xref: /illumos-gate/usr/src/lib/libumem/common/umem.c (revision b77a2dc4455ca028e52fdf96385a530a2d168316)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright (c) 2019 Joyent, Inc.
29  * Copyright (c) 2015 by Delphix. All rights reserved.
30  */
31 
32 /*
33  * based on usr/src/uts/common/os/kmem.c r1.64 from 2001/12/18
34  *
35  * The slab allocator, as described in the following two papers:
36  *
37  *	Jeff Bonwick,
38  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator.
39  *	Proceedings of the Summer 1994 Usenix Conference.
40  *	Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
41  *
42  *	Jeff Bonwick and Jonathan Adams,
43  *	Magazines and vmem: Extending the Slab Allocator to Many CPUs and
44  *	Arbitrary Resources.
45  *	Proceedings of the 2001 Usenix Conference.
46  *	Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
47  *
48  * 1. Overview
49  * -----------
50  * umem is very close to kmem in implementation.  There are seven major
51  * areas of divergence:
52  *
53  *	* Initialization
54  *
55  *	* CPU handling
56  *
57  *	* umem_update()
58  *
59  *	* KM_SLEEP v.s. UMEM_NOFAIL
60  *
61  *	* lock ordering
62  *
63  *	* changing UMEM_MAXBUF
64  *
65  *	* Per-thread caching for malloc/free
66  *
67  * 2. Initialization
68  * -----------------
69  * kmem is initialized early on in boot, and knows that no one will call
70  * into it before it is ready.  umem does not have these luxuries. Instead,
71  * initialization is divided into two phases:
72  *
73  *	* library initialization, and
74  *
75  *	* first use
76  *
77  * umem's full initialization happens at the time of the first allocation
78  * request (via malloc() and friends, umem_alloc(), or umem_zalloc()),
79  * or the first call to umem_cache_create().
80  *
81  * umem_free(), and umem_cache_alloc() do not require special handling,
82  * since the only way to get valid arguments for them is to successfully
83  * call a function from the first group.
84  *
85  * 2.1. Library Initialization: umem_startup()
86  * -------------------------------------------
87  * umem_startup() is libumem.so's .init section.  It calls pthread_atfork()
88  * to install the handlers necessary for umem's Fork1-Safety.  Because of
89  * race condition issues, all other pre-umem_init() initialization is done
90  * statically (i.e. by the dynamic linker).
91  *
92  * For standalone use, umem_startup() returns everything to its initial
93  * state.
94  *
95  * 2.2. First use: umem_init()
96  * ------------------------------
97  * The first time any memory allocation function is used, we have to
98  * create the backing caches and vmem arenas which are needed for it.
99  * umem_init() is the central point for that task.  When it completes,
100  * umem_ready is either UMEM_READY (all set) or UMEM_READY_INIT_FAILED (unable
101  * to initialize, probably due to lack of memory).
102  *
103  * There are four different paths from which umem_init() is called:
104  *
105  *	* from umem_alloc() or umem_zalloc(), with 0 < size < UMEM_MAXBUF,
106  *
107  *	* from umem_alloc() or umem_zalloc(), with size > UMEM_MAXBUF,
108  *
109  *	* from umem_cache_create(), and
110  *
111  *	* from memalign(), with align > UMEM_ALIGN.
112  *
113  * The last three just check if umem is initialized, and call umem_init()
114  * if it is not.  For performance reasons, the first case is more complicated.
115  *
116  * 2.2.1. umem_alloc()/umem_zalloc(), with 0 < size < UMEM_MAXBUF
117  * -----------------------------------------------------------------
118  * In this case, umem_cache_alloc(&umem_null_cache, ...) is called.
119  * There is special case code in which causes any allocation on
120  * &umem_null_cache to fail by returning (NULL), regardless of the
121  * flags argument.
122  *
123  * So umem_cache_alloc() returns NULL, and umem_alloc()/umem_zalloc() call
124  * umem_alloc_retry().  umem_alloc_retry() sees that the allocation
125  * was agains &umem_null_cache, and calls umem_init().
126  *
127  * If initialization is successful, umem_alloc_retry() returns 1, which
128  * causes umem_alloc()/umem_zalloc() to start over, which causes it to load
129  * the (now valid) cache pointer from umem_alloc_table.
130  *
131  * 2.2.2. Dealing with race conditions
132  * -----------------------------------
133  * There are a couple race conditions resulting from the initialization
134  * code that we have to guard against:
135  *
136  *	* In umem_cache_create(), there is a special UMC_INTERNAL cflag
137  *	that is passed for caches created during initialization.  It
138  *	is illegal for a user to try to create a UMC_INTERNAL cache.
139  *	This allows initialization to proceed, but any other
140  *	umem_cache_create()s will block by calling umem_init().
141  *
142  *	* Since umem_null_cache has a 1-element cache_cpu, it's cache_cpu_mask
143  *	is always zero.  umem_cache_alloc uses cp->cache_cpu_mask to
144  *	mask the cpu number.  This prevents a race between grabbing a
145  *	cache pointer out of umem_alloc_table and growing the cpu array.
146  *
147  *
148  * 3. CPU handling
149  * ---------------
150  * kmem uses the CPU's sequence number to determine which "cpu cache" to
151  * use for an allocation.  Currently, there is no way to get the sequence
152  * number in userspace.
153  *
154  * umem keeps track of cpu information in umem_cpus, an array of umem_max_ncpus
155  * umem_cpu_t structures.  CURCPU() is a a "hint" function, which we then mask
156  * with either umem_cpu_mask or cp->cache_cpu_mask to find the actual "cpu" id.
157  * The mechanics of this is all in the CPU(mask) macro.
158  *
159  * Currently, umem uses _lwp_self() as its hint.
160  *
161  *
162  * 4. The update thread
163  * --------------------
164  * kmem uses a task queue, kmem_taskq, to do periodic maintenance on
165  * every kmem cache.  vmem has a periodic timeout for hash table resizing.
166  * The kmem_taskq also provides a separate context for kmem_cache_reap()'s
167  * to be done in, avoiding issues of the context of kmem_reap() callers.
168  *
169  * Instead, umem has the concept of "updates", which are asynchronous requests
170  * for work attached to single caches.  All caches with pending work are
171  * on a doubly linked list rooted at the umem_null_cache.  All update state
172  * is protected by the umem_update_lock mutex, and the umem_update_cv is used
173  * for notification between threads.
174  *
175  * 4.1. Cache states with regards to updates
176  * -----------------------------------------
177  * A given cache is in one of three states:
178  *
179  * Inactive		cache_uflags is zero, cache_u{next,prev} are NULL
180  *
181  * Work Requested	cache_uflags is non-zero (but UMU_ACTIVE is not set),
182  *			cache_u{next,prev} link the cache onto the global
183  *			update list
184  *
185  * Active		cache_uflags has UMU_ACTIVE set, cache_u{next,prev}
186  *			are NULL, and either umem_update_thr or
187  *			umem_st_update_thr are actively doing work on the
188  *			cache.
189  *
190  * An update can be added to any cache in any state -- if the cache is
191  * Inactive, it transitions to being Work Requested.  If the cache is
192  * Active, the worker will notice the new update and act on it before
193  * transitioning the cache to the Inactive state.
194  *
195  * If a cache is in the Active state, UMU_NOTIFY can be set, which asks
196  * the worker to broadcast the umem_update_cv when it has finished.
197  *
198  * 4.2. Update interface
199  * ---------------------
200  * umem_add_update() adds an update to a particular cache.
201  * umem_updateall() adds an update to all caches.
202  * umem_remove_updates() returns a cache to the Inactive state.
203  *
204  * umem_process_updates() process all caches in the Work Requested state.
205  *
206  * 4.3. Reaping
207  * ------------
208  * When umem_reap() is called (at the time of heap growth), it schedule
209  * UMU_REAP updates on every cache.  It then checks to see if the update
210  * thread exists (umem_update_thr != 0).  If it is, it broadcasts
211  * the umem_update_cv to wake the update thread up, and returns.
212  *
213  * If the update thread does not exist (umem_update_thr == 0), and the
214  * program currently has multiple threads, umem_reap() attempts to create
215  * a new update thread.
216  *
217  * If the process is not multithreaded, or the creation fails, umem_reap()
218  * calls umem_st_update() to do an inline update.
219  *
220  * 4.4. The update thread
221  * ----------------------
222  * The update thread spends most of its time in cond_timedwait() on the
223  * umem_update_cv.  It wakes up under two conditions:
224  *
225  *	* The timedwait times out, in which case it needs to run a global
226  *	update, or
227  *
228  *	* someone cond_broadcast(3THR)s the umem_update_cv, in which case
229  *	it needs to check if there are any caches in the Work Requested
230  *	state.
231  *
232  * When it is time for another global update, umem calls umem_cache_update()
233  * on every cache, then calls vmem_update(), which tunes the vmem structures.
234  * umem_cache_update() can request further work using umem_add_update().
235  *
236  * After any work from the global update completes, the update timer is
237  * reset to umem_reap_interval seconds in the future.  This makes the
238  * updates self-throttling.
239  *
240  * Reaps are similarly self-throttling.  After a UMU_REAP update has
241  * been scheduled on all caches, umem_reap() sets a flag and wakes up the
242  * update thread.  The update thread notices the flag, and resets the
243  * reap state.
244  *
245  * 4.5. Inline updates
246  * -------------------
247  * If the update thread is not running, umem_st_update() is used instead.  It
248  * immediately does a global update (as above), then calls
249  * umem_process_updates() to process both the reaps that umem_reap() added and
250  * any work generated by the global update.  Afterwards, it resets the reap
251  * state.
252  *
253  * While the umem_st_update() is running, umem_st_update_thr holds the thread
254  * id of the thread performing the update.
255  *
256  * 4.6. Updates and fork1()
257  * ------------------------
258  * umem has fork1() pre- and post-handlers which lock up (and release) every
259  * mutex in every cache.  They also lock up the umem_update_lock.  Since
260  * fork1() only copies over a single lwp, other threads (including the update
261  * thread) could have been actively using a cache in the parent.  This
262  * can lead to inconsistencies in the child process.
263  *
264  * Because we locked all of the mutexes, the only possible inconsistancies are:
265  *
266  *	* a umem_cache_alloc() could leak its buffer.
267  *
268  *	* a caller of umem_depot_alloc() could leak a magazine, and all the
269  *	buffers contained in it.
270  *
271  *	* a cache could be in the Active update state.  In the child, there
272  *	would be no thread actually working on it.
273  *
274  *	* a umem_hash_rescale() could leak the new hash table.
275  *
276  *	* a umem_magazine_resize() could be in progress.
277  *
278  *	* a umem_reap() could be in progress.
279  *
280  * The memory leaks we can't do anything about.  umem_release_child() resets
281  * the update state, moves any caches in the Active state to the Work Requested
282  * state.  This might cause some updates to be re-run, but UMU_REAP and
283  * UMU_HASH_RESCALE are effectively idempotent, and the worst that can
284  * happen from umem_magazine_resize() is resizing the magazine twice in close
285  * succession.
286  *
287  * Much of the cleanup in umem_release_child() is skipped if
288  * umem_st_update_thr == thr_self().  This is so that applications which call
289  * fork1() from a cache callback does not break.  Needless to say, any such
290  * application is tremendously broken.
291  *
292  *
293  * 5. KM_SLEEP v.s. UMEM_NOFAIL
294  * ----------------------------
295  * Allocations against kmem and vmem have two basic modes:  SLEEP and
296  * NOSLEEP.  A sleeping allocation is will go to sleep (waiting for
297  * more memory) instead of failing (returning NULL).
298  *
299  * SLEEP allocations presume an extremely multithreaded model, with
300  * a lot of allocation and deallocation activity.  umem cannot presume
301  * that its clients have any particular type of behavior.  Instead,
302  * it provides two types of allocations:
303  *
304  *	* UMEM_DEFAULT, equivalent to KM_NOSLEEP (i.e. return NULL on
305  *	failure)
306  *
307  *	* UMEM_NOFAIL, which, on failure, calls an optional callback
308  *	(registered with umem_nofail_callback()).
309  *
310  * The callback is invoked with no locks held, and can do an arbitrary
311  * amount of work.  It then has a choice between:
312  *
313  *	* Returning UMEM_CALLBACK_RETRY, which will cause the allocation
314  *	to be restarted.
315  *
316  *	* Returning UMEM_CALLBACK_EXIT(status), which will cause exit(2)
317  *	to be invoked with status.  If multiple threads attempt to do
318  *	this simultaneously, only one will call exit(2).
319  *
320  *	* Doing some kind of non-local exit (thr_exit(3thr), longjmp(3C),
321  *	etc.)
322  *
323  * The default callback returns UMEM_CALLBACK_EXIT(255).
324  *
325  * To have these callbacks without risk of state corruption (in the case of
326  * a non-local exit), we have to ensure that the callbacks get invoked
327  * close to the original allocation, with no inconsistent state or held
328  * locks.  The following steps are taken:
329  *
330  *	* All invocations of vmem are VM_NOSLEEP.
331  *
332  *	* All constructor callbacks (which can themselves to allocations)
333  *	are passed UMEM_DEFAULT as their required allocation argument.  This
334  *	way, the constructor will fail, allowing the highest-level allocation
335  *	invoke the nofail callback.
336  *
337  *	If a constructor callback _does_ do a UMEM_NOFAIL allocation, and
338  *	the nofail callback does a non-local exit, we will leak the
339  *	partially-constructed buffer.
340  *
341  *
342  * 6. Lock Ordering
343  * ----------------
344  * umem has a few more locks than kmem does, mostly in the update path.  The
345  * overall lock ordering (earlier locks must be acquired first) is:
346  *
347  *	umem_init_lock
348  *
349  *	vmem_list_lock
350  *	vmem_nosleep_lock.vmpl_mutex
351  *	vmem_t's:
352  *		vm_lock
353  *	sbrk_lock
354  *
355  *	umem_cache_lock
356  *	umem_update_lock
357  *	umem_flags_lock
358  *	umem_cache_t's:
359  *		cache_cpu[*].cc_lock
360  *		cache_depot_lock
361  *		cache_lock
362  *	umem_log_header_t's:
363  *		lh_cpu[*].clh_lock
364  *		lh_lock
365  *
366  * 7. Changing UMEM_MAXBUF
367  * -----------------------
368  *
369  * When changing UMEM_MAXBUF extra care has to be taken. It is not sufficient to
370  * simply increase this number. First, one must update the umem_alloc_table to
371  * have the appropriate number of entires based upon the new size. If this is
372  * not done, this will lead to libumem blowing an assertion.
373  *
374  * The second place to update, which is not required, is the umem_alloc_sizes.
375  * These determine the default cache sizes that we're going to support.
376  *
377  * 8. Per-thread caching for malloc/free
378  * -------------------------------------
379  *
380  * "Time is an illusion. Lunchtime doubly so." -- Douglas Adams
381  *
382  * Time may be an illusion, but CPU cycles aren't.  While libumem is designed
383  * to be a highly scalable allocator, that scalability comes with a fixed cycle
384  * penalty even in the absence of contention: libumem must acquire (and release
385  * a per-CPU lock for each allocation.  When contention is low and malloc(3C)
386  * frequency is high, this overhead can dominate execution time.  To alleviate
387  * this, we allow for per-thread caching, a lock-free means of caching recent
388  * deallocations on a per-thread basis for use in satisfying subsequent calls
389  *
390  * In addition to improving performance, we also want to:
391  *	* Minimize fragmentation
392  *	* Not add additional memory overhead (no larger malloc tags)
393  *
394  * In the ulwp_t of each thread there is a private data structure called a
395  * umem_t that looks like:
396  *
397  * typedef struct {
398  * 	size_t	tm_size;
399  * 	void	*tm_roots[NTMEMBASE];  (Currently 16)
400  * } tmem_t;
401  *
402  * Each of the roots is treated as the head of a linked list. Each entry in the
403  * list can be thought of as a void ** which points to the next entry, until one
404  * of them points to NULL. If the head points to NULL, the list is empty.
405  *
406  * Each head corresponds to a umem_cache. Currently there is a linear mapping
407  * where the first root corresponds to the first cache, second root to the
408  * second cache, etc. This works because every allocation that malloc makes to
409  * umem_alloc that can be satisified by a umem_cache will actually return a
410  * number of bytes equal to the size of that cache. Because of this property and
411  * a one to one mapping between caches and roots we can guarantee that every
412  * entry in a given root's list will be able to satisfy the same requests as the
413  * corresponding cache.
414  *
415  * The choice of sixteen roots is based on where we believe we get the biggest
416  * bang for our buck. The per-thread caches will cache up to 256 byte and 448
417  * byte allocations on ILP32 and LP64 respectively. Generally applications plan
418  * more carefully how they do larger allocations than smaller ones. Therefore
419  * sixteen roots is a reasonable compromise between the amount of additional
420  * overhead per thread, and the likelihood of a program to benefit from it.
421  *
422  * The maximum amount of memory that can be cached in each thread is determined
423  * by the perthread_cache UMEM_OPTION. It corresponds to the umem_ptc_size
424  * value. The default value for this is currently 1 MB. Once umem_init() has
425  * finished this cannot be directly tuned without directly modifying the
426  * instruction text. If, upon calling free(3C), the amount cached would exceed
427  * this maximum, we instead actually return the buffer to the umem_cache instead
428  * of holding onto it in the thread.
429  *
430  * When a thread calls malloc(3C) it first determines which umem_cache it
431  * would be serviced by. If the allocation is not covered by ptcumem it goes to
432  * the normal malloc instead.  Next, it checks if the tmem_root's list is empty
433  * or not. If it is empty, we instead go and allocate the memory from
434  * umem_alloc. If it is not empty, we remove the head of the list, set the
435  * appropriate malloc tags, and return that buffer.
