1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2019 Joyent, Inc. 29 * Copyright (c) 2015 by Delphix. All rights reserved. 30 */ 31 32 /* 33 * based on usr/src/uts/common/os/kmem.c r1.64 from 2001/12/18 34 * 35 * The slab allocator, as described in the following two papers: 36 * 37 * Jeff Bonwick, 38 * The Slab Allocator: An Object-Caching Kernel Memory Allocator. 39 * Proceedings of the Summer 1994 Usenix Conference. 40 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. 41 * 42 * Jeff Bonwick and Jonathan Adams, 43 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 44 * Arbitrary Resources. 45 * Proceedings of the 2001 Usenix Conference. 46 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. 47 * 48 * 1. Overview 49 * ----------- 50 * umem is very close to kmem in implementation. There are seven major 51 * areas of divergence: 52 * 53 * * Initialization 54 * 55 * * CPU handling 56 * 57 * * umem_update() 58 * 59 * * KM_SLEEP v.s. UMEM_NOFAIL 60 * 61 * * lock ordering 62 * 63 * * changing UMEM_MAXBUF 64 * 65 * * Per-thread caching for malloc/free 66 * 67 * 2. Initialization 68 * ----------------- 69 * kmem is initialized early on in boot, and knows that no one will call 70 * into it before it is ready. umem does not have these luxuries. Instead, 71 * initialization is divided into two phases: 72 * 73 * * library initialization, and 74 * 75 * * first use 76 * 77 * umem's full initialization happens at the time of the first allocation 78 * request (via malloc() and friends, umem_alloc(), or umem_zalloc()), 79 * or the first call to umem_cache_create(). 80 * 81 * umem_free(), and umem_cache_alloc() do not require special handling, 82 * since the only way to get valid arguments for them is to successfully 83 * call a function from the first group. 84 * 85 * 2.1. Library Initialization: umem_startup() 86 * ------------------------------------------- 87 * umem_startup() is libumem.so's .init section. It calls pthread_atfork() 88 * to install the handlers necessary for umem's Fork1-Safety. Because of 89 * race condition issues, all other pre-umem_init() initialization is done 90 * statically (i.e. by the dynamic linker). 91 * 92 * For standalone use, umem_startup() returns everything to its initial 93 * state. 94 * 95 * 2.2. First use: umem_init() 96 * ------------------------------ 97 * The first time any memory allocation function is used, we have to 98 * create the backing caches and vmem arenas which are needed for it. 99 * umem_init() is the central point for that task. When it completes, 100 * umem_ready is either UMEM_READY (all set) or UMEM_READY_INIT_FAILED (unable 101 * to initialize, probably due to lack of memory). 102 * 103 * There are four different paths from which umem_init() is called: 104 * 105 * * from umem_alloc() or umem_zalloc(), with 0 < size < UMEM_MAXBUF, 106 * 107 * * from umem_alloc() or umem_zalloc(), with size > UMEM_MAXBUF, 108 * 109 * * from umem_cache_create(), and 110 * 111 * * from memalign(), with align > UMEM_ALIGN. 112 * 113 * The last three just check if umem is initialized, and call umem_init() 114 * if it is not. For performance reasons, the first case is more complicated. 115 * 116 * 2.2.1. umem_alloc()/umem_zalloc(), with 0 < size < UMEM_MAXBUF 117 * ----------------------------------------------------------------- 118 * In this case, umem_cache_alloc(&umem_null_cache, ...) is called. 119 * There is special case code in which causes any allocation on 120 * &umem_null_cache to fail by returning (NULL), regardless of the 121 * flags argument. 122 * 123 * So umem_cache_alloc() returns NULL, and umem_alloc()/umem_zalloc() call 124 * umem_alloc_retry(). umem_alloc_retry() sees that the allocation 125 * was agains &umem_null_cache, and calls umem_init(). 126 * 127 * If initialization is successful, umem_alloc_retry() returns 1, which 128 * causes umem_alloc()/umem_zalloc() to start over, which causes it to load 129 * the (now valid) cache pointer from umem_alloc_table. 130 * 131 * 2.2.2. Dealing with race conditions 132 * ----------------------------------- 133 * There are a couple race conditions resulting from the initialization 134 * code that we have to guard against: 135 * 136 * * In umem_cache_create(), there is a special UMC_INTERNAL cflag 137 * that is passed for caches created during initialization. It 138 * is illegal for a user to try to create a UMC_INTERNAL cache. 139 * This allows initialization to proceed, but any other 140 * umem_cache_create()s will block by calling umem_init(). 141 * 142 * * Since umem_null_cache has a 1-element cache_cpu, it's cache_cpu_mask 143 * is always zero. umem_cache_alloc uses cp->cache_cpu_mask to 144 * mask the cpu number. This prevents a race between grabbing a 145 * cache pointer out of umem_alloc_table and growing the cpu array. 146 * 147 * 148 * 3. CPU handling 149 * --------------- 150 * kmem uses the CPU's sequence number to determine which "cpu cache" to 151 * use for an allocation. Currently, there is no way to get the sequence 152 * number in userspace. 153 * 154 * umem keeps track of cpu information in umem_cpus, an array of umem_max_ncpus 155 * umem_cpu_t structures. CURCPU() is a a "hint" function, which we then mask 156 * with either umem_cpu_mask or cp->cache_cpu_mask to find the actual "cpu" id. 157 * The mechanics of this is all in the CPU(mask) macro. 158 * 159 * Currently, umem uses _lwp_self() as its hint. 160 * 161 * 162 * 4. The update thread 163 * -------------------- 164 * kmem uses a task queue, kmem_taskq, to do periodic maintenance on 165 * every kmem cache. vmem has a periodic timeout for hash table resizing. 166 * The kmem_taskq also provides a separate context for kmem_cache_reap()'s 167 * to be done in, avoiding issues of the context of kmem_reap() callers. 168 * 169 * Instead, umem has the concept of "updates", which are asynchronous requests 170 * for work attached to single caches. All caches with pending work are 171 * on a doubly linked list rooted at the umem_null_cache. All update state 172 * is protected by the umem_update_lock mutex, and the umem_update_cv is used 173 * for notification between threads. 174 * 175 * 4.1. Cache states with regards to updates 176 * ----------------------------------------- 177 * A given cache is in one of three states: 178 * 179 * Inactive cache_uflags is zero, cache_u{next,prev} are NULL 180 * 181 * Work Requested cache_uflags is non-zero (but UMU_ACTIVE is not set), 182 * cache_u{next,prev} link the cache onto the global 183 * update list 184 * 185 * Active cache_uflags has UMU_ACTIVE set, cache_u{next,prev} 186 * are NULL, and either umem_update_thr or 187 * umem_st_update_thr are actively doing work on the 188 * cache. 189 * 190 * An update can be added to any cache in any state -- if the cache is 191 * Inactive, it transitions to being Work Requested. If the cache is 192 * Active, the worker will notice the new update and act on it before 193 * transitioning the cache to the Inactive state. 194 * 195 * If a cache is in the Active state, UMU_NOTIFY can be set, which asks 196 * the worker to broadcast the umem_update_cv when it has finished. 197 * 198 * 4.2. Update interface 199 * --------------------- 200 * umem_add_update() adds an update to a particular cache. 201 * umem_updateall() adds an update to all caches. 202 * umem_remove_updates() returns a cache to the Inactive state. 203 * 204 * umem_process_updates() process all caches in the Work Requested state. 205 * 206 * 4.3. Reaping 207 * ------------ 208 * When umem_reap() is called (at the time of heap growth), it schedule 209 * UMU_REAP updates on every cache. It then checks to see if the update 210 * thread exists (umem_update_thr != 0). If it is, it broadcasts 211 * the umem_update_cv to wake the update thread up, and returns. 212 * 213 * If the update thread does not exist (umem_update_thr == 0), and the 214 * program currently has multiple threads, umem_reap() attempts to create 215 * a new update thread. 216 * 217 * If the process is not multithreaded, or the creation fails, umem_reap() 218 * calls umem_st_update() to do an inline update. 219 * 220 * 4.4. The update thread 221 * ---------------------- 222 * The update thread spends most of its time in cond_timedwait() on the 223 * umem_update_cv. It wakes up under two conditions: 224 * 225 * * The timedwait times out, in which case it needs to run a global 226 * update, or 227 * 228 * * someone cond_broadcast(3THR)s the umem_update_cv, in which case 229 * it needs to check if there are any caches in the Work Requested 230 * state. 231 * 232 * When it is time for another global update, umem calls umem_cache_update() 233 * on every cache, then calls vmem_update(), which tunes the vmem structures. 234 * umem_cache_update() can request further work using umem_add_update(). 235 * 236 * After any work from the global update completes, the update timer is 237 * reset to umem_reap_interval seconds in the future. This makes the 238 * updates self-throttling. 239 * 240 * Reaps are similarly self-throttling. After a UMU_REAP update has 241 * been scheduled on all caches, umem_reap() sets a flag and wakes up the 242 * update thread. The update thread notices the flag, and resets the 243 * reap state. 244 * 245 * 4.5. Inline updates 246 * ------------------- 247 * If the update thread is not running, umem_st_update() is used instead. It 248 * immediately does a global update (as above), then calls 249 * umem_process_updates() to process both the reaps that umem_reap() added and 250 * any work generated by the global update. Afterwards, it resets the reap 251 * state. 252 * 253 * While the umem_st_update() is running, umem_st_update_thr holds the thread 254 * id of the thread performing the update. 255 * 256 * 4.6. Updates and fork1() 257 * ------------------------ 258 * umem has fork1() pre- and post-handlers which lock up (and release) every 259 * mutex in every cache. They also lock up the umem_update_lock. Since 260 * fork1() only copies over a single lwp, other threads (including the update 261 * thread) could have been actively using a cache in the parent. This 262 * can lead to inconsistencies in the child process. 263 * 264 * Because we locked all of the mutexes, the only possible inconsistancies are: 265 * 266 * * a umem_cache_alloc() could leak its buffer. 267 * 268 * * a caller of umem_depot_alloc() could leak a magazine, and all the 269 * buffers contained in it. 270 * 271 * * a cache could be in the Active update state. In the child, there 272 * would be no thread actually working on it. 273 * 274 * * a umem_hash_rescale() could leak the new hash table. 275 * 276 * * a umem_magazine_resize() could be in progress. 277 * 278 * * a umem_reap() could be in progress. 279 * 280 * The memory leaks we can't do anything about. umem_release_child() resets 281 * the update state, moves any caches in the Active state to the Work Requested 282 * state. This might cause some updates to be re-run, but UMU_REAP and 283 * UMU_HASH_RESCALE are effectively idempotent, and the worst that can 284 * happen from umem_magazine_resize() is resizing the magazine twice in close 285 * succession. 286 * 287 * Much of the cleanup in umem_release_child() is skipped if 288 * umem_st_update_thr == thr_self(). This is so that applications which call 289 * fork1() from a cache callback does not break. Needless to say, any such 290 * application is tremendously broken. 291 * 292 * 293 * 5. KM_SLEEP v.s. UMEM_NOFAIL 294 * ---------------------------- 295 * Allocations against kmem and vmem have two basic modes: SLEEP and 296 * NOSLEEP. A sleeping allocation is will go to sleep (waiting for 297 * more memory) instead of failing (returning NULL). 298 * 299 * SLEEP allocations presume an extremely multithreaded model, with 300 * a lot of allocation and deallocation activity. umem cannot presume 301 * that its clients have any particular type of behavior. Instead, 302 * it provides two types of allocations: 303 * 304 * * UMEM_DEFAULT, equivalent to KM_NOSLEEP (i.e. return NULL on 305 * failure) 306 * 307 * * UMEM_NOFAIL, which, on failure, calls an optional callback 308 * (registered with umem_nofail_callback()). 309 * 310 * The callback is invoked with no locks held, and can do an arbitrary 311 * amount of work. It then has a choice between: 312 * 313 * * Returning UMEM_CALLBACK_RETRY, which will cause the allocation 314 * to be restarted. 315 * 316 * * Returning UMEM_CALLBACK_EXIT(status), which will cause exit(2) 317 * to be invoked with status. If multiple threads attempt to do 318 * this simultaneously, only one will call exit(2). 319 * 320 * * Doing some kind of non-local exit (thr_exit(3thr), longjmp(3C), 321 * etc.) 322 * 323 * The default callback returns UMEM_CALLBACK_EXIT(255). 324 * 325 * To have these callbacks without risk of state corruption (in the case of 326 * a non-local exit), we have to ensure that the callbacks get invoked 327 * close to the original allocation, with no inconsistent state or held 328 * locks. The following steps are taken: 329 * 330 * * All invocations of vmem are VM_NOSLEEP. 331 * 332 * * All constructor callbacks (which can themselves to allocations) 333 * are passed UMEM_DEFAULT as their required allocation argument. This 334 * way, the constructor will fail, allowing the highest-level allocation 335 * invoke the nofail callback. 336 * 337 * If a constructor callback _does_ do a UMEM_NOFAIL allocation, and 338 * the nofail callback does a non-local exit, we will leak the 339 * partially-constructed buffer. 340 * 341 * 342 * 6. Lock Ordering 343 * ---------------- 344 * umem has a few more locks than kmem does, mostly in the update path. The 345 * overall lock ordering (earlier locks must be acquired first) is: 346 * 347 * umem_init_lock 348 * 349 * vmem_list_lock 350 * vmem_nosleep_lock.vmpl_mutex 351 * vmem_t's: 352 * vm_lock 353 * sbrk_lock 354 * 355 * umem_cache_lock 356 * umem_update_lock 357 * umem_flags_lock 358 * umem_cache_t's: 359 * cache_cpu[*].cc_lock 360 * cache_depot_lock 361 * cache_lock 362 * umem_log_header_t's: 363 * lh_cpu[*].clh_lock 364 * lh_lock 365 * 366 * 7. Changing UMEM_MAXBUF 367 * ----------------------- 368 * 369 * When changing UMEM_MAXBUF extra care has to be taken. It is not sufficient to 370 * simply increase this number. First, one must update the umem_alloc_table to 371 * have the appropriate number of entires based upon the new size. If this is 372 * not done, this will lead to libumem blowing an assertion. 