1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 25 * Use is subject to license terms. 26 */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 /* 31 * based on usr/src/uts/common/os/kmem.c r1.64 from 2001/12/18 32 * 33 * The slab allocator, as described in the following two papers: 34 * 35 * Jeff Bonwick, 36 * The Slab Allocator: An Object-Caching Kernel Memory Allocator. 37 * Proceedings of the Summer 1994 Usenix Conference. 38 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. 39 * 40 * Jeff Bonwick and Jonathan Adams, 41 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 42 * Arbitrary Resources. 43 * Proceedings of the 2001 Usenix Conference. 44 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. 45 * 46 * 1. Overview 47 * ----------- 48 * umem is very close to kmem in implementation. There are four major 49 * areas of divergence: 50 * 51 * * Initialization 52 * 53 * * CPU handling 54 * 55 * * umem_update() 56 * 57 * * KM_SLEEP v.s. UMEM_NOFAIL 58 * 59 * * lock ordering 60 * 61 * 2. Initialization 62 * ----------------- 63 * kmem is initialized early on in boot, and knows that no one will call 64 * into it before it is ready. umem does not have these luxuries. Instead, 65 * initialization is divided into two phases: 66 * 67 * * library initialization, and 68 * 69 * * first use 70 * 71 * umem's full initialization happens at the time of the first allocation 72 * request (via malloc() and friends, umem_alloc(), or umem_zalloc()), 73 * or the first call to umem_cache_create(). 74 * 75 * umem_free(), and umem_cache_alloc() do not require special handling, 76 * since the only way to get valid arguments for them is to successfully 77 * call a function from the first group. 78 * 79 * 2.1. Library Initialization: umem_startup() 80 * ------------------------------------------- 81 * umem_startup() is libumem.so's .init section. It calls pthread_atfork() 82 * to install the handlers necessary for umem's Fork1-Safety. Because of 83 * race condition issues, all other pre-umem_init() initialization is done 84 * statically (i.e. by the dynamic linker). 85 * 86 * For standalone use, umem_startup() returns everything to its initial 87 * state. 88 * 89 * 2.2. First use: umem_init() 90 * ------------------------------ 91 * The first time any memory allocation function is used, we have to 92 * create the backing caches and vmem arenas which are needed for it. 93 * umem_init() is the central point for that task. When it completes, 94 * umem_ready is either UMEM_READY (all set) or UMEM_READY_INIT_FAILED (unable 95 * to initialize, probably due to lack of memory). 96 * 97 * There are four different paths from which umem_init() is called: 98 * 99 * * from umem_alloc() or umem_zalloc(), with 0 < size < UMEM_MAXBUF, 100 * 101 * * from umem_alloc() or umem_zalloc(), with size > UMEM_MAXBUF, 102 * 103 * * from umem_cache_create(), and 104 * 105 * * from memalign(), with align > UMEM_ALIGN. 106 * 107 * The last three just check if umem is initialized, and call umem_init() 108 * if it is not. For performance reasons, the first case is more complicated. 109 * 110 * 2.2.1. umem_alloc()/umem_zalloc(), with 0 < size < UMEM_MAXBUF 111 * ----------------------------------------------------------------- 112 * In this case, umem_cache_alloc(&umem_null_cache, ...) is called. 113 * There is special case code in which causes any allocation on 114 * &umem_null_cache to fail by returning (NULL), regardless of the 115 * flags argument. 116 * 117 * So umem_cache_alloc() returns NULL, and umem_alloc()/umem_zalloc() call 118 * umem_alloc_retry(). umem_alloc_retry() sees that the allocation 119 * was agains &umem_null_cache, and calls umem_init(). 