 } 3071 3072 for (i = 0; i < NUM_ALLOC_SIZES; i++) { 3073 int cur = umem_alloc_sizes[i]; 3074 if (cur == size) 3075 break; 3076 else if (cur > size || cur == 0) { 3077 log_message("size_remove: %ld not found in table\n", 3078 size); 3079 return; 3080 } 3081 } 3082 3083 for (; i + 1 < NUM_ALLOC_SIZES; i++) 3084 umem_alloc_sizes[i] = umem_alloc_sizes[i+1]; 3085 umem_alloc_sizes[i] = 0; 3086 } 3087 3088 /* 3089 * We've been called back from libc to indicate that thread is terminating and 3090 * that it needs to release the per-thread memory that it has. We get to know 3091 * which entry in the thread's tmem array the allocation came from. Currently 3092 * this refers to first n umem_caches which makes this a pretty simple indexing 3093 * job. 3094 */ 3095 static void 3096 umem_cache_tmem_cleanup(void *buf, int entry) 3097 { 3098 size_t size; 3099 umem_cache_t *cp; 3100 3101 size = umem_alloc_sizes[entry]; 3102 cp = umem_alloc_table[(size - 1) >> UMEM_ALIGN_SHIFT]; 3103 _umem_cache_free(cp, buf); 3104 } 3105 3106 static int 3107 umem_cache_init(void) 3108 { 3109 int i; 3110 size_t size, max_size; 3111 umem_cache_t *cp; 3112 umem_magtype_t *mtp; 3113 char name[UMEM_CACHE_NAMELEN + 1]; 3114 umem_cache_t *umem_alloc_caches[NUM_ALLOC_SIZES]; 3115 3116 for (i = 0; i < sizeof (umem_magtype) / sizeof (*mtp); i++) { 3117 mtp = &umem_magtype[i]; 3118 (void) snprintf(name, sizeof (name), "umem_magazine_%d", 3119 mtp->mt_magsize); 3120 mtp->mt_cache = umem_cache_create(name, 3121 (mtp->mt_magsize + 1) * sizeof (void *), 3122 mtp->mt_align, NULL, NULL, NULL, NULL, 3123 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL); 3124 if (mtp->mt_cache == NULL) 3125 return (0); 3126 } 3127 3128 umem_slab_cache = umem_cache_create("umem_slab_cache", 3129 sizeof (umem_slab_t), 0, NULL, NULL, NULL, NULL, 3130 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL); 3131 3132 if (umem_slab_cache == NULL) 3133 return (0); 3134 3135 umem_bufctl_cache = umem_cache_create("umem_bufctl_cache", 3136 sizeof (umem_bufctl_t), 0, NULL, NULL, NULL, NULL, 3137 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL); 3138 3139 if (umem_bufctl_cache == NULL) 3140 return (0); 3141 3142 /* 3143 * The size of the umem_bufctl_audit structure depends upon 3144 * umem_stack_depth. See umem_impl.h for details on the size 3145 * restrictions. 3146 */ 3147 3148 size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth); 3149 max_size = UMEM_BUFCTL_AUDIT_MAX_SIZE; 3150 3151 if (size > max_size) { /* too large -- truncate */ 3152 int max_frames = UMEM_MAX_STACK_DEPTH; 3153 3154 ASSERT(UMEM_BUFCTL_AUDIT_SIZE_DEPTH(max_frames) <= max_size); 3155 3156 umem_stack_depth = max_frames; 3157 size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth); 3158 } 3159 3160 umem_bufctl_audit_cache = umem_cache_create("umem_bufctl_audit_cache", 3161 size, 0, NULL, NULL, NULL, NULL, umem_internal_arena, 3162 UMC_NOHASH | UMC_INTERNAL); 3163 3164 