373 * 374 * The second place to update, which is not required, is the umem_alloc_sizes. 375 * These determine the default cache sizes that we're going to support. 376 * 377 * 8. Per-thread caching for malloc/free 378 * ------------------------------------- 379 * 380 * "Time is an illusion. Lunchtime doubly so." -- Douglas Adams 381 * 382 * Time may be an illusion, but CPU cycles aren't. While libumem is designed 383 * to be a highly scalable allocator, that scalability comes with a fixed cycle 384 * penalty even in the absence of contention: libumem must acquire (and release 385 * a per-CPU lock for each allocation. When contention is low and malloc(3C) 386 * frequency is high, this overhead can dominate execution time. To alleviate 387 * this, we allow for per-thread caching, a lock-free means of caching recent 388 * deallocations on a per-thread basis for use in satisfying subsequent calls 389 * 390 * In addition to improving performance, we also want to: 391 * * Minimize fragmentation 392 * * Not add additional memory overhead (no larger malloc tags) 393 * 394 * In the ulwp_t of each thread there is a private data structure called a 395 * umem_t that looks like: 396 * 397 * typedef struct { 398 * size_t tm_size; 399 * void *tm_roots[NTMEMBASE]; (Currently 16) 400 * } tmem_t; 401 * 402 * Each of the roots is treated as the head of a linked list. Each entry in the 403 * list can be thought of as a void ** which points to the next entry, until one 404 * of them points to NULL. If the head points to NULL, the list is empty. 405 * 406 * Each head corresponds to a umem_cache. Currently there is a linear mapping 407 * where the first root corresponds to the first cache, second root to the 408 * second cache, etc. This works because every allocation that malloc makes to 409 * umem_alloc that can be satisified by a umem_cache will actually return a 410 * number of bytes equal to the size of that cache. Because of this property and 411 * a one to one mapping between caches and roots we can guarantee that every 412 * entry in a given root's list will be able to satisfy the same requests as the 413 * corresponding cache. 414 * 415 * The choice of sixteen roots is based on where we believe we get the biggest 416 * bang for our buck. The per-thread caches will cache up to 256 byte and 448 417 * byte allocations on ILP32 and LP64 respectively. Generally applications plan 418 * more carefully how they do larger allocations than smaller ones. Therefore 419 * sixteen roots is a reasonable compromise between the amount of additional 420 * overhead per thread, and the likelihood of a program to benefit from it. 421 * 422 * The maximum amount of memory that can be cached in each thread is determined 423 * by the perthread_cache UMEM_OPTION. It corresponds to the umem_ptc_size 424 * value. The default value for this is currently 1 MB. Once umem_init() has 425 * finished this cannot be directly tuned without directly modifying the 426 * instruction text. If, upon calling free(3C), the amount cached would exceed 427 * this maximum, we instead actually return the buffer to the umem_cache instead 428 * of holding onto it in the thread. 429 * 430 * When a thread calls malloc(3C) it first determines which umem_cache it 431 * would be serviced by. If the allocation is not covered by ptcumem it goes to 432 * the normal malloc instead. Next, it checks if the tmem_root's list is empty 433 * or not. If it is empty, we instead go and allocate the memory from 434 * umem_alloc. If it is not empty, we remove the head of the list, set the 435 * appropriate malloc tags, and return that buffer. 436 * 437 * When a thread calls free(3C) it first looks at the malloc tag and if it is 438 * invalid or the allocation exceeds the largest cache in ptcumem and sends it 439 * off to the original free() to handle and clean up appropriately. Next, it 440 * checks if the allocation size is covered by one of the per-thread roots and 441 * if it isn't, it passes it off to the original free() to be released. Finally, 442 * before it inserts this buffer as the head, it checks if adding this buffer 443 * would put the thread over its maximum cache size. If it would, it frees the 444 * buffer back to the umem_cache. Otherwise it increments the threads total 445 * cached amount and makes the buffer the new head of the appropriate tm_root. 446 * 447 * When a thread exits, all of the buffers that it has in its per-thread cache 448 * will be passed to umem_free() and returned to the appropriate umem_cache. 449 * 450 * 8.1 Handling addition and removal of umem_caches 451 * ------------------------------------------------ 452 * 453 * The set of umem_caches that are used to back calls to umem_alloc() and 454 * ultimately malloc() are determined at program execution time. The default set 455 * of caches is defined below in umem_alloc_sizes[]. Various umem_options exist 456 * that modify the set of caches: size_add, size_clear, and size_remove. Because 457 * the set of caches can only be determined once umem_init() has been called and 458 * we have the additional goals of minimizing additional fragmentation and 459 * metadata space overhead in the malloc tags, this forces our hand to go down a 460 * slightly different path: the one tread by fasttrap and trapstat. 461 * 462 * During umem_init we're going to dynamically construct a new version of 463 * malloc(3C) and free(3C) that utilizes the known cache sizes and then ensure 464 * that ptcmalloc and ptcfree replace malloc and free as entries in the plt. If 465 * ptcmalloc and ptcfree cannot handle a request, they simply jump to the 466 * original libumem implementations. 467 * 468 * After creating all of the umem_caches, but before making them visible, 469 * umem_cache_init checks that umem_genasm_supported is non-zero. This value is 470 * set by each architecture in $ARCH/umem_genasm.c to indicate whether or not 471 * they support this. If the value is zero, then this process is skipped. 472 * Similarly, if the cache size has been tuned to zero by UMEM_OPTIONS, then 473 * this is also skipped. 474 * 475 * In umem_genasm.c, each architecture's implementation implements a single 476 * function called umem_genasm() that is responsible for generating the 477 * appropriate versions of ptcmalloc() and ptcfree(), placing them in the 478 * appropriate memory location, and finally doing the switch from malloc() and 479 * free() to ptcmalloc() and ptcfree(). Once the change has been made, there is 480 * no way to switch back, short of restarting the program or modifying program 481 * text with mdb. 482 * 483 * 8.2 Modifying the Procedure Linkage Table (PLT) 484 * ----------------------------------------------- 485 * 486 * The last piece of this puzzle is how we actually jam ptcmalloc() into the 487 * PLT. To handle this, we have defined two functions, _malloc and _free, we 488 * use a standard #pragma weak for malloc and free and direct them to those 489 * symbols. By default, those symbols have text defined as nops for our 490 * generated functions and when they're invoked, they jump to the default 491 * malloc and free functions. 492 * 493 * When umem_genasm() is called, it makes _malloc and _free writeable and goes 494 * through and updates the text provided for by _malloc and _free just after 495 * the jump. Once both have been successfully generated, umem_genasm() nops 496 * over the original jump so that we now call into the genasm versions of 497 * these functions, and makes the functions read-only once again. 498 * 499 * 8.3 umem_genasm() 500 * ----------------- 501 * 502 * umem_genasm() is currently implemented for i386 and amd64. This section 503 * describes the theory behind the construction. For specific byte code to 504 * assembly instructions and niceish C and asm versions of ptcmalloc and 505 * ptcfree, see the individual umem_genasm.c files. The layout consists of the 506 * following sections: 507 * 508 * o. function-specfic prologue 509 * o. function-generic cache-selecting elements 510 * o. function-specific epilogue 511 * 512 * There are three different generic cache elements that exist: 513 * 514 * o. the last or only cache 515 * o. the intermediary caches if more than two 516 * o. the first one if more than one cache 517 * 518 * The malloc and free prologues and epilogues mimic the necessary portions of 519 * libumem's malloc and free. This includes things like checking for size 520 * overflow, setting and verifying the malloc tags. 521 * 522 * It is an important constraint that these functions do not make use of the 523 * call instruction. The only jmp outside of the individual functions is to the 524 * original libumem malloc and free respectively. Because doing things like 525 * setting errno or raising an internal umem error on improper malloc tags would 526 * require using calls into the PLT, whenever we encounter one of those cases we 527 * just jump to the original malloc and free functions reusing the same stack 528 * frame. 529 * 530 * Each of the above sections, the three caches, and the malloc and free 531 * prologue and epilogue are implemented as blocks of machine code with the 532 * corresponding assembly in comments. There are known offsets into each block 533 * that corresponds to locations of data and addresses that we only know at run 534 * time. These blocks are copied as necessary and the blanks filled in 535 * appropriately. 536 * 537 * As mentioned in section 8.2, the trampoline library uses specifically named 538 * variables to communicate the buffers and size to use. These variables are: 539 * 540 * o. umem_genasm_mptr: The buffer for ptcmalloc 541 * o. umem_genasm_msize: The size in bytes of the above buffer 542 * o. umem_genasm_fptr: The buffer for ptcfree 543 * o. umem_genasm_fsize: The size in bytes of the above buffer 544 * 545 * Finally, to enable the generated assembly we need to remove the previous jump 546 * to the actual malloc that exists at the start of these buffers. On x86, this 547 * is a five byte region. We could zero out the jump offset to be a jmp +0, but 548 * using nops can be faster. We specifically use a single five byte nop on x86 549 * as it is faster. When porting ptcumem to other architectures, the various 550 * opcode changes and options should be analyzed. 551 * 552 * 8.4 Interface with libc.so 553 * -------------------------- 554 * 555 * The tmem_t structure as described in the beginning of section 8, is part of a 556 * private interface with libc. There are three functions that exist to cover 557 * this. They are not documented in man pages or header files. They are in the 558 * SUNWprivate part of libc's mapfile. 559 * 560 * o. _tmem_get_base(void) 561 * 562 * Returns the offset from the ulwp_t (curthread) to the tmem_t structure. 563 * This is a constant for all threads and is effectively a way to to do 564 * ::offsetof ulwp_t ul_tmem without having to know the specifics of the 565 * structure outside of libc. 566 * 567 * o. _tmem_get_nentries(void) 568 * 569 * Returns the number of roots that exist in the tmem_t. This is one part 570 * of the cap on the number of umem_caches that we can back with tmem. 571 * 572 * o. _tmem_set_cleanup(void (*)(void *, int)) 573 * 574 * This sets a clean up handler that gets called back when a thread exits. 575 * There is one call per buffer, the void * is a pointer to the buffer on 576 * the list, the int is the index into the roots array for this buffer. 577 * 578 * 8.5 Tuning and disabling per-thread caching 579 * ------------------------------------------- 580 * 581 * There is only one tunable for per-thread caching: the amount of memory each 582 * thread should be able to cache. This is specified via the perthread_cache 583 * UMEM_OPTION option. No attempt is made to to sanity check the specified 584 * value; the limit is simply the maximum value of a size_t. 585 * 586 * If the perthread_cache UMEM_OPTION is set to zero, nomagazines was requested, 587 * or UMEM_DEBUG has been turned on then we will never call into umem_genasm; 588 * however, the trampoline audit library and jump will still be in place. 589 * 590 * 8.6 Observing efficacy of per-thread caching 591 * -------------------------------------------- 592 * 593 * To understand the efficacy of per-thread caching, use the ::umastat dcmd 594 * to see the percentage of capacity consumed on a per-thread basis, the 595 * degree to which each umem cache contributes to per-thread cache consumption, 596 * and the number of buffers in per-thread caches on a per-umem cache basis. 597 * If more detail is required, the specific buffers in a per-thread cache can 598 * be iterated over with the umem_ptc_* walkers. (These walkers allow an 599 * optional ulwp_t to be specified to iterate only over a particular thread's 600 * cache.) 601 */ 602 603 #include <umem_impl.h> 604 #include <sys/vmem_impl_user.h> 605 #include "umem_base.h" 606 #include "vmem_base.h" 607 608 #include <sys/processor.h> 609 #include <sys/sysmacros.h> 610 611 #include <alloca.h> 612 #include <errno.h> 613 #include <limits.h> 614 #include <stdio.h> 615 #include <stdlib.h> 616 #include <string.h> 617 #include <strings.h> 618 #include <signal.h> 619 #include <unistd.h> 620 #include <atomic.h> 621 622 #include "misc.h" 623 624 #define UMEM_VMFLAGS(umflag) (VM_NOSLEEP) 625 626 size_t pagesize; 627 628 /* 629 * The default set of caches to back umem_alloc(). 630 * These sizes should be reevaluated periodically. 631 * 632 * We want allocations that are multiples of the coherency granularity 633 * (64 bytes) to be satisfied from a cache which is a multiple of 64 634 * bytes, so that it will be 64-byte aligned. For all multiples of 64, 635 * the next kmem_cache_size greater than or equal to it must be a 636 * multiple of 64. 