120 * 121 * If initialization is successful, umem_alloc_retry() returns 1, which 122 * causes umem_alloc()/umem_zalloc() to start over, which causes it to load 123 * the (now valid) cache pointer from umem_alloc_table. 124 * 125 * 2.2.2. Dealing with race conditions 126 * ----------------------------------- 127 * There are a couple race conditions resulting from the initialization 128 * code that we have to guard against: 129 * 130 * * In umem_cache_create(), there is a special UMC_INTERNAL cflag 131 * that is passed for caches created during initialization. It 132 * is illegal for a user to try to create a UMC_INTERNAL cache. 133 * This allows initialization to proceed, but any other 134 * umem_cache_create()s will block by calling umem_init(). 135 * 136 * * Since umem_null_cache has a 1-element cache_cpu, it's cache_cpu_mask 137 * is always zero. umem_cache_alloc uses cp->cache_cpu_mask to 138 * mask the cpu number. This prevents a race between grabbing a 139 * cache pointer out of umem_alloc_table and growing the cpu array. 140 * 141 * 142 * 3. CPU handling 143 * --------------- 144 * kmem uses the CPU's sequence number to determine which "cpu cache" to 145 * use for an allocation. Currently, there is no way to get the sequence 146 * number in userspace. 147 * 148 * umem keeps track of cpu information in umem_cpus, an array of umem_max_ncpus 149 * umem_cpu_t structures. CURCPU() is a a "hint" function, which we then mask 150 * with either umem_cpu_mask or cp->cache_cpu_mask to find the actual "cpu" id. 151 * The mechanics of this is all in the CPU(mask) macro. 152 * 153 * Currently, umem uses _lwp_self() as its hint. 154 * 155 * 156 * 4. The update thread 157 * -------------------- 158 * kmem uses a task queue, kmem_taskq, to do periodic maintenance on 159 * every kmem cache. vmem has a periodic timeout for hash table resizing. 160 * The kmem_taskq also provides a separate context for kmem_cache_reap()'s 161 * to be done in, avoiding issues of the context of kmem_reap() callers. 162 * 163 * Instead, umem has the concept of "updates", which are asynchronous requests 164 * for work attached to single caches. All caches with pending work are 165 * on a doubly linked list rooted at the umem_null_cache. All update state 166 * is protected by the umem_update_lock mutex, and the umem_update_cv is used 167 * for notification between threads. 168 * 169 * 4.1. Cache states with regards to updates 170 * ----------------------------------------- 171 * A given cache is in one of three states: 172 * 173 * Inactive cache_uflags is zero, cache_u{next,prev} are NULL 174 * 175 * Work Requested cache_uflags is non-zero (but UMU_ACTIVE is not set), 176 * cache_u{next,prev} link the cache onto the global 177 * update list 178 * 179 * Active cache_uflags has UMU_ACTIVE set, cache_u{next,prev} 180 * are NULL, and either umem_update_thr or 181 * umem_st_update_thr are actively doing work on the 182 * cache. 183 * 184 * An update can be added to any cache in any state -- if the cache is 185 * Inactive, it transitions to being Work Requested. If the cache is 186 * Active, the worker will notice the new update and act on it before 187 * transitioning the cache to the Inactive state. 188 * 189 * If a cache is in the Active state, UMU_NOTIFY can be set, which asks 190 * the worker to broadcast the umem_update_cv when it has finished. 191 * 192 * 4.2. Update interface 193 * --------------------- 194 * umem_add_update() adds an update to a particular cache. 195 * umem_updateall() adds an update to all caches. 196 * umem_remove_updates() returns a cache to the Inactive state. 197 * 198 * umem_process_updates() process all caches in the Work Requested state. 