436  *
437  * When a thread calls free(3C) it first looks at the malloc tag and if it is
438  * invalid or the allocation exceeds the largest cache in ptcumem and sends it
439  * off to the original free() to handle and clean up appropriately. Next, it
440  * checks if the allocation size is covered by one of the per-thread roots and
441  * if it isn't, it passes it off to the original free() to be released. Finally,
442  * before it inserts this buffer as the head, it checks if adding this buffer
443  * would put the thread over its maximum cache size. If it would, it frees the
444  * buffer back to the umem_cache. Otherwise it increments the threads total
445  * cached amount and makes the buffer the new head of the appropriate tm_root.
446  *
447  * When a thread exits, all of the buffers that it has in its per-thread cache
448  * will be passed to umem_free() and returned to the appropriate umem_cache.
449  *
450  * 8.1 Handling addition and removal of umem_caches
451  * ------------------------------------------------
452  *
453  * The set of umem_caches that are used to back calls to umem_alloc() and
454  * ultimately malloc() are determined at program execution time. The default set
455  * of caches is defined below in umem_alloc_sizes[]. Various umem_options exist
456  * that modify the set of caches: size_add, size_clear, and size_remove. Because
457  * the set of caches can only be determined once umem_init() has been called and
458  * we have the additional goals of minimizing additional fragmentation and
459  * metadata space overhead in the malloc tags, this forces our hand to go down a
460  * slightly different path: the one tread by fasttrap and trapstat.
461  *
462  * During umem_init we're going to dynamically construct a new version of
463  * malloc(3C) and free(3C) that utilizes the known cache sizes and then ensure
464  * that ptcmalloc and ptcfree replace malloc and free as entries in the plt. If
465  * ptcmalloc and ptcfree cannot handle a request, they simply jump to the
466  * original libumem implementations.
467  *
468  * After creating all of the umem_caches, but before making them visible,
469  * umem_cache_init checks that umem_genasm_supported is non-zero. This value is
470  * set by each architecture in $ARCH/umem_genasm.c to indicate whether or not
471  * they support this. If the value is zero, then this process is skipped.
472  * Similarly, if the cache size has been tuned to zero by UMEM_OPTIONS, then
473  * this is also skipped.
474  *
475  * In umem_genasm.c, each architecture's implementation implements a single
476  * function called umem_genasm() that is responsible for generating the
477  * appropriate versions of ptcmalloc() and ptcfree(), placing them in the
478  * appropriate memory location, and finally doing the switch from malloc() and
479  * free() to ptcmalloc() and ptcfree().  Once the change has been made, there is
480  * no way to switch back, short of restarting the program or modifying program
481  * text with mdb.
482  *
483  * 8.2 Modifying the Procedure Linkage Table (PLT)
484  * -----------------------------------------------
485  *
486  * The last piece of this puzzle is how we actually jam ptcmalloc() into the
487  * PLT.  To handle this, we have defined two functions, _malloc and _free and
488  * used a special mapfile directive to place them into the a readable,
489  * writeable, and executable segment.  Next we use a standard #pragma weak for
490  * malloc and free and direct them to those symbols. By default, those symbols
491  * have text defined as nops for our generated functions and when they're
492  * invoked, they jump to the default malloc and free functions.
493  *
494  * When umem_genasm() is called, it goes through and generates new malloc() and
495  * free() functions in the text provided for by _malloc and _free just after the
496  * jump. Once both have been successfully generated, umem_genasm() nops over the
497  * original jump so that we now call into the genasm versions of these
498  * functions.
499  *
500  * 8.3 umem_genasm()
501  * -----------------
502  *
503  * umem_genasm() is currently implemented for i386 and amd64. This section
504  * describes the theory behind the construction. For specific byte code to
505  * assembly instructions and niceish C and asm versions of ptcmalloc and
506  * ptcfree, see the individual umem_genasm.c files. The layout consists of the
507  * following sections:
508  *
509  *	o. function-specfic prologue
510  *	o. function-generic cache-selecting elements
511  *	o. function-specific epilogue
512  *
513  * There are three different generic cache elements that exist:
514  *
515  *	o. the last or only cache
516  *	o. the intermediary caches if more than two
517  *	o. the first one if more than one cache
518  *
519  * The malloc and free prologues and epilogues mimic the necessary portions of
520  * libumem's malloc and free. This includes things like checking for size
521  * overflow, setting and verifying the malloc tags.
522  *
523  * It is an important constraint that these functions do not make use of the
524  * call instruction. The only jmp outside of the individual functions is to the
525  * original libumem malloc and free respectively. Because doing things like
526  * setting errno or raising an internal umem error on improper malloc tags would
527  * require using calls into the PLT, whenever we encounter one of those cases we
528  * just jump to the original malloc and free functions reusing the same stack
529  * frame.
530  *
531  * Each of the above sections, the three caches, and the malloc and free
532  * prologue and epilogue are implemented as blocks of machine code with the
533  * corresponding assembly in comments. There are known offsets into each block
534  * that corresponds to locations of data and addresses that we only know at run
535  * time. These blocks are copied as necessary and the blanks filled in
536  * appropriately.
537  *
538  * As mentioned in section 8.2, the trampoline library uses specifically named
539  * variables to communicate the buffers and size to use. These variables are:
540  *
541  *	o. umem_genasm_mptr: The buffer for ptcmalloc
542  *	o. umem_genasm_msize: The size in bytes of the above buffer
543  *	o. umem_genasm_fptr: The buffer for ptcfree
544  *	o. umem_genasm_fsize: The size in bytes of the above buffer
545  *
546  * Finally, to enable the generated assembly we need to remove the previous jump
547  * to the actual malloc that exists at the start of these buffers. On x86, this
548  * is a five byte region. We could zero out the jump offset to be a jmp +0, but
549  * using nops can be faster. We specifically use a single five byte nop on x86
550  * as it is faster. When porting ptcumem to other architectures, the various
551  * opcode changes and options should be analyzed.
552  *
553  * 8.4 Interface with libc.so
554  * --------------------------
555  *
556  * The tmem_t structure as described in the beginning of section 8, is part of a
557  * private interface with libc. There are three functions that exist to cover
558  * this. They are not documented in man pages or header files. They are in the
559  * SUNWprivate part of libc's mapfile.
560  *
561  *	o. _tmem_get_base(void)
562  *
563  * 	Returns the offset from the ulwp_t (curthread) to the tmem_t structure.
564  * 	This is a constant for all threads and is effectively a way to to do
565  * 	::offsetof ulwp_t ul_tmem without having to know the specifics of the
566  * 	structure outside of libc.
567  *
568  *	o. _tmem_get_nentries(void)
569  *
570  *	Returns the number of roots that exist in the tmem_t. This is one part
571  *	of the cap on the number of umem_caches that we can back with tmem.
572  *
573  *	o. _tmem_set_cleanup(void (*)(void *, int))
574  *
575  *	This sets a clean up handler that gets called back when a thread exits.
576  *	There is one call per buffer, the void * is a pointer to the buffer on
577  *	the list, the int is the index into the roots array for this buffer.
578  *
579  * 8.5 Tuning and disabling per-thread caching
580  * -------------------------------------------
581  *
582  * There is only one tunable for per-thread caching:  the amount of memory each
583  * thread should be able to cache.  This is specified via the perthread_cache
584  * UMEM_OPTION option.  No attempt is made to to sanity check the specified
585  * value; the limit is simply the maximum value of a size_t.
586  *
587  * If the perthread_cache UMEM_OPTION is set to zero, nomagazines was requested,
588  * or UMEM_DEBUG has been turned on then we will never call into umem_genasm;
589  * however, the trampoline audit library and jump will still be in place.
590  *
591  * 8.6 Observing efficacy of per-thread caching
592  * --------------------------------------------
593  *
594  * To understand the efficacy of per-thread caching, use the ::umastat dcmd
595  * to see the percentage of capacity consumed on a per-thread basis, the
596  * degree to which each umem cache contributes to per-thread cache consumption,
597  * and the number of buffers in per-thread caches on a per-umem cache basis.
598  * If more detail is required, the specific buffers in a per-thread cache can
599  * be iterated over with the umem_ptc_* walkers. (These walkers allow an
600  * optional ulwp_t to be specified to iterate only over a particular thread's
601  * cache.)
602  */
603 
604 #include <umem_impl.h>
605 #include <sys/vmem_impl_user.h>
606 #include "umem_base.h"
607 #include "vmem_base.h"
608 
609 #include <sys/processor.h>
610 #include <sys/sysmacros.h>
611 
612 #include <alloca.h>
613 #include <errno.h>
614 #include <limits.h>
615 #include <stdio.h>
616 #include <stdlib.h>
617 #include <string.h>
618 #include <strings.h>
619 #include <signal.h>
620 #include <unistd.h>
621 #include <atomic.h>
622 
623 #include "misc.h"
624 
625 #define	UMEM_VMFLAGS(umflag)	(VM_NOSLEEP)
626 
627 size_t pagesize;
628 
629 /*
630  * The default set of caches to back umem_alloc().
631  * These sizes should be reevaluated periodically.
632  *
633  * We want allocations that are multiples of the coherency granularity
634  * (64 bytes) to be satisfied from a cache which is a multiple of 64
635  * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
636  * the next kmem_cache_size greater than or equal to it must be a
637  * multiple of 64.
638  *
639  * This table must be in sorted order, from smallest to highest.  The
640  * highest slot must be UMEM_MAXBUF, and every slot afterwards must be
641  * zero.
642  */
643 static int umem_alloc_sizes[] = {
644 #ifdef _LP64
645 	1 * 8,
646 	1 * 16,
647 	2 * 16,
648 	3 * 16,
649 #else
650 	1 * 8,
651 	2 * 8,
652 	3 * 8,
653 	4 * 8,		5 * 8,		6 * 8,		7 * 8,
654 #endif
655 	4 * 16,		5 * 16,		6 * 16,		7 * 16,
656 	4 * 32,		5 * 32,		6 * 32,		7 * 32,
657 	4 * 64,		5 * 64,		6 * 64,		7 * 64,
658 	4 * 128,	5 * 128,	6 * 128,	7 * 128,
659 	P2ALIGN(8192 / 7, 64),
660 	P2ALIGN(8192 / 6, 64),
661 	P2ALIGN(8192 / 5, 64),
662 	P2ALIGN(8192 / 4, 64), 2304,
663 	P2ALIGN(8192 / 3, 64),
664 	P2ALIGN(8192 / 2, 64), 4544,
665 	P2ALIGN(8192 / 1, 64), 9216,
666 	4096 * 3,
667 	8192 * 2,				/* = 8192 * 2 */
668 	24576, 32768, 40960, 49152, 57344, 65536, 73728, 81920,
669 	90112, 98304, 106496, 114688, 122880, UMEM_MAXBUF, /* 128k */
670 	/* 24 slots for user expansion */
671 	0, 0, 0, 0, 0, 0, 0, 0,
672 	0, 0, 0, 0, 0, 0, 0, 0,
673 	0, 0, 0, 0, 0, 0, 0, 0,
674 };
675 #define	NUM_ALLOC_SIZES (sizeof (umem_alloc_sizes) / sizeof (*umem_alloc_sizes))
676 
677 static umem_magtype_t umem_magtype[] = {
678 	{ 1,	8,	3200,	65536	},
679 	{ 3,	16,	256,	32768	},
680 	{ 7,	32,	64,	16384	},
681 	{ 15,	64,	0,	8192	},
682 	{ 31,	64,	0,	4096	},
683 	{ 47,	64,	0,	2048	},
684 	{ 63,	64,	0,	1024	},
685 	{ 95,	64,	0,	512	},
686 	{ 143,	64,	0,	0	},
687 };
688 
689 /*
690  * umem tunables
691  */
692 uint32_t umem_max_ncpus;	/* # of CPU caches. */
693 
694 uint32_t umem_stack_depth = 15; /* # stack frames in a bufctl_audit */
695 uint32_t umem_reap_interval = 10; /* max reaping rate (seconds) */
696 uint_t umem_depot_contention = 2; /* max failed trylocks per real interval */
697 uint_t umem_abort = 1;		/* whether to abort on error */
698 uint_t umem_output = 0;		/* whether to write to standard error */
699 uint_t umem_logging = 0;	/* umem_log_enter() override */
700 uint32_t umem_mtbf = 0;		/* mean time between failures [default: off] */
701 size_t umem_transaction_log_size; /* size of transaction log */
702 size_t umem_content_log_size;	/* size of content log */
703 size_t umem_failure_log_size;	/* failure log [4 pages per CPU] */
704 size_t umem_slab_log_size;	/* slab create log [4 pages per CPU] */
705 size_t umem_content_maxsave = 256; /* UMF_CONTENTS max bytes to log */
706 size_t umem_lite_minsize = 0;	/* minimum buffer size for UMF_LITE */
707 size_t umem_lite_maxalign = 1024; /* maximum buffer alignment for UMF_LITE */
708 size_t umem_maxverify;		/* maximum bytes to inspect in debug routines */
709 size_t umem_minfirewall;	/* hardware-enforced redzone threshold */
710 size_t umem_ptc_size = 1048576;	/* size of per-thread cache (in bytes) */
711 
712 uint_t umem_flags = 0;
713 uintptr_t umem_tmem_off;
714 
715 mutex_t			umem_init_lock;		/* locks initialization */
716 cond_t			umem_init_cv;		/* initialization CV */
717 thread_t		umem_init_thr;		/* thread initializing */
718 int			umem_init_env_ready;	/* environ pre-initted */
719 int			umem_ready = UMEM_READY_STARTUP;
720 
721 int			umem_ptc_enabled;	/* per-thread caching enabled */
722 
723 static umem_nofail_callback_t *nofail_callback;
724 static mutex_t		umem_nofail_exit_lock;
725 static thread_t		umem_nofail_exit_thr;
726 
727 static umem_cache_t	*umem_slab_cache;
728 static umem_cache_t	*umem_bufctl_cache;
729 static umem_cache_t	*umem_bufctl_audit_cache;
730 
731 mutex_t			umem_flags_lock;
732 
733 static vmem_t		*heap_arena;
734 static vmem_alloc_t	*heap_alloc;
735 static vmem_free_t	*heap_free;
736 
737 static vmem_t		*umem_internal_arena;
738 static vmem_t		*umem_cache_arena;
739 static vmem_t		*umem_hash_arena;
740 static vmem_t		*umem_log_arena;
741 static vmem_t		*umem_oversize_arena;
742 static vmem_t		*umem_va_arena;
743 static vmem_t		*umem_default_arena;
744 static vmem_t		*umem_firewall_va_arena;
745 static vmem_t		*umem_firewall_arena;
746 
747 vmem_t			*umem_memalign_arena;
748 
749 umem_log_header_t *umem_transaction_log;
750 umem_log_header_t *umem_content_log;
751 umem_log_header_t *umem_failure_log;
752 umem_log_header_t *umem_slab_log;
753 
754 #define	CPUHINT()		(thr_self())
755 #define	CPUHINT_MAX()		INT_MAX
756 
757 #define	CPU(mask)		(umem_cpus + (CPUHINT() & (mask)))
758 static umem_cpu_t umem_startup_cpu = {	/* initial, single, cpu */
759 	UMEM_CACHE_SIZE(0),
760 	0
761 };
762 
763 static uint32_t umem_cpu_mask = 0;			/* global cpu mask */
764 static umem_cpu_t *umem_cpus = &umem_startup_cpu;	/* cpu list */
765 
766 volatile uint32_t umem_reaping;
767 
768 thread_t		umem_update_thr;
769 struct timeval		umem_update_next;	/* timeofday of next update */
770 volatile thread_t	umem_st_update_thr;	/* only used when single-thd */
771 
772 #define	IN_UPDATE()	(thr_self() == umem_update_thr || \
773 			    thr_self() == umem_st_update_thr)
774 #define	IN_REAP()	IN_UPDATE()
775 
776 mutex_t			umem_update_lock;	/* cache_u{next,prev,flags} */
777 cond_t			umem_update_cv;
778 
779 volatile hrtime_t umem_reap_next;	/* min hrtime of next reap */
780 
781 mutex_t			umem_cache_lock;	/* inter-cache linkage only */
782 
783 #ifdef UMEM_STANDALONE
784 umem_cache_t		umem_null_cache;
785 static const umem_cache_t umem_null_cache_template = {
786 #else
787 umem_cache_t		umem_null_cache = {
788 #endif
789 	0, 0, 0, 0, 0,
790 	0, 0,
791 	0, 0,
792 	0, 0,
793 	"invalid_cache",
794 	0, 0,
795 	NULL, NULL, NULL, NULL,
796 	NULL,
797 	0, 0, 0, 0,
798 	&umem_null_cache, &umem_null_cache,
799 	&umem_null_cache, &umem_null_cache,
800 	0,
801 	DEFAULTMUTEX,				/* start of slab layer */
802 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
803 	&umem_null_cache.cache_nullslab,
804 	{
805 		&umem_null_cache,
806 		NULL,
807 		&umem_null_cache.cache_nullslab,
808 		&umem_null_cache.cache_nullslab,
809 		NULL,
810 		-1,
811 		0
812 	},
813 	NULL,
814 	NULL,
815 	DEFAULTMUTEX,				/* start of depot layer */
816 	NULL, {
817 		NULL, 0, 0, 0, 0
818 	}, {
819 		NULL, 0, 0, 0, 0
820 	}, {
821 		{
822 			DEFAULTMUTEX,		/* start of CPU cache */
823 			0, 0, NULL, NULL, -1, -1, 0
824 		}
825 	}
826 };
827 
828 #define	ALLOC_TABLE_4 \
829 	&umem_null_cache, &umem_null_cache, &umem_null_cache, &umem_null_cache
830 
831 #define	ALLOC_TABLE_64 \
832 	ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
833 	ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
834 	ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
835 	ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4
836 
837 #define	ALLOC_TABLE_1024 \
838 	ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
839 	ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
840 	ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
841 	ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64
842 
843 static umem_cache_t *umem_alloc_table[UMEM_MAXBUF >> UMEM_ALIGN_SHIFT] = {
844 	ALLOC_TABLE_1024,
845 	ALLOC_TABLE_1024,
846 	ALLOC_TABLE_1024,
847 	ALLOC_TABLE_1024,
848 	ALLOC_TABLE_1024,
849 	ALLOC_TABLE_1024,
850 	ALLOC_TABLE_1024,
851 	ALLOC_TABLE_1024,
852 	ALLOC_TABLE_1024,
853 	ALLOC_TABLE_1024,
854 	ALLOC_TABLE_1024,
855 	ALLOC_TABLE_1024,
856 	ALLOC_TABLE_1024,
857 	ALLOC_TABLE_1024,
858 	ALLOC_TABLE_1024,
859 	ALLOC_TABLE_1024
860 };
861 
862 
863 /* Used to constrain audit-log stack traces */
864 caddr_t			umem_min_stack;
865 caddr_t			umem_max_stack;
866 
867 
868 #define	UMERR_MODIFIED	0	/* buffer modified while on freelist */
869 #define	UMERR_REDZONE	1	/* redzone violation (write past end of buf) */
870 #define	UMERR_DUPFREE	2	/* freed a buffer twice */
871 #define	UMERR_BADADDR	3	/* freed a bad (unallocated) address */
872 #define	UMERR_BADBUFTAG	4	/* buftag corrupted */
873 #define	UMERR_BADBUFCTL	5	/* bufctl corrupted */
874 #define	UMERR_BADCACHE	6	/* freed a buffer to the wrong cache */
875 #define	UMERR_BADSIZE	7	/* alloc size != free size */
876 #define	UMERR_BADBASE	8	/* buffer base address wrong */
877 
878 struct {
879 	hrtime_t	ump_timestamp;	/* timestamp of error */
880 	int		ump_error;	/* type of umem error (UMERR_*) */
881 	void		*ump_buffer;	/* buffer that induced abort */
882 	void		*ump_realbuf;	/* real start address for buffer */
883 	umem_cache_t	*ump_cache;	/* buffer's cache according to client */
884 	umem_cache_t	*ump_realcache;	/* actual cache containing buffer */
885 	umem_slab_t	*ump_slab;	/* slab accoring to umem_findslab() */
886 	umem_bufctl_t	*ump_bufctl;	/* bufctl */
887 } umem_abort_info;
888 
889 static void
890 copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
891 {
892 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
893 	uint64_t *buf = buf_arg;
894 
895 	while (buf < bufend)
896 		*buf++ = pattern;
897 }
898 
899 static void *
900 verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
901 {
902 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
903 	uint64_t *buf;
904 
905 	for (buf = buf_arg; buf < bufend; buf++)
906 		if (*buf != pattern)
907 			return (buf);
908 	return (NULL);
909 }
910 
911 static void *
912 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
913 {
914 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
915 	uint64_t *buf;
916 
917 	for (buf = buf_arg; buf < bufend; buf++) {
918 		if (*buf != old) {
919 			copy_pattern(old, buf_arg,
920 			    (char *)buf - (char *)buf_arg);
921 			return (buf);
922 		}
923 		*buf = new;
924 	}
925 
926 	return (NULL);
927 }
928 
929 void
930 umem_cache_applyall(void (*func)(umem_cache_t *))
931 {
932 	umem_cache_t *cp;
933 
934 	(void) mutex_lock(&umem_cache_lock);
935 	for (cp = umem_null_cache.cache_next; cp != &umem_null_cache;
936 	    cp = cp->cache_next)
937 		func(cp);
938 	(void) mutex_unlock(&umem_cache_lock);
939 }
940 
941 static void
942 umem_add_update_unlocked(umem_cache_t *cp, int flags)
943 {
944 	umem_cache_t *cnext, *cprev;
945 
946 	flags &= ~UMU_ACTIVE;
947 
948 	if (!flags)
949 		return;
950 
951 	if (cp->cache_uflags & UMU_ACTIVE) {
952 		cp->cache_uflags |= flags;
953 	} else {
954 		if (cp->cache_unext != NULL) {
955 			ASSERT(cp->cache_uflags != 0);
956 			cp->cache_uflags |= flags;
957 		} else {
958 			ASSERT(cp->cache_uflags == 0);
959 			cp->cache_uflags = flags;
960 			cp->cache_unext = cnext = &umem_null_cache;
961 			cp->cache_uprev = cprev = umem_null_cache.cache_uprev;
962 			cnext->cache_uprev = cp;
963 			cprev->cache_unext = cp;
964 		}
965 	}
966 }
967 
968 static void
969 umem_add_update(umem_cache_t *cp, int flags)
970 {
971 	(void) mutex_lock(&umem_update_lock);
972 
973 	umem_add_update_unlocked(cp, flags);
974 
975 	if (!IN_UPDATE())
976 		(void) cond_broadcast(&umem_update_cv);
977 
978 	(void) mutex_unlock(&umem_update_lock);
979 }
980 
981 /*
982  * Remove a cache from the update list, waiting for any in-progress work to
983  * complete first.