637 * 638 * This table must be in sorted order, from smallest to highest. The 639 * highest slot must be UMEM_MAXBUF, and every slot afterwards must be 640 * zero. 641 */ 642 static int umem_alloc_sizes[] = { 643 #ifdef _LP64 644 1 * 8, 645 1 * 16, 646 2 * 16, 647 3 * 16, 648 #else 649 1 * 8, 650 2 * 8, 651 3 * 8, 652 4 * 8, 5 * 8, 6 * 8, 7 * 8, 653 #endif 654 4 * 16, 5 * 16, 6 * 16, 7 * 16, 655 4 * 32, 5 * 32, 6 * 32, 7 * 32, 656 4 * 64, 5 * 64, 6 * 64, 7 * 64, 657 4 * 128, 5 * 128, 6 * 128, 7 * 128, 658 P2ALIGN(8192 / 7, 64), 659 P2ALIGN(8192 / 6, 64), 660 P2ALIGN(8192 / 5, 64), 661 P2ALIGN(8192 / 4, 64), 2304, 662 P2ALIGN(8192 / 3, 64), 663 P2ALIGN(8192 / 2, 64), 4544, 664 P2ALIGN(8192 / 1, 64), 9216, 665 4096 * 3, 666 8192 * 2, /* = 8192 * 2 */ 667 24576, 32768, 40960, 49152, 57344, 65536, 73728, 81920, 668 90112, 98304, 106496, 114688, 122880, UMEM_MAXBUF, /* 128k */ 669 /* 24 slots for user expansion */ 670 0, 0, 0, 0, 0, 0, 0, 0, 671 0, 0, 0, 0, 0, 0, 0, 0, 672 0, 0, 0, 0, 0, 0, 0, 0, 673 }; 674 #define NUM_ALLOC_SIZES (sizeof (umem_alloc_sizes) / sizeof (*umem_alloc_sizes)) 675 676 static umem_magtype_t umem_magtype[] = { 677 { 1, 8, 3200, 65536 }, 678 { 3, 16, 256, 32768 }, 679 { 7, 32, 64, 16384 }, 680 { 15, 64, 0, 8192 }, 681 { 31, 64, 0, 4096 }, 682 { 47, 64, 0, 2048 }, 683 { 63, 64, 0, 1024 }, 684 { 95, 64, 0, 512 }, 685 { 143, 64, 0, 0 }, 686 }; 687 688 /* 689 * umem tunables 690 */ 691 uint32_t umem_max_ncpus; /* # of CPU caches. */ 692 693 uint32_t umem_stack_depth = 15; /* # stack frames in a bufctl_audit */ 694 uint32_t umem_reap_interval = 10; /* max reaping rate (seconds) */ 695 uint_t umem_depot_contention = 2; /* max failed trylocks per real interval */ 696 uint_t umem_abort = 1; /* whether to abort on error */ 697 uint_t umem_output = 0; /* whether to write to standard error */ 698 uint_t umem_logging = 0; /* umem_log_enter() override */ 699 uint32_t umem_mtbf = 0; /* mean time between failures [default: off] */ 700 size_t umem_transaction_log_size; /* size of transaction log */ 701 size_t umem_content_log_size; /* size of content log */ 702 size_t umem_failure_log_size; /* failure log [4 pages per CPU] */ 703 size_t umem_slab_log_size; /* slab create log [4 pages per CPU] */ 704 size_t umem_content_maxsave = 256; /* UMF_CONTENTS max bytes to log */ 705 size_t umem_lite_minsize = 0; /* minimum buffer size for UMF_LITE */ 706 size_t umem_lite_maxalign = 1024; /* maximum buffer alignment for UMF_LITE */ 707 size_t umem_maxverify; /* maximum bytes to inspect in debug routines */ 708 size_t umem_minfirewall; /* hardware-enforced redzone threshold */ 709 size_t umem_ptc_size = 1048576; /* size of per-thread cache (in bytes) */ 710 711 uint_t umem_flags = 0; 712 uintptr_t umem_tmem_off; 713 714 mutex_t umem_init_lock; /* locks initialization */ 715 cond_t umem_init_cv; /* initialization CV */ 716 thread_t umem_init_thr; /* thread initializing */ 717 int umem_init_env_ready; /* environ pre-initted */ 718 int umem_ready = UMEM_READY_STARTUP; 719 720 int umem_ptc_enabled; /* per-thread caching enabled */ 721 722 static umem_nofail_callback_t *nofail_callback; 723 static mutex_t umem_nofail_exit_lock; 724 static thread_t umem_nofail_exit_thr; 725 726 static umem_cache_t *umem_slab_cache; 727 static umem_cache_t *umem_bufctl_cache; 728 static umem_cache_t *umem_bufctl_audit_cache; 729 730 mutex_t umem_flags_lock; 731 732 static vmem_t *heap_arena; 733 static vmem_alloc_t *heap_alloc; 734 static vmem_free_t *heap_free; 735 736 static vmem_t *umem_internal_arena; 737 static vmem_t *umem_cache_arena; 738 static vmem_t *umem_hash_arena; 739 static vmem_t *umem_log_arena; 740 static vmem_t *umem_oversize_arena; 741 static vmem_t *umem_va_arena; 742 static vmem_t *umem_default_arena; 743 static vmem_t *umem_firewall_va_arena; 744 static vmem_t *umem_firewall_arena; 745 746 vmem_t *umem_memalign_arena; 747 748 umem_log_header_t *umem_transaction_log; 749 umem_log_header_t *umem_content_log; 750 umem_log_header_t *umem_failure_log; 751 umem_log_header_t *umem_slab_log; 752 753 #define CPUHINT() (thr_self()) 754 #define CPUHINT_MAX() INT_MAX 755 756 #define CPU(mask) (umem_cpus + (CPUHINT() & (mask))) 757 static umem_cpu_t umem_startup_cpu = { /* initial, single, cpu */ 758 UMEM_CACHE_SIZE(0), 759 0 760 }; 761 762 static uint32_t umem_cpu_mask = 0; /* global cpu mask */ 763 static umem_cpu_t *umem_cpus = &umem_startup_cpu; /* cpu list */ 764 765 volatile uint32_t umem_reaping; 766 767 thread_t umem_update_thr; 768 struct timeval umem_update_next; /* timeofday of next update */ 769 volatile thread_t umem_st_update_thr; /* only used when single-thd */ 770 771 #define IN_UPDATE() (thr_self() == umem_update_thr || \ 772 thr_self() == umem_st_update_thr) 773 #define IN_REAP() IN_UPDATE() 774 775 mutex_t umem_update_lock; /* cache_u{next,prev,flags} */ 776 cond_t umem_update_cv; 777 778 volatile hrtime_t umem_reap_next; /* min hrtime of next reap */ 779 780 mutex_t umem_cache_lock; /* inter-cache linkage only */ 781 782 #ifdef UMEM_STANDALONE 783 umem_cache_t umem_null_cache; 784 static const umem_cache_t umem_null_cache_template = { 785 #else 786 umem_cache_t umem_null_cache = { 787 #endif 788 0, 0, 0, 0, 0, 789 0, 0, 790 0, 0, 791 0, 0, 792 "invalid_cache", 793 0, 0, 794 NULL, NULL, NULL, NULL, 795 NULL, 796 0, 0, 0, 0, 797 &umem_null_cache, &umem_null_cache, 798 &umem_null_cache, &umem_null_cache, 799 0, 800 DEFAULTMUTEX, /* start of slab layer */ 801 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 802 &umem_null_cache.cache_nullslab, 803 { 804 &umem_null_cache, 805 NULL, 806 &umem_null_cache.cache_nullslab, 807 &umem_null_cache.cache_nullslab, 808 NULL, 809 -1, 810 0 811 }, 812 NULL, 813 NULL, 814 DEFAULTMUTEX, /* start of depot layer */ 815 NULL, { 816 NULL, 0, 0, 0, 0 817 }, { 818 NULL, 0, 0, 0, 0 819 }, { 820 { 821 DEFAULTMUTEX, /* start of CPU cache */ 822 0, 0, NULL, NULL, -1, -1, 0 823 } 824 } 825 }; 826 827 #define ALLOC_TABLE_4 \ 828 &umem_null_cache, &umem_null_cache, &umem_null_cache, &umem_null_cache 829 830 #define ALLOC_TABLE_64 \ 831 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \ 832 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \ 833 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \ 834 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4 835 836 #define ALLOC_TABLE_1024 \ 837 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \ 838 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \ 839 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \ 840 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64 841 842 static umem_cache_t *umem_alloc_table[UMEM_MAXBUF >> UMEM_ALIGN_SHIFT] = { 843 ALLOC_TABLE_1024, 844 ALLOC_TABLE_1024, 845 ALLOC_TABLE_1024, 846 ALLOC_TABLE_1024, 847 ALLOC_TABLE_1024, 848 ALLOC_TABLE_1024, 849 ALLOC_TABLE_1024, 850 ALLOC_TABLE_1024, 851 ALLOC_TABLE_1024, 852 ALLOC_TABLE_1024, 853 ALLOC_TABLE_1024, 854 ALLOC_TABLE_1024, 855 ALLOC_TABLE_1024, 856 ALLOC_TABLE_1024, 857 ALLOC_TABLE_1024, 858 ALLOC_TABLE_1024 859 }; 860 861 862 /* Used to constrain audit-log stack traces */ 863 caddr_t umem_min_stack; 864 caddr_t umem_max_stack; 865 866 867 #define UMERR_MODIFIED 0 /* buffer modified while on freelist */ 868 #define UMERR_REDZONE 1 /* redzone violation (write past end of buf) */ 869 #define UMERR_DUPFREE 2 /* freed a buffer twice */ 870 #define UMERR_BADADDR 3 /* freed a bad (unallocated) address */ 871 #define UMERR_BADBUFTAG 4 /* buftag corrupted */ 872 #define UMERR_BADBUFCTL 5 /* bufctl corrupted */ 873 #define UMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ 874 #define UMERR_BADSIZE 7 /* alloc size != free size */ 875 #define UMERR_BADBASE 8 /* buffer base address wrong */ 876 877 struct { 878 hrtime_t ump_timestamp; /* timestamp of error */ 879 int ump_error; /* type of umem error (UMERR_*) */ 880 void *ump_buffer; /* buffer that induced abort */ 881 void *ump_realbuf; /* real start address for buffer */ 882 umem_cache_t *ump_cache; /* buffer's cache according to client */ 883 umem_cache_t *ump_realcache; /* actual cache containing buffer */ 884 umem_slab_t *ump_slab; /* slab accoring to umem_findslab() */ 885 umem_bufctl_t *ump_bufctl; /* bufctl */ 886 } umem_abort_info; 887 888 static void 889 copy_pattern(uint64_t pattern, void *buf_arg, size_t size) 890 { 891 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 892 uint64_t *buf = buf_arg; 893 894 while (buf < bufend) 895 *buf++ = pattern; 896 } 897 898 static void * 899 verify_pattern(uint64_t pattern, void *buf_arg, size_t size) 900 { 901 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 902 uint64_t *buf; 903 904 for (buf = buf_arg; buf < bufend; buf++) 905 if (*buf != pattern) 906 return (buf); 907 return (NULL); 908 } 909 910 static void * 911 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) 912 { 913 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 914 uint64_t *buf; 915 916 for (buf = buf_arg; buf < bufend; buf++) { 917 if (*buf != old) { 918 copy_pattern(old, buf_arg, 919 (char *)buf - (char *)buf_arg); 920 return (buf); 921 } 922 *buf = new; 923 } 924 925 return (NULL); 926 } 927 928 void 929 umem_cache_applyall(void (*func)(umem_cache_t *)) 930 { 931 umem_cache_t *cp; 932 933 (void) mutex_lock(&umem_cache_lock); 934 for (cp = umem_null_cache.cache_next; cp != &umem_null_cache; 935 cp = cp->cache_next) 936 func(cp); 937 (void) mutex_unlock(&umem_cache_lock); 938 } 939 940 static void 941 umem_add_update_unlocked(umem_cache_t *cp, int flags) 942 { 943 umem_cache_t *cnext, *cprev; 944 945 flags &= ~UMU_ACTIVE; 946 947 if (!flags) 948 return; 949 950 if (cp->cache_uflags & UMU_ACTIVE) { 951 cp->cache_uflags |= flags; 952 } else { 953 if (cp->cache_unext != NULL) { 954 ASSERT(cp->cache_uflags != 0); 955 cp->cache_uflags |= flags; 956 } else { 957 ASSERT(cp->cache_uflags == 0); 958 cp->cache_uflags = flags; 959 cp->cache_unext = cnext = &umem_null_cache; 960 cp->cache_uprev = cprev = umem_null_cache.cache_uprev; 961 cnext->cache_uprev = cp; 962 cprev->cache_unext = cp; 963 } 964 } 965 } 966 967 static void 968 umem_add_update(umem_cache_t *cp, int flags) 969 { 970 (void) mutex_lock(&umem_update_lock); 971 972 umem_add_update_unlocked(cp, flags); 973 974 if (!IN_UPDATE()) 975 (void) cond_broadcast(&umem_update_cv); 976 977 (void) mutex_unlock(&umem_update_lock); 978 } 979 980 /* 981 * Remove a cache from the update list, waiting for any in-progress work to 982 * complete first. 983 */ 984 static void 985 umem_remove_updates(umem_cache_t *cp) 986 { 987 (void) mutex_lock(&umem_update_lock); 988 989 /* 990 * Get it out of the active state 991 */ 992 while (cp->cache_uflags & UMU_ACTIVE) { 993 int cancel_state; 994 995 ASSERT(cp->cache_unext == NULL); 996 997 cp->cache_uflags |= UMU_NOTIFY; 998 999 /* 1000 * Make sure the update state is sane, before we wait 1001 */ 1002 ASSERT(umem_update_thr != 0 || umem_st_update_thr != 0); 1003 ASSERT(umem_update_thr != thr_self() && 1004 umem_st_update_thr != thr_self()); 1005 1006 (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, 1007 &cancel_state); 1008 (void) cond_wait(&umem_update_cv, &umem_update_lock); 1009 (void) pthread_setcancelstate(cancel_state, NULL); 1010 } 1011 /* 1012 * Get it out of the Work Requested state 1013 */ 1014 if (cp->cache_unext != NULL) { 1015 cp->cache_uprev->cache_unext = cp->cache_unext; 1016 cp->cache_unext->cache_uprev = cp->cache_uprev; 1017 cp->cache_uprev = cp->cache_unext = NULL; 1018 cp->cache_uflags = 0; 1019 } 1020 /* 1021 * Make sure it is in the Inactive state 1022 */ 1023 ASSERT(cp->cache_unext == NULL && cp->cache_uflags == 0); 1024 (void) mutex_unlock(&umem_update_lock); 1025 } 1026 1027 static void 1028 umem_updateall(int flags) 1029 { 1030 umem_cache_t *cp; 1031 1032 /* 1033 * NOTE: To prevent deadlock, umem_cache_lock is always acquired first. 1034 * 1035 * (umem_add_update is called from things run via umem_cache_applyall) 1036 */ 1037 (void) mutex_lock(&umem_cache_lock); 1038 (void) mutex_lock(&umem_update_lock); 1039 1040 for (cp = umem_null_cache.cache_next; cp != &umem_null_cache; 1041 cp = cp->cache_next) 1042 umem_add_update_unlocked(cp, flags); 1043 1044 if (!IN_UPDATE()) 1045 (void) cond_broadcast(&umem_update_cv); 1046 1047 (void) mutex_unlock(&umem_update_lock); 1048 (void) mutex_unlock(&umem_cache_lock); 1049 } 1050 1051 /* 1052 * Debugging support. Given a buffer address, find its slab. 1053 */ 1054 static umem_slab_t * 1055 umem_findslab(umem_cache_t *cp, void *buf) 1056 { 1057 umem_slab_t *sp; 1058 1059 (void) mutex_lock(&cp->cache_lock); 1060 for (sp = cp->cache_nullslab.slab_next; 1061 sp != &cp->cache_nullslab; sp = sp->slab_next) { 1062 if (UMEM_SLAB_MEMBER(sp, buf)) { 1063 (void) mutex_unlock(&cp->cache_lock); 1064 return (sp); 1065 } 1066 } 1067 (void) mutex_unlock(&cp->cache_lock); 1068 1069 return (NULL); 1070 } 1071 1072 static void 1073 umem_error(int error, umem_cache_t *cparg, void *bufarg) 1074 { 1075 umem_buftag_t *btp = NULL; 1076 umem_bufctl_t *bcp = NULL; 1077 umem_cache_t *cp = cparg; 1078 umem_slab_t *sp; 1079 uint64_t *off; 1080 void *buf = bufarg; 1081 1082 int old_logging = umem_logging; 1083 1084 umem_logging = 0; /* stop logging when a bad thing happens */ 1085 1086 umem_abort_info.ump_timestamp = gethrtime(); 1087 1088 sp = umem_findslab(cp, buf); 1089 if (sp == NULL) { 1090 for (cp = umem_null_cache.cache_prev; cp != &umem_null_cache; 1091 cp = cp->cache_prev) { 1092 if ((sp = umem_findslab(cp, buf)) != NULL) 1093 break; 1094 } 1095 } 1096 1097 if (sp == NULL) { 1098 cp = NULL; 1099 error = UMERR_BADADDR; 1100 } else { 1101 if (cp != cparg) 1102 error = UMERR_BADCACHE; 1103 else 1104 buf = (char *)bufarg - ((uintptr_t)bufarg - 1105 (uintptr_t)sp->slab_base) % cp->cache_chunksize; 1106 if (buf != bufarg) 1107 error = UMERR_BADBASE; 1108 if (cp->cache_flags & UMF_BUFTAG) 1109 btp = UMEM_BUFTAG(cp, buf); 1110 if (cp->cache_flags & UMF_HASH) { 1111 (void) mutex_lock(&cp->cache_lock); 1112 for (bcp = *UMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) 1113 if (bcp->bc_addr == buf) 1114 break; 1115 (void) mutex_unlock(&cp->cache_lock); 1116 if (bcp == NULL && btp != NULL) 1117 bcp = btp->bt_bufctl; 1118 if (umem_findslab(cp->cache_bufctl_cache, bcp) == 1119 NULL || P2PHASE((uintptr_t)bcp, UMEM_ALIGN) || 1120 bcp->bc_addr != buf) { 1121 error = UMERR_BADBUFCTL; 1122 bcp = NULL; 1123 } 1124 } 1125 } 1126 1127 umem_abort_info.ump_error = error; 1128 umem_abort_info.ump_buffer = bufarg; 1129 umem_abort_info.ump_realbuf = buf; 1130 umem_abort_info.ump_cache = cparg; 1131 umem_abort_info.ump_realcache = cp; 1132 umem_abort_info.ump_slab = sp; 1133 umem_abort_info.ump_bufctl = bcp; 1134 1135 umem_printf("umem allocator: "); 1136 1137 switch (error) { 1138 1139 case UMERR_MODIFIED: 1140 umem_printf("buffer modified after being freed\n"); 1141 off = verify_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify); 1142 if (off == NULL) /* shouldn't happen */ 1143 off = buf; 1144 umem_printf("modification occurred at offset 0x%lx " 1145 "(0x%llx replaced by 0x%llx)\n", 1146 (uintptr_t)off - (uintptr_t)buf, 1147 (longlong_t)UMEM_FREE_PATTERN, (longlong_t)*off); 1148 break; 1149 1150 case UMERR_REDZONE: 1151 umem_printf("redzone violation: write past end of buffer\n"); 1152 break; 1153 1154 case UMERR_BADADDR: 1155 umem_printf("invalid free: buffer not in cache\n"); 1156 break; 1157 1158 case UMERR_DUPFREE: 1159 umem_printf("duplicate free: buffer freed twice\n"); 1160 break; 1161 1162 case UMERR_BADBUFTAG: 1163 umem_printf("boundary tag corrupted\n"); 1164 umem_printf("bcp ^ bxstat = %lx, should be %lx\n", 1165 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, 1166 UMEM_BUFTAG_FREE); 1167 break; 1168 1169 case UMERR_BADBUFCTL: 1170 umem_printf("bufctl corrupted\n"); 1171 break; 1172 1173 case UMERR_BADCACHE: 1174 umem_printf("buffer freed to wrong cache\n"); 1175 umem_printf("buffer was allocated from %s,\n", cp->cache_name); 1176 umem_printf("caller attempting free to %s.