199 * 200 * 4.3. Reaping 201 * ------------ 202 * When umem_reap() is called (at the time of heap growth), it schedule 203 * UMU_REAP updates on every cache. It then checks to see if the update 204 * thread exists (umem_update_thr != 0). If it is, it broadcasts 205 * the umem_update_cv to wake the update thread up, and returns. 206 * 207 * If the update thread does not exist (umem_update_thr == 0), and the 208 * program currently has multiple threads, umem_reap() attempts to create 209 * a new update thread. 210 * 211 * If the process is not multithreaded, or the creation fails, umem_reap() 212 * calls umem_st_update() to do an inline update. 213 * 214 * 4.4. The update thread 215 * ---------------------- 216 * The update thread spends most of its time in cond_timedwait() on the 217 * umem_update_cv. It wakes up under two conditions: 218 * 219 * * The timedwait times out, in which case it needs to run a global 220 * update, or 221 * 222 * * someone cond_broadcast(3THR)s the umem_update_cv, in which case 223 * it needs to check if there are any caches in the Work Requested 224 * state. 225 * 226 * When it is time for another global update, umem calls umem_cache_update() 227 * on every cache, then calls vmem_update(), which tunes the vmem structures. 228 * umem_cache_update() can request further work using umem_add_update(). 229 * 230 * After any work from the global update completes, the update timer is 231 * reset to umem_reap_interval seconds in the future. This makes the 232 * updates self-throttling. 233 * 234 * Reaps are similarly self-throttling. After a UMU_REAP update has 235 * been scheduled on all caches, umem_reap() sets a flag and wakes up the 236 * update thread. The update thread notices the flag, and resets the 237 * reap state. 238 * 239 * 4.5. Inline updates 240 * ------------------- 241 * If the update thread is not running, umem_st_update() is used instead. It 242 * immediately does a global update (as above), then calls 243 * umem_process_updates() to process both the reaps that umem_reap() added and 244 * any work generated by the global update. Afterwards, it resets the reap 245 * state. 246 * 247 * While the umem_st_update() is running, umem_st_update_thr holds the thread 248 * id of the thread performing the update. 249 * 250 * 4.6. Updates and fork1() 251 * ------------------------ 252 * umem has fork1() pre- and post-handlers which lock up (and release) every 253 * mutex in every cache. They also lock up the umem_update_lock. Since 254 * fork1() only copies over a single lwp, other threads (including the update 255 * thread) could have been actively using a cache in the parent. This 256 * can lead to inconsistencies in the child process. 257 * 258 * Because we locked all of the mutexes, the only possible inconsistancies are: 259 * 260 * * a umem_cache_alloc() could leak its buffer. 261 * 262 * * a caller of umem_depot_alloc() could leak a magazine, and all the 263 * buffers contained in it. 264 * 265 * * a cache could be in the Active update state. In the child, there 266 * would be no thread actually working on it. 267 * 268 * * a umem_hash_rescale() could leak the new hash table. 269 * 270 * * a umem_magazine_resize() could be in progress. 271 * 272 * * a umem_reap() could be in progress. 273 * 274 * The memory leaks we can't do anything about. umem_release_child() resets 275 * the update state, moves any caches in the Active state to the Work Requested 276 * state. This might cause some updates to be re-run, but UMU_REAP and 277 * UMU_HASH_RESCALE are effectively idempotent, and the worst that can 278 * happen from umem_magazine_resize() is resizing the magazine twice in close 279 * succession. 280 * 281 * Much of the cleanup in umem_release_child() is skipped if 282 * umem_st_update_thr == thr_self(). This is so that applications which call 283 * fork1() from a cache callback does not break. Needless to say, any such 284 * application is tremendously broken. 