984  */
985 static void
986 umem_remove_updates(umem_cache_t *cp)
987 {
988 	(void) mutex_lock(&umem_update_lock);
989 
990 	/*
991 	 * Get it out of the active state
992 	 */
993 	while (cp->cache_uflags & UMU_ACTIVE) {
994 		int cancel_state;
995 
996 		ASSERT(cp->cache_unext == NULL);
997 
998 		cp->cache_uflags |= UMU_NOTIFY;
999 
1000 		/*
1001 		 * Make sure the update state is sane, before we wait
1002 		 */
1003 		ASSERT(umem_update_thr != 0 || umem_st_update_thr != 0);
1004 		ASSERT(umem_update_thr != thr_self() &&
1005 		    umem_st_update_thr != thr_self());
1006 
1007 		(void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE,
1008 		    &cancel_state);
1009 		(void) cond_wait(&umem_update_cv, &umem_update_lock);
1010 		(void) pthread_setcancelstate(cancel_state, NULL);
1011 	}
1012 	/*
1013 	 * Get it out of the Work Requested state
1014 	 */
1015 	if (cp->cache_unext != NULL) {
1016 		cp->cache_uprev->cache_unext = cp->cache_unext;
1017 		cp->cache_unext->cache_uprev = cp->cache_uprev;
1018 		cp->cache_uprev = cp->cache_unext = NULL;
1019 		cp->cache_uflags = 0;
1020 	}
1021 	/*
1022 	 * Make sure it is in the Inactive state
1023 	 */
1024 	ASSERT(cp->cache_unext == NULL && cp->cache_uflags == 0);
1025 	(void) mutex_unlock(&umem_update_lock);
1026 }
1027 
1028 static void
1029 umem_updateall(int flags)
1030 {
1031 	umem_cache_t *cp;
1032 
1033 	/*
1034 	 * NOTE:  To prevent deadlock, umem_cache_lock is always acquired first.
1035 	 *
1036 	 * (umem_add_update is called from things run via umem_cache_applyall)
1037 	 */
1038 	(void) mutex_lock(&umem_cache_lock);
1039 	(void) mutex_lock(&umem_update_lock);
1040 
1041 	for (cp = umem_null_cache.cache_next; cp != &umem_null_cache;
1042 	    cp = cp->cache_next)
1043 		umem_add_update_unlocked(cp, flags);
1044 
1045 	if (!IN_UPDATE())
1046 		(void) cond_broadcast(&umem_update_cv);
1047 
1048 	(void) mutex_unlock(&umem_update_lock);
1049 	(void) mutex_unlock(&umem_cache_lock);
1050 }
1051 
1052 /*
1053  * Debugging support.  Given a buffer address, find its slab.
1054  */
1055 static umem_slab_t *
1056 umem_findslab(umem_cache_t *cp, void *buf)
1057 {
1058 	umem_slab_t *sp;
1059 
1060 	(void) mutex_lock(&cp->cache_lock);
1061 	for (sp = cp->cache_nullslab.slab_next;
1062 	    sp != &cp->cache_nullslab; sp = sp->slab_next) {
1063 		if (UMEM_SLAB_MEMBER(sp, buf)) {
1064 			(void) mutex_unlock(&cp->cache_lock);
1065 			return (sp);
1066 		}
1067 	}
1068 	(void) mutex_unlock(&cp->cache_lock);
1069 
1070 	return (NULL);
1071 }
1072 
1073 static void
1074 umem_error(int error, umem_cache_t *cparg, void *bufarg)
1075 {
1076 	umem_buftag_t *btp = NULL;
1077 	umem_bufctl_t *bcp = NULL;
1078 	umem_cache_t *cp = cparg;
1079 	umem_slab_t *sp;
1080 	uint64_t *off;
1081 	void *buf = bufarg;
1082 
1083 	int old_logging = umem_logging;
1084 
1085 	umem_logging = 0;	/* stop logging when a bad thing happens */
1086 
1087 	umem_abort_info.ump_timestamp = gethrtime();
1088 
1089 	sp = umem_findslab(cp, buf);
1090 	if (sp == NULL) {
1091 		for (cp = umem_null_cache.cache_prev; cp != &umem_null_cache;
1092 		    cp = cp->cache_prev) {
1093 			if ((sp = umem_findslab(cp, buf)) != NULL)
1094 				break;
1095 		}
1096 	}
1097 
1098 	if (sp == NULL) {
1099 		cp = NULL;
1100 		error = UMERR_BADADDR;
1101 	} else {
1102 		if (cp != cparg)
1103 			error = UMERR_BADCACHE;
1104 		else
1105 			buf = (char *)bufarg - ((uintptr_t)bufarg -
1106 			    (uintptr_t)sp->slab_base) % cp->cache_chunksize;
1107 		if (buf != bufarg)
1108 			error = UMERR_BADBASE;
1109 		if (cp->cache_flags & UMF_BUFTAG)
1110 			btp = UMEM_BUFTAG(cp, buf);
1111 		if (cp->cache_flags & UMF_HASH) {
1112 			(void) mutex_lock(&cp->cache_lock);
1113 			for (bcp = *UMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
1114 				if (bcp->bc_addr == buf)
1115 					break;
1116 			(void) mutex_unlock(&cp->cache_lock);
1117 			if (bcp == NULL && btp != NULL)
1118 				bcp = btp->bt_bufctl;
1119 			if (umem_findslab(cp->cache_bufctl_cache, bcp) ==
1120 			    NULL || P2PHASE((uintptr_t)bcp, UMEM_ALIGN) ||
1121 			    bcp->bc_addr != buf) {
1122 				error = UMERR_BADBUFCTL;
1123 				bcp = NULL;
1124 			}
1125 		}
1126 	}
1127 
1128 	umem_abort_info.ump_error = error;
1129 	umem_abort_info.ump_buffer = bufarg;
1130 	umem_abort_info.ump_realbuf = buf;
1131 	umem_abort_info.ump_cache = cparg;
1132 	umem_abort_info.ump_realcache = cp;
1133 	umem_abort_info.ump_slab = sp;
1134 	umem_abort_info.ump_bufctl = bcp;
1135 
1136 	umem_printf("umem allocator: ");
1137 
1138 	switch (error) {
1139 
1140 	case UMERR_MODIFIED:
1141 		umem_printf("buffer modified after being freed\n");
1142 		off = verify_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify);
1143 		if (off == NULL)	/* shouldn't happen */
1144 			off = buf;
1145 		umem_printf("modification occurred at offset 0x%lx "
1146 		    "(0x%llx replaced by 0x%llx)\n",
1147 		    (uintptr_t)off - (uintptr_t)buf,
1148 		    (longlong_t)UMEM_FREE_PATTERN, (longlong_t)*off);
1149 		break;
1150 
1151 	case UMERR_REDZONE:
1152 		umem_printf("redzone violation: write past end of buffer\n");
1153 		break;
1154 
1155 	case UMERR_BADADDR:
1156 		umem_printf("invalid free: buffer not in cache\n");
1157 		break;
1158 
1159 	case UMERR_DUPFREE:
1160 		umem_printf("duplicate free: buffer freed twice\n");
1161 		break;
1162 
1163 	case UMERR_BADBUFTAG:
1164 		umem_printf("boundary tag corrupted\n");
1165 		umem_printf("bcp ^ bxstat = %lx, should be %lx\n",
1166 		    (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
1167 		    UMEM_BUFTAG_FREE);
1168 		break;
1169 
1170 	case UMERR_BADBUFCTL:
1171 		umem_printf("bufctl corrupted\n");
1172 		break;
1173 
1174 	case UMERR_BADCACHE:
1175 		umem_printf("buffer freed to wrong cache\n");
1176 		umem_printf("buffer was allocated from %s,\n", cp->cache_name);
1177 		umem_printf("caller attempting free to %s.\n",
1178 		    cparg->cache_name);
1179 		break;
1180 
1181 	case UMERR_BADSIZE:
1182 		umem_printf("bad free: free size (%u) != alloc size (%u)\n",
1183 		    UMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
1184 		    UMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
1185 		break;
1186 
1187 	case UMERR_BADBASE:
1188 		umem_printf("bad free: free address (%p) != alloc address "
1189 		    "(%p)\n", bufarg, buf);
1190 		break;
1191 	}
1192 
1193 	umem_printf("buffer=%p  bufctl=%p  cache: %s\n",
1194 	    bufarg, (void *)bcp, cparg->cache_name);
1195 
1196 	if (bcp != NULL && (cp->cache_flags & UMF_AUDIT) &&
1197 	    error != UMERR_BADBUFCTL) {
1198 		int d;
1199 		timespec_t ts;
1200 		hrtime_t diff;
1201 		umem_bufctl_audit_t *bcap = (umem_bufctl_audit_t *)bcp;
1202 
1203 		diff = umem_abort_info.ump_timestamp - bcap->bc_timestamp;
1204 		ts.tv_sec = diff / NANOSEC;
1205 		ts.tv_nsec = diff % NANOSEC;
1206 
1207 		umem_printf("previous transaction on buffer %p:\n", buf);
1208 		umem_printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
1209 		    (void *)(intptr_t)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
1210 		    (void *)sp, cp->cache_name);
1211 		for (d = 0; d < MIN(bcap->bc_depth, umem_stack_depth); d++) {
1212 			(void) print_sym((void *)bcap->bc_stack[d]);
1213 			umem_printf("\n");
1214 		}
1215 	}
1216 
1217 	umem_err_recoverable("umem: heap corruption detected");
1218 
1219 	umem_logging = old_logging;	/* resume logging */
1220 }
1221 
1222 void
1223 umem_nofail_callback(umem_nofail_callback_t *cb)
1224 {
1225 	nofail_callback = cb;
1226 }
1227 
1228 static int
1229 umem_alloc_retry(umem_cache_t *cp, int umflag)
1230 {
1231 	if (cp == &umem_null_cache) {
1232 		if (umem_init())
1233 			return (1);				/* retry */
1234 		/*
1235 		 * Initialization failed.  Do normal failure processing.
1236 		 */
1237 	}
1238 	if (umem_flags & UMF_CHECKNULL) {
1239 		umem_err_recoverable("umem: out of heap space");
1240 	}
1241 	if (umflag & UMEM_NOFAIL) {
1242 		int def_result = UMEM_CALLBACK_EXIT(255);
1243 		int result = def_result;
1244 		umem_nofail_callback_t *callback = nofail_callback;
1245 
1246 		if (callback != NULL)
1247 			result = callback();
1248 
1249 		if (result == UMEM_CALLBACK_RETRY)
1250 			return (1);
1251 
1252 		if ((result & ~0xFF) != UMEM_CALLBACK_EXIT(0)) {
1253 			log_message("nofail callback returned %x\n", result);
1254 			result = def_result;
1255 		}
1256 
1257 		/*
1258 		 * only one thread will call exit
1259 		 */
1260 		if (umem_nofail_exit_thr == thr_self())
1261 			umem_panic("recursive UMEM_CALLBACK_EXIT()\n");
1262 
1263 		(void) mutex_lock(&umem_nofail_exit_lock);
1264 		umem_nofail_exit_thr = thr_self();
1265 		exit(result & 0xFF);
1266 		/*NOTREACHED*/
1267 	}
1268 	return (0);
1269 }
1270 
1271 static umem_log_header_t *
1272 umem_log_init(size_t logsize)
1273 {
1274 	umem_log_header_t *lhp;
1275 	int nchunks = 4 * umem_max_ncpus;
1276 	size_t lhsize = offsetof(umem_log_header_t, lh_cpu[umem_max_ncpus]);
1277 	int i;
1278 
1279 	if (logsize == 0)
1280 		return (NULL);
1281 
1282 	/*
1283 	 * Make sure that lhp->lh_cpu[] is nicely aligned
1284 	 * to prevent false sharing of cache lines.