\n", 1177 cparg->cache_name); 1178 break; 1179 1180 case UMERR_BADSIZE: 1181 umem_printf("bad free: free size (%u) != alloc size (%u)\n", 1182 UMEM_SIZE_DECODE(((uint32_t *)btp)[0]), 1183 UMEM_SIZE_DECODE(((uint32_t *)btp)[1])); 1184 break; 1185 1186 case UMERR_BADBASE: 1187 umem_printf("bad free: free address (%p) != alloc address " 1188 "(%p)\n", bufarg, buf); 1189 break; 1190 } 1191 1192 umem_printf("buffer=%p bufctl=%p cache: %s\n", 1193 bufarg, (void *)bcp, cparg->cache_name); 1194 1195 if (bcp != NULL && (cp->cache_flags & UMF_AUDIT) && 1196 error != UMERR_BADBUFCTL) { 1197 int d; 1198 timespec_t ts; 1199 hrtime_t diff; 1200 umem_bufctl_audit_t *bcap = (umem_bufctl_audit_t *)bcp; 1201 1202 diff = umem_abort_info.ump_timestamp - bcap->bc_timestamp; 1203 ts.tv_sec = diff / NANOSEC; 1204 ts.tv_nsec = diff % NANOSEC; 1205 1206 umem_printf("previous transaction on buffer %p:\n", buf); 1207 umem_printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", 1208 (void *)(intptr_t)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, 1209 (void *)sp, cp->cache_name); 1210 for (d = 0; d < MIN(bcap->bc_depth, umem_stack_depth); d++) { 1211 (void) print_sym((void *)bcap->bc_stack[d]); 1212 umem_printf("\n"); 1213 } 1214 } 1215 1216 umem_err_recoverable("umem: heap corruption detected"); 1217 1218 umem_logging = old_logging; /* resume logging */ 1219 } 1220 1221 void 1222 umem_nofail_callback(umem_nofail_callback_t *cb) 1223 { 1224 nofail_callback = cb; 1225 } 1226 1227 static int 1228 umem_alloc_retry(umem_cache_t *cp, int umflag) 1229 { 1230 if (cp == &umem_null_cache) { 1231 if (umem_init()) 1232 return (1); /* retry */ 1233 /* 1234 * Initialization failed. Do normal failure processing. 1235 */ 1236 } 1237 if (umem_flags & UMF_CHECKNULL) { 1238 umem_err_recoverable("umem: out of heap space"); 1239 } 1240 if (umflag & UMEM_NOFAIL) { 1241 int def_result = UMEM_CALLBACK_EXIT(255); 1242 int result = def_result; 1243 umem_nofail_callback_t *callback = nofail_callback; 1244 1245 if (callback != NULL) 1246 result = callback(); 1247 1248 if (result == UMEM_CALLBACK_RETRY) 1249 return (1); 1250 1251 if ((result & ~0xFF) != UMEM_CALLBACK_EXIT(0)) { 1252 log_message("nofail callback returned %x\n", result); 1253 result = def_result; 1254 } 1255 1256 /* 1257 * only one thread will call exit 1258 */ 1259 if (umem_nofail_exit_thr == thr_self()) 1260 umem_panic("recursive UMEM_CALLBACK_EXIT()\n"); 1261 1262 (void) mutex_lock(&umem_nofail_exit_lock); 1263 umem_nofail_exit_thr = thr_self(); 1264 exit(result & 0xFF); 1265 /*NOTREACHED*/ 1266 } 1267 return (0); 1268 } 1269 1270 static umem_log_header_t * 1271 umem_log_init(size_t logsize) 1272 { 1273 umem_log_header_t *lhp; 1274 int nchunks = 4 * umem_max_ncpus; 1275 size_t lhsize = offsetof(umem_log_header_t, lh_cpu[umem_max_ncpus]); 1276 int i; 1277 1278 if (logsize == 0) 1279 return (NULL); 1280 1281 /* 1282 * Make sure that lhp->lh_cpu[] is nicely aligned 1283 * to prevent false sharing of cache lines. 1284 */ 1285 lhsize = P2ROUNDUP(lhsize, UMEM_ALIGN); 1286 lhp = vmem_xalloc(umem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, 1287 NULL, NULL, VM_NOSLEEP); 1288 if (lhp == NULL) 1289 goto fail; 1290 1291 bzero(lhp, lhsize); 1292 1293 (void) mutex_init(&lhp->lh_lock, USYNC_THREAD, NULL); 1294 lhp->lh_nchunks = nchunks; 1295 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks, PAGESIZE); 1296 if (lhp->lh_chunksize == 0) 1297 lhp->lh_chunksize = PAGESIZE; 1298 1299 lhp->lh_base = vmem_alloc(umem_log_arena, 1300 lhp->lh_chunksize * nchunks, VM_NOSLEEP); 1301 if (lhp->lh_base == NULL) 1302 goto fail; 1303 1304 lhp->lh_free = vmem_alloc(umem_log_arena, 1305 nchunks * sizeof (int), VM_NOSLEEP); 1306 if (lhp->lh_free == NULL) 1307 goto fail; 1308 1309 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); 1310 1311 for (i = 0; i < umem_max_ncpus; i++) { 1312 umem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; 1313 (void) mutex_init(&clhp->clh_lock, USYNC_THREAD, NULL); 1314 clhp->clh_chunk = i; 1315 } 1316 1317 for (i = umem_max_ncpus; i < nchunks; i++) 1318 lhp->lh_free[i] = i; 1319 1320 lhp->lh_head = umem_max_ncpus; 1321 lhp->lh_tail = 0; 1322 1323 return (lhp); 1324 1325 fail: 1326 if (lhp != NULL) { 1327 if (lhp->lh_base != NULL) 1328 vmem_free(umem_log_arena, lhp->lh_base, 1329 lhp->lh_chunksize * nchunks); 1330 1331 vmem_xfree(umem_log_arena, lhp, lhsize); 1332 } 1333 return (NULL); 1334 } 1335 1336 static void * 1337 umem_log_enter(umem_log_header_t *lhp, void *data, size_t size) 1338 { 1339 void *logspace; 1340 umem_cpu_log_header_t *clhp; 1341 1342 if (lhp == NULL || umem_logging == 0) 1343 return (NULL); 1344 1345 clhp = &lhp->lh_cpu[CPU(umem_cpu_mask)->cpu_number]; 1346 1347 (void) mutex_lock(&clhp->clh_lock); 1348 clhp->clh_hits++; 1349 if (size > clhp->clh_avail) { 1350 (void) mutex_lock(&lhp->lh_lock); 1351 lhp->lh_hits++; 1352 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; 1353 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; 1354 clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; 1355 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; 1356 clhp->clh_current = lhp->lh_base + 1357 clhp->clh_chunk * lhp->lh_chunksize; 1358 clhp->clh_avail = lhp->lh_chunksize; 1359 if (size > lhp->lh_chunksize) 1360 size = lhp->lh_chunksize; 1361 (void) mutex_unlock(&lhp->lh_lock); 1362 } 1363 logspace = clhp->clh_current; 1364 clhp->clh_current += size; 1365 clhp->clh_avail -= size; 1366 bcopy(data, logspace, size); 1367 (void) mutex_unlock(&clhp->clh_lock); 1368 return (logspace); 1369 } 1370 1371 #define UMEM_AUDIT(lp, cp, bcp) \ 1372 { \ 1373 umem_bufctl_audit_t *_bcp = (umem_bufctl_audit_t *)(bcp); \ 1374 _bcp->bc_timestamp = gethrtime(); \ 1375 _bcp->bc_thread = thr_self(); \ 1376 _bcp->bc_depth = getpcstack(_bcp->bc_stack, umem_stack_depth, \ 1377 (cp != NULL) && (cp->cache_flags & UMF_CHECKSIGNAL)); \ 1378 _bcp->bc_lastlog = umem_log_enter((lp), _bcp, \ 1379 UMEM_BUFCTL_AUDIT_SIZE); \ 1380 } 1381 1382 static void 1383 umem_log_event(umem_log_header_t *lp, umem_cache_t *cp, 1384 umem_slab_t *sp, void *addr) 1385 { 1386 umem_bufctl_audit_t *bcp; 1387 UMEM_LOCAL_BUFCTL_AUDIT(&bcp); 1388 1389 bzero(bcp, UMEM_BUFCTL_AUDIT_SIZE); 1390 bcp->bc_addr = addr; 1391 bcp->bc_slab = sp; 1392 bcp->bc_cache = cp; 1393 UMEM_AUDIT(lp, cp, bcp); 1394 } 1395 1396 /* 1397 * Create a new slab for cache cp. 1398 */ 1399 static umem_slab_t * 1400 umem_slab_create(umem_cache_t *cp, int umflag) 1401 { 1402 size_t slabsize = cp->cache_slabsize; 1403 size_t chunksize = cp->cache_chunksize; 1404 int cache_flags = cp->cache_flags; 1405 size_t color, chunks; 1406 char *buf, *slab; 1407 umem_slab_t *sp; 1408 umem_bufctl_t *bcp; 1409 vmem_t *vmp = cp->cache_arena; 1410 1411 color = cp->cache_color + cp->cache_align; 1412 if (color > cp->cache_maxcolor) 1413 color = cp->cache_mincolor; 1414 cp->cache_color = color; 1415 1416 slab = vmem_alloc(vmp, slabsize, UMEM_VMFLAGS(umflag)); 1417 1418 if (slab == NULL) 1419 goto vmem_alloc_failure; 1420 1421 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); 1422 1423 if (!(cp->cache_cflags & UMC_NOTOUCH) && 1424 (cp->cache_flags & UMF_DEADBEEF)) 1425 copy_pattern(UMEM_UNINITIALIZED_PATTERN, slab, slabsize); 1426 1427 if (cache_flags & UMF_HASH) { 1428 if ((sp = _umem_cache_alloc(umem_slab_cache, umflag)) == NULL) 1429 goto slab_alloc_failure; 1430 chunks = (slabsize - color) / chunksize; 1431 } else { 1432 sp = UMEM_SLAB(cp, slab); 1433 chunks = (slabsize - sizeof (umem_slab_t) - color) / chunksize; 1434 } 1435 1436 sp->slab_cache = cp; 1437 sp->slab_head = NULL; 1438 sp->slab_refcnt = 0; 1439 sp->slab_base = buf = slab + color; 1440 sp->slab_chunks = chunks; 1441 1442 ASSERT(chunks > 0); 1443 while (chunks-- != 0) { 1444 if (cache_flags & UMF_HASH) { 1445 bcp = _umem_cache_alloc(cp->cache_bufctl_cache, umflag); 1446 if (bcp == NULL) 1447 goto bufctl_alloc_failure; 1448 if (cache_flags & UMF_AUDIT) { 1449 umem_bufctl_audit_t *bcap = 1450 (umem_bufctl_audit_t *)bcp; 1451 bzero(bcap, UMEM_BUFCTL_AUDIT_SIZE); 1452 bcap->bc_cache = cp; 1453 } 1454 bcp->bc_addr = buf; 1455 bcp->bc_slab = sp; 1456 } else { 1457 bcp = UMEM_BUFCTL(cp, buf); 1458 } 1459 if (cache_flags & UMF_BUFTAG) { 1460 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1461 btp->bt_redzone = UMEM_REDZONE_PATTERN; 1462 btp->bt_bufctl = bcp; 1463 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE; 1464 if (cache_flags & UMF_DEADBEEF) { 1465 copy_pattern(UMEM_FREE_PATTERN, buf, 1466 cp->cache_verify); 1467 } 1468 } 1469 bcp->bc_next = sp->slab_head; 1470 sp->slab_head = bcp; 1471 buf += chunksize; 1472 } 1473 1474 umem_log_event(umem_slab_log, cp, sp, slab); 1475 1476 return (sp); 1477 1478 bufctl_alloc_failure: 1479 1480 while ((bcp = sp->slab_head) != NULL) { 1481 sp->slab_head = bcp->bc_next; 1482 _umem_cache_free(cp->cache_bufctl_cache, bcp); 1483 } 1484 _umem_cache_free(umem_slab_cache, sp); 1485 1486 slab_alloc_failure: 1487 1488 vmem_free(vmp, slab, slabsize); 1489 1490 vmem_alloc_failure: 1491 1492 umem_log_event(umem_failure_log, cp, NULL, NULL); 1493 atomic_add_64(&cp->cache_alloc_fail, 1); 1494 1495 return (NULL); 1496 } 1497 1498 /* 1499 * Destroy a slab. 1500 */ 1501 static void 1502 umem_slab_destroy(umem_cache_t *cp, umem_slab_t *sp) 1503 { 1504 vmem_t *vmp = cp->cache_arena; 1505 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); 1506 1507 if (cp->cache_flags & UMF_HASH) { 1508 umem_bufctl_t *bcp; 1509 while ((bcp = sp->slab_head) != NULL) { 1510 sp->slab_head = bcp->bc_next; 1511 _umem_cache_free(cp->cache_bufctl_cache, bcp); 1512 } 1513 _umem_cache_free(umem_slab_cache, sp); 1514 } 1515 vmem_free(vmp, slab, cp->cache_slabsize); 1516 } 1517 1518 /* 1519 * Allocate a raw (unconstructed) buffer from cp's slab layer. 1520 */ 1521 static void * 1522 umem_slab_alloc(umem_cache_t *cp, int umflag) 1523 { 1524 umem_bufctl_t *bcp, **hash_bucket; 1525 umem_slab_t *sp; 1526 void *buf; 1527 1528 (void) mutex_lock(&cp->cache_lock); 1529 cp->cache_slab_alloc++; 1530 sp = cp->cache_freelist; 1531 ASSERT(sp->slab_cache == cp); 1532 if (sp->slab_head == NULL) { 1533 /* 1534 * The freelist is empty. Create a new slab. 1535 */ 1536 (void) mutex_unlock(&cp->cache_lock); 1537 if (cp == &umem_null_cache) 1538 return (NULL); 1539 if ((sp = umem_slab_create(cp, umflag)) == NULL) 1540 return (NULL); 1541 (void) mutex_lock(&cp->cache_lock); 1542 cp->cache_slab_create++; 1543 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) 1544 cp->cache_bufmax = cp->cache_buftotal; 1545 sp->slab_next = cp->cache_freelist; 1546 sp->slab_prev = cp->cache_freelist->slab_prev; 1547 sp->slab_next->slab_prev = sp; 1548 sp->slab_prev->slab_next = sp; 1549 cp->cache_freelist = sp; 1550 } 1551 1552 sp->slab_refcnt++; 1553 ASSERT(sp->slab_refcnt <= sp->slab_chunks); 1554 1555 /* 1556 * If we're taking the last buffer in the slab, 1557 * remove the slab from the cache's freelist. 1558 */ 1559 bcp = sp->slab_head; 1560 if ((sp->slab_head = bcp->bc_next) == NULL) { 1561 cp->cache_freelist = sp->slab_next; 1562 ASSERT(sp->slab_refcnt == sp->slab_chunks); 1563 } 1564 1565 if (cp->cache_flags & UMF_HASH) { 1566 /* 1567 * Add buffer to allocated-address hash table. 1568 */ 1569 buf = bcp->bc_addr; 1570 hash_bucket = UMEM_HASH(cp, buf); 1571 bcp->bc_next = *hash_bucket; 1572 *hash_bucket = bcp; 1573 if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) { 1574 UMEM_AUDIT(umem_transaction_log, cp, bcp); 1575 } 1576 } else { 1577 buf = UMEM_BUF(cp, bcp); 1578 } 1579 1580 ASSERT(UMEM_SLAB_MEMBER(sp, buf)); 1581 1582 (void) mutex_unlock(&cp->cache_lock); 1583 1584 return (buf); 1585 } 1586 1587 /* 1588 * Free a raw (unconstructed) buffer to cp's slab layer. 1589 */ 1590 static void 1591 umem_slab_free(umem_cache_t *cp, void *buf) 1592 { 1593 umem_slab_t *sp; 1594 umem_bufctl_t *bcp, **prev_bcpp; 1595 1596 ASSERT(buf != NULL); 1597 1598 (void) mutex_lock(&cp->cache_lock); 1599 cp->cache_slab_free++; 1600 1601 if (cp->cache_flags & UMF_HASH) { 1602 /* 1603 * Look up buffer in allocated-address hash table. 1604 */ 1605 prev_bcpp = UMEM_HASH(cp, buf); 1606 while ((bcp = *prev_bcpp) != NULL) { 1607 if (bcp->bc_addr == buf) { 1608 *prev_bcpp = bcp->bc_next; 1609 sp = bcp->bc_slab; 1610 break; 1611 } 1612 cp->cache_lookup_depth++; 1613 prev_bcpp = &bcp->bc_next; 1614 } 1615 } else { 1616 bcp = UMEM_BUFCTL(cp, buf); 1617 sp = UMEM_SLAB(cp, buf); 1618 } 1619 1620 if (bcp == NULL || sp->slab_cache != cp || !UMEM_SLAB_MEMBER(sp, buf)) { 1621 (void) mutex_unlock(&cp->cache_lock); 1622 umem_error(UMERR_BADADDR, cp, buf); 1623 return; 1624 } 1625 1626 if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) { 1627 if (cp->cache_flags & UMF_CONTENTS) 1628 ((umem_bufctl_audit_t *)bcp)->bc_contents = 1629 umem_log_enter(umem_content_log, buf, 1630 cp->cache_contents); 1631 UMEM_AUDIT(umem_transaction_log, cp, bcp); 1632 } 1633 1634 /* 1635 * If this slab isn't currently on the freelist, put it there. 