285 * 286 * 287 * 5. KM_SLEEP v.s. UMEM_NOFAIL 288 * ---------------------------- 289 * Allocations against kmem and vmem have two basic modes: SLEEP and 290 * NOSLEEP. A sleeping allocation is will go to sleep (waiting for 291 * more memory) instead of failing (returning NULL). 292 * 293 * SLEEP allocations presume an extremely multithreaded model, with 294 * a lot of allocation and deallocation activity. umem cannot presume 295 * that its clients have any particular type of behavior. Instead, 296 * it provides two types of allocations: 297 * 298 * * UMEM_DEFAULT, equivalent to KM_NOSLEEP (i.e. return NULL on 299 * failure) 300 * 301 * * UMEM_NOFAIL, which, on failure, calls an optional callback 302 * (registered with umem_nofail_callback()). 303 * 304 * The callback is invoked with no locks held, and can do an arbitrary 305 * amount of work. It then has a choice between: 306 * 307 * * Returning UMEM_CALLBACK_RETRY, which will cause the allocation 308 * to be restarted. 309 * 310 * * Returning UMEM_CALLBACK_EXIT(status), which will cause exit(2) 311 * to be invoked with status. If multiple threads attempt to do 312 * this simultaneously, only one will call exit(2). 313 * 314 * * Doing some kind of non-local exit (thr_exit(3thr), longjmp(3C), 315 * etc.) 316 * 317 * The default callback returns UMEM_CALLBACK_EXIT(255). 318 * 319 * To have these callbacks without risk of state corruption (in the case of 320 * a non-local exit), we have to ensure that the callbacks get invoked 321 * close to the original allocation, with no inconsistent state or held 322 * locks. The following steps are taken: 323 * 324 * * All invocations of vmem are VM_NOSLEEP. 325 * 326 * * All constructor callbacks (which can themselves to allocations) 327 * are passed UMEM_DEFAULT as their required allocation argument. This 328 * way, the constructor will fail, allowing the highest-level allocation 329 * invoke the nofail callback. 330 * 331 * If a constructor callback _does_ do a UMEM_NOFAIL allocation, and 332 * the nofail callback does a non-local exit, we will leak the 333 * partially-constructed buffer. 334 * 335 * 336 * 6. Lock Ordering 337 * ---------------- 338 * umem has a few more locks than kmem does, mostly in the update path. The 339 * overall lock ordering (earlier locks must be acquired first) is: 340 * 341 * umem_init_lock 342 * 343 * vmem_list_lock 344 * vmem_nosleep_lock.vmpl_mutex 345 * vmem_t's: 346 * vm_lock 347 * sbrk_faillock 348 * 349 * umem_cache_lock 350 * umem_update_lock 351 * umem_flags_lock 352 * umem_cache_t's: 353 * cache_cpu[*].cc_lock 354 * cache_depot_lock 355 * cache_lock 356 * umem_log_header_t's: 357 * lh_cpu[*].clh_lock 358 * lh_lock 359 */ 360 361 #include "c_synonyms.h" 362 #include <umem_impl.h> 363 #include <sys/vmem_impl_user.h> 364 #include "umem_base.h" 365 #include "vmem_base.h" 366 367 #include <sys/processor.h> 368 #include <sys/sysmacros.h> 369 370 #include <alloca.h> 371 #include <errno.h> 372 #include <limits.h> 373 #include <stdio.h> 374 #include <stdlib.h> 375 #include <string.h> 376 #include <strings.h> 377 #include <signal.h> 378 #include <unistd.h> 379 #include <atomic.h> 380 381 #include "misc.h" 382 383 #define UMEM_VMFLAGS(umflag) (VM_NOSLEEP) 384 385 size_t pagesize; 386 387 /* 388 * The default set of caches to back umem_alloc(). 389 * These sizes should be reevaluated periodically. 390 * 391 * We want allocations that are multiples of the coherency granularity 392 * (64 bytes) to be satisfied from a cache which is a multiple of 64 393 * bytes, so that it will be 64-byte aligned. For all multiples of 64, 394 * the next kmem_cache_size greater than or equal to it must be a 395 * multiple of 64. 