1285 	 */
1286 	lhsize = P2ROUNDUP(lhsize, UMEM_ALIGN);
1287 	lhp = vmem_xalloc(umem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1288 	    NULL, NULL, VM_NOSLEEP);
1289 	if (lhp == NULL)
1290 		goto fail;
1291 
1292 	bzero(lhp, lhsize);
1293 
1294 	(void) mutex_init(&lhp->lh_lock, USYNC_THREAD, NULL);
1295 	lhp->lh_nchunks = nchunks;
1296 	lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks, PAGESIZE);
1297 	if (lhp->lh_chunksize == 0)
1298 		lhp->lh_chunksize = PAGESIZE;
1299 
1300 	lhp->lh_base = vmem_alloc(umem_log_arena,
1301 	    lhp->lh_chunksize * nchunks, VM_NOSLEEP);
1302 	if (lhp->lh_base == NULL)
1303 		goto fail;
1304 
1305 	lhp->lh_free = vmem_alloc(umem_log_arena,
1306 	    nchunks * sizeof (int), VM_NOSLEEP);
1307 	if (lhp->lh_free == NULL)
1308 		goto fail;
1309 
1310 	bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1311 
1312 	for (i = 0; i < umem_max_ncpus; i++) {
1313 		umem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1314 		(void) mutex_init(&clhp->clh_lock, USYNC_THREAD, NULL);
1315 		clhp->clh_chunk = i;
1316 	}
1317 
1318 	for (i = umem_max_ncpus; i < nchunks; i++)
1319 		lhp->lh_free[i] = i;
1320 
1321 	lhp->lh_head = umem_max_ncpus;
1322 	lhp->lh_tail = 0;
1323 
1324 	return (lhp);
1325 
1326 fail:
1327 	if (lhp != NULL) {
1328 		if (lhp->lh_base != NULL)
1329 			vmem_free(umem_log_arena, lhp->lh_base,
1330 			    lhp->lh_chunksize * nchunks);
1331 
1332 		vmem_xfree(umem_log_arena, lhp, lhsize);
1333 	}
1334 	return (NULL);
1335 }
1336 
1337 static void *
1338 umem_log_enter(umem_log_header_t *lhp, void *data, size_t size)
1339 {
1340 	void *logspace;
1341 	umem_cpu_log_header_t *clhp;
1342 
1343 	if (lhp == NULL || umem_logging == 0)
1344 		return (NULL);
1345 
1346 	clhp = &lhp->lh_cpu[CPU(umem_cpu_mask)->cpu_number];
1347 
1348 	(void) mutex_lock(&clhp->clh_lock);
1349 	clhp->clh_hits++;
1350 	if (size > clhp->clh_avail) {
1351 		(void) mutex_lock(&lhp->lh_lock);
1352 		lhp->lh_hits++;
1353 		lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1354 		lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1355 		clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1356 		lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1357 		clhp->clh_current = lhp->lh_base +
1358 		    clhp->clh_chunk * lhp->lh_chunksize;
1359 		clhp->clh_avail = lhp->lh_chunksize;
1360 		if (size > lhp->lh_chunksize)
1361 			size = lhp->lh_chunksize;
1362 		(void) mutex_unlock(&lhp->lh_lock);
1363 	}
1364 	logspace = clhp->clh_current;
1365 	clhp->clh_current += size;
1366 	clhp->clh_avail -= size;
1367 	bcopy(data, logspace, size);
1368 	(void) mutex_unlock(&clhp->clh_lock);
1369 	return (logspace);
1370 }
1371 
1372 #define	UMEM_AUDIT(lp, cp, bcp)						\
1373 {									\
1374 	umem_bufctl_audit_t *_bcp = (umem_bufctl_audit_t *)(bcp);	\
1375 	_bcp->bc_timestamp = gethrtime();				\
1376 	_bcp->bc_thread = thr_self();					\
1377 	_bcp->bc_depth = getpcstack(_bcp->bc_stack, umem_stack_depth,	\
1378 	    (cp != NULL) && (cp->cache_flags & UMF_CHECKSIGNAL));	\
1379 	_bcp->bc_lastlog = umem_log_enter((lp), _bcp,			\
1380 	    UMEM_BUFCTL_AUDIT_SIZE);					\
1381 }
1382 
1383 static void
1384 umem_log_event(umem_log_header_t *lp, umem_cache_t *cp,
1385     umem_slab_t *sp, void *addr)
1386 {
1387 	umem_bufctl_audit_t *bcp;
1388 	UMEM_LOCAL_BUFCTL_AUDIT(&bcp);
1389 
1390 	bzero(bcp, UMEM_BUFCTL_AUDIT_SIZE);
1391 	bcp->bc_addr = addr;
1392 	bcp->bc_slab = sp;
1393 	bcp->bc_cache = cp;
1394 	UMEM_AUDIT(lp, cp, bcp);
1395 }
1396 
1397 /*
1398  * Create a new slab for cache cp.
1399  */
1400 static umem_slab_t *
1401 umem_slab_create(umem_cache_t *cp, int umflag)
1402 {
1403 	size_t slabsize = cp->cache_slabsize;
1404 	size_t chunksize = cp->cache_chunksize;
1405 	int cache_flags = cp->cache_flags;
1406 	size_t color, chunks;
1407 	char *buf, *slab;
1408 	umem_slab_t *sp;
1409 	umem_bufctl_t *bcp;
1410 	vmem_t *vmp = cp->cache_arena;
1411 
1412 	color = cp->cache_color + cp->cache_align;
1413 	if (color > cp->cache_maxcolor)
1414 		color = cp->cache_mincolor;
1415 	cp->cache_color = color;
1416 
1417 	slab = vmem_alloc(vmp, slabsize, UMEM_VMFLAGS(umflag));
1418 
1419 	if (slab == NULL)
1420 		goto vmem_alloc_failure;
1421 
1422 	ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1423 
1424 	if (!(cp->cache_cflags & UMC_NOTOUCH) &&
1425 	    (cp->cache_flags & UMF_DEADBEEF))
1426 		copy_pattern(UMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1427 
1428 	if (cache_flags & UMF_HASH) {
1429 		if ((sp = _umem_cache_alloc(umem_slab_cache, umflag)) == NULL)
1430 			goto slab_alloc_failure;
1431 		chunks = (slabsize - color) / chunksize;
1432 	} else {
1433 		sp = UMEM_SLAB(cp, slab);
1434 		chunks = (slabsize - sizeof (umem_slab_t) - color) / chunksize;
1435 	}
1436 
1437 	sp->slab_cache	= cp;
1438 	sp->slab_head	= NULL;
1439 	sp->slab_refcnt	= 0;
1440 	sp->slab_base	= buf = slab + color;
1441 	sp->slab_chunks	= chunks;
1442 
1443 	ASSERT(chunks > 0);
1444 	while (chunks-- != 0) {
1445 		if (cache_flags & UMF_HASH) {
1446 			bcp = _umem_cache_alloc(cp->cache_bufctl_cache, umflag);
1447 			if (bcp == NULL)
1448 				goto bufctl_alloc_failure;
1449 			if (cache_flags & UMF_AUDIT) {
1450 				umem_bufctl_audit_t *bcap =
1451 				    (umem_bufctl_audit_t *)bcp;
1452 				bzero(bcap, UMEM_BUFCTL_AUDIT_SIZE);
1453 				bcap->bc_cache = cp;
1454 			}
1455 			bcp->bc_addr = buf;
1456 			bcp->bc_slab = sp;
1457 		} else {
1458 			bcp = UMEM_BUFCTL(cp, buf);
1459 		}
1460 		if (cache_flags & UMF_BUFTAG) {
1461 			umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1462 			btp->bt_redzone = UMEM_REDZONE_PATTERN;
1463 			btp->bt_bufctl = bcp;
1464 			btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE;
1465 			if (cache_flags & UMF_DEADBEEF) {
1466 				copy_pattern(UMEM_FREE_PATTERN, buf,
1467 				    cp->cache_verify);
1468 			}
1469 		}
1470 		bcp->bc_next = sp->slab_head;
1471 		sp->slab_head = bcp;
1472 		buf += chunksize;
1473 	}
1474 
1475 	umem_log_event(umem_slab_log, cp, sp, slab);
1476 
1477 	return (sp);
1478 
1479 bufctl_alloc_failure:
1480 
1481 	while ((bcp = sp->slab_head) != NULL) {
1482 		sp->slab_head = bcp->bc_next;
1483 		_umem_cache_free(cp->cache_bufctl_cache, bcp);
1484 	}
1485 	_umem_cache_free(umem_slab_cache, sp);
1486 
1487 slab_alloc_failure:
1488 
1489 	vmem_free(vmp, slab, slabsize);
1490 
1491 vmem_alloc_failure:
1492 
1493 	umem_log_event(umem_failure_log, cp, NULL, NULL);
1494 	atomic_add_64(&cp->cache_alloc_fail, 1);
1495 
1496 	return (NULL);
1497 }
1498 
1499 /*
1500  * Destroy a slab.
1501  */
1502 static void
1503 umem_slab_destroy(umem_cache_t *cp, umem_slab_t *sp)
1504 {
1505 	vmem_t *vmp = cp->cache_arena;
1506 	void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1507 
1508 	if (cp->cache_flags & UMF_HASH) {
1509 		umem_bufctl_t *bcp;
1510 		while ((bcp = sp->slab_head) != NULL) {
1511 			sp->slab_head = bcp->bc_next;
1512 			_umem_cache_free(cp->cache_bufctl_cache, bcp);
1513 		}
1514 		_umem_cache_free(umem_slab_cache, sp);
1515 	}
1516 	vmem_free(vmp, slab, cp->cache_slabsize);
1517 }
1518 
1519 /*
1520  * Allocate a raw (unconstructed) buffer from cp's slab layer.
1521  */
1522 static void *
1523 umem_slab_alloc(umem_cache_t *cp, int umflag)
1524 {
1525 	umem_bufctl_t *bcp, **hash_bucket;
1526 	umem_slab_t *sp;
1527 	void *buf;
1528 
1529 	(void) mutex_lock(&cp->cache_lock);
1530 	cp->cache_slab_alloc++;
1531 	sp = cp->cache_freelist;
1532 	ASSERT(sp->slab_cache == cp);
1533 	if (sp->slab_head == NULL) {
1534 		/*
1535 		 * The freelist is empty.  Create a new slab.
1536 		 */
1537 		(void) mutex_unlock(&cp->cache_lock);
1538 		if (cp == &umem_null_cache)
1539 			return (NULL);
1540 		if ((sp = umem_slab_create(cp, umflag)) == NULL)
1541 			return (NULL);
1542 		(void) mutex_lock(&cp->cache_lock);
1543 		cp->cache_slab_create++;
1544 		if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1545 			cp->cache_bufmax = cp->cache_buftotal;
1546 		sp->slab_next = cp->cache_freelist;
1547 		sp->slab_prev = cp->cache_freelist->slab_prev;
1548 		sp->slab_next->slab_prev = sp;
1549 		sp->slab_prev->slab_next = sp;
1550 		cp->cache_freelist = sp;
1551 	}
1552 
1553 	sp->slab_refcnt++;
1554 	ASSERT(sp->slab_refcnt <= sp->slab_chunks);
1555 
1556 	/*
1557 	 * If we're taking the last buffer in the slab,
1558 	 * remove the slab from the cache's freelist.
1559 	 */
1560 	bcp = sp->slab_head;
1561 	if ((sp->slab_head = bcp->bc_next) == NULL) {
1562 		cp->cache_freelist = sp->slab_next;
1563 		ASSERT(sp->slab_refcnt == sp->slab_chunks);
1564 	}
1565 
1566 	if (cp->cache_flags & UMF_HASH) {
1567 		/*
1568 		 * Add buffer to allocated-address hash table.
1569 		 */
1570 		buf = bcp->bc_addr;
1571 		hash_bucket = UMEM_HASH(cp, buf);
1572 		bcp->bc_next = *hash_bucket;
1573 		*hash_bucket = bcp;
1574 		if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) {
1575 			UMEM_AUDIT(umem_transaction_log, cp, bcp);
1576 		}
1577 	} else {
1578 		buf = UMEM_BUF(cp, bcp);
1579 	}
1580 
1581 	ASSERT(UMEM_SLAB_MEMBER(sp, buf));
1582 
1583 	(void) mutex_unlock(&cp->cache_lock);
1584 
1585 	return (buf);
1586 }
1587 
1588 /*
1589  * Free a raw (unconstructed) buffer to cp's slab layer.
1590  */
1591 static void
1592 umem_slab_free(umem_cache_t *cp, void *buf)
1593 {
1594 	umem_slab_t *sp;
1595 	umem_bufctl_t *bcp, **prev_bcpp;
1596 
1597 	ASSERT(buf != NULL);
1598 
1599 	(void) mutex_lock(&cp->cache_lock);
1600 	cp->cache_slab_free++;
1601 
1602 	if (cp->cache_flags & UMF_HASH) {
1603 		/*
1604 		 * Look up buffer in allocated-address hash table.
1605 		 */
1606 		prev_bcpp = UMEM_HASH(cp, buf);
1607 		while ((bcp = *prev_bcpp) != NULL) {
1608 			if (bcp->bc_addr == buf) {
1609 				*prev_bcpp = bcp->bc_next;
1610 				sp = bcp->bc_slab;
1611 				break;
1612 			}
1613 			cp->cache_lookup_depth++;
1614 			prev_bcpp = &bcp->bc_next;
1615 		}
1616 	} else {
1617 		bcp = UMEM_BUFCTL(cp, buf);
1618 		sp = UMEM_SLAB(cp, buf);
1619 	}
1620 
1621 	if (bcp == NULL || sp->slab_cache != cp || !UMEM_SLAB_MEMBER(sp, buf)) {
1622 		(void) mutex_unlock(&cp->cache_lock);
1623 		umem_error(UMERR_BADADDR, cp, buf);
1624 		return;
1625 	}
1626 
1627 	if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) {
1628 		if (cp->cache_flags & UMF_CONTENTS)
1629 			((umem_bufctl_audit_t *)bcp)->bc_contents =
1630 			    umem_log_enter(umem_content_log, buf,
1631 			    cp->cache_contents);
1632 		UMEM_AUDIT(umem_transaction_log, cp, bcp);
1633 	}
1634 
1635 	/*
1636 	 * If this slab isn't currently on the freelist, put it there.
1637 	 */
1638 	if (sp->slab_head == NULL) {
1639 		ASSERT(sp->slab_refcnt == sp->slab_chunks);
1640 		ASSERT(cp->cache_freelist != sp);
1641 		sp->slab_next->slab_prev = sp->slab_prev;
1642 		sp->slab_prev->slab_next = sp->slab_next;
1643 		sp->slab_next = cp->cache_freelist;
1644 		sp->slab_prev = cp->cache_freelist->slab_prev;
1645 		sp->slab_next->slab_prev = sp;
1646 		sp->slab_prev->slab_next = sp;
1647 		cp->cache_freelist = sp;
1648 	}
1649 
1650 	bcp->bc_next = sp->slab_head;
1651 	sp->slab_head = bcp;
1652 
1653 	ASSERT(sp->slab_refcnt >= 1);
1654 	if (--sp->slab_refcnt == 0) {
1655 		/*
1656 		 * There are no outstanding allocations from this slab,
1657 		 * so we can reclaim the memory.
1658 		 */
1659 		sp->slab_next->slab_prev = sp->slab_prev;
1660 		sp->slab_prev->slab_next = sp->slab_next;
1661 		if (sp == cp->cache_freelist)
1662 			cp->cache_freelist = sp->slab_next;
1663 		cp->cache_slab_destroy++;
1664 		cp->cache_buftotal -= sp->slab_chunks;
1665 		(void) mutex_unlock(&cp->cache_lock);
1666 		umem_slab_destroy(cp, sp);
1667 		return;
1668 	}
1669 	(void) mutex_unlock(&cp->cache_lock);
1670 }
1671 
1672 static int
1673 umem_cache_alloc_debug(umem_cache_t *cp, void *buf, int umflag)
1674 {
1675 	umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1676 	umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl;
1677 	uint32_t mtbf;
1678 	int flags_nfatal;
1679 
1680 	if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) {
1681 		umem_error(UMERR_BADBUFTAG, cp, buf);
1682 		return (-1);
1683 	}
1684 
1685 	btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_ALLOC;
1686 
1687 	if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) {
1688 		umem_error(UMERR_BADBUFCTL, cp, buf);
1689 		return (-1);
1690 	}
1691 
1692 	btp->bt_redzone = UMEM_REDZONE_PATTERN;
1693 
1694 	if (cp->cache_flags & UMF_DEADBEEF) {
1695 		if (verify_and_copy_pattern(UMEM_FREE_PATTERN,
1696 		    UMEM_UNINITIALIZED_PATTERN, buf, cp->cache_verify)) {
1697 			umem_error(UMERR_MODIFIED, cp, buf);
1698 			return (-1);
1699 		}
1700 	}
1701 
1702 	if ((mtbf = umem_mtbf | cp->cache_mtbf) != 0 &&
1703 	    gethrtime() % mtbf == 0 &&
1704 	    (umflag & (UMEM_FATAL_FLAGS)) == 0) {
1705 		umem_log_event(umem_failure_log, cp, NULL, NULL);
1706 	} else {
1707 		mtbf = 0;
1708 	}
1709 
1710 	/*
1711 	 * We do not pass fatal flags on to the constructor.  This prevents
1712 	 * leaking buffers in the event of a subordinate constructor failing.