1636 */ 1637 if (sp->slab_head == NULL) { 1638 ASSERT(sp->slab_refcnt == sp->slab_chunks); 1639 ASSERT(cp->cache_freelist != sp); 1640 sp->slab_next->slab_prev = sp->slab_prev; 1641 sp->slab_prev->slab_next = sp->slab_next; 1642 sp->slab_next = cp->cache_freelist; 1643 sp->slab_prev = cp->cache_freelist->slab_prev; 1644 sp->slab_next->slab_prev = sp; 1645 sp->slab_prev->slab_next = sp; 1646 cp->cache_freelist = sp; 1647 } 1648 1649 bcp->bc_next = sp->slab_head; 1650 sp->slab_head = bcp; 1651 1652 ASSERT(sp->slab_refcnt >= 1); 1653 if (--sp->slab_refcnt == 0) { 1654 /* 1655 * There are no outstanding allocations from this slab, 1656 * so we can reclaim the memory. 1657 */ 1658 sp->slab_next->slab_prev = sp->slab_prev; 1659 sp->slab_prev->slab_next = sp->slab_next; 1660 if (sp == cp->cache_freelist) 1661 cp->cache_freelist = sp->slab_next; 1662 cp->cache_slab_destroy++; 1663 cp->cache_buftotal -= sp->slab_chunks; 1664 (void) mutex_unlock(&cp->cache_lock); 1665 umem_slab_destroy(cp, sp); 1666 return; 1667 } 1668 (void) mutex_unlock(&cp->cache_lock); 1669 } 1670 1671 static int 1672 umem_cache_alloc_debug(umem_cache_t *cp, void *buf, int umflag) 1673 { 1674 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1675 umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl; 1676 uint32_t mtbf; 1677 int flags_nfatal; 1678 1679 if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) { 1680 umem_error(UMERR_BADBUFTAG, cp, buf); 1681 return (-1); 1682 } 1683 1684 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_ALLOC; 1685 1686 if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) { 1687 umem_error(UMERR_BADBUFCTL, cp, buf); 1688 return (-1); 1689 } 1690 1691 btp->bt_redzone = UMEM_REDZONE_PATTERN; 1692 1693 if (cp->cache_flags & UMF_DEADBEEF) { 1694 if (verify_and_copy_pattern(UMEM_FREE_PATTERN, 1695 UMEM_UNINITIALIZED_PATTERN, buf, cp->cache_verify)) { 1696 umem_error(UMERR_MODIFIED, cp, buf); 1697 return (-1); 1698 } 1699 } 1700 1701 if ((mtbf = umem_mtbf | cp->cache_mtbf) != 0 && 1702 gethrtime() % mtbf == 0 && 1703 (umflag & (UMEM_FATAL_FLAGS)) == 0) { 1704 umem_log_event(umem_failure_log, cp, NULL, NULL); 1705 } else { 1706 mtbf = 0; 1707 } 1708 1709 /* 1710 * We do not pass fatal flags on to the constructor. This prevents 1711 * leaking buffers in the event of a subordinate constructor failing. 1712 */ 1713 flags_nfatal = UMEM_DEFAULT; 1714 if (mtbf || (cp->cache_constructor != NULL && 1715 cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0)) { 1716 atomic_add_64(&cp->cache_alloc_fail, 1); 1717 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE; 1718 copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify); 1719 umem_slab_free(cp, buf); 1720 return (-1); 1721 } 1722 1723 if (cp->cache_flags & UMF_AUDIT) { 1724 UMEM_AUDIT(umem_transaction_log, cp, bcp); 1725 } 1726 1727 return (0); 1728 } 1729 1730 static int 1731 umem_cache_free_debug(umem_cache_t *cp, void *buf) 1732 { 1733 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1734 umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl; 1735 umem_slab_t *sp; 1736 1737 if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_ALLOC)) { 1738 if (btp->bt_bxstat == ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) { 1739 umem_error(UMERR_DUPFREE, cp, buf); 1740 return (-1); 1741 } 1742 sp = umem_findslab(cp, buf); 1743 if (sp == NULL || sp->slab_cache != cp) 1744 umem_error(UMERR_BADADDR, cp, buf); 1745 else 1746 umem_error(UMERR_REDZONE, cp, buf); 1747 return (-1); 1748 } 1749 1750 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE; 1751 1752 if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) { 1753 umem_error(UMERR_BADBUFCTL, cp, buf); 1754 return (-1); 1755 } 1756 1757 if (btp->bt_redzone != UMEM_REDZONE_PATTERN) { 1758 umem_error(UMERR_REDZONE, cp, buf); 1759 return (-1); 1760 } 1761 1762 if (cp->cache_flags & UMF_AUDIT) { 1763 if (cp->cache_flags & UMF_CONTENTS) 1764 bcp->bc_contents = umem_log_enter(umem_content_log, 1765 buf, cp->cache_contents); 1766 UMEM_AUDIT(umem_transaction_log, cp, bcp); 1767 } 1768 1769 if (cp->cache_destructor != NULL) 1770 cp->cache_destructor(buf, cp->cache_private); 1771 1772 if (cp->cache_flags & UMF_DEADBEEF) 1773 copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify); 1774 1775 return (0); 1776 } 1777 1778 /* 1779 * Free each object in magazine mp to cp's slab layer, and free mp itself. 1780 */ 1781 static void 1782 umem_magazine_destroy(umem_cache_t *cp, umem_magazine_t *mp, int nrounds) 1783 { 1784 int round; 1785 1786 ASSERT(cp->cache_next == NULL || IN_UPDATE()); 1787 1788 for (round = 0; round < nrounds; round++) { 1789 void *buf = mp->mag_round[round]; 1790 1791 if ((cp->cache_flags & UMF_DEADBEEF) && 1792 verify_pattern(UMEM_FREE_PATTERN, buf, 1793 cp->cache_verify) != NULL) { 1794 umem_error(UMERR_MODIFIED, cp, buf); 1795 continue; 1796 } 1797 1798 if (!(cp->cache_flags & UMF_BUFTAG) && 1799 cp->cache_destructor != NULL) 1800 cp->cache_destructor(buf, cp->cache_private); 1801 1802 umem_slab_free(cp, buf); 1803 } 1804 ASSERT(UMEM_MAGAZINE_VALID(cp, mp)); 1805 _umem_cache_free(cp->cache_magtype->mt_cache, mp); 1806 } 1807 1808 /* 1809 * Allocate a magazine from the depot. 1810 */ 1811 static umem_magazine_t * 1812 umem_depot_alloc(umem_cache_t *cp, umem_maglist_t *mlp) 1813 { 1814 umem_magazine_t *mp; 1815 1816 /* 1817 * If we can't get the depot lock without contention, 1818 * update our contention count. We use the depot 1819 * contention rate to determine whether we need to 1820 * increase the magazine size for better scalability. 1821 */ 1822 if (mutex_trylock(&cp->cache_depot_lock) != 0) { 1823 (void) mutex_lock(&cp->cache_depot_lock); 1824 cp->cache_depot_contention++; 1825 } 1826 1827 if ((mp = mlp->ml_list) != NULL) { 1828 ASSERT(UMEM_MAGAZINE_VALID(cp, mp)); 1829 mlp->ml_list = mp->mag_next; 1830 if (--mlp->ml_total < mlp->ml_min) 1831 mlp->ml_min = mlp->ml_total; 1832 mlp->ml_alloc++; 1833 } 1834 1835 (void) mutex_unlock(&cp->cache_depot_lock); 1836 1837 return (mp); 1838 } 1839 1840 /* 1841 * Free a magazine to the depot. 1842 */ 1843 static void 1844 umem_depot_free(umem_cache_t *cp, umem_maglist_t *mlp, umem_magazine_t *mp) 1845 { 1846 (void) mutex_lock(&cp->cache_depot_lock); 1847 ASSERT(UMEM_MAGAZINE_VALID(cp, mp)); 1848 mp->mag_next = mlp->ml_list; 1849 mlp->ml_list = mp; 1850 mlp->ml_total++; 1851 (void) mutex_unlock(&cp->cache_depot_lock); 1852 } 1853 1854 /* 1855 * Update the working set statistics for cp's depot. 1856 */ 1857 static void 1858 umem_depot_ws_update(umem_cache_t *cp) 1859 { 1860 (void) mutex_lock(&cp->cache_depot_lock); 1861 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; 1862 cp->cache_full.ml_min = cp->cache_full.ml_total; 1863 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; 1864 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 1865 (void) mutex_unlock(&cp->cache_depot_lock); 1866 } 1867 1868 /* 1869 * Reap all magazines that have fallen out of the depot's working set. 1870 */ 1871 static void 1872 umem_depot_ws_reap(umem_cache_t *cp) 1873 { 1874 long reap; 1875 umem_magazine_t *mp; 1876 1877 ASSERT(cp->cache_next == NULL || IN_REAP()); 1878 1879 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 1880 while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_full)) != NULL) 1881 umem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); 1882 1883 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); 1884 while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_empty)) != NULL) 1885 umem_magazine_destroy(cp, mp, 0); 1886 } 1887 1888 static void 1889 umem_cpu_reload(umem_cpu_cache_t *ccp, umem_magazine_t *mp, int rounds) 1890 { 1891 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || 1892 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); 1893 ASSERT(ccp->cc_magsize > 0); 1894 1895 ccp->cc_ploaded = ccp->cc_loaded; 1896 ccp->cc_prounds = ccp->cc_rounds; 1897 ccp->cc_loaded = mp; 1898 ccp->cc_rounds = rounds; 1899 } 1900 1901 /* 1902 * Allocate a constructed object from cache cp. 1903 */ 1904 #pragma weak umem_cache_alloc = _umem_cache_alloc 1905 void * 1906 _umem_cache_alloc(umem_cache_t *cp, int umflag) 1907 { 1908 umem_cpu_cache_t *ccp; 1909 umem_magazine_t *fmp; 1910 void *buf; 1911 int flags_nfatal; 1912 1913 retry: 1914 ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask)); 1915 (void) mutex_lock(&ccp->cc_lock); 1916 for (;;) { 1917 /* 1918 * If there's an object available in the current CPU's 1919 * loaded magazine, just take it and return. 1920 */ 1921 if (ccp->cc_rounds > 0) { 1922 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; 1923 ccp->cc_alloc++; 1924 (void) mutex_unlock(&ccp->cc_lock); 1925 if ((ccp->cc_flags & UMF_BUFTAG) && 1926 umem_cache_alloc_debug(cp, buf, umflag) == -1) { 1927 if (umem_alloc_retry(cp, umflag)) { 1928 goto retry; 1929 } 1930 1931 return (NULL); 1932 } 1933 return (buf); 1934 } 1935 1936 /* 1937 * The loaded magazine is empty. If the previously loaded 1938 * magazine was full, exchange them and try again. 1939 */ 1940 if (ccp->cc_prounds > 0) { 1941 umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 1942 continue; 1943 } 1944 1945 /* 1946 * If the magazine layer is disabled, break out now. 1947 */ 1948 if (ccp->cc_magsize == 0) 1949 break; 1950 1951 /* 1952 * Try to get a full magazine from the depot. 1953 */ 1954 fmp = umem_depot_alloc(cp, &cp->cache_full); 1955 if (fmp != NULL) { 1956 if (ccp->cc_ploaded != NULL) 1957 umem_depot_free(cp, &cp->cache_empty, 1958 ccp->cc_ploaded); 1959 umem_cpu_reload(ccp, fmp, ccp->cc_magsize); 1960 continue; 1961 } 1962 1963 /* 1964 * There are no full magazines in the depot, 1965 * so fall through to the slab layer. 1966 */ 1967 break; 1968 } 1969 (void) mutex_unlock(&ccp->cc_lock); 1970 1971 /* 1972 * We couldn't allocate a constructed object from the magazine layer, 1973 * so get a raw buffer from the slab layer and apply its constructor. 1974 */ 1975 buf = umem_slab_alloc(cp, umflag); 1976 1977 if (buf == NULL) { 1978 if (cp == &umem_null_cache) 1979 return (NULL); 1980 if (umem_alloc_retry(cp, umflag)) { 1981 goto retry; 1982 } 1983 1984 return (NULL); 1985 } 1986 1987 if (cp->cache_flags & UMF_BUFTAG) { 1988 /* 1989 * Let umem_cache_alloc_debug() apply the constructor for us. 1990 */ 1991 if (umem_cache_alloc_debug(cp, buf, umflag) == -1) { 1992 if (umem_alloc_retry(cp, umflag)) { 1993 goto retry; 1994 } 1995 return (NULL); 1996 } 1997 return (buf); 1998 } 1999 2000 /* 2001 * We do not pass fatal flags on to the constructor. This prevents 2002 * leaking buffers in the event of a subordinate constructor failing. 2003 */ 2004 flags_nfatal = UMEM_DEFAULT; 2005 if (cp->cache_constructor != NULL && 2006 cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0) { 2007 atomic_add_64(&cp->cache_alloc_fail, 1); 2008 umem_slab_free(cp, buf); 2009 2010 if (umem_alloc_retry(cp, umflag)) { 2011 goto retry; 2012 } 2013 return (NULL); 2014 } 2015 2016 return (buf); 2017 } 2018 2019 /* 2020 * Free a constructed object to cache cp. 2021 */ 2022 #pragma weak umem_cache_free = _umem_cache_free 2023 void 2024 _umem_cache_free(umem_cache_t *cp, void *buf) 2025 { 2026 umem_cpu_cache_t *ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask)); 2027 umem_magazine_t *emp; 2028 umem_magtype_t *mtp; 2029 2030 if (ccp->cc_flags & UMF_BUFTAG) 2031 if (umem_cache_free_debug(cp, buf) == -1) 2032 return; 2033 2034 (void) mutex_lock(&ccp->cc_lock); 2035 for (;;) { 2036 /* 2037 * If there's a slot available in the current CPU's 2038 * loaded magazine, just put the object there and return. 2039 */ 2040 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2041 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; 2042 ccp->cc_free++; 2043 (void) mutex_unlock(&ccp->cc_lock); 2044 return; 2045 } 2046 2047 /* 2048 * The loaded magazine is full. If the previously loaded 2049 * magazine was empty, exchange them and try again. 2050 */ 2051 if (ccp->cc_prounds == 0) { 2052 umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2053 continue; 2054 } 2055 2056 /* 2057 * If the magazine layer is disabled, break out now. 2058 */ 2059 if (ccp->cc_magsize == 0) 2060 break; 2061 2062 /* 2063 * Try to get an empty magazine from the depot. 2064 */ 2065 emp = umem_depot_alloc(cp, &cp->cache_empty); 2066 if (emp != NULL) { 2067 if (ccp->cc_ploaded != NULL) 2068 umem_depot_free(cp, &cp->cache_full, 2069 ccp->cc_ploaded); 2070 umem_cpu_reload(ccp, emp, 0); 2071 continue; 2072 } 2073 2074 /* 2075 * There are no empty magazines in the depot, 2076 * so try to allocate a new one. We must drop all locks 2077 * across umem_cache_alloc() because lower layers may 2078 * attempt to allocate from this cache. 2079 */ 2080 mtp = cp->cache_magtype; 2081 (void) mutex_unlock(&ccp->cc_lock); 2082 emp = _umem_cache_alloc(mtp->mt_cache, UMEM_DEFAULT); 2083 (void) mutex_lock(&ccp->cc_lock); 2084 2085 if (emp != NULL) { 2086 /* 2087 * We successfully allocated an empty magazine. 2088 * However, we had to drop ccp->cc_lock to do it, 2089 * so the cache's magazine size may have changed. 2090 * If so, free the magazine and try again. 2091 */ 2092 if (ccp->cc_magsize != mtp->mt_magsize) { 2093 (void) mutex_unlock(&ccp->cc_lock); 2094 _umem_cache_free(mtp->mt_cache, emp); 2095 (void) mutex_lock(&ccp->cc_lock); 2096 continue; 2097 } 2098 2099 /* 2100 * We got a magazine of the right size. Add it to 2101 * the depot and try the whole dance again. 2102 */ 2103 umem_depot_free(cp, &cp->cache_empty, emp); 2104 continue; 2105 } 2106 2107 /* 2108 * We couldn't allocate an empty magazine, 2109 * so fall through to the slab layer. 2110 */ 2111 break; 2112 } 2113 (void) mutex_unlock(&ccp->cc_lock); 2114 2115 /* 2116 * We couldn't free our constructed object to the magazine layer, 2117 * so apply its destructor and free it to the slab layer. 