396 */ 397 static const int umem_alloc_sizes[] = { 398 #ifdef _LP64 399 1 * 8, 400 1 * 16, 401 2 * 16, 402 3 * 16, 403 #else 404 1 * 8, 405 2 * 8, 406 3 * 8, 407 4 * 8, 5 * 8, 6 * 8, 7 * 8, 408 #endif 409 4 * 16, 5 * 16, 6 * 16, 7 * 16, 410 4 * 32, 5 * 32, 6 * 32, 7 * 32, 411 4 * 64, 5 * 64, 6 * 64, 7 * 64, 412 4 * 128, 5 * 128, 6 * 128, 7 * 128, 413 P2ALIGN(8192 / 7, 64), 414 P2ALIGN(8192 / 6, 64), 415 P2ALIGN(8192 / 5, 64), 416 P2ALIGN(8192 / 4, 64), 417 P2ALIGN(8192 / 3, 64), 418 P2ALIGN(8192 / 2, 64), 419 P2ALIGN(8192 / 1, 64), 420 4096 * 3, 421 8192 * 2, 422 }; 423 #define NUM_ALLOC_SIZES (sizeof (umem_alloc_sizes) / sizeof (*umem_alloc_sizes)) 424 425 #define UMEM_MAXBUF 16384 426 427 static umem_magtype_t umem_magtype[] = { 428 { 1, 8, 3200, 65536 }, 429 { 3, 16, 256, 32768 }, 430 { 7, 32, 64, 16384 }, 431 { 15, 64, 0, 8192 }, 432 { 31, 64, 0, 4096 }, 433 { 47, 64, 0, 2048 }, 434 { 63, 64, 0, 1024 }, 435 { 95, 64, 0, 512 }, 436 { 143, 64, 0, 0 }, 437 }; 438 439 /* 440 * umem tunables 441 */ 442 uint32_t umem_max_ncpus; /* # of CPU caches. */ 443 444 uint32_t umem_stack_depth = 15; /* # stack frames in a bufctl_audit */ 445 uint32_t umem_reap_interval = 10; /* max reaping rate (seconds) */ 446 uint_t umem_depot_contention = 2; /* max failed trylocks per real interval */ 447 uint_t umem_abort = 1; /* whether to abort on error */ 448 uint_t umem_output = 0; /* whether to write to standard error */ 449 uint_t umem_logging = 0; /* umem_log_enter() override */ 450 uint32_t umem_mtbf = 0; /* mean time between failures [default: off] */ 451 size_t umem_transaction_log_size; /* size of transaction log */ 452 size_t umem_content_log_size; /* size of content log */ 453 size_t umem_failure_log_size; /* failure log [4 pages per CPU] */ 454 size_t umem_slab_log_size; /* slab create log [4 pages per CPU] */ 455 size_t umem_content_maxsave = 256; /* UMF_CONTENTS max bytes to log */ 456 size_t umem_lite_minsize = 0; /* minimum buffer size for UMF_LITE */ 457 size_t umem_lite_maxalign = 1024; /* maximum buffer alignment for UMF_LITE */ 458 size_t umem_maxverify; /* maximum bytes to inspect in debug routines */ 459 size_t umem_minfirewall; /* hardware-enforced redzone threshold */ 460 461 uint_t umem_flags = 0; 462 463 mutex_t umem_init_lock; /* locks initialization */ 464 cond_t umem_init_cv; /* initialization CV */ 465 thread_t umem_init_thr; /* thread initializing */ 466 int umem_init_env_ready; /* environ pre-initted */ 467 int umem_ready = UMEM_READY_STARTUP; 468 469 static umem_nofail_callback_t *nofail_callback; 470 static mutex_t umem_nofail_exit_lock; 471 static thread_t umem_nofail_exit_thr; 472 473 static umem_cache_t *umem_slab_cache; 474 static umem_cache_t *umem_bufctl_cache; 475 static umem_cache_t *umem_bufctl_audit_cache; 476 477 mutex_t umem_flags_lock; 478 479 static vmem_t *heap_arena; 480 static vmem_alloc_t *heap_alloc; 481 static vmem_free_t *heap_free; 482 483 static vmem_t *umem_internal_arena; 484 static vmem_t *umem_cache_arena; 485 static vmem_t *umem_hash_arena; 486 static vmem_t *umem_log_arena; 487 static vmem_t *umem_oversize_arena; 488 static vmem_t *umem_va_arena; 489 static vmem_t *umem_default_arena; 490 static vmem_t *umem_firewall_va_arena; 491 static vmem_t *umem_firewall_arena; 492 493 vmem_t *umem_memalign_arena; 494 495 umem_log_header_t *umem_transaction_log; 496 umem_log_header_t *umem_content_log; 497 umem_log_header_t *umem_failure_log; 498 umem_log_header_t *umem_slab_log; 499 500 extern thread_t _thr_self(void); 501 #define CPUHINT() (_thr_self()) 502 #define CPUHINT_MAX() INT_MAX 503 504 #define CPU(mask) (umem_cpus + (CPUHINT() & (mask))) 505 static umem_cpu_t umem_startup_cpu = { /* initial, single, cpu */ 506 UMEM_CACHE_SIZE(0), 507 0 508 }; 509 510 static uint32_t