1713 	 */
1714 	flags_nfatal = UMEM_DEFAULT;
1715 	if (mtbf || (cp->cache_constructor != NULL &&
1716 	    cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0)) {
1717 		atomic_add_64(&cp->cache_alloc_fail, 1);
1718 		btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE;
1719 		copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify);
1720 		umem_slab_free(cp, buf);
1721 		return (-1);
1722 	}
1723 
1724 	if (cp->cache_flags & UMF_AUDIT) {
1725 		UMEM_AUDIT(umem_transaction_log, cp, bcp);
1726 	}
1727 
1728 	return (0);
1729 }
1730 
1731 static int
1732 umem_cache_free_debug(umem_cache_t *cp, void *buf)
1733 {
1734 	umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1735 	umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl;
1736 	umem_slab_t *sp;
1737 
1738 	if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_ALLOC)) {
1739 		if (btp->bt_bxstat == ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) {
1740 			umem_error(UMERR_DUPFREE, cp, buf);
1741 			return (-1);
1742 		}
1743 		sp = umem_findslab(cp, buf);
1744 		if (sp == NULL || sp->slab_cache != cp)
1745 			umem_error(UMERR_BADADDR, cp, buf);
1746 		else
1747 			umem_error(UMERR_REDZONE, cp, buf);
1748 		return (-1);
1749 	}
1750 
1751 	btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE;
1752 
1753 	if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) {
1754 		umem_error(UMERR_BADBUFCTL, cp, buf);
1755 		return (-1);
1756 	}
1757 
1758 	if (btp->bt_redzone != UMEM_REDZONE_PATTERN) {
1759 		umem_error(UMERR_REDZONE, cp, buf);
1760 		return (-1);
1761 	}
1762 
1763 	if (cp->cache_flags & UMF_AUDIT) {
1764 		if (cp->cache_flags & UMF_CONTENTS)
1765 			bcp->bc_contents = umem_log_enter(umem_content_log,
1766 			    buf, cp->cache_contents);
1767 		UMEM_AUDIT(umem_transaction_log, cp, bcp);
1768 	}
1769 
1770 	if (cp->cache_destructor != NULL)
1771 		cp->cache_destructor(buf, cp->cache_private);
1772 
1773 	if (cp->cache_flags & UMF_DEADBEEF)
1774 		copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify);
1775 
1776 	return (0);
1777 }
1778 
1779 /*
1780  * Free each object in magazine mp to cp's slab layer, and free mp itself.
1781  */
1782 static void
1783 umem_magazine_destroy(umem_cache_t *cp, umem_magazine_t *mp, int nrounds)
1784 {
1785 	int round;
1786 
1787 	ASSERT(cp->cache_next == NULL || IN_UPDATE());
1788 
1789 	for (round = 0; round < nrounds; round++) {
1790 		void *buf = mp->mag_round[round];
1791 
1792 		if ((cp->cache_flags & UMF_DEADBEEF) &&
1793 		    verify_pattern(UMEM_FREE_PATTERN, buf,
1794 		    cp->cache_verify) != NULL) {
1795 			umem_error(UMERR_MODIFIED, cp, buf);
1796 			continue;
1797 		}
1798 
1799 		if (!(cp->cache_flags & UMF_BUFTAG) &&
1800 		    cp->cache_destructor != NULL)
1801 			cp->cache_destructor(buf, cp->cache_private);
1802 
1803 		umem_slab_free(cp, buf);
1804 	}
1805 	ASSERT(UMEM_MAGAZINE_VALID(cp, mp));
1806 	_umem_cache_free(cp->cache_magtype->mt_cache, mp);
1807 }
1808 
1809 /*
1810  * Allocate a magazine from the depot.
1811  */
1812 static umem_magazine_t *
1813 umem_depot_alloc(umem_cache_t *cp, umem_maglist_t *mlp)
1814 {
1815 	umem_magazine_t *mp;
1816 
1817 	/*
1818 	 * If we can't get the depot lock without contention,
1819 	 * update our contention count.  We use the depot
1820 	 * contention rate to determine whether we need to
1821 	 * increase the magazine size for better scalability.
1822 	 */
1823 	if (mutex_trylock(&cp->cache_depot_lock) != 0) {
1824 		(void) mutex_lock(&cp->cache_depot_lock);
1825 		cp->cache_depot_contention++;
1826 	}
1827 
1828 	if ((mp = mlp->ml_list) != NULL) {
1829 		ASSERT(UMEM_MAGAZINE_VALID(cp, mp));
1830 		mlp->ml_list = mp->mag_next;
1831 		if (--mlp->ml_total < mlp->ml_min)
1832 			mlp->ml_min = mlp->ml_total;
1833 		mlp->ml_alloc++;
1834 	}
1835 
1836 	(void) mutex_unlock(&cp->cache_depot_lock);
1837 
1838 	return (mp);
1839 }
1840 
1841 /*
1842  * Free a magazine to the depot.
1843  */
1844 static void
1845 umem_depot_free(umem_cache_t *cp, umem_maglist_t *mlp, umem_magazine_t *mp)
1846 {
1847 	(void) mutex_lock(&cp->cache_depot_lock);
1848 	ASSERT(UMEM_MAGAZINE_VALID(cp, mp));
1849 	mp->mag_next = mlp->ml_list;
1850 	mlp->ml_list = mp;
1851 	mlp->ml_total++;
1852 	(void) mutex_unlock(&cp->cache_depot_lock);
1853 }
1854 
1855 /*
1856  * Update the working set statistics for cp's depot.
1857  */
1858 static void
1859 umem_depot_ws_update(umem_cache_t *cp)
1860 {
1861 	(void) mutex_lock(&cp->cache_depot_lock);
1862 	cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
1863 	cp->cache_full.ml_min = cp->cache_full.ml_total;
1864 	cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
1865 	cp->cache_empty.ml_min = cp->cache_empty.ml_total;
1866 	(void) mutex_unlock(&cp->cache_depot_lock);
1867 }
1868 
1869 /*
1870  * Reap all magazines that have fallen out of the depot's working set.
1871  */
1872 static void
1873 umem_depot_ws_reap(umem_cache_t *cp)
1874 {
1875 	long reap;
1876 	umem_magazine_t *mp;
1877 
1878 	ASSERT(cp->cache_next == NULL || IN_REAP());
1879 
1880 	reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
1881 	while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_full)) != NULL)
1882 		umem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
1883 
1884 	reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
1885 	while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_empty)) != NULL)
1886 		umem_magazine_destroy(cp, mp, 0);
1887 }
1888 
1889 static void
1890 umem_cpu_reload(umem_cpu_cache_t *ccp, umem_magazine_t *mp, int rounds)
1891 {
1892 	ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
1893 	    (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
1894 	ASSERT(ccp->cc_magsize > 0);
1895 
1896 	ccp->cc_ploaded = ccp->cc_loaded;
1897 	ccp->cc_prounds = ccp->cc_rounds;
1898 	ccp->cc_loaded = mp;
1899 	ccp->cc_rounds = rounds;
1900 }
1901 
1902 /*
1903  * Allocate a constructed object from cache cp.
1904  */
1905 #pragma weak umem_cache_alloc = _umem_cache_alloc
1906 void *
1907 _umem_cache_alloc(umem_cache_t *cp, int umflag)
1908 {
1909 	umem_cpu_cache_t *ccp;
1910 	umem_magazine_t *fmp;
1911 	void *buf;
1912 	int flags_nfatal;
1913 
1914 retry:
1915 	ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask));
1916 	(void) mutex_lock(&ccp->cc_lock);
1917 	for (;;) {
1918 		/*
1919 		 * If there's an object available in the current CPU's
1920 		 * loaded magazine, just take it and return.
1921 		 */
1922 		if (ccp->cc_rounds > 0) {
1923 			buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
1924 			ccp->cc_alloc++;
1925 			(void) mutex_unlock(&ccp->cc_lock);
1926 			if ((ccp->cc_flags & UMF_BUFTAG) &&
1927 			    umem_cache_alloc_debug(cp, buf, umflag) == -1) {
1928 				if (umem_alloc_retry(cp, umflag)) {
1929 					goto retry;
1930 				}
1931 
1932 				return (NULL);
1933 			}
1934 			return (buf);
1935 		}
1936 
1937 		/*
1938 		 * The loaded magazine is empty.  If the previously loaded
1939 		 * magazine was full, exchange them and try again.
1940 		 */
1941 		if (ccp->cc_prounds > 0) {
1942 			umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
1943 			continue;
1944 		}
1945 
1946 		/*
1947 		 * If the magazine layer is disabled, break out now.
1948 		 */
1949 		if (ccp->cc_magsize == 0)
1950 			break;
1951 
1952 		/*
1953 		 * Try to get a full magazine from the depot.
1954 		 */
1955 		fmp = umem_depot_alloc(cp, &cp->cache_full);
1956 		if (fmp != NULL) {
1957 			if (ccp->cc_ploaded != NULL)
1958 				umem_depot_free(cp, &cp->cache_empty,
1959 				    ccp->cc_ploaded);
1960 			umem_cpu_reload(ccp, fmp, ccp->cc_magsize);
1961 			continue;
1962 		}
1963 
1964 		/*
1965 		 * There are no full magazines in the depot,
1966 		 * so fall through to the slab layer.
1967 		 */
1968 		break;
1969 	}
1970 	(void) mutex_unlock(&ccp->cc_lock);
1971 
1972 	/*
1973 	 * We couldn't allocate a constructed object from the magazine layer,
1974 	 * so get a raw buffer from the slab layer and apply its constructor.
1975 	 */
1976 	buf = umem_slab_alloc(cp, umflag);
1977 
1978 	if (buf == NULL) {
1979 		if (cp == &umem_null_cache)
1980 			return (NULL);
1981 		if (umem_alloc_retry(cp, umflag)) {
1982 			goto retry;
1983 		}
1984 
1985 		return (NULL);
1986 	}
1987 
1988 	if (cp->cache_flags & UMF_BUFTAG) {
1989 		/*
1990 		 * Let umem_cache_alloc_debug() apply the constructor for us.
1991 		 */
1992 		if (umem_cache_alloc_debug(cp, buf, umflag) == -1) {
1993 			if (umem_alloc_retry(cp, umflag)) {
1994 				goto retry;
1995 			}
1996 			return (NULL);
1997 		}
1998 		return (buf);
1999 	}
2000 
2001 	/*
2002 	 * We do not pass fatal flags on to the constructor.  This prevents
2003 	 * leaking buffers in the event of a subordinate constructor failing.
2004 	 */
2005 	flags_nfatal = UMEM_DEFAULT;
2006 	if (cp->cache_constructor != NULL &&
2007 	    cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0) {
2008 		atomic_add_64(&cp->cache_alloc_fail, 1);
2009 		umem_slab_free(cp, buf);
2010 
2011 		if (umem_alloc_retry(cp, umflag)) {
2012 			goto retry;
2013 		}
2014 		return (NULL);
2015 	}
2016 
2017 	return (buf);
2018 }
2019 
2020 /*
2021  * Free a constructed object to cache cp.
2022  */
2023 #pragma weak umem_cache_free = _umem_cache_free
2024 void
2025 _umem_cache_free(umem_cache_t *cp, void *buf)
2026 {
2027 	umem_cpu_cache_t *ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask));
2028 	umem_magazine_t *emp;
2029 	umem_magtype_t *mtp;
2030 
2031 	if (ccp->cc_flags & UMF_BUFTAG)
2032 		if (umem_cache_free_debug(cp, buf) == -1)
2033 			return;
2034 
2035 	(void) mutex_lock(&ccp->cc_lock);
2036 	for (;;) {
2037 		/*
2038 		 * If there's a slot available in the current CPU's
2039 		 * loaded magazine, just put the object there and return.
2040 		 */
2041 		if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2042 			ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2043 			ccp->cc_free++;
2044 			(void) mutex_unlock(&ccp->cc_lock);
2045 			return;
2046 		}
2047 
2048 		/*
2049 		 * The loaded magazine is full.  If the previously loaded
2050 		 * magazine was empty, exchange them and try again.
2051 		 */
2052 		if (ccp->cc_prounds == 0) {
2053 			umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2054 			continue;
2055 		}
2056 
2057 		/*
2058 		 * If the magazine layer is disabled, break out now.
2059 		 */
2060 		if (ccp->cc_magsize == 0)
2061 			break;
2062 
2063 		/*
2064 		 * Try to get an empty magazine from the depot.
2065 		 */
2066 		emp = umem_depot_alloc(cp, &cp->cache_empty);
2067 		if (emp != NULL) {
2068 			if (ccp->cc_ploaded != NULL)
2069 				umem_depot_free(cp, &cp->cache_full,
2070 				    ccp->cc_ploaded);
2071 			umem_cpu_reload(ccp, emp, 0);
2072 			continue;
2073 		}
2074 
2075 		/*
2076 		 * There are no empty magazines in the depot,
2077 		 * so try to allocate a new one.  We must drop all locks
2078 		 * across umem_cache_alloc() because lower layers may
2079 		 * attempt to allocate from this cache.
2080 		 */
2081 		mtp = cp->cache_magtype;
2082 		(void) mutex_unlock(&ccp->cc_lock);
2083 		emp = _umem_cache_alloc(mtp->mt_cache, UMEM_DEFAULT);
2084 		(void) mutex_lock(&ccp->cc_lock);
2085 
2086 		if (emp != NULL) {
2087 			/*
2088 			 * We successfully allocated an empty magazine.
2089 			 * However, we had to drop ccp->cc_lock to do it,
2090 			 * so the cache's magazine size may have changed.
2091 			 * If so, free the magazine and try again.
2092 			 */
2093 			if (ccp->cc_magsize != mtp->mt_magsize) {
2094 				(void) mutex_unlock(&ccp->cc_lock);
2095 				_umem_cache_free(mtp->mt_cache, emp);
2096 				(void) mutex_lock(&ccp->cc_lock);
2097 				continue;
2098 			}
2099 
2100 			/*
2101 			 * We got a magazine of the right size.  Add it to
2102 			 * the depot and try the whole dance again.
2103 			 */
2104 			umem_depot_free(cp, &cp->cache_empty, emp);
2105 			continue;
2106 		}
2107 
2108 		/*
2109 		 * We couldn't allocate an empty magazine,
2110 		 * so fall through to the slab layer.
2111 		 */
2112 		break;
2113 	}
2114 	(void) mutex_unlock(&ccp->cc_lock);
2115 
2116 	/*
2117 	 * We couldn't free our constructed object to the magazine layer,
2118 	 * so apply its destructor and free it to the slab layer.
2119 	 * Note that if UMF_BUFTAG is in effect, umem_cache_free_debug()
2120 	 * will have already applied the destructor.
2121 	 */
2122 	if (!(cp->cache_flags & UMF_BUFTAG) && cp->cache_destructor != NULL)
2123 		cp->cache_destructor(buf, cp->cache_private);
2124 
2125 	umem_slab_free(cp, buf);
2126 }
2127 
2128 #pragma weak umem_zalloc = _umem_zalloc
2129 void *
2130 _umem_zalloc(size_t size, int umflag)
2131 {
2132 	size_t index = (size - 1) >> UMEM_ALIGN_SHIFT;
2133 	void *buf;
2134 
2135 retry:
2136 	if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) {
2137 		umem_cache_t *cp = umem_alloc_table[index];
2138 		buf = _umem_cache_alloc(cp, umflag);
2139 		if (buf != NULL) {
2140 			if (cp->cache_flags & UMF_BUFTAG) {
2141 				umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
2142 				((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE;
2143 				((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size);
2144 			}
2145 			bzero(buf, size);
2146 		} else if (umem_alloc_retry(cp, umflag))
2147 			goto retry;
2148 	} else {
2149 		buf = _umem_alloc(size, umflag);	/* handles failure */
2150 		if (buf != NULL)
2151 			bzero(buf, size);
2152 	}
2153 	return (buf);
2154 }
2155 
2156 #pragma weak umem_alloc = _umem_alloc
2157 void *
2158 _umem_alloc(size_t size, int umflag)
2159 {
2160 	size_t index = (size - 1) >> UMEM_ALIGN_SHIFT;
2161 	void *buf;
2162 umem_alloc_retry:
2163 	if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) {
2164 		umem_cache_t *cp = umem_alloc_table[index];
2165 		buf = _umem_cache_alloc(cp, umflag);
2166 		if ((cp->cache_flags & UMF_BUFTAG) && buf != NULL) {
2167 			umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
2168 			((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE;
2169 			((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size);
2170 		}
2171 		if (buf == NULL && umem_alloc_retry(cp, umflag))
2172 			goto umem_alloc_retry;
2173 		return (buf);
2174 	}
2175 	if (size == 0)
2176 		return (NULL);
2177 	if (umem_oversize_arena == NULL) {
2178 		if (umem_init())
2179 			ASSERT(umem_oversize_arena != NULL);
2180 		else
2181 			return (NULL);
2182 	}
2183 	buf = vmem_alloc(umem_oversize_arena, size, UMEM_VMFLAGS(umflag));
2184 	if (buf == NULL) {
2185 		umem_log_event(umem_failure_log, NULL, NULL, (void *)size);
2186 		if (umem_alloc_retry(NULL, umflag))
2187 			goto umem_alloc_retry;
2188 	}
2189 	return (buf);
2190 }
2191 
2192 #pragma weak umem_alloc_align = _umem_alloc_align
2193 void *
2194 _umem_alloc_align(size_t size, size_t align, int umflag)
2195 {
2196 	void *buf;
2197 
2198 	if (size == 0)
2199 		return (NULL);
2200 	if ((align & (align - 1)) != 0)
2201 		return (NULL);
2202 	if (align < UMEM_ALIGN)
2203 		align = UMEM_ALIGN;
2204 
2205 umem_alloc_align_retry:
2206 	if (umem_memalign_arena == NULL) {
2207 		if (umem_init())
2208 			ASSERT(umem_oversize_arena != NULL);
2209 		else
2210 			return (NULL);
2211 	}
2212 	buf = vmem_xalloc(umem_memalign_arena, size, align, 0, 0, NULL, NULL,
2213 	    UMEM_VMFLAGS(umflag));
2214 	if (buf == NULL) {
2215 		umem_log_event(umem_failure_log, NULL, NULL, (void *)size);
2216 		if (umem_alloc_retry(NULL, umflag))
2217 			goto umem_alloc_align_retry;
2218 	}
2219 	return (buf);
2220 }
2221 
2222 #pragma weak umem_free = _umem_free
2223 void
2224 _umem_free(void *buf, size_t size)
2225 {
2226 	size_t index = (size - 1) >> UMEM_ALIGN_SHIFT;
2227 
2228 	if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) {
2229 		umem_cache_t *cp = umem_alloc_table[index];
2230 		if (cp->cache_flags & UMF_BUFTAG) {
2231 			umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
2232 			uint32_t *ip = (uint32_t *)btp;
2233 			if (ip[1] != UMEM_SIZE_ENCODE(size)) {
2234 				if (*(uint64_t *)buf == UMEM_FREE_PATTERN) {
2235 					umem_error(UMERR_DUPFREE, cp, buf);
2236 					return;
2237 				}
2238 				if (UMEM_SIZE_VALID(ip[1])) {
2239 					ip[0] = UMEM_SIZE_ENCODE(size);
2240 					umem_error(UMERR_BADSIZE, cp, buf);
2241 				} else {
2242 					umem_error(UMERR_REDZONE, cp, buf);
2243 				}
2244 				return;
2245 			}
2246 			if (((uint8_t *)buf)[size] != UMEM_REDZONE_BYTE) {
2247 				umem_error(UMERR_REDZONE, cp, buf);
2248 				return;
2249 			}
2250 			btp->bt_redzone = UMEM_REDZONE_PATTERN;
2251 		}
2252 		_umem_cache_free(cp, buf);
2253 	} else {
2254 		if (buf == NULL && size == 0)
2255 			return;
2256 		vmem_free(umem_oversize_arena, buf, size);
2257 	}
2258 }
2259 
2260 #pragma weak umem_free_align = _umem_free_align
2261 void
2262 _umem_free_align(void *buf, size_t size)
2263 {
2264 	if (buf == NULL && size == 0)
2265 		return;
2266 	vmem_xfree(umem_memalign_arena, buf, size);
2267 }
2268 
2269 static void *
2270 umem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
2271 {
2272 	size_t realsize = size + vmp->vm_quantum;
2273 
2274 	/*
2275 	 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
2276 	 * vm_quantum will cause integer wraparound.  Check for this, and
2277 	 * blow off the firewall page in this case.  Note that such a
2278 	 * giant allocation (the entire address space) can never be
2279 	 * satisfied, so it will either fail immediately (VM_NOSLEEP)
2280 	 * or sleep forever (VM_SLEEP).  Thus, there is no need for a
2281 	 * corresponding check in umem_firewall_va_free().