2118 * Note that if UMF_BUFTAG is in effect, umem_cache_free_debug() 2119 * will have already applied the destructor. 2120 */ 2121 if (!(cp->cache_flags & UMF_BUFTAG) && cp->cache_destructor != NULL) 2122 cp->cache_destructor(buf, cp->cache_private); 2123 2124 umem_slab_free(cp, buf); 2125 } 2126 2127 #pragma weak umem_zalloc = _umem_zalloc 2128 void * 2129 _umem_zalloc(size_t size, int umflag) 2130 { 2131 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT; 2132 void *buf; 2133 2134 retry: 2135 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) { 2136 umem_cache_t *cp = umem_alloc_table[index]; 2137 buf = _umem_cache_alloc(cp, umflag); 2138 if (buf != NULL) { 2139 if (cp->cache_flags & UMF_BUFTAG) { 2140 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 2141 ((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE; 2142 ((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size); 2143 } 2144 bzero(buf, size); 2145 } else if (umem_alloc_retry(cp, umflag)) 2146 goto retry; 2147 } else { 2148 buf = _umem_alloc(size, umflag); /* handles failure */ 2149 if (buf != NULL) 2150 bzero(buf, size); 2151 } 2152 return (buf); 2153 } 2154 2155 #pragma weak umem_alloc = _umem_alloc 2156 void * 2157 _umem_alloc(size_t size, int umflag) 2158 { 2159 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT; 2160 void *buf; 2161 umem_alloc_retry: 2162 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) { 2163 umem_cache_t *cp = umem_alloc_table[index]; 2164 buf = _umem_cache_alloc(cp, umflag); 2165 if ((cp->cache_flags & UMF_BUFTAG) && buf != NULL) { 2166 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 2167 ((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE; 2168 ((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size); 2169 } 2170 if (buf == NULL && umem_alloc_retry(cp, umflag)) 2171 goto umem_alloc_retry; 2172 return (buf); 2173 } 2174 if (size == 0) 2175 return (NULL); 2176 if (umem_oversize_arena == NULL) { 2177 if (umem_init()) 2178 ASSERT(umem_oversize_arena != NULL); 2179 else 2180 return (NULL); 2181 } 2182 buf = vmem_alloc(umem_oversize_arena, size, UMEM_VMFLAGS(umflag)); 2183 if (buf == NULL) { 2184 umem_log_event(umem_failure_log, NULL, NULL, (void *)size); 2185 if (umem_alloc_retry(NULL, umflag)) 2186 goto umem_alloc_retry; 2187 } 2188 return (buf); 2189 } 2190 2191 #pragma weak umem_alloc_align = _umem_alloc_align 2192 void * 2193 _umem_alloc_align(size_t size, size_t align, int umflag) 2194 { 2195 void *buf; 2196 2197 if (size == 0) 2198 return (NULL); 2199 if ((align & (align - 1)) != 0) 2200 return (NULL); 2201 if (align < UMEM_ALIGN) 2202 align = UMEM_ALIGN; 2203 2204 umem_alloc_align_retry: 2205 if (umem_memalign_arena == NULL) { 2206 if (umem_init()) 2207 ASSERT(umem_oversize_arena != NULL); 2208 else 2209 return (NULL); 2210 } 2211 buf = vmem_xalloc(umem_memalign_arena, size, align, 0, 0, NULL, NULL, 2212 UMEM_VMFLAGS(umflag)); 2213 if (buf == NULL) { 2214 umem_log_event(umem_failure_log, NULL, NULL, (void *)size); 2215 if (umem_alloc_retry(NULL, umflag)) 2216 goto umem_alloc_align_retry; 2217 } 2218 return (buf); 2219 } 2220 2221 #pragma weak umem_free = _umem_free 2222 void 2223 _umem_free(void *buf, size_t size) 2224 { 2225 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT; 2226 2227 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) { 2228 umem_cache_t *cp = umem_alloc_table[index]; 2229 if (cp->cache_flags & UMF_BUFTAG) { 2230 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 2231 uint32_t *ip = (uint32_t *)btp; 2232 if (ip[1] != UMEM_SIZE_ENCODE(size)) { 2233 if (*(uint64_t *)buf == UMEM_FREE_PATTERN) { 2234 umem_error(UMERR_DUPFREE, cp, buf); 2235 return; 2236 } 2237 if (UMEM_SIZE_VALID(ip[1])) { 2238 ip[0] = UMEM_SIZE_ENCODE(size); 2239 umem_error(UMERR_BADSIZE, cp, buf); 2240 } else { 2241 umem_error(UMERR_REDZONE, cp, buf); 2242 } 2243 return; 2244 } 2245 if (((uint8_t *)buf)[size] != UMEM_REDZONE_BYTE) { 2246 umem_error(UMERR_REDZONE, cp, buf); 2247 return; 2248 } 2249 btp->bt_redzone = UMEM_REDZONE_PATTERN; 2250 } 2251 _umem_cache_free(cp, buf); 2252 } else { 2253 if (buf == NULL && size == 0) 2254 return; 2255 vmem_free(umem_oversize_arena, buf, size); 2256 } 2257 } 2258 2259 #pragma weak umem_free_align = _umem_free_align 2260 void 2261 _umem_free_align(void *buf, size_t size) 2262 { 2263 if (buf == NULL && size == 0) 2264 return; 2265 vmem_xfree(umem_memalign_arena, buf, size); 2266 } 2267 2268 static void * 2269 umem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) 2270 { 2271 size_t realsize = size + vmp->vm_quantum; 2272 2273 /* 2274 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding 2275 * vm_quantum will cause integer wraparound. Check for this, and 2276 * blow off the firewall page in this case. Note that such a 2277 * giant allocation (the entire address space) can never be 2278 * satisfied, so it will either fail immediately (VM_NOSLEEP) 2279 * or sleep forever (VM_SLEEP). Thus, there is no need for a 2280 * corresponding check in umem_firewall_va_free(). 2281 */ 2282 if (realsize < size) 2283 realsize = size; 2284 2285 return (vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT)); 2286 } 2287 2288 static void 2289 umem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) 2290 { 2291 vmem_free(vmp, addr, size + vmp->vm_quantum); 2292 } 2293 2294 /* 2295 * Reclaim all unused memory from a cache. 2296 */ 2297 static void 2298 umem_cache_reap(umem_cache_t *cp) 2299 { 2300 /* 2301 * Ask the cache's owner to free some memory if possible. 2302 * The idea is to handle things like the inode cache, which 2303 * typically sits on a bunch of memory that it doesn't truly 2304 * *need*. Reclaim policy is entirely up to the owner; this 2305 * callback is just an advisory plea for help. 2306 */ 2307 if (cp->cache_reclaim != NULL) 2308 cp->cache_reclaim(cp->cache_private); 2309 2310 umem_depot_ws_reap(cp); 2311 } 2312 2313 /* 2314 * Purge all magazines from a cache and set its magazine limit to zero. 2315 * All calls are serialized by being done by the update thread, except for 2316 * the final call from umem_cache_destroy(). 2317 */ 2318 static void 2319 umem_cache_magazine_purge(umem_cache_t *cp) 2320 { 2321 umem_cpu_cache_t *ccp; 2322 umem_magazine_t *mp, *pmp; 2323 int rounds, prounds, cpu_seqid; 2324 2325 ASSERT(cp->cache_next == NULL || IN_UPDATE()); 2326 2327 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) { 2328 ccp = &cp->cache_cpu[cpu_seqid]; 2329 2330 (void) mutex_lock(&ccp->cc_lock); 2331 mp = ccp->cc_loaded; 2332 pmp = ccp->cc_ploaded; 2333 rounds = ccp->cc_rounds; 2334 prounds = ccp->cc_prounds; 2335 ccp->cc_loaded = NULL; 2336 ccp->cc_ploaded = NULL; 2337 ccp->cc_rounds = -1; 2338 ccp->cc_prounds = -1; 2339 ccp->cc_magsize = 0; 2340 (void) mutex_unlock(&ccp->cc_lock); 2341 2342 if (mp) 2343 umem_magazine_destroy(cp, mp, rounds); 2344 if (pmp) 2345 umem_magazine_destroy(cp, pmp, prounds); 2346 } 2347 2348 /* 2349 * Updating the working set statistics twice in a row has the 2350 * effect of setting the working set size to zero, so everything 2351 * is eligible for reaping. 2352 */ 2353 umem_depot_ws_update(cp); 2354 umem_depot_ws_update(cp); 2355 2356 umem_depot_ws_reap(cp); 2357 } 2358 2359 /* 2360 * Enable per-cpu magazines on a cache. 2361 */ 2362 static void 2363 umem_cache_magazine_enable(umem_cache_t *cp) 2364 { 2365 int cpu_seqid; 2366 2367 if (cp->cache_flags & UMF_NOMAGAZINE) 2368 return; 2369 2370 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) { 2371 umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 2372 (void) mutex_lock(&ccp->cc_lock); 2373 ccp->cc_magsize = cp->cache_magtype->mt_magsize; 2374 (void) mutex_unlock(&ccp->cc_lock); 2375 } 2376 2377 } 2378 2379 /* 2380 * Recompute a cache's magazine size. The trade-off is that larger magazines 2381 * provide a higher transfer rate with the depot, while smaller magazines 2382 * reduce memory consumption. Magazine resizing is an expensive operation; 2383 * it should not be done frequently. 2384 * 2385 * Changes to the magazine size are serialized by only having one thread 2386 * doing updates. (the update thread) 2387 * 2388 * Note: at present this only grows the magazine size. It might be useful 2389 * to allow shrinkage too. 2390 */ 2391 static void 2392 umem_cache_magazine_resize(umem_cache_t *cp) 2393 { 2394 umem_magtype_t *mtp = cp->cache_magtype; 2395 2396 ASSERT(IN_UPDATE()); 2397 2398 if (cp->cache_chunksize < mtp->mt_maxbuf) { 2399 umem_cache_magazine_purge(cp); 2400 (void) mutex_lock(&cp->cache_depot_lock); 2401 cp->cache_magtype = ++mtp; 2402 cp->cache_depot_contention_prev = 2403 cp->cache_depot_contention + INT_MAX; 2404 (void) mutex_unlock(&cp->cache_depot_lock); 2405 umem_cache_magazine_enable(cp); 2406 } 2407 } 2408 2409 /* 2410 * Rescale a cache's hash table, so that the table size is roughly the 2411 * cache size. We want the average lookup time to be extremely small. 2412 */ 2413 static void 2414 umem_hash_rescale(umem_cache_t *cp) 2415 { 2416 umem_bufctl_t **old_table, **new_table, *bcp; 2417 size_t old_size, new_size, h; 2418 2419 ASSERT(IN_UPDATE()); 2420 2421 new_size = MAX(UMEM_HASH_INITIAL, 2422 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); 2423 old_size = cp->cache_hash_mask + 1; 2424 2425 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 2426 return; 2427 2428 new_table = vmem_alloc(umem_hash_arena, new_size * sizeof (void *), 2429 VM_NOSLEEP); 2430 if (new_table == NULL) 2431 return; 2432 bzero(new_table, new_size * sizeof (void *)); 2433 2434 (void) mutex_lock(&cp->cache_lock); 2435 2436 old_size = cp->cache_hash_mask + 1; 2437 old_table = cp->cache_hash_table; 2438 2439 cp->cache_hash_mask = new_size - 1; 2440 cp->cache_hash_table = new_table; 2441 cp->cache_rescale++; 2442 2443 for (h = 0; h < old_size; h++) { 2444 bcp = old_table[h]; 2445 while (bcp != NULL) { 2446 void *addr = bcp->bc_addr; 2447 umem_bufctl_t *next_bcp = bcp->bc_next; 2448 umem_bufctl_t **hash_bucket = UMEM_HASH(cp, addr); 2449 bcp->bc_next = *hash_bucket; 2450 *hash_bucket = bcp; 2451 bcp = next_bcp; 2452 } 2453 } 2454 2455 (void) mutex_unlock(&cp->cache_lock); 2456 2457 vmem_free(umem_hash_arena, old_table, old_size * sizeof (void *)); 2458 } 2459 2460 /* 2461 * Perform periodic maintenance on a cache: hash rescaling, 2462 * depot working-set update, and magazine resizing. 2463 */ 2464 void 2465 umem_cache_update(umem_cache_t *cp) 2466 { 2467 int update_flags = 0; 2468 2469 ASSERT(MUTEX_HELD(&umem_cache_lock)); 2470 2471 /* 2472 * If the cache has become much larger or smaller than its hash table, 2473 * fire off a request to rescale the hash table. 2474 */ 2475 (void) mutex_lock(&cp->cache_lock); 2476 2477 if ((cp->cache_flags & UMF_HASH) && 2478 (cp->cache_buftotal > (cp->cache_hash_mask << 1) || 2479 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && 2480 cp->cache_hash_mask > UMEM_HASH_INITIAL))) 2481 update_flags |= UMU_HASH_RESCALE; 2482 2483 (void) mutex_unlock(&cp->cache_lock); 2484 2485 /* 2486 * Update the depot working set statistics. 2487 */ 2488 umem_depot_ws_update(cp); 2489 2490 /* 2491 * If there's a lot of contention in the depot, 2492 * increase the magazine size. 2493 */ 2494 (void) mutex_lock(&cp->cache_depot_lock); 2495 2496 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && 2497 (int)(cp->cache_depot_contention - 2498 cp->cache_depot_contention_prev) > umem_depot_contention) 2499 update_flags |= UMU_MAGAZINE_RESIZE; 2500 2501 cp->cache_depot_contention_prev = cp->cache_depot_contention; 2502 2503 (void) mutex_unlock(&cp->cache_depot_lock); 2504 2505 if (update_flags) 2506 umem_add_update(cp, update_flags); 2507 } 2508 2509 /* 2510 * Runs all pending updates. 2511 * 2512 * The update lock must be held on entrance, and will be held on exit. 2513 */ 2514 void 2515 umem_process_updates(void) 2516 { 2517 ASSERT(MUTEX_HELD(&umem_update_lock)); 2518 2519 while (umem_null_cache.cache_unext != &umem_null_cache) { 2520 int notify = 0; 2521 umem_cache_t *cp = umem_null_cache.cache_unext; 2522 2523 cp->cache_uprev->cache_unext = cp->cache_unext; 2524 cp->cache_unext->cache_uprev = cp->cache_uprev; 2525 cp->cache_uprev = cp->cache_unext = NULL; 2526 2527 ASSERT(!(cp->cache_uflags & UMU_ACTIVE)); 2528 2529 while (cp->cache_uflags) { 2530 int uflags = (cp->cache_uflags |= UMU_ACTIVE); 2531 (void) mutex_unlock(&umem_update_lock); 2532 2533 /* 2534 * The order here is important. Each step can speed up 2535 * later steps. 2536 */ 2537 2538 if (uflags & UMU_HASH_RESCALE) 2539 umem_hash_rescale(cp); 2540 2541 if (uflags & UMU_MAGAZINE_RESIZE) 2542 umem_cache_magazine_resize(cp); 2543 2544 if (uflags & UMU_REAP) 2545 umem_cache_reap(cp); 2546 2547 (void) mutex_lock(&umem_update_lock); 2548 2549 /* 2550 * check if anyone has requested notification 2551 */ 2552 if (cp->cache_uflags & UMU_NOTIFY) { 2553 uflags |= UMU_NOTIFY; 2554 notify = 1; 2555 } 2556 cp->cache_uflags &= ~uflags; 2557 } 2558 if (notify) 2559 (void) cond_broadcast(&umem_update_cv); 2560 } 2561 } 2562 2563 #ifndef UMEM_STANDALONE 2564 static void 2565 umem_st_update(void) 2566 { 2567 ASSERT(MUTEX_HELD(&umem_update_lock)); 2568 ASSERT(umem_update_thr == 0 && umem_st_update_thr == 0); 2569 2570 umem_st_update_thr = thr_self(); 2571 2572 (void) mutex_unlock(&umem_update_lock); 2573 2574 vmem_update(NULL); 2575 umem_cache_applyall(umem_cache_update); 2576 2577 (void) mutex_lock(&umem_update_lock); 2578 2579 umem_process_updates(); /* does all of the requested work */ 2580 2581 umem_reap_next = gethrtime() + 2582 (hrtime_t)umem_reap_interval * NANOSEC; 2583 2584 umem_reaping = UMEM_REAP_DONE; 2585 2586 umem_st_update_thr = 0; 2587 } 2588 #endif 2589 2590 /* 2591 * Reclaim all unused memory from all caches. Called from vmem when memory 2592 * gets tight. Must be called with no locks held. 2593 * 2594 * This just requests a reap on all caches, and notifies the update thread. 