if (umem_bufctl_audit_cache == NULL) 3165 return (0); 3166 3167 if (vmem_backend & VMEM_BACKEND_MMAP) 3168 umem_va_arena = vmem_create("umem_va", 3169 NULL, 0, pagesize, 3170 vmem_alloc, vmem_free, heap_arena, 3171 8 * pagesize, VM_NOSLEEP); 3172 else 3173 umem_va_arena = heap_arena; 3174 3175 if (umem_va_arena == NULL) 3176 return (0); 3177 3178 umem_default_arena = vmem_create("umem_default", 3179 NULL, 0, pagesize, 3180 heap_alloc, heap_free, umem_va_arena, 3181 0, VM_NOSLEEP); 3182 3183 if (umem_default_arena == NULL) 3184 return (0); 3185 3186 /* 3187 * make sure the umem_alloc table initializer is correct 3188 */ 3189 i = sizeof (umem_alloc_table) / sizeof (*umem_alloc_table); 3190 ASSERT(umem_alloc_table[i - 1] == &umem_null_cache); 3191 3192 /* 3193 * Create the default caches to back umem_alloc() 3194 */ 3195 for (i = 0; i < NUM_ALLOC_SIZES; i++) { 3196 size_t cache_size = umem_alloc_sizes[i]; 3197 size_t align = 0; 3198 3199 if (cache_size == 0) 3200 break; /* 0 terminates the list */ 3201 3202 /* 3203 * If they allocate a multiple of the coherency granularity, 3204 * they get a coherency-granularity-aligned address. 3205 */ 3206 if (IS_P2ALIGNED(cache_size, 64)) 3207 align = 64; 3208 if (IS_P2ALIGNED(cache_size, pagesize)) 3209 align = pagesize; 3210 (void) snprintf(name, sizeof (name), "umem_alloc_%lu", 3211 (long)cache_size); 3212 3213 cp = umem_cache_create(name, cache_size, align, 3214 NULL, NULL, NULL, NULL, NULL, UMC_INTERNAL); 3215 if (cp == NULL) 3216 return (0); 3217 3218 umem_alloc_caches[i] = cp; 3219 } 3220 3221 umem_tmem_off = _tmem_get_base(); 3222 _tmem_set_cleanup(umem_cache_tmem_cleanup); 3223 3224 #ifndef UMEM_STANDALONE 3225 if (umem_genasm_supported && !(umem_flags & UMF_DEBUG) && 3226 !(umem_flags & UMF_NOMAGAZINE) && 3227 umem_ptc_size > 0) { 3228 umem_ptc_enabled = umem_genasm(umem_alloc_sizes, 3229 umem_alloc_caches, i) ? 1 : 0; 3230 } 3231 #else 3232 umem_ptc_enabled = 0; 3233 #endif 3234 3235 /* 3236 * Initialization cannot fail at this point. Make the caches 3237 * visible to umem_alloc() and friends. 3238 */ 3239 size = UMEM_ALIGN; 3240 for (i = 0; i < NUM_ALLOC_SIZES; i++) { 3241 size_t cache_size = umem_alloc_sizes[i]; 3242 3243 if (cache_size == 0) 3244 break; /* 0 terminates the list */ 3245 3246 cp = umem_alloc_caches[i]; 3247 3248 while (size <= cache_size) { 3249 umem_alloc_table[(size - 1) >> UMEM_ALIGN_SHIFT] = cp; 3250 size += UMEM_ALIGN; 3251 } 3252 } 3253 ASSERT(size - UMEM_ALIGN == UMEM_MAXBUF); 3254 return (1); 3255 } 3256 3257 /* 3258 * umem_startup() is called early on, and must be called explicitly if we're 3259 * the standalone version. 