2282 	 */
2283 	if (realsize < size)
2284 		realsize = size;
2285 
2286 	return (vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT));
2287 }
2288 
2289 static void
2290 umem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
2291 {
2292 	vmem_free(vmp, addr, size + vmp->vm_quantum);
2293 }
2294 
2295 /*
2296  * Reclaim all unused memory from a cache.
2297  */
2298 static void
2299 umem_cache_reap(umem_cache_t *cp)
2300 {
2301 	/*
2302 	 * Ask the cache's owner to free some memory if possible.
2303 	 * The idea is to handle things like the inode cache, which
2304 	 * typically sits on a bunch of memory that it doesn't truly
2305 	 * *need*.  Reclaim policy is entirely up to the owner; this
2306 	 * callback is just an advisory plea for help.
2307 	 */
2308 	if (cp->cache_reclaim != NULL)
2309 		cp->cache_reclaim(cp->cache_private);
2310 
2311 	umem_depot_ws_reap(cp);
2312 }
2313 
2314 /*
2315  * Purge all magazines from a cache and set its magazine limit to zero.
2316  * All calls are serialized by being done by the update thread, except for
2317  * the final call from umem_cache_destroy().
2318  */
2319 static void
2320 umem_cache_magazine_purge(umem_cache_t *cp)
2321 {
2322 	umem_cpu_cache_t *ccp;
2323 	umem_magazine_t *mp, *pmp;
2324 	int rounds, prounds, cpu_seqid;
2325 
2326 	ASSERT(cp->cache_next == NULL || IN_UPDATE());
2327 
2328 	for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) {
2329 		ccp = &cp->cache_cpu[cpu_seqid];
2330 
2331 		(void) mutex_lock(&ccp->cc_lock);
2332 		mp = ccp->cc_loaded;
2333 		pmp = ccp->cc_ploaded;
2334 		rounds = ccp->cc_rounds;
2335 		prounds = ccp->cc_prounds;
2336 		ccp->cc_loaded = NULL;
2337 		ccp->cc_ploaded = NULL;
2338 		ccp->cc_rounds = -1;
2339 		ccp->cc_prounds = -1;
2340 		ccp->cc_magsize = 0;
2341 		(void) mutex_unlock(&ccp->cc_lock);
2342 
2343 		if (mp)
2344 			umem_magazine_destroy(cp, mp, rounds);
2345 		if (pmp)
2346 			umem_magazine_destroy(cp, pmp, prounds);
2347 	}
2348 
2349 	/*
2350 	 * Updating the working set statistics twice in a row has the
2351 	 * effect of setting the working set size to zero, so everything
2352 	 * is eligible for reaping.
2353 	 */
2354 	umem_depot_ws_update(cp);
2355 	umem_depot_ws_update(cp);
2356 
2357 	umem_depot_ws_reap(cp);
2358 }
2359 
2360 /*
2361  * Enable per-cpu magazines on a cache.
2362  */
2363 static void
2364 umem_cache_magazine_enable(umem_cache_t *cp)
2365 {
2366 	int cpu_seqid;
2367 
2368 	if (cp->cache_flags & UMF_NOMAGAZINE)
2369 		return;
2370 
2371 	for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) {
2372 		umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
2373 		(void) mutex_lock(&ccp->cc_lock);
2374 		ccp->cc_magsize = cp->cache_magtype->mt_magsize;
2375 		(void) mutex_unlock(&ccp->cc_lock);
2376 	}
2377 
2378 }
2379 
2380 /*
2381  * Recompute a cache's magazine size.  The trade-off is that larger magazines
2382  * provide a higher transfer rate with the depot, while smaller magazines
2383  * reduce memory consumption.  Magazine resizing is an expensive operation;
2384  * it should not be done frequently.
2385  *
2386  * Changes to the magazine size are serialized by only having one thread
2387  * doing updates. (the update thread)
2388  *
2389  * Note: at present this only grows the magazine size.  It might be useful
2390  * to allow shrinkage too.
2391  */
2392 static void
2393 umem_cache_magazine_resize(umem_cache_t *cp)
2394 {
2395 	umem_magtype_t *mtp = cp->cache_magtype;
2396 
2397 	ASSERT(IN_UPDATE());
2398 
2399 	if (cp->cache_chunksize < mtp->mt_maxbuf) {
2400 		umem_cache_magazine_purge(cp);
2401 		(void) mutex_lock(&cp->cache_depot_lock);
2402 		cp->cache_magtype = ++mtp;
2403 		cp->cache_depot_contention_prev =
2404 		    cp->cache_depot_contention + INT_MAX;
2405 		(void) mutex_unlock(&cp->cache_depot_lock);
2406 		umem_cache_magazine_enable(cp);
2407 	}
2408 }
2409 
2410 /*
2411  * Rescale a cache's hash table, so that the table size is roughly the
2412  * cache size.  We want the average lookup time to be extremely small.
2413  */
2414 static void
2415 umem_hash_rescale(umem_cache_t *cp)
2416 {
2417 	umem_bufctl_t **old_table, **new_table, *bcp;
2418 	size_t old_size, new_size, h;
2419 
2420 	ASSERT(IN_UPDATE());
2421 
2422 	new_size = MAX(UMEM_HASH_INITIAL,
2423 	    1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
2424 	old_size = cp->cache_hash_mask + 1;
2425 
2426 	if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
2427 		return;
2428 
2429 	new_table = vmem_alloc(umem_hash_arena, new_size * sizeof (void *),
2430 	    VM_NOSLEEP);
2431 	if (new_table == NULL)
2432 		return;
2433 	bzero(new_table, new_size * sizeof (void *));
2434 
2435 	(void) mutex_lock(&cp->cache_lock);
2436 
2437 	old_size = cp->cache_hash_mask + 1;
2438 	old_table = cp->cache_hash_table;
2439 
2440 	cp->cache_hash_mask = new_size - 1;
2441 	cp->cache_hash_table = new_table;
2442 	cp->cache_rescale++;
2443 
2444 	for (h = 0; h < old_size; h++) {
2445 		bcp = old_table[h];
2446 		while (bcp != NULL) {
2447 			void *addr = bcp->bc_addr;
2448 			umem_bufctl_t *next_bcp = bcp->bc_next;
2449 			umem_bufctl_t **hash_bucket = UMEM_HASH(cp, addr);
2450 			bcp->bc_next = *hash_bucket;
2451 			*hash_bucket = bcp;
2452 			bcp = next_bcp;
2453 		}
2454 	}
2455 
2456 	(void) mutex_unlock(&cp->cache_lock);
2457 
2458 	vmem_free(umem_hash_arena, old_table, old_size * sizeof (void *));
2459 }
2460 
2461 /*
2462  * Perform periodic maintenance on a cache: hash rescaling,
2463  * depot working-set update, and magazine resizing.
2464  */
2465 void
2466 umem_cache_update(umem_cache_t *cp)
2467 {
2468 	int update_flags = 0;
2469 
2470 	ASSERT(MUTEX_HELD(&umem_cache_lock));
2471 
2472 	/*
2473 	 * If the cache has become much larger or smaller than its hash table,
2474 	 * fire off a request to rescale the hash table.
2475 	 */
2476 	(void) mutex_lock(&cp->cache_lock);
2477 
2478 	if ((cp->cache_flags & UMF_HASH) &&
2479 	    (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
2480 	    (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
2481 	    cp->cache_hash_mask > UMEM_HASH_INITIAL)))
2482 		update_flags |= UMU_HASH_RESCALE;
2483 
2484 	(void) mutex_unlock(&cp->cache_lock);
2485 
2486 	/*
2487 	 * Update the depot working set statistics.
2488 	 */
2489 	umem_depot_ws_update(cp);
2490 
2491 	/*
2492 	 * If there's a lot of contention in the depot,
2493 	 * increase the magazine size.
2494 	 */
2495 	(void) mutex_lock(&cp->cache_depot_lock);
2496 
2497 	if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
2498 	    (int)(cp->cache_depot_contention -
2499 	    cp->cache_depot_contention_prev) > umem_depot_contention)
2500 		update_flags |= UMU_MAGAZINE_RESIZE;
2501 
2502 	cp->cache_depot_contention_prev = cp->cache_depot_contention;
2503 
2504 	(void) mutex_unlock(&cp->cache_depot_lock);
2505 
2506 	if (update_flags)
2507 		umem_add_update(cp, update_flags);
2508 }
2509 
2510 /*
2511  * Runs all pending updates.
2512  *
2513  * The update lock must be held on entrance, and will be held on exit.
2514  */
2515 void
2516 umem_process_updates(void)
2517 {
2518 	ASSERT(MUTEX_HELD(&umem_update_lock));
2519 
2520 	while (umem_null_cache.cache_unext != &umem_null_cache) {
2521 		int notify = 0;
2522 		umem_cache_t *cp = umem_null_cache.cache_unext;
2523 
2524 		cp->cache_uprev->cache_unext = cp->cache_unext;
2525 		cp->cache_unext->cache_uprev = cp->cache_uprev;
2526 		cp->cache_uprev = cp->cache_unext = NULL;
2527 
2528 		ASSERT(!(cp->cache_uflags & UMU_ACTIVE));
2529 
2530 		while (cp->cache_uflags) {
2531 			int uflags = (cp->cache_uflags |= UMU_ACTIVE);
2532 			(void) mutex_unlock(&umem_update_lock);
2533 
2534 			/*
2535 			 * The order here is important.  Each step can speed up
2536 			 * later steps.
2537 			 */
2538 
2539 			if (uflags & UMU_HASH_RESCALE)
2540 				umem_hash_rescale(cp);
2541 
2542 			if (uflags & UMU_MAGAZINE_RESIZE)
2543 				umem_cache_magazine_resize(cp);
2544 
2545 			if (uflags & UMU_REAP)
2546 				umem_cache_reap(cp);
2547 
2548 			(void) mutex_lock(&umem_update_lock);
2549 
2550 			/*
2551 			 * check if anyone has requested notification
2552 			 */
2553 			if (cp->cache_uflags & UMU_NOTIFY) {
2554 				uflags |= UMU_NOTIFY;
2555 				notify = 1;
2556 			}
2557 			cp->cache_uflags &= ~uflags;
2558 		}
2559 		if (notify)
2560 			(void) cond_broadcast(&umem_update_cv);
2561 	}
2562 }
2563 
2564 #ifndef UMEM_STANDALONE
2565 static void
2566 umem_st_update(void)
2567 {
2568 	ASSERT(MUTEX_HELD(&umem_update_lock));
2569 	ASSERT(umem_update_thr == 0 && umem_st_update_thr == 0);
2570 
2571 	umem_st_update_thr = thr_self();
2572 
2573 	(void) mutex_unlock(&umem_update_lock);
2574 
2575 	vmem_update(NULL);
2576 	umem_cache_applyall(umem_cache_update);
2577 
2578 	(void) mutex_lock(&umem_update_lock);
2579 
2580 	umem_process_updates();	/* does all of the requested work */
2581 
2582 	umem_reap_next = gethrtime() +
2583 	    (hrtime_t)umem_reap_interval * NANOSEC;
2584 
2585 	umem_reaping = UMEM_REAP_DONE;
2586 
2587 	umem_st_update_thr = 0;
2588 }
2589 #endif
2590 
2591 /*
2592  * Reclaim all unused memory from all caches.  Called from vmem when memory
2593  * gets tight.  Must be called with no locks held.
2594  *
2595  * This just requests a reap on all caches, and notifies the update thread.
2596  */
2597 void
2598 umem_reap(void)
2599 {
2600 #ifndef UMEM_STANDALONE
2601 	extern int __nthreads(void);
2602 #endif
2603 
2604 	if (umem_ready != UMEM_READY || umem_reaping != UMEM_REAP_DONE ||
2605 	    gethrtime() < umem_reap_next)
2606 		return;
2607 
2608 	(void) mutex_lock(&umem_update_lock);
2609 
2610 	if (umem_reaping != UMEM_REAP_DONE || gethrtime() < umem_reap_next) {
2611 		(void) mutex_unlock(&umem_update_lock);
2612 		return;
2613 	}
2614 	umem_reaping = UMEM_REAP_ADDING;	/* lock out other reaps */
2615 
2616 	(void) mutex_unlock(&umem_update_lock);
2617 
2618 	umem_updateall(UMU_REAP);
2619 
2620 	(void) mutex_lock(&umem_update_lock);
2621 
2622 	umem_reaping = UMEM_REAP_ACTIVE;
2623 
2624 	/* Standalone is single-threaded */
2625 #ifndef UMEM_STANDALONE
2626 	if (umem_update_thr == 0) {
2627 		/*
2628 		 * The update thread does not exist.  If the process is
2629 		 * multi-threaded, create it.  If not, or the creation fails,
2630 		 * do the update processing inline.
2631 		 */
2632 		ASSERT(umem_st_update_thr == 0);
2633 
2634 		if (__nthreads() <= 1 || umem_create_update_thread() == 0)
2635 			umem_st_update();
2636 	}
2637 
2638 	(void) cond_broadcast(&umem_update_cv);	/* wake up the update thread */
2639 #endif
2640 
2641 	(void) mutex_unlock(&umem_update_lock);
2642 }
2643 
2644 umem_cache_t *
2645 umem_cache_create(
2646 	char *name,		/* descriptive name for this cache */
2647 	size_t bufsize,		/* size of the objects it manages */
2648 	size_t align,		/* required object alignment */
2649 	umem_constructor_t *constructor, /* object constructor */
2650 	umem_destructor_t *destructor, /* object destructor */
2651 	umem_reclaim_t *reclaim, /* memory reclaim callback */
2652 	void *private,		/* pass-thru arg for constr/destr/reclaim */
2653 	vmem_t *vmp,		/* vmem source for slab allocation */
2654 	int cflags)		/* cache creation flags */
2655 {
2656 	int cpu_seqid;
2657 	size_t chunksize;
2658 	umem_cache_t *cp, *cnext, *cprev;
2659 	umem_magtype_t *mtp;
2660 	size_t csize;
2661 	size_t phase;
2662 
2663 	/*
2664 	 * The init thread is allowed to create internal and quantum caches.
2665 	 *
2666 	 * Other threads must wait until until initialization is complete.
2667 	 */
2668 	if (umem_init_thr == thr_self())
2669 		ASSERT((cflags & (UMC_INTERNAL | UMC_QCACHE)) != 0);
2670 	else {
2671 		ASSERT(!(cflags & UMC_INTERNAL));
2672 		if (umem_ready != UMEM_READY && umem_init() == 0) {
2673 			errno = EAGAIN;
2674 			return (NULL);
2675 		}
2676 	}
2677 
2678 	csize = UMEM_CACHE_SIZE(umem_max_ncpus);
2679 	phase = P2NPHASE(csize, UMEM_CPU_CACHE_SIZE);
2680 
2681 	if (vmp == NULL)
2682 		vmp = umem_default_arena;
2683 
2684 	ASSERT(P2PHASE(phase, UMEM_ALIGN) == 0);
2685 
2686 	/*
2687 	 * Check that the arguments are reasonable
2688 	 */
2689 	if ((align & (align - 1)) != 0 || align > vmp->vm_quantum ||
2690 	    ((cflags & UMC_NOHASH) && (cflags & UMC_NOTOUCH)) ||
2691 	    name == NULL || bufsize == 0) {
2692 		errno = EINVAL;
2693 		return (NULL);
2694 	}
2695 
2696 	/*
2697 	 * If align == 0, we set it to the minimum required alignment.
2698 	 *
2699 	 * If align < UMEM_ALIGN, we round it up to UMEM_ALIGN, unless
2700 	 * UMC_NOTOUCH was passed.