2595 */ 2596 void 2597 umem_reap(void) 2598 { 2599 #ifndef UMEM_STANDALONE 2600 extern int __nthreads(void); 2601 #endif 2602 2603 if (umem_ready != UMEM_READY || umem_reaping != UMEM_REAP_DONE || 2604 gethrtime() < umem_reap_next) 2605 return; 2606 2607 (void) mutex_lock(&umem_update_lock); 2608 2609 if (umem_reaping != UMEM_REAP_DONE || gethrtime() < umem_reap_next) { 2610 (void) mutex_unlock(&umem_update_lock); 2611 return; 2612 } 2613 umem_reaping = UMEM_REAP_ADDING; /* lock out other reaps */ 2614 2615 (void) mutex_unlock(&umem_update_lock); 2616 2617 umem_updateall(UMU_REAP); 2618 2619 (void) mutex_lock(&umem_update_lock); 2620 2621 umem_reaping = UMEM_REAP_ACTIVE; 2622 2623 /* Standalone is single-threaded */ 2624 #ifndef UMEM_STANDALONE 2625 if (umem_update_thr == 0) { 2626 /* 2627 * The update thread does not exist. If the process is 2628 * multi-threaded, create it. If not, or the creation fails, 2629 * do the update processing inline. 2630 */ 2631 ASSERT(umem_st_update_thr == 0); 2632 2633 if (__nthreads() <= 1 || umem_create_update_thread() == 0) 2634 umem_st_update(); 2635 } 2636 2637 (void) cond_broadcast(&umem_update_cv); /* wake up the update thread */ 2638 #endif 2639 2640 (void) mutex_unlock(&umem_update_lock); 2641 } 2642 2643 umem_cache_t * 2644 umem_cache_create( 2645 char *name, /* descriptive name for this cache */ 2646 size_t bufsize, /* size of the objects it manages */ 2647 size_t align, /* required object alignment */ 2648 umem_constructor_t *constructor, /* object constructor */ 2649 umem_destructor_t *destructor, /* object destructor */ 2650 umem_reclaim_t *reclaim, /* memory reclaim callback */ 2651 void *private, /* pass-thru arg for constr/destr/reclaim */ 2652 vmem_t *vmp, /* vmem source for slab allocation */ 2653 int cflags) /* cache creation flags */ 2654 { 2655 int cpu_seqid; 2656 size_t chunksize; 2657 umem_cache_t *cp, *cnext, *cprev; 2658 umem_magtype_t *mtp; 2659 size_t csize; 2660 size_t phase; 2661 2662 /* 2663 * The init thread is allowed to create internal and quantum caches. 2664 * 2665 * Other threads must wait until until initialization is complete. 2666 */ 2667 if (umem_init_thr == thr_self()) 2668 ASSERT((cflags & (UMC_INTERNAL | UMC_QCACHE)) != 0); 2669 else { 2670 ASSERT(!(cflags & UMC_INTERNAL)); 2671 if (umem_ready != UMEM_READY && umem_init() == 0) { 2672 errno = EAGAIN; 2673 return (NULL); 2674 } 2675 } 2676 2677 csize = UMEM_CACHE_SIZE(umem_max_ncpus); 2678 phase = P2NPHASE(csize, UMEM_CPU_CACHE_SIZE); 2679 2680 if (vmp == NULL) 2681 vmp = umem_default_arena; 2682 2683 ASSERT(P2PHASE(phase, UMEM_ALIGN) == 0); 2684 2685 /* 2686 * Check that the arguments are reasonable 2687 */ 2688 if ((align & (align - 1)) != 0 || align > vmp->vm_quantum || 2689 ((cflags & UMC_NOHASH) && (cflags & UMC_NOTOUCH)) || 2690 name == NULL || bufsize == 0) { 2691 errno = EINVAL; 2692 return (NULL); 2693 } 2694 2695 /* 2696 * If align == 0, we set it to the minimum required alignment. 2697 * 2698 * If align < UMEM_ALIGN, we round it up to UMEM_ALIGN, unless 2699 * UMC_NOTOUCH was passed. 2700 */ 2701 if (align == 0) { 2702 if (P2ROUNDUP(bufsize, UMEM_ALIGN) >= UMEM_SECOND_ALIGN) 2703 align = UMEM_SECOND_ALIGN; 2704 else 2705 align = UMEM_ALIGN; 2706 } else if (align < UMEM_ALIGN && (cflags & UMC_NOTOUCH) == 0) 2707 align = UMEM_ALIGN; 2708 2709 2710 /* 2711 * Get a umem_cache structure. We arrange that cp->cache_cpu[] 2712 * is aligned on a UMEM_CPU_CACHE_SIZE boundary to prevent 2713 * false sharing of per-CPU data. 2714 */ 2715 cp = vmem_xalloc(umem_cache_arena, csize, UMEM_CPU_CACHE_SIZE, phase, 2716 0, NULL, NULL, VM_NOSLEEP); 2717 2718 if (cp == NULL) { 2719 errno = EAGAIN; 2720 return (NULL); 2721 } 2722 2723 bzero(cp, csize); 2724 2725 (void) mutex_lock(&umem_flags_lock); 2726 if (umem_flags & UMF_RANDOMIZE) 2727 umem_flags = (((umem_flags | ~UMF_RANDOM) + 1) & UMF_RANDOM) | 2728 UMF_RANDOMIZE; 2729 cp->cache_flags = umem_flags | (cflags & UMF_DEBUG); 2730 (void) mutex_unlock(&umem_flags_lock); 2731 2732 /* 2733 * Make sure all the various flags are reasonable. 2734 */ 2735 if (cp->cache_flags & UMF_LITE) { 2736 if (bufsize >= umem_lite_minsize && 2737 align <= umem_lite_maxalign && 2738 P2PHASE(bufsize, umem_lite_maxalign) != 0) { 2739 cp->cache_flags |= UMF_BUFTAG; 2740 cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL); 2741 } else { 2742 cp->cache_flags &= ~UMF_DEBUG; 2743 } 2744 } 2745 2746 if ((cflags & UMC_QCACHE) && (cp->cache_flags & UMF_AUDIT)) 2747 cp->cache_flags |= UMF_NOMAGAZINE; 2748 2749 if (cflags & UMC_NODEBUG) 2750 cp->cache_flags &= ~UMF_DEBUG; 2751 2752 if (cflags & UMC_NOTOUCH) 2753 cp->cache_flags &= ~UMF_TOUCH; 2754 2755 if (cflags & UMC_NOHASH) 2756 cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL); 2757 2758 if (cflags & UMC_NOMAGAZINE) 2759 cp->cache_flags |= UMF_NOMAGAZINE; 2760 2761 if ((cp->cache_flags & UMF_AUDIT) && !(cflags & UMC_NOTOUCH)) 2762 cp->cache_flags |= UMF_REDZONE; 2763 2764 if ((cp->cache_flags & UMF_BUFTAG) && bufsize >= umem_minfirewall && 2765 !(cp->cache_flags & UMF_LITE) && !(cflags & UMC_NOHASH)) 2766 cp->cache_flags |= UMF_FIREWALL; 2767 2768 if (vmp != umem_default_arena || umem_firewall_arena == NULL) 2769 cp->cache_flags &= ~UMF_FIREWALL; 2770 2771 if (cp->cache_flags & UMF_FIREWALL) { 2772 cp->cache_flags &= ~UMF_BUFTAG; 2773 cp->cache_flags |= UMF_NOMAGAZINE; 2774 ASSERT(vmp == umem_default_arena); 2775 vmp = umem_firewall_arena; 2776 } 2777 2778 /* 2779 * Set cache properties. 2780 */ 2781 (void) strncpy(cp->cache_name, name, sizeof (cp->cache_name) - 1); 2782 cp->cache_bufsize = bufsize; 2783 cp->cache_align = align; 2784 cp->cache_constructor = constructor; 2785 cp->cache_destructor = destructor; 2786 cp->cache_reclaim = reclaim; 2787 cp->cache_private = private; 2788 cp->cache_arena = vmp; 2789 cp->cache_cflags = cflags; 2790 cp->cache_cpu_mask = umem_cpu_mask; 2791 2792 /* 2793 * Determine the chunk size. 2794 */ 2795 chunksize = bufsize; 2796 2797 if (align >= UMEM_ALIGN) { 2798 chunksize = P2ROUNDUP(chunksize, UMEM_ALIGN); 2799 cp->cache_bufctl = chunksize - UMEM_ALIGN; 2800 } 2801 2802 if (cp->cache_flags & UMF_BUFTAG) { 2803 cp->cache_bufctl = chunksize; 2804 cp->cache_buftag = chunksize; 2805 chunksize += sizeof (umem_buftag_t); 2806 } 2807 2808 if (cp->cache_flags & UMF_DEADBEEF) { 2809 cp->cache_verify = MIN(cp->cache_buftag, umem_maxverify); 2810 if (cp->cache_flags & UMF_LITE) 2811 cp->cache_verify = MIN(cp->cache_verify, UMEM_ALIGN); 2812 } 2813 2814 cp->cache_contents = MIN(cp->cache_bufctl, umem_content_maxsave); 2815 2816 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); 2817 2818 if (chunksize < bufsize) { 2819 errno = ENOMEM; 2820 goto fail; 2821 } 2822 2823 /* 2824 * Now that we know the chunk size, determine the optimal slab size. 2825 */ 2826 if (vmp == umem_firewall_arena) { 2827 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); 2828 cp->cache_mincolor = cp->cache_slabsize - chunksize; 2829 cp->cache_maxcolor = cp->cache_mincolor; 2830 cp->cache_flags |= UMF_HASH; 2831 ASSERT(!(cp->cache_flags & UMF_BUFTAG)); 2832 } else if ((cflags & UMC_NOHASH) || (!(cflags & UMC_NOTOUCH) && 2833 !(cp->cache_flags & UMF_AUDIT) && 2834 chunksize < vmp->vm_quantum / UMEM_VOID_FRACTION)) { 2835 cp->cache_slabsize = vmp->vm_quantum; 2836 cp->cache_mincolor = 0; 2837 cp->cache_maxcolor = 2838 (cp->cache_slabsize - sizeof (umem_slab_t)) % chunksize; 2839 2840 if (chunksize + sizeof (umem_slab_t) > cp->cache_slabsize) { 2841 errno = EINVAL; 2842 goto fail; 2843 } 2844 ASSERT(!(cp->cache_flags & UMF_AUDIT)); 2845 } else { 2846 size_t chunks, waste, slabsize; 2847 size_t minwaste = LONG_MAX; 2848 size_t bestfit = SIZE_MAX; 2849 2850 for (chunks = 1; chunks <= UMEM_VOID_FRACTION; chunks++) { 2851 slabsize = P2ROUNDUP(chunksize * chunks, 2852 vmp->vm_quantum); 2853 /* 2854 * check for overflow 2855 */ 2856 if ((slabsize / chunks) < chunksize) { 2857 errno = ENOMEM; 2858 goto fail; 2859 } 2860 chunks = slabsize / chunksize; 2861 waste = (slabsize % chunksize) / chunks; 2862 if (waste < minwaste) { 2863 minwaste = waste; 2864 bestfit = slabsize; 2865 } 2866 } 2867 if (cflags & UMC_QCACHE) 2868 bestfit = MAX(1 << highbit(3 * vmp->vm_qcache_max), 64); 2869 if (bestfit == SIZE_MAX) { 2870 errno = ENOMEM; 2871 goto fail; 2872 } 2873 cp->cache_slabsize = bestfit; 2874 cp->cache_mincolor = 0; 2875 cp->cache_maxcolor = bestfit % chunksize; 2876 cp->cache_flags |= UMF_HASH; 2877 } 2878 2879 if (cp->cache_flags & UMF_HASH) { 2880 ASSERT(!(cflags & UMC_NOHASH)); 2881 cp->cache_bufctl_cache = (cp->cache_flags & UMF_AUDIT) ? 2882 umem_bufctl_audit_cache : umem_bufctl_cache; 2883 } 2884 2885 if (cp->cache_maxcolor >= vmp->vm_quantum) 2886 cp->cache_maxcolor = vmp->vm_quantum - 1; 2887 2888 cp->cache_color = cp->cache_mincolor; 2889 2890 /* 2891 * Initialize the rest of the slab layer. 2892 */ 2893 (void) mutex_init(&cp->cache_lock, USYNC_THREAD, NULL); 2894 2895 cp->cache_freelist = &cp->cache_nullslab; 2896 cp->cache_nullslab.slab_cache = cp; 2897 cp->cache_nullslab.slab_refcnt = -1; 2898 cp->cache_nullslab.slab_next = &cp->cache_nullslab; 2899 cp->cache_nullslab.slab_prev = &cp->cache_nullslab; 2900 2901 if (cp->cache_flags & UMF_HASH) { 2902 cp->cache_hash_table = vmem_alloc(umem_hash_arena, 2903 UMEM_HASH_INITIAL * sizeof (void *), VM_NOSLEEP); 2904 if (cp->cache_hash_table == NULL) { 2905 errno = EAGAIN; 2906 goto fail_lock; 2907 } 2908 bzero(cp->cache_hash_table, 2909 UMEM_HASH_INITIAL * sizeof (void *)); 2910 cp->cache_hash_mask = UMEM_HASH_INITIAL - 1; 2911 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; 2912 } 2913 2914 /* 2915 * Initialize the depot. 2916 */ 2917 (void) mutex_init(&cp->cache_depot_lock, USYNC_THREAD, NULL); 2918 2919 for (mtp = umem_magtype; chunksize <= mtp->mt_minbuf; mtp++) 2920 continue; 2921 2922 cp->cache_magtype = mtp; 2923 2924 /* 2925 * Initialize the CPU layer. 2926 */ 2927 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) { 2928 umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 2929 (void) mutex_init(&ccp->cc_lock, USYNC_THREAD, NULL); 2930 ccp->cc_flags = cp->cache_flags; 2931 ccp->cc_rounds = -1; 2932 ccp->cc_prounds = -1; 2933 } 2934 2935 /* 2936 * Add the cache to the global list. This makes it visible 2937 * to umem_update(), so the cache must be ready for business. 2938 */ 2939 (void) mutex_lock(&umem_cache_lock); 2940 cp->cache_next = cnext = &umem_null_cache; 2941 cp->cache_prev = cprev = umem_null_cache.cache_prev; 2942 cnext->cache_prev = cp; 2943 cprev->cache_next = cp; 2944 (void) mutex_unlock(&umem_cache_lock); 2945 2946 if (umem_ready == UMEM_READY) 2947 umem_cache_magazine_enable(cp); 2948 2949 return (cp); 2950 2951 fail_lock: 2952 (void) mutex_destroy(&cp->cache_lock); 2953 fail: 2954 vmem_xfree(umem_cache_arena, cp, csize); 2955 return (NULL); 2956 } 2957 2958 void 2959 umem_cache_destroy(umem_cache_t *cp) 2960 { 2961 int cpu_seqid; 2962 2963 /* 2964 * Remove the cache from the global cache list so that no new updates 2965 * will be scheduled on its behalf, wait for any pending tasks to 2966 * complete, purge the cache, and then destroy it. 2967 */ 2968 (void) mutex_lock(&umem_cache_lock); 2969 cp->cache_prev->cache_next = cp->cache_next; 2970 cp->cache_next->cache_prev = cp->cache_prev; 2971 cp->cache_prev = cp->cache_next = NULL; 2972 (void) mutex_unlock(&umem_cache_lock); 2973 2974 umem_remove_updates(cp); 2975 2976 umem_cache_magazine_purge(cp); 2977 2978 (void) mutex_lock(&cp->cache_lock); 2979 if (cp->cache_buftotal != 0) 2980 log_message("umem_cache_destroy: '%s' (%p) not empty\n", 2981 cp->cache_name, (void *)cp); 2982 cp->cache_reclaim = NULL; 2983 /* 2984 * The cache is now dead. There should be no further activity. 2985 * We enforce this by setting land mines in the constructor and 2986 * destructor routines that induce a segmentation fault if invoked. 2987 */ 2988 cp->cache_constructor = (umem_constructor_t *)1; 2989 cp->cache_destructor = (umem_destructor_t *)2; 2990 (void) mutex_unlock(&cp->cache_lock); 2991 2992 if (cp->cache_hash_table != NULL) 2993 vmem_free(umem_hash_arena, cp->cache_hash_table, 2994 (cp->cache_hash_mask + 1) * sizeof (void *)); 2995 2996 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) 2997 (void) mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); 2998 2999 (void) mutex_destroy(&cp->cache_depot_lock); 3000 (void) mutex_destroy(&cp->cache_lock); 3001 3002 vmem_free(umem_cache_arena, cp, UMEM_CACHE_SIZE(umem_max_ncpus)); 3003 } 3004 3005 void 3006 umem_alloc_sizes_clear(void) 3007 { 3008 int i; 3009 3010 umem_alloc_sizes[0] = UMEM_MAXBUF; 3011 for (i = 1; i < NUM_ALLOC_SIZES; i++) 3012 umem_alloc_sizes[i] = 0; 3013 } 3014 3015 void 3016 umem_alloc_sizes_add(size_t size_arg) 3017 { 3018 int i, j; 3019 size_t size = size_arg; 3020 3021 if (size == 0) { 3022 log_message("size_add: cannot add zero-sized cache\n", 3023 size, UMEM_MAXBUF); 3024 return; 3025 } 3026 3027 if (size > UMEM_MAXBUF) { 3028 log_message("size_add: %ld > %d, cannot add\n", size, 3029 UMEM_MAXBUF); 3030 return; 3031 } 3032 3033 if (umem_alloc_sizes[NUM_ALLOC_SIZES - 1] != 0) { 3034 log_message("size_add: no space in alloc_table for %d\n", 3035 size); 3036 return; 3037 } 3038 3039 if (P2PHASE(size, UMEM_ALIGN) != 0) { 3040 size = P2ROUNDUP(size, UMEM_ALIGN); 3041 log_message("size_add: rounding %d up to %d\n", size_arg, 3042 size); 3043 } 3044 3045 for (i = 0; i < NUM_ALLOC_SIZES; i++) { 3046 int cur = umem_alloc_sizes[i]; 3047 if (cur == size) { 3048 log_message("size_add: %ld already in table\n", 3049 size); 3050 return; 3051 } 3052 if (cur > size) 3053 break; 3054 } 3055 3056 for (j = NUM_ALLOC_SIZES - 1; j > i; j--) 3057 umem_alloc_sizes[j] = umem_alloc_sizes[j-1]; 3058 umem_alloc_sizes[i] = size; 3059 } 3060 3061 void 3062 umem_alloc_sizes_remove(size_t size) 3063 { 3064 int i; 3065 3066 if (size == UMEM_MAXBUF) { 3067 log_message("size_remove: cannot remove %ld\n", size); 3068 return; 3069 } 3070 3071 for (i = 0; i < NUM_ALLOC_SIZES; i++) { 3072 int cur = umem_alloc_sizes[i]; 3073 if (cur == size) 3074 break; 3075 else if (cur > size || cur == 0) { 3076 log_message("size_remove: %ld not found in table\n", 3077 size); 3078 return; 3079 } 3080 } 3081 3082 for (; i + 1 < NUM_ALLOC_SIZES; i++) 3083 umem_alloc_sizes[i] = umem_alloc_sizes[i+1]; 3084 umem_alloc_sizes[i] = 0; 3085 } 3086 3087 /* 3088 * We've been called back from libc to indicate that thread is terminating and 3089 * that it needs to release the per-thread memory that it has. We get to know 3090 * which entry in the thread's tmem array the allocation came from. Currently 3091 * this refers to first n umem_caches which makes this a pretty simple indexing 3092 * job. 3093 */ 3094 static void 3095 umem_cache_tmem_cleanup(void *buf, int entry) 3096 { 3097 size_t size; 3098 umem_cache_t *cp; 3099 3100 size = umem_alloc_sizes[entry]; 3101 cp = umem_alloc_table[(size - 1) >> UMEM_ALIGN_SHIFT]; 3102 _umem_cache_free(cp, buf); 3103 } 3104 3105 static int 3106 umem_cache_init(void) 3107 { 3108 int i; 3109 size_t size, max_size; 3110 umem_cache_t *cp; 3111 umem_magtype_t *mtp; 3112 char name[UMEM_CACHE_NAMELEN + 1]; 3113 umem_cache_t *umem_alloc_caches[NUM_ALLOC_SIZES]; 3114 3115 for (i = 0; i < sizeof (umem_magtype) / sizeof (*mtp); i++) { 3116 mtp = &umem_magtype[i]; 3117 (void) snprintf(name, sizeof (name), "umem_magazine_%d", 3118 mtp->mt_magsize); 3119 mtp->mt_cache = umem_cache_create(name, 3120 (mtp->mt_magsize + 1) * sizeof (void *), 3121 mtp->mt_align, NULL, NULL, NULL, NULL, 3122 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL); 3123 if (mtp->mt_cache == NULL) 3124 return (0); 3125 } 3126 3127 umem_slab_cache = umem_cache_create("umem_slab_cache", 3128 sizeof (umem_slab_t), 0, NULL, NULL, NULL, NULL, 3129 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL); 3130 3131 if (umem_slab_cache == NULL) 3132 return (0); 3133 3134 umem_bufctl_cache = umem_cache_create("umem_bufctl_cache", 3135 sizeof (umem_bufctl_t), 0, NULL, NULL, NULL, NULL, 3136 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL); 3137 3138 if (umem_bufctl_cache == NULL) 3139 return (0); 3140 3141 /* 3142 * The size of the umem_bufctl_audit structure depends upon 3143 * umem_stack_depth. See umem_impl.h for details on the size 3144 * restrictions. 