3260 */ 3261 #ifdef UMEM_STANDALONE 3262 void 3263 #else 3264 #pragma init(umem_startup) 3265 static void 3266 #endif 3267 umem_startup(caddr_t start, size_t len, size_t pagesize, caddr_t minstack, 3268 caddr_t maxstack) 3269 { 3270 #ifdef UMEM_STANDALONE 3271 int idx; 3272 /* Standalone doesn't fork */ 3273 #else 3274 umem_forkhandler_init(); /* register the fork handler */ 3275 #endif 3276 3277 #ifdef __lint 3278 /* make lint happy */ 3279 minstack = maxstack; 3280 #endif 3281 3282 #ifdef UMEM_STANDALONE 3283 umem_ready = UMEM_READY_STARTUP; 3284 umem_init_env_ready = 0; 3285 3286 umem_min_stack = minstack; 3287 umem_max_stack = maxstack; 3288 3289 nofail_callback = NULL; 3290 umem_slab_cache = NULL; 3291 umem_bufctl_cache = NULL; 3292 umem_bufctl_audit_cache = NULL; 3293 heap_arena = NULL; 3294 heap_alloc = NULL; 3295 heap_free = NULL; 3296 umem_internal_arena = NULL; 3297 umem_cache_arena = NULL; 3298 umem_hash_arena = NULL; 3299 umem_log_arena = NULL; 3300 umem_oversize_arena = NULL; 3301 umem_va_arena = NULL; 3302 umem_default_arena = NULL; 3303 umem_firewall_va_arena = NULL; 3304 umem_firewall_arena = NULL; 3305 umem_memalign_arena = NULL; 3306 umem_transaction_log = NULL; 3307 umem_content_log = NULL; 3308 umem_failure_log = NULL; 3309 umem_slab_log = NULL; 3310 umem_cpu_mask = 0; 3311 3312 umem_cpus = &umem_startup_cpu; 3313 umem_startup_cpu.cpu_cache_offset = UMEM_CACHE_SIZE(0); 3314 umem_startup_cpu.cpu_number = 0; 3315 3316 bcopy(&umem_null_cache_template, &umem_null_cache, 3317 sizeof (umem_cache_t)); 3318 3319 for (idx = 0; idx < (UMEM_MAXBUF >> UMEM_ALIGN_SHIFT); idx++) 3320 umem_alloc_table[idx] = &umem_null_cache; 3321 #endif 3322 3323 /* 3324 * Perform initialization specific to the way we've been compiled 3325 * (library or standalone) 3326 */ 3327 umem_type_init(start, len, pagesize); 3328 3329 vmem_startup(); 3330 } 3331 3332 int 3333 umem_init(void) 3334 { 3335 size_t maxverify, minfirewall; 3336 size_t size; 3337 int idx; 3338 umem_cpu_t *new_cpus; 3339 3340 vmem_t *memalign_arena, *oversize_arena; 3341 3342 if (thr_self() != umem_init_thr) { 3343 /* 3344 * The usual case -- non-recursive invocation of umem_init(). 3345 */ 3346 (void) mutex_lock(&umem_init_lock); 3347 if (umem_ready != UMEM_READY_STARTUP) { 3348 /* 3349 * someone else beat us to initializing umem. Wait 3350 * for them to complete, then return. 3351 */ 3352 while (umem_ready == UMEM_READY_INITING) { 3353 int cancel_state; 3354 3355 (void) pthread_setcancelstate( 3356 PTHREAD_CANCEL_DISABLE, &cancel_state); 3357 (void) cond_wait(&umem_init_cv, 3358 &umem_init_lock); 3359 (void) pthread_setcancelstate( 3360 cancel_state, NULL); 3361 } 3362 ASSERT(umem_ready == UMEM_READY || 3363 umem_ready == UMEM_READY_INIT_FAILED); 3364 (void) mutex_unlock(&umem_init_lock); 3365 return (umem_ready == UMEM_READY); 3366 } 3367 3368 ASSERT(umem_ready == UMEM_READY_STARTUP); 3369 ASSERT(umem_init_env_ready == 0); 3370 3371 umem_ready = UMEM_READY_INITING; 3372 umem_init_thr = thr_self(); 3373 3374 (void) mutex_unlock(&umem_init_lock); 3375 umem_setup_envvars(0); /* can recurse -- see below */ 3376 if (umem_init_env_ready) { 3377 /* 3378 * initialization was completed already 3379 */ 3380 ASSERT(umem_ready == UMEM_READY || 3381 umem_ready == UMEM_READY_INIT_FAILED); 3382 ASSERT(umem_init_thr == 0); 3383 return (umem_ready == UMEM_READY); 3384 } 3385 } else if (!umem_init_env_ready) { 3386 /* 3387 * The umem_setup_envvars() call (above) makes calls into 3388 * the dynamic linker and directly into user-supplied code. 3389 * Since we cannot know what that code will do, we could be 3390 * recursively invoked (by, say, a malloc() call in the code 3391 * itself, or in a (C++) _init section it causes to be fired). 3392 * 3393 * This code is where we end up if such recursion occurs. We 3394 * first clean up any partial results in the envvar code, then 3395 * proceed to finish initialization processing in the recursive 3396 * call. The original call will notice this, and return 3397 * immediately. 3398 */ 3399 umem_setup_envvars(1); /* clean up any partial state */ 3400 } else { 3401 umem_panic( 3402 "recursive allocation while initializing umem\n"); 3403 } 3404 umem_init_env_ready = 1; 3405 3406 /* 3407 * From this point until we finish, recursion into umem_init() will 3408 * cause a umem_panic(). 3409 */ 3410 maxverify = minfirewall = ULONG_MAX; 3411 3412 /* LINTED constant condition */ 3413 if (sizeof (umem_cpu_cache_t) != UMEM_CPU_CACHE_SIZE) { 3414 umem_panic("sizeof (umem_cpu_cache_t) = %d, should be %d\n", 3415 sizeof (umem_cpu_cache_t), UMEM_CPU_CACHE_SIZE); 3416 } 3417 3418 umem_max_ncpus = umem_get_max_ncpus(); 3419 3420 /* 3421 * load tunables from environment 3422 */ 3423 umem_process_envvars(); 3424 3425 if (issetugid()) 3426 umem_mtbf = 0; 3427 3428 /* 3429 * set up vmem 3430 */ 3431 if (!(umem_flags & UMF_AUDIT)) 3432 vmem_no_debug(); 3433 3434 heap_arena = vmem_heap_arena(&heap_alloc, &heap_free); 3435 3436 pagesize = heap_arena->vm_quantum; 3437 3438 umem_internal_arena = vmem_create("umem_internal", NULL, 0, pagesize, 3439 heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP); 3440 3441 umem_default_arena = umem_internal_arena; 3442 3443 if (umem_internal_arena == NULL) 3444 goto fail; 3445 3446 umem_cache_arena = vmem_create("umem_cache", NULL, 0, UMEM_ALIGN, 3447 vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP); 3448 3449 umem_hash_arena = vmem_create("umem_hash", NULL, 0, UMEM_ALIGN, 3450 vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP); 3451 3452 umem_log_arena = vmem_create("umem_log", NULL, 0, UMEM_ALIGN, 3453 heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP); 3454 3455 umem_firewall_va_arena = vmem_create("umem_firewall_va", 3456 NULL, 0, pagesize, 3457 umem_firewall_va_alloc, umem_firewall_va_free, heap_arena, 3458 0, VM_NOSLEEP); 3459 3460 if (umem_cache_arena == NULL || umem_hash_arena == NULL || 3461 umem_log_arena == NULL || umem_firewall_va_arena == NULL) 3462 goto fail; 3463 3464 umem_firewall_arena = vmem_create("umem_firewall", NULL, 0, pagesize, 3465 heap_alloc, heap_free, umem_firewall_va_arena, 0, 3466 VM_NOSLEEP); 3467 3468 if (umem_firewall_arena == NULL) 3469 goto fail; 3470 3471 oversize_arena = vmem_create("umem_oversize", NULL, 0, pagesize, 3472 heap_alloc, heap_free, minfirewall < ULONG_MAX ? 