2701 	 */
2702 	if (align == 0) {
2703 		if (P2ROUNDUP(bufsize, UMEM_ALIGN) >= UMEM_SECOND_ALIGN)
2704 			align = UMEM_SECOND_ALIGN;
2705 		else
2706 			align = UMEM_ALIGN;
2707 	} else if (align < UMEM_ALIGN && (cflags & UMC_NOTOUCH) == 0)
2708 		align = UMEM_ALIGN;
2709 
2710 
2711 	/*
2712 	 * Get a umem_cache structure.  We arrange that cp->cache_cpu[]
2713 	 * is aligned on a UMEM_CPU_CACHE_SIZE boundary to prevent
2714 	 * false sharing of per-CPU data.
2715 	 */
2716 	cp = vmem_xalloc(umem_cache_arena, csize, UMEM_CPU_CACHE_SIZE, phase,
2717 	    0, NULL, NULL, VM_NOSLEEP);
2718 
2719 	if (cp == NULL) {
2720 		errno = EAGAIN;
2721 		return (NULL);
2722 	}
2723 
2724 	bzero(cp, csize);
2725 
2726 	(void) mutex_lock(&umem_flags_lock);
2727 	if (umem_flags & UMF_RANDOMIZE)
2728 		umem_flags = (((umem_flags | ~UMF_RANDOM) + 1) & UMF_RANDOM) |
2729 		    UMF_RANDOMIZE;
2730 	cp->cache_flags = umem_flags | (cflags & UMF_DEBUG);
2731 	(void) mutex_unlock(&umem_flags_lock);
2732 
2733 	/*
2734 	 * Make sure all the various flags are reasonable.
2735 	 */
2736 	if (cp->cache_flags & UMF_LITE) {
2737 		if (bufsize >= umem_lite_minsize &&
2738 		    align <= umem_lite_maxalign &&
2739 		    P2PHASE(bufsize, umem_lite_maxalign) != 0) {
2740 			cp->cache_flags |= UMF_BUFTAG;
2741 			cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL);
2742 		} else {
2743 			cp->cache_flags &= ~UMF_DEBUG;
2744 		}
2745 	}
2746 
2747 	if ((cflags & UMC_QCACHE) && (cp->cache_flags & UMF_AUDIT))
2748 		cp->cache_flags |= UMF_NOMAGAZINE;
2749 
2750 	if (cflags & UMC_NODEBUG)
2751 		cp->cache_flags &= ~UMF_DEBUG;
2752 
2753 	if (cflags & UMC_NOTOUCH)
2754 		cp->cache_flags &= ~UMF_TOUCH;
2755 
2756 	if (cflags & UMC_NOHASH)
2757 		cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL);
2758 
2759 	if (cflags & UMC_NOMAGAZINE)
2760 		cp->cache_flags |= UMF_NOMAGAZINE;
2761 
2762 	if ((cp->cache_flags & UMF_AUDIT) && !(cflags & UMC_NOTOUCH))
2763 		cp->cache_flags |= UMF_REDZONE;
2764 
2765 	if ((cp->cache_flags & UMF_BUFTAG) && bufsize >= umem_minfirewall &&
2766 	    !(cp->cache_flags & UMF_LITE) && !(cflags & UMC_NOHASH))
2767 		cp->cache_flags |= UMF_FIREWALL;
2768 
2769 	if (vmp != umem_default_arena || umem_firewall_arena == NULL)
2770 		cp->cache_flags &= ~UMF_FIREWALL;
2771 
2772 	if (cp->cache_flags & UMF_FIREWALL) {
2773 		cp->cache_flags &= ~UMF_BUFTAG;
2774 		cp->cache_flags |= UMF_NOMAGAZINE;
2775 		ASSERT(vmp == umem_default_arena);
2776 		vmp = umem_firewall_arena;
2777 	}
2778 
2779 	/*
2780 	 * Set cache properties.
2781 	 */
2782 	(void) strncpy(cp->cache_name, name, sizeof (cp->cache_name) - 1);
2783 	cp->cache_bufsize = bufsize;
2784 	cp->cache_align = align;
2785 	cp->cache_constructor = constructor;
2786 	cp->cache_destructor = destructor;
2787 	cp->cache_reclaim = reclaim;
2788 	cp->cache_private = private;
2789 	cp->cache_arena = vmp;
2790 	cp->cache_cflags = cflags;
2791 	cp->cache_cpu_mask = umem_cpu_mask;
2792 
2793 	/*
2794 	 * Determine the chunk size.
2795 	 */
2796 	chunksize = bufsize;
2797 
2798 	if (align >= UMEM_ALIGN) {
2799 		chunksize = P2ROUNDUP(chunksize, UMEM_ALIGN);
2800 		cp->cache_bufctl = chunksize - UMEM_ALIGN;
2801 	}
2802 
2803 	if (cp->cache_flags & UMF_BUFTAG) {
2804 		cp->cache_bufctl = chunksize;
2805 		cp->cache_buftag = chunksize;
2806 		chunksize += sizeof (umem_buftag_t);
2807 	}
2808 
2809 	if (cp->cache_flags & UMF_DEADBEEF) {
2810 		cp->cache_verify = MIN(cp->cache_buftag, umem_maxverify);
2811 		if (cp->cache_flags & UMF_LITE)
2812 			cp->cache_verify = MIN(cp->cache_verify, UMEM_ALIGN);
2813 	}
2814 
2815 	cp->cache_contents = MIN(cp->cache_bufctl, umem_content_maxsave);
2816 
2817 	cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
2818 
2819 	if (chunksize < bufsize) {
2820 		errno = ENOMEM;
2821 		goto fail;
2822 	}
2823 
2824 	/*
2825 	 * Now that we know the chunk size, determine the optimal slab size.
2826 	 */
2827 	if (vmp == umem_firewall_arena) {
2828 		cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
2829 		cp->cache_mincolor = cp->cache_slabsize - chunksize;
2830 		cp->cache_maxcolor = cp->cache_mincolor;
2831 		cp->cache_flags |= UMF_HASH;
2832 		ASSERT(!(cp->cache_flags & UMF_BUFTAG));
2833 	} else if ((cflags & UMC_NOHASH) || (!(cflags & UMC_NOTOUCH) &&
2834 	    !(cp->cache_flags & UMF_AUDIT) &&
2835 	    chunksize < vmp->vm_quantum / UMEM_VOID_FRACTION)) {
2836 		cp->cache_slabsize = vmp->vm_quantum;
2837 		cp->cache_mincolor = 0;
2838 		cp->cache_maxcolor =
2839 		    (cp->cache_slabsize - sizeof (umem_slab_t)) % chunksize;
2840 
2841 		if (chunksize + sizeof (umem_slab_t) > cp->cache_slabsize) {
2842 			errno = EINVAL;
2843 			goto fail;
2844 		}
2845 		ASSERT(!(cp->cache_flags & UMF_AUDIT));
2846 	} else {
2847 		size_t chunks, waste, slabsize;
2848 		size_t minwaste = LONG_MAX;
2849 		size_t bestfit = SIZE_MAX;
2850 
2851 		for (chunks = 1; chunks <= UMEM_VOID_FRACTION; chunks++) {
2852 			slabsize = P2ROUNDUP(chunksize * chunks,
2853 			    vmp->vm_quantum);
2854 			/*
2855 			 * check for overflow
2856 			 */
2857 			if ((slabsize / chunks) < chunksize) {
2858 				errno = ENOMEM;
2859 				goto fail;
2860 			}
2861 			chunks = slabsize / chunksize;
2862 			waste = (slabsize % chunksize) / chunks;
2863 			if (waste < minwaste) {
2864 				minwaste = waste;
2865 				bestfit = slabsize;
2866 			}
2867 		}
2868 		if (cflags & UMC_QCACHE)
2869 			bestfit = MAX(1 << highbit(3 * vmp->vm_qcache_max), 64);
2870 		if (bestfit == SIZE_MAX) {
2871 			errno = ENOMEM;
2872 			goto fail;
2873 		}
2874 		cp->cache_slabsize = bestfit;
2875 		cp->cache_mincolor = 0;
2876 		cp->cache_maxcolor = bestfit % chunksize;
2877 		cp->cache_flags |= UMF_HASH;
2878 	}
2879 
2880 	if (cp->cache_flags & UMF_HASH) {
2881 		ASSERT(!(cflags & UMC_NOHASH));
2882 		cp->cache_bufctl_cache = (cp->cache_flags & UMF_AUDIT) ?
2883 		    umem_bufctl_audit_cache : umem_bufctl_cache;
2884 	}
2885 
2886 	if (cp->cache_maxcolor >= vmp->vm_quantum)
2887 		cp->cache_maxcolor = vmp->vm_quantum - 1;
2888 
2889 	cp->cache_color = cp->cache_mincolor;
2890 
2891 	/*
2892 	 * Initialize the rest of the slab layer.
2893 	 */
2894 	(void) mutex_init(&cp->cache_lock, USYNC_THREAD, NULL);
2895 
2896 	cp->cache_freelist = &cp->cache_nullslab;
2897 	cp->cache_nullslab.slab_cache = cp;
2898 	cp->cache_nullslab.slab_refcnt = -1;
2899 	cp->cache_nullslab.slab_next = &cp->cache_nullslab;
2900 	cp->cache_nullslab.slab_prev = &cp->cache_nullslab;
2901 
2902 	if (cp->cache_flags & UMF_HASH) {
2903 		cp->cache_hash_table = vmem_alloc(umem_hash_arena,
2904 		    UMEM_HASH_INITIAL * sizeof (void *), VM_NOSLEEP);
2905 		if (cp->cache_hash_table == NULL) {
2906 			errno = EAGAIN;
2907 			goto fail_lock;
2908 		}
2909 		bzero(cp->cache_hash_table,
2910 		    UMEM_HASH_INITIAL * sizeof (void *));
2911 		cp->cache_hash_mask = UMEM_HASH_INITIAL - 1;
2912 		cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
2913 	}
2914 
2915 	/*
2916 	 * Initialize the depot.
2917 	 */
2918 	(void) mutex_init(&cp->cache_depot_lock, USYNC_THREAD, NULL);
2919 
2920 	for (mtp = umem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
2921 		continue;
2922 
2923 	cp->cache_magtype = mtp;
2924 
2925 	/*
2926 	 * Initialize the CPU layer.
2927 	 */
2928 	for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) {
2929 		umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
2930 		(void) mutex_init(&ccp->cc_lock, USYNC_THREAD, NULL);
2931 		ccp->cc_flags = cp->cache_flags;
2932 		ccp->cc_rounds = -1;
2933 		ccp->cc_prounds = -1;
2934 	}
2935 
2936 	/*
2937 	 * Add the cache to the global list.  This makes it visible
2938 	 * to umem_update(), so the cache must be ready for business.
2939 	 */
2940 	(void) mutex_lock(&umem_cache_lock);
2941 	cp->cache_next = cnext = &umem_null_cache;
2942 	cp->cache_prev = cprev = umem_null_cache.cache_prev;
2943 	cnext->cache_prev = cp;
2944 	cprev->cache_next = cp;
2945 	(void) mutex_unlock(&umem_cache_lock);
2946 
2947 	if (umem_ready == UMEM_READY)
2948 		umem_cache_magazine_enable(cp);
2949 
2950 	return (cp);
2951 
2952 fail_lock:
2953 	(void) mutex_destroy(&cp->cache_lock);
2954 fail:
2955 	vmem_xfree(umem_cache_arena, cp, csize);
2956 	return (NULL);
2957 }
2958 
2959 void
2960 umem_cache_destroy(umem_cache_t *cp)
2961 {
2962 	int cpu_seqid;
2963 
2964 	/*
2965 	 * Remove the cache from the global cache list so that no new updates
2966 	 * will be scheduled on its behalf, wait for any pending tasks to
2967 	 * complete, purge the cache, and then destroy it.
2968 	 */
2969 	(void) mutex_lock(&umem_cache_lock);
2970 	cp->cache_prev->cache_next = cp->cache_next;
2971 	cp->cache_next->cache_prev = cp->cache_prev;
2972 	cp->cache_prev = cp->cache_next = NULL;
2973 	(void) mutex_unlock(&umem_cache_lock);
2974 
2975 	umem_remove_updates(cp);
2976 
2977 	umem_cache_magazine_purge(cp);
2978 
2979 	(void) mutex_lock(&cp->cache_lock);
2980 	if (cp->cache_buftotal != 0)
2981 		log_message("umem_cache_destroy: '%s' (%p) not empty\n",
2982 		    cp->cache_name, (void *)cp);
2983 	cp->cache_reclaim = NULL;
2984 	/*
2985 	 * The cache is now dead.  There should be no further activity.
2986 	 * We enforce this by setting land mines in the constructor and
2987 	 * destructor routines that induce a segmentation fault if invoked.
2988 	 */
2989 	cp->cache_constructor = (umem_constructor_t *)1;
2990 	cp->cache_destructor = (umem_destructor_t *)2;
2991 	(void) mutex_unlock(&cp->cache_lock);
2992 
2993 	if (cp->cache_hash_table != NULL)
2994 		vmem_free(umem_hash_arena, cp->cache_hash_table,
2995 		    (cp->cache_hash_mask + 1) * sizeof (void *));
2996 
2997 	for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++)
2998 		(void) mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
2999 
3000 	(void) mutex_destroy(&cp->cache_depot_lock);
3001 	(void) mutex_destroy(&cp->cache_lock);
3002 
3003 	vmem_free(umem_cache_arena, cp, UMEM_CACHE_SIZE(umem_max_ncpus));
3004 }
3005 
3006 void
3007 umem_alloc_sizes_clear(void)
3008 {
3009 	int i;
3010 
3011 	umem_alloc_sizes[0] = UMEM_MAXBUF;
3012 	for (i = 1; i < NUM_ALLOC_SIZES; i++)
3013 		umem_alloc_sizes[i] = 0;
3014 }
3015 
3016 void
3017 umem_alloc_sizes_add(size_t size_arg)
3018 {
3019 	int i, j;
3020 	size_t size = size_arg;
3021 
3022 	if (size == 0) {
3023 		log_message("size_add: cannot add zero-sized cache\n",
3024 		    size, UMEM_MAXBUF);
3025 		return;
3026 	}
3027 
3028 	if (size > UMEM_MAXBUF) {
3029 		log_message("size_add: %ld > %d, cannot add\n", size,
3030 		    UMEM_MAXBUF);
3031 		return;
3032 	}
3033 
3034 	if (umem_alloc_sizes[NUM_ALLOC_SIZES - 1] != 0) {
3035 		log_message("size_add: no space in alloc_table for %d\n",
3036 		    size);
3037 		return;
3038 	}
3039 
3040 	if (P2PHASE(size, UMEM_ALIGN) != 0) {
3041 		size = P2ROUNDUP(size, UMEM_ALIGN);
3042 		log_message("size_add: rounding %d up to %d\n", size_arg,
3043 		    size);
3044 	}
3045 
3046 	for (i = 0; i < NUM_ALLOC_SIZES; i++) {
3047 		int cur = umem_alloc_sizes[i];
3048 		if (cur == size) {
3049 			log_message("size_add: %ld already in table\n",
3050 			    size);
3051 			return;
3052 		}
3053 		if (cur > size)
3054 			break;
3055 	}
3056 
3057 	for (j = NUM_ALLOC_SIZES - 1; j > i; j--)
3058 		umem_alloc_sizes[j] = umem_alloc_sizes[j-1];
3059 	umem_alloc_sizes[i] = size;
3060 }
3061 
3062 void
3063 umem_alloc_sizes_remove(size_t size)
3064 {
3065 	int i;
3066 
3067 	if (size == UMEM_MAXBUF) {
3068 		log_message("size_remove: cannot remove %ld\n", size);
3069 		return;
3070 	}
3071 
3072 	for (i = 0; i < NUM_ALLOC_SIZES; i++) {
3073 		int cur = umem_alloc_sizes[i];
3074 		if (cur == size)
3075 			break;
3076 		else if (cur > size || cur == 0) {
3077 			log_message("size_remove: %ld not found in table\n",
3078 			    size);
3079 			return;
3080 		}
3081 	}
3082 
3083 	for (; i + 1 < NUM_ALLOC_SIZES; i++)
3084 		umem_alloc_sizes[i] = umem_alloc_sizes[i+1];
3085 	umem_alloc_sizes[i] = 0;
3086 }
3087 
3088 /*
3089  * We've been called back from libc to indicate that thread is terminating and
3090  * that it needs to release the per-thread memory that it has. We get to know
3091  * which entry in the thread's tmem array the allocation came from. Currently
3092  * this refers to first n umem_caches which makes this a pretty simple indexing
3093  * job.
3094  */
3095 static void
3096 umem_cache_tmem_cleanup(void *buf, int entry)
3097 {
3098 	size_t size;
3099 	umem_cache_t *cp;
3100 
3101 	size = umem_alloc_sizes[entry];
3102 	cp = umem_alloc_table[(size - 1) >> UMEM_ALIGN_SHIFT];
3103 	_umem_cache_free(cp, buf);
3104 }
3105 
3106 static int
3107 umem_cache_init(void)
3108 {
3109 	int i;
3110 	size_t size, max_size;
3111 	umem_cache_t *cp;
3112 	umem_magtype_t *mtp;
3113 	char name[UMEM_CACHE_NAMELEN + 1];
3114 	umem_cache_t *umem_alloc_caches[NUM_ALLOC_SIZES];
3115 
3116 	for (i = 0; i < sizeof (umem_magtype) / sizeof (*mtp); i++) {
3117 		mtp = &umem_magtype[i];
3118 		(void) snprintf(name, sizeof (name), "umem_magazine_%d",
3119 		    mtp->mt_magsize);
3120 		mtp->mt_cache = umem_cache_create(name,
3121 		    (mtp->mt_magsize + 1) * sizeof (void *),
3122 		    mtp->mt_align, NULL, NULL, NULL, NULL,
3123 		    umem_internal_arena, UMC_NOHASH | UMC_INTERNAL);
3124 		if (mtp->mt_cache == NULL)
3125 			return (0);
3126 	}
3127 
3128 	umem_slab_cache = umem_cache_create("umem_slab_cache",
3129 	    sizeof (umem_slab_t), 0, NULL, NULL, NULL, NULL,
3130 	    umem_internal_arena, UMC_NOHASH | UMC_INTERNAL);
3131 
3132 	if (umem_slab_cache == NULL)
3133 		return (0);
3134 
3135 	umem_bufctl_cache = umem_cache_create("umem_bufctl_cache",
3136 	    sizeof (umem_bufctl_t), 0, NULL, NULL, NULL, NULL,
3137 	    umem_internal_arena, UMC_NOHASH | UMC_INTERNAL);
3138 
3139 	if (umem_bufctl_cache == NULL)
3140 		return (0);
3141 
3142 	/*
3143 	 * The size of the umem_bufctl_audit structure depends upon
3144 	 * umem_stack_depth.   See umem_impl.h for details on the size
3145 	 * restrictions.