3145 */ 3146 3147 size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth); 3148 max_size = UMEM_BUFCTL_AUDIT_MAX_SIZE; 3149 3150 if (size > max_size) { /* too large -- truncate */ 3151 int max_frames = UMEM_MAX_STACK_DEPTH; 3152 3153 ASSERT(UMEM_BUFCTL_AUDIT_SIZE_DEPTH(max_frames) <= max_size); 3154 3155 umem_stack_depth = max_frames; 3156 size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth); 3157 } 3158 3159 umem_bufctl_audit_cache = umem_cache_create("umem_bufctl_audit_cache", 3160 size, 0, NULL, NULL, NULL, NULL, umem_internal_arena, 3161 UMC_NOHASH | UMC_INTERNAL); 3162 3163 if (umem_bufctl_audit_cache == NULL) 3164 return (0); 3165 3166 if (vmem_backend & VMEM_BACKEND_MMAP) 3167 umem_va_arena = vmem_create("umem_va", 3168 NULL, 0, pagesize, 3169 vmem_alloc, vmem_free, heap_arena, 3170 8 * pagesize, VM_NOSLEEP); 3171 else 3172 umem_va_arena = heap_arena; 3173 3174 if (umem_va_arena == NULL) 3175 return (0); 3176 3177 umem_default_arena = vmem_create("umem_default", 3178 NULL, 0, pagesize, 3179 heap_alloc, heap_free, umem_va_arena, 3180 0, VM_NOSLEEP); 3181 3182 if (umem_default_arena == NULL) 3183 return (0); 3184 3185 /* 3186 * make sure the umem_alloc table initializer is correct 3187 */ 3188 i = sizeof (umem_alloc_table) / sizeof (*umem_alloc_table); 3189 ASSERT(umem_alloc_table[i - 1] == &umem_null_cache); 3190 3191 /* 3192 * Create the default caches to back umem_alloc() 3193 */ 3194 for (i = 0; i < NUM_ALLOC_SIZES; i++) { 3195 size_t cache_size = umem_alloc_sizes[i]; 3196 size_t align = 0; 3197 3198 if (cache_size == 0) 3199 break; /* 0 terminates the list */ 3200 3201 /* 3202 * If they allocate a multiple of the coherency granularity, 3203 * they get a coherency-granularity-aligned address. 3204 */ 3205 if (IS_P2ALIGNED(cache_size, 64)) 3206 align = 64; 3207 if (IS_P2ALIGNED(cache_size, pagesize)) 3208 align = pagesize; 3209 (void) snprintf(name, sizeof (name), "umem_alloc_%lu", 3210 (long)cache_size); 3211 3212 cp = umem_cache_create(name, cache_size, align, 3213 NULL, NULL, NULL, NULL, NULL, UMC_INTERNAL); 3214 if (cp == NULL) 3215 return (0); 3216 3217 umem_alloc_caches[i] = cp; 3218 } 3219 3220 umem_tmem_off = _tmem_get_base(); 3221 _tmem_set_cleanup(umem_cache_tmem_cleanup); 3222 3223 #ifndef UMEM_STANDALONE 3224 if (umem_genasm_supported && !(umem_flags & UMF_DEBUG) && 3225 !(umem_flags & UMF_NOMAGAZINE) && 3226 umem_ptc_size > 0) { 3227 umem_ptc_enabled = umem_genasm(umem_alloc_sizes, 3228 umem_alloc_caches, i) ? 1 : 0; 3229 } 3230 #else 3231 umem_ptc_enabled = 0; 3232 #endif 3233 3234 /* 3235 * Initialization cannot fail at this point. Make the caches 3236 * visible to umem_alloc() and friends. 3237 */ 3238 size = UMEM_ALIGN; 3239 for (i = 0; i < NUM_ALLOC_SIZES; i++) { 3240 size_t cache_size = umem_alloc_sizes[i]; 3241 3242 if (cache_size == 0) 3243 break; /* 0 terminates the list */ 3244 3245 cp = umem_alloc_caches[i]; 3246 3247 while (size <= cache_size) { 3248 umem_alloc_table[(size - 1) >> UMEM_ALIGN_SHIFT] = cp; 3249 size += UMEM_ALIGN; 3250 } 3251 } 3252 ASSERT(size - UMEM_ALIGN == UMEM_MAXBUF); 3253 return (1); 3254 } 3255 3256 /* 3257 * umem_startup() is called early on, and must be called explicitly if we're 3258 * the standalone version. 3259 */ 3260 #ifdef UMEM_STANDALONE 3261 void 3262 #else 3263 #pragma init(umem_startup) 3264 static void 3265 #endif 3266 umem_startup(caddr_t start, size_t len, size_t pagesize, caddr_t minstack, 3267 caddr_t maxstack) 3268 { 3269 #ifdef UMEM_STANDALONE 3270 int idx; 3271 /* Standalone doesn't fork */ 3272 #else 3273 umem_forkhandler_init(); /* register the fork handler */ 3274 #endif 3275 3276 #ifdef __lint 3277 /* make lint happy */ 3278 minstack = maxstack; 3279 #endif 3280 3281 #ifdef UMEM_STANDALONE 3282 umem_ready = UMEM_READY_STARTUP; 3283 umem_init_env_ready = 0; 3284 3285 umem_min_stack = minstack; 3286 umem_max_stack = maxstack; 3287 3288 nofail_callback = NULL; 3289 umem_slab_cache = NULL; 3290 umem_bufctl_cache = NULL; 3291 umem_bufctl_audit_cache = NULL; 3292 heap_arena = NULL; 3293 heap_alloc = NULL; 3294 heap_free = NULL; 3295 umem_internal_arena = NULL; 3296 umem_cache_arena = NULL; 3297 umem_hash_arena = NULL; 3298 umem_log_arena = NULL; 3299 umem_oversize_arena = NULL; 3300 umem_va_arena = NULL; 3301 umem_default_arena = NULL; 3302 umem_firewall_va_arena = NULL; 3303 umem_firewall_arena = NULL; 3304 umem_memalign_arena = NULL; 3305 umem_transaction_log = NULL; 3306 umem_content_log = NULL; 3307 umem_failure_log = NULL; 3308 umem_slab_log = NULL; 3309 umem_cpu_mask = 0; 3310 3311 umem_cpus = &umem_startup_cpu; 3312 umem_startup_cpu.cpu_cache_offset = UMEM_CACHE_SIZE(0); 3313 umem_startup_cpu.cpu_number = 0; 3314 3315 bcopy(&umem_null_cache_template, &umem_null_cache, 3316 sizeof (umem_cache_t)); 3317 3318 for (idx = 0; idx < (UMEM_MAXBUF >> UMEM_ALIGN_SHIFT); idx++) 3319 umem_alloc_table[idx] = &umem_null_cache; 3320 #endif 3321 3322 /* 3323 * Perform initialization specific to the way we've been compiled 3324 * (library or standalone) 3325 */ 3326 umem_type_init(start, len, pagesize); 3327 3328 vmem_startup(); 3329 } 3330 3331 int 3332 umem_init(void) 3333 { 3334 size_t maxverify, minfirewall; 3335 size_t size; 3336 int idx; 3337 umem_cpu_t *new_cpus; 3338 3339 vmem_t *memalign_arena, *oversize_arena; 3340 3341 if (thr_self() != umem_init_thr) { 3342 /* 3343 * The usual case -- non-recursive invocation of umem_init(). 3344 */ 3345 (void) mutex_lock(&umem_init_lock); 3346 if (umem_ready != UMEM_READY_STARTUP) { 3347 /* 3348 * someone else beat us to initializing umem. Wait 3349 * for them to complete, then return. 3350 */ 3351 while (umem_ready == UMEM_READY_INITING) { 3352 int cancel_state; 3353 3354 (void) pthread_setcancelstate( 3355 PTHREAD_CANCEL_DISABLE, &cancel_state); 3356 (void) cond_wait(&umem_init_cv, 3357 &umem_init_lock); 3358 (void) pthread_setcancelstate( 3359 cancel_state, NULL); 3360 } 3361 ASSERT(umem_ready == UMEM_READY || 3362 umem_ready == UMEM_READY_INIT_FAILED); 3363 (void) mutex_unlock(&umem_init_lock); 3364 return (umem_ready == UMEM_READY); 3365 } 3366 3367 ASSERT(umem_ready == UMEM_READY_STARTUP); 3368 ASSERT(umem_init_env_ready == 0); 3369 3370 umem_ready = UMEM_READY_INITING; 3371 umem_init_thr = thr_self(); 3372 3373 (void) mutex_unlock(&umem_init_lock); 3374 umem_setup_envvars(0); /* can recurse -- see below */ 3375 if (umem_init_env_ready) { 3376 /* 3377 * initialization was completed already 3378 */ 3379 ASSERT(umem_ready == UMEM_READY || 3380 umem_ready == UMEM_READY_INIT_FAILED); 3381 ASSERT(umem_init_thr == 0); 3382 return (umem_ready == UMEM_READY); 3383 } 3384 } else if (!umem_init_env_ready) { 3385 /* 3386 * The umem_setup_envvars() call (above) makes calls into 3387 * the dynamic linker and directly into user-supplied code. 3388 * Since we cannot know what that code will do, we could be 3389 * recursively invoked (by, say, a malloc() call in the code 3390 * itself, or in a (C++) _init section it causes to be fired). 3391 * 3392 * This code is where we end up if such recursion occurs. We 3393 * first clean up any partial results in the envvar code, then 3394 * proceed to finish initialization processing in the recursive 3395 * call. The original call will notice this, and return 3396 * immediately. 3397 */ 3398 umem_setup_envvars(1); /* clean up any partial state */ 3399 } else { 3400 umem_panic( 3401 "recursive allocation while initializing umem\n"); 3402 } 3403 umem_init_env_ready = 1; 3404 3405 /* 3406 * From this point until we finish, recursion into umem_init() will 3407 * cause a umem_panic(). 3408 */ 3409 maxverify = minfirewall = ULONG_MAX; 3410 3411 /* LINTED constant condition */ 3412 if (sizeof (umem_cpu_cache_t) != UMEM_CPU_CACHE_SIZE) { 3413 umem_panic("sizeof (umem_cpu_cache_t) = %d, should be %d\n", 3414 sizeof (umem_cpu_cache_t), UMEM_CPU_CACHE_SIZE); 3415 } 3416 3417 umem_max_ncpus = umem_get_max_ncpus(); 3418 3419 /* 3420 * load tunables from environment 3421 */ 3422 umem_process_envvars(); 3423 3424 if (issetugid()) 3425 umem_mtbf = 0; 3426 3427 /* 3428 * set up vmem 3429 */ 3430 if (!(umem_flags & UMF_AUDIT)) 3431 vmem_no_debug(); 3432 3433 heap_arena = vmem_heap_arena(&heap_alloc, &heap_free); 3434 3435 pagesize = heap_arena->vm_quantum; 3436 3437 umem_internal_arena = vmem_create("umem_internal", NULL, 0, pagesize, 3438 heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP); 3439 3440 umem_default_arena = umem_internal_arena; 3441 3442 if (umem_internal_arena == NULL) 3443 goto fail; 3444 3445 umem_cache_arena = vmem_create("umem_cache", NULL, 0, UMEM_ALIGN, 3446 vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP); 3447 3448 umem_hash_arena = vmem_create("umem_hash", NULL, 0, UMEM_ALIGN, 3449 vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP); 3450 3451 umem_log_arena = vmem_create("umem_log", NULL, 0, UMEM_ALIGN, 3452 heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP); 3453 3454 umem_firewall_va_arena = vmem_create("umem_firewall_va", 3455 NULL, 0, pagesize, 3456 umem_firewall_va_alloc, umem_firewall_va_free, heap_arena, 3457 0, VM_NOSLEEP); 3458 3459 if (umem_cache_arena == NULL || umem_hash_arena == NULL || 3460 umem_log_arena == NULL || umem_firewall_va_arena == NULL) 3461 goto fail; 3462 3463 umem_firewall_arena = vmem_create("umem_firewall", NULL, 0, pagesize, 3464 heap_alloc, heap_free, umem_firewall_va_arena, 0, 3465 VM_NOSLEEP); 3466 3467 if (umem_firewall_arena == NULL) 3468 goto fail; 3469 3470 oversize_arena = vmem_create("umem_oversize", NULL, 0, pagesize, 3471 heap_alloc, heap_free, minfirewall < ULONG_MAX ? 3472 umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP); 3473 3474 memalign_arena = vmem_create("umem_memalign", NULL, 0, UMEM_ALIGN, 3475 heap_alloc, heap_free, minfirewall < ULONG_MAX ? 3476 umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP); 3477 3478 if (oversize_arena == NULL || memalign_arena == NULL) 3479 goto fail; 3480 3481 if (umem_max_ncpus > CPUHINT_MAX()) 3482 umem_max_ncpus = CPUHINT_MAX(); 3483 3484 while ((umem_max_ncpus & (umem_max_ncpus - 1)) != 0) 3485 umem_max_ncpus++; 3486 3487 if (umem_max_ncpus == 0) 3488 umem_max_ncpus = 1; 3489 3490 size = umem_max_ncpus * sizeof (umem_cpu_t); 3491 new_cpus = vmem_alloc(umem_internal_arena, size, VM_NOSLEEP); 3492 if (new_cpus == NULL) 3493 goto fail; 3494 3495 bzero(new_cpus, size); 3496 for (idx = 0; idx < umem_max_ncpus; idx++) { 3497 new_cpus[idx].cpu_number = idx; 3498 new_cpus[idx].cpu_cache_offset = UMEM_CACHE_SIZE(idx); 3499 } 3500 umem_cpus = new_cpus; 3501 umem_cpu_mask = (umem_max_ncpus - 1); 3502 3503 if (umem_maxverify == 0) 3504 umem_maxverify = maxverify; 3505 3506 if (umem_minfirewall == 0) 3507 umem_minfirewall = minfirewall; 3508 3509 /* 3510 * Set up updating and reaping 3511 */ 3512 umem_reap_next = gethrtime() + NANOSEC; 3513 3514 #ifndef UMEM_STANDALONE 3515 (void) gettimeofday(&umem_update_next, NULL); 3516 #endif 3517 3518 /* 3519 * Set up logging -- failure here is okay, since it will just disable 3520 * the logs 3521 */ 3522 if (umem_logging) { 3523 umem_transaction_log = umem_log_init(umem_transaction_log_size); 3524 umem_content_log = umem_log_init(umem_content_log_size); 3525 umem_failure_log = umem_log_init(umem_failure_log_size); 3526 umem_slab_log = umem_log_init(umem_slab_log_size); 3527 } 3528 3529 /* 3530 * Set up caches -- if successful, initialization cannot fail, since 3531 * allocations from other threads can now succeed. 3532 */ 3533 if (umem_cache_init() == 0) { 3534 log_message("unable to create initial caches\n"); 3535 goto fail; 3536 } 3537 umem_oversize_arena = oversize_arena; 3538 umem_memalign_arena = memalign_arena; 3539 3540 umem_cache_applyall(umem_cache_magazine_enable); 3541 3542 /* 3543 * initialization done, ready to go 3544 */ 3545 (void) mutex_lock(&umem_init_lock); 3546 umem_ready = UMEM_READY; 3547 umem_init_thr = 0; 3548 (void) cond_broadcast(&umem_init_cv); 3549 (void) mutex_unlock(&umem_init_lock); 3550 return (1); 3551 3552 fail: 3553 log_message("umem initialization failed\n"); 3554 3555 (void) mutex_lock(&umem_init_lock); 3556 umem_ready = UMEM_READY_INIT_FAILED; 3557 umem_init_thr = 0; 3558 (void) cond_broadcast(&umem_init_cv); 3559 (void) mutex_unlock(&umem_init_lock); 3560 return (0); 3561 } 3562 3563 void 3564 umem_setmtbf(uint32_t mtbf) 3565 { 3566 umem_mtbf = mtbf; 3567 } 3568