3473 umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP); 3474 3475 memalign_arena = vmem_create("umem_memalign", NULL, 0, UMEM_ALIGN, 3476 heap_alloc, heap_free, minfirewall < ULONG_MAX ? 3477 umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP); 3478 3479 if (oversize_arena == NULL || memalign_arena == NULL) 3480 goto fail; 3481 3482 if (umem_max_ncpus > CPUHINT_MAX()) 3483 umem_max_ncpus = CPUHINT_MAX(); 3484 3485 while ((umem_max_ncpus & (umem_max_ncpus - 1)) != 0) 3486 umem_max_ncpus++; 3487 3488 if (umem_max_ncpus == 0) 3489 umem_max_ncpus = 1; 3490 3491 size = umem_max_ncpus * sizeof (umem_cpu_t); 3492 new_cpus = vmem_alloc(umem_internal_arena, size, VM_NOSLEEP); 3493 if (new_cpus == NULL) 3494 goto fail; 3495 3496 bzero(new_cpus, size); 3497 for (idx = 0; idx < umem_max_ncpus; idx++) { 3498 new_cpus[idx].cpu_number = idx; 3499 new_cpus[idx].cpu_cache_offset = UMEM_CACHE_SIZE(idx); 3500 } 3501 umem_cpus = new_cpus; 3502 umem_cpu_mask = (umem_max_ncpus - 1); 3503 3504 if (umem_maxverify == 0) 3505 umem_maxverify = maxverify; 3506 3507 if (umem_minfirewall == 0) 3508 umem_minfirewall = minfirewall; 3509 3510 /* 3511 * Set up updating and reaping 3512 */ 3513 umem_reap_next = gethrtime() + NANOSEC; 3514 3515 #ifndef UMEM_STANDALONE 3516 (void) gettimeofday(&umem_update_next, NULL); 3517 #endif 3518 3519 /* 3520 * Set up logging -- failure here is okay, since it will just disable 3521 * the logs 3522 */ 3523 if (umem_logging) { 3524 umem_transaction_log = umem_log_init(umem_transaction_log_size); 3525 umem_content_log = umem_log_init(umem_content_log_size); 3526 umem_failure_log = umem_log_init(umem_failure_log_size); 3527 umem_slab_log = umem_log_init(umem_slab_log_size); 3528 } 3529 3530 /* 3531 * Set up caches -- if successful, initialization cannot fail, since 3532 * allocations from other threads can now succeed. 3533 */ 3534 if (umem_cache_init() == 0) { 3535 log_message("unable to create initial caches\n"); 3536 goto fail; 3537 } 3538 umem_oversize_arena = oversize_arena; 3539 umem_memalign_arena = memalign_arena; 3540 3541 umem_cache_applyall(umem_cache_magazine_enable); 3542 3543 /* 3544 * initialization done, ready to go 3545 */ 3546 (void) mutex_lock(&umem_init_lock); 3547 umem_ready = UMEM_READY; 3548 umem_init_thr = 0; 3549 (void) cond_broadcast(&umem_init_cv); 3550 (void) mutex_unlock(&umem_init_lock); 3551 return (1); 3552 3553 fail: 3554 log_message("umem initialization failed\n"); 3555 3556 (void) mutex_lock(&umem_init_lock); 3557 umem_ready = UMEM_READY_INIT_FAILED; 3558 umem_init_thr = 0; 3559 (void) cond_broadcast(&umem_init_cv); 3560 (void) mutex_unlock(&umem_init_lock); 3561 return (0); 3562 } 3563 3564 void 3565 umem_setmtbf(uint32_t mtbf) 3566 { 3567 umem_mtbf = mtbf; 3568 } 3569