3146 	 */
3147 
3148 	size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth);
3149 	max_size = UMEM_BUFCTL_AUDIT_MAX_SIZE;
3150 
3151 	if (size > max_size) {			/* too large -- truncate */
3152 		int max_frames = UMEM_MAX_STACK_DEPTH;
3153 
3154 		ASSERT(UMEM_BUFCTL_AUDIT_SIZE_DEPTH(max_frames) <= max_size);
3155 
3156 		umem_stack_depth = max_frames;
3157 		size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth);
3158 	}
3159 
3160 	umem_bufctl_audit_cache = umem_cache_create("umem_bufctl_audit_cache",
3161 	    size, 0, NULL, NULL, NULL, NULL, umem_internal_arena,
3162 	    UMC_NOHASH | UMC_INTERNAL);
3163 
3164 	if (umem_bufctl_audit_cache == NULL)
3165 		return (0);
3166 
3167 	if (vmem_backend & VMEM_BACKEND_MMAP)
3168 		umem_va_arena = vmem_create("umem_va",
3169 		    NULL, 0, pagesize,
3170 		    vmem_alloc, vmem_free, heap_arena,
3171 		    8 * pagesize, VM_NOSLEEP);
3172 	else
3173 		umem_va_arena = heap_arena;
3174 
3175 	if (umem_va_arena == NULL)
3176 		return (0);
3177 
3178 	umem_default_arena = vmem_create("umem_default",
3179 	    NULL, 0, pagesize,
3180 	    heap_alloc, heap_free, umem_va_arena,
3181 	    0, VM_NOSLEEP);
3182 
3183 	if (umem_default_arena == NULL)
3184 		return (0);
3185 
3186 	/*
3187 	 * make sure the umem_alloc table initializer is correct
3188 	 */
3189 	i = sizeof (umem_alloc_table) / sizeof (*umem_alloc_table);
3190 	ASSERT(umem_alloc_table[i - 1] == &umem_null_cache);
3191 
3192 	/*
3193 	 * Create the default caches to back umem_alloc()
3194 	 */
3195 	for (i = 0; i < NUM_ALLOC_SIZES; i++) {
3196 		size_t cache_size = umem_alloc_sizes[i];
3197 		size_t align = 0;
3198 
3199 		if (cache_size == 0)
3200 			break;		/* 0 terminates the list */
3201 
3202 		/*
3203 		 * If they allocate a multiple of the coherency granularity,
3204 		 * they get a coherency-granularity-aligned address.
3205 		 */
3206 		if (IS_P2ALIGNED(cache_size, 64))
3207 			align = 64;
3208 		if (IS_P2ALIGNED(cache_size, pagesize))
3209 			align = pagesize;
3210 		(void) snprintf(name, sizeof (name), "umem_alloc_%lu",
3211 		    (long)cache_size);
3212 
3213 		cp = umem_cache_create(name, cache_size, align,
3214 		    NULL, NULL, NULL, NULL, NULL, UMC_INTERNAL);
3215 		if (cp == NULL)
3216 			return (0);
3217 
3218 		umem_alloc_caches[i] = cp;
3219 	}
3220 
3221 	umem_tmem_off = _tmem_get_base();
3222 	_tmem_set_cleanup(umem_cache_tmem_cleanup);
3223 
3224 #ifndef	UMEM_STANDALONE
3225 	if (umem_genasm_supported && !(umem_flags & UMF_DEBUG) &&
3226 	    !(umem_flags & UMF_NOMAGAZINE) &&
3227 	    umem_ptc_size > 0) {
3228 		umem_ptc_enabled = umem_genasm(umem_alloc_sizes,
3229 		    umem_alloc_caches, i) ? 1 : 0;
3230 	}
3231 #else
3232 	umem_ptc_enabled = 0;
3233 #endif
3234 
3235 	/*
3236 	 * Initialization cannot fail at this point.  Make the caches
3237 	 * visible to umem_alloc() and friends.
3238 	 */
3239 	size = UMEM_ALIGN;
3240 	for (i = 0; i < NUM_ALLOC_SIZES; i++) {
3241 		size_t cache_size = umem_alloc_sizes[i];
3242 
3243 		if (cache_size == 0)
3244 			break;		/* 0 terminates the list */
3245 
3246 		cp = umem_alloc_caches[i];
3247 
3248 		while (size <= cache_size) {
3249 			umem_alloc_table[(size - 1) >> UMEM_ALIGN_SHIFT] = cp;
3250 			size += UMEM_ALIGN;
3251 		}
3252 	}
3253 	ASSERT(size - UMEM_ALIGN == UMEM_MAXBUF);
3254 	return (1);
3255 }
3256 
3257 /*
3258  * umem_startup() is called early on, and must be called explicitly if we're
3259  * the standalone version.
3260  */
3261 #ifdef UMEM_STANDALONE
3262 void
3263 #else
3264 #pragma init(umem_startup)
3265 static void
3266 #endif
3267 umem_startup(caddr_t start, size_t len, size_t pagesize, caddr_t minstack,
3268     caddr_t maxstack)
3269 {
3270 #ifdef UMEM_STANDALONE
3271 	int idx;
3272 	/* Standalone doesn't fork */
3273 #else
3274 	umem_forkhandler_init(); /* register the fork handler */
3275 #endif
3276 
3277 #ifdef __lint
3278 	/* make lint happy */
3279 	minstack = maxstack;
3280 #endif
3281 
3282 #ifdef UMEM_STANDALONE
3283 	umem_ready = UMEM_READY_STARTUP;
3284 	umem_init_env_ready = 0;
3285 
3286 	umem_min_stack = minstack;
3287 	umem_max_stack = maxstack;
3288 
3289 	nofail_callback = NULL;
3290 	umem_slab_cache = NULL;
3291 	umem_bufctl_cache = NULL;
3292 	umem_bufctl_audit_cache = NULL;
3293 	heap_arena = NULL;
3294 	heap_alloc = NULL;
3295 	heap_free = NULL;
3296 	umem_internal_arena = NULL;
3297 	umem_cache_arena = NULL;
3298 	umem_hash_arena = NULL;
3299 	umem_log_arena = NULL;
3300 	umem_oversize_arena = NULL;
3301 	umem_va_arena = NULL;
3302 	umem_default_arena = NULL;
3303 	umem_firewall_va_arena = NULL;
3304 	umem_firewall_arena = NULL;
3305 	umem_memalign_arena = NULL;
3306 	umem_transaction_log = NULL;
3307 	umem_content_log = NULL;
3308 	umem_failure_log = NULL;
3309 	umem_slab_log = NULL;
3310 	umem_cpu_mask = 0;
3311 
3312 	umem_cpus = &umem_startup_cpu;
3313 	umem_startup_cpu.cpu_cache_offset = UMEM_CACHE_SIZE(0);
3314 	umem_startup_cpu.cpu_number = 0;
3315 
3316 	bcopy(&umem_null_cache_template, &umem_null_cache,
3317 	    sizeof (umem_cache_t));
3318 
3319 	for (idx = 0; idx < (UMEM_MAXBUF >> UMEM_ALIGN_SHIFT); idx++)
3320 		umem_alloc_table[idx] = &umem_null_cache;
3321 #endif
3322 
3323 	/*
3324 	 * Perform initialization specific to the way we've been compiled
3325 	 * (library or standalone)
3326 	 */
3327 	umem_type_init(start, len, pagesize);
3328 
3329 	vmem_startup();
3330 }
3331 
3332 int
3333 umem_init(void)
3334 {
3335 	size_t maxverify, minfirewall;
3336 	size_t size;
3337 	int idx;
3338 	umem_cpu_t *new_cpus;
3339 
3340 	vmem_t *memalign_arena, *oversize_arena;
3341 
3342 	if (thr_self() != umem_init_thr) {
3343 		/*
3344 		 * The usual case -- non-recursive invocation of umem_init().
3345 		 */
3346 		(void) mutex_lock(&umem_init_lock);
3347 		if (umem_ready != UMEM_READY_STARTUP) {
3348 			/*
3349 			 * someone else beat us to initializing umem.  Wait
3350 			 * for them to complete, then return.
3351 			 */
3352 			while (umem_ready == UMEM_READY_INITING) {
3353 				int cancel_state;
3354 
3355 				(void) pthread_setcancelstate(
3356 				    PTHREAD_CANCEL_DISABLE, &cancel_state);
3357 				(void) cond_wait(&umem_init_cv,
3358 				    &umem_init_lock);
3359 				(void) pthread_setcancelstate(
3360 				    cancel_state, NULL);
3361 			}
3362 			ASSERT(umem_ready == UMEM_READY ||
3363 			    umem_ready == UMEM_READY_INIT_FAILED);
3364 			(void) mutex_unlock(&umem_init_lock);
3365 			return (umem_ready == UMEM_READY);
3366 		}
3367 
3368 		ASSERT(umem_ready == UMEM_READY_STARTUP);
3369 		ASSERT(umem_init_env_ready == 0);
3370 
3371 		umem_ready = UMEM_READY_INITING;
3372 		umem_init_thr = thr_self();
3373 
3374 		(void) mutex_unlock(&umem_init_lock);
3375 		umem_setup_envvars(0);		/* can recurse -- see below */
3376 		if (umem_init_env_ready) {
3377 			/*
3378 			 * initialization was completed already
3379 			 */
3380 			ASSERT(umem_ready == UMEM_READY ||
3381 			    umem_ready == UMEM_READY_INIT_FAILED);
3382 			ASSERT(umem_init_thr == 0);
3383 			return (umem_ready == UMEM_READY);
3384 		}
3385 	} else if (!umem_init_env_ready) {
3386 		/*
3387 		 * The umem_setup_envvars() call (above) makes calls into
3388 		 * the dynamic linker and directly into user-supplied code.
3389 		 * Since we cannot know what that code will do, we could be
3390 		 * recursively invoked (by, say, a malloc() call in the code
3391 		 * itself, or in a (C++) _init section it causes to be fired).
3392 		 *
3393 		 * This code is where we end up if such recursion occurs.  We
3394 		 * first clean up any partial results in the envvar code, then
3395 		 * proceed to finish initialization processing in the recursive
3396 		 * call.  The original call will notice this, and return
3397 		 * immediately.
3398 		 */
3399 		umem_setup_envvars(1);		/* clean up any partial state */
3400 	} else {
3401 		umem_panic(
3402 		    "recursive allocation while initializing umem\n");
3403 	}
3404 	umem_init_env_ready = 1;
3405 
3406 	/*
3407 	 * From this point until we finish, recursion into umem_init() will
3408 	 * cause a umem_panic().
3409 	 */
3410 	maxverify = minfirewall = ULONG_MAX;
3411 
3412 	/* LINTED constant condition */
3413 	if (sizeof (umem_cpu_cache_t) != UMEM_CPU_CACHE_SIZE) {
3414 		umem_panic("sizeof (umem_cpu_cache_t) = %d, should be %d\n",
3415 		    sizeof (umem_cpu_cache_t), UMEM_CPU_CACHE_SIZE);
3416 	}
3417 
3418 	umem_max_ncpus = umem_get_max_ncpus();
3419 
3420 	/*
3421 	 * load tunables from environment
3422 	 */
3423 	umem_process_envvars();
3424 
3425 	if (issetugid())
3426 		umem_mtbf = 0;
3427 
3428 	/*
3429 	 * set up vmem
3430 	 */
3431 	if (!(umem_flags & UMF_AUDIT))
3432 		vmem_no_debug();
3433 
3434 	heap_arena = vmem_heap_arena(&heap_alloc, &heap_free);
3435 
3436 	pagesize = heap_arena->vm_quantum;
3437 
3438 	umem_internal_arena = vmem_create("umem_internal", NULL, 0, pagesize,
3439 	    heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP);
3440 
3441 	umem_default_arena = umem_internal_arena;
3442 
3443 	if (umem_internal_arena == NULL)
3444 		goto fail;
3445 
3446 	umem_cache_arena = vmem_create("umem_cache", NULL, 0, UMEM_ALIGN,
3447 	    vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP);
3448 
3449 	umem_hash_arena = vmem_create("umem_hash", NULL, 0, UMEM_ALIGN,
3450 	    vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP);
3451 
3452 	umem_log_arena = vmem_create("umem_log", NULL, 0, UMEM_ALIGN,
3453 	    heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP);
3454 
3455 	umem_firewall_va_arena = vmem_create("umem_firewall_va",
3456 	    NULL, 0, pagesize,
3457 	    umem_firewall_va_alloc, umem_firewall_va_free, heap_arena,
3458 	    0, VM_NOSLEEP);
3459 
3460 	if (umem_cache_arena == NULL || umem_hash_arena == NULL ||
3461 	    umem_log_arena == NULL || umem_firewall_va_arena == NULL)
3462 		goto fail;
3463 
3464 	umem_firewall_arena = vmem_create("umem_firewall", NULL, 0, pagesize,
3465 	    heap_alloc, heap_free, umem_firewall_va_arena, 0,
3466 	    VM_NOSLEEP);
3467 
3468 	if (umem_firewall_arena == NULL)
3469 		goto fail;
3470 
3471 	oversize_arena = vmem_create("umem_oversize", NULL, 0, pagesize,
3472 	    heap_alloc, heap_free, minfirewall < ULONG_MAX ?
3473 	    umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP);
3474 
3475 	memalign_arena = vmem_create("umem_memalign", NULL, 0, UMEM_ALIGN,
3476 	    heap_alloc, heap_free, minfirewall < ULONG_MAX ?
3477 	    umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP);
3478 
3479 	if (oversize_arena == NULL || memalign_arena == NULL)
3480 		goto fail;
3481 
3482 	if (umem_max_ncpus > CPUHINT_MAX())
3483 		umem_max_ncpus = CPUHINT_MAX();
3484 
3485 	while ((umem_max_ncpus & (umem_max_ncpus - 1)) != 0)
3486 		umem_max_ncpus++;
3487 
3488 	if (umem_max_ncpus == 0)
3489 		umem_max_ncpus = 1;
3490 
3491 	size = umem_max_ncpus * sizeof (umem_cpu_t);
3492 	new_cpus = vmem_alloc(umem_internal_arena, size, VM_NOSLEEP);
3493 	if (new_cpus == NULL)
3494 		goto fail;
3495 
3496 	bzero(new_cpus, size);
3497 	for (idx = 0; idx < umem_max_ncpus; idx++) {
3498 		new_cpus[idx].cpu_number = idx;
3499 		new_cpus[idx].cpu_cache_offset = UMEM_CACHE_SIZE(idx);
3500 	}
3501 	umem_cpus = new_cpus;
3502 	umem_cpu_mask = (umem_max_ncpus - 1);
3503 
3504 	if (umem_maxverify == 0)
3505 		umem_maxverify = maxverify;
3506 
3507 	if (umem_minfirewall == 0)
3508 		umem_minfirewall = minfirewall;
3509 
3510 	/*
3511 	 * Set up updating and reaping
3512 	 */
3513 	umem_reap_next = gethrtime() + NANOSEC;
3514 
3515 #ifndef UMEM_STANDALONE
3516 	(void) gettimeofday(&umem_update_next, NULL);
3517 #endif
3518 
3519 	/*
3520 	 * Set up logging -- failure here is okay, since it will just disable
3521 	 * the logs
3522 	 */
3523 	if (umem_logging) {
3524 		umem_transaction_log = umem_log_init(umem_transaction_log_size);
3525 		umem_content_log = umem_log_init(umem_content_log_size);
3526 		umem_failure_log = umem_log_init(umem_failure_log_size);
3527 		umem_slab_log = umem_log_init(umem_slab_log_size);
3528 	}
3529 
3530 	/*
3531 	 * Set up caches -- if successful, initialization cannot fail, since
3532 	 * allocations from other threads can now succeed.
3533 	 */
3534 	if (umem_cache_init() == 0) {
3535 		log_message("unable to create initial caches\n");
3536 		goto fail;
3537 	}
3538 	umem_oversize_arena = oversize_arena;
3539 	umem_memalign_arena = memalign_arena;
3540 
3541 	umem_cache_applyall(umem_cache_magazine_enable);
3542 
3543 	/*
3544 	 * initialization done, ready to go
3545 	 */
3546 	(void) mutex_lock(&umem_init_lock);
3547 	umem_ready = UMEM_READY;
3548 	umem_init_thr = 0;
3549 	(void) cond_broadcast(&umem_init_cv);
3550 	(void) mutex_unlock(&umem_init_lock);
3551 	return (1);
3552 
3553 fail:
3554 	log_message("umem initialization failed\n");
3555 
3556 	(void) mutex_lock(&umem_init_lock);
3557 	umem_ready = UMEM_READY_INIT_FAILED;
3558 	umem_init_thr = 0;
3559 	(void) cond_broadcast(&umem_init_cv);
3560 	(void) mutex_unlock(&umem_init_lock);
3561 	return (0);
3562 }
3563