umem_cpu_mask = 0; /* global cpu mask */ 511 static umem_cpu_t *umem_cpus = &umem_startup_cpu; /* cpu list */ 512 513 volatile uint32_t umem_reaping; 514 515 thread_t umem_update_thr; 516 struct timeval umem_update_next; /* timeofday of next update */ 517 volatile thread_t umem_st_update_thr; /* only used when single-thd */ 518 519 #define IN_UPDATE() (thr_self() == umem_update_thr || \ 520 thr_self() == umem_st_update_thr) 521 #define IN_REAP() IN_UPDATE() 522 523 mutex_t umem_update_lock; /* cache_u{next,prev,flags} */ 524 cond_t umem_update_cv; 525 526 volatile hrtime_t umem_reap_next; /* min hrtime of next reap */ 527 528 mutex_t umem_cache_lock; /* inter-cache linkage only */ 529 530 #ifdef UMEM_STANDALONE 531 umem_cache_t umem_null_cache; 532 static const umem_cache_t umem_null_cache_template = { 533 #else 534 umem_cache_t umem_null_cache = { 535 #endif 536 0, 0, 0, 0, 0, 537 0, 0, 538 0, 0, 539 0, 0, 540 "invalid_cache", 541 0, 0, 542 NULL, NULL, NULL, NULL, 543 NULL, 544 0, 0, 0, 0, 545 &umem_null_cache, &umem_null_cache, 546 &umem_null_cache, &umem_null_cache, 547 0, 548 DEFAULTMUTEX, /* start of slab layer */ 549 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 550 &umem_null_cache.cache_nullslab, 551 { 552 &umem_null_cache, 553 NULL, 554 &umem_null_cache.cache_nullslab, 555 &umem_null_cache.cache_nullslab, 556 NULL, 557 -1, 558 0 559 }, 560 NULL, 561 NULL, 562 DEFAULTMUTEX, /* start of depot layer */ 563 NULL, { 564 NULL, 0, 0, 0, 0 565 }, { 566 NULL, 0, 0, 0, 0 567 }, { 568 { 569 DEFAULTMUTEX, /* start of CPU cache */ 570 0, 0, NULL, NULL, -1, -1, 0 571 } 572 } 573 }; 574 575 #define ALLOC_TABLE_4 \ 576 &umem_null_cache, &umem_null_cache, &umem_null_cache, &umem_null_cache 577 578 #define ALLOC_TABLE_64 \ 579 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \ 580 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \ 581 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \ 582 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4 583 584 #define ALLOC_TABLE_1024 \ 585 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \ 586 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \ 587 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \ 588 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64 589 590 static umem_cache_t *umem_alloc_table[UMEM_MAXBUF >> UMEM_ALIGN_SHIFT] = { 591 ALLOC_TABLE_1024, 592 ALLOC_TABLE_1024 593 }; 594 595 596 /* Used to constrain audit-log stack traces */ 597 caddr_t umem_min_stack; 598 caddr_t umem_max_stack; 599 600 601 /* 602 * we use the _ versions, since we don't want to be cancelled. 603 * Actually, this is automatically taken care of by including "mtlib.h". 604 */ 605 extern int _cond_wait(cond_t *cv, mutex_t *mutex); 606 607 #define UMERR_MODIFIED 0 /* buffer modified while on freelist */ 608 #define UMERR_REDZONE 1 /* redzone violation (write past end of buf) */ 609 #define UMERR_DUPFREE 2 /* freed a buffer twice */ 610 #define UMERR_BADADDR 3 /* freed a bad (unallocated) address */ 611 #define UMERR_BADBUFTAG 4 /* buftag corrupted */ 612 #define UMERR_BADBUFCTL 5 /* bufctl corrupted */ 613 #define UMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ 614 #define UMERR_BADSIZE 7 /* alloc size != free size */ 615 #define UMERR_BADBASE 8 /* buffer base address wrong */ 616 617 struct { 618 hrtime_t ump_timestamp; /* timestamp of error */ 619 int ump_error; /* type of umem error (UMERR_*) */ 620 void *ump_buffer; /* buffer that induced abort */ 621 void *ump_realbuf; /* real start address for buffer */ 622 umem_cache_t *ump_cache; /* buffer's cache according to client */ 623 umem_cache_t *ump_realcache; /* actual cache containing buffer */ 624 umem_slab_t *ump_slab; /* slab accoring to umem_findslab() */ 625 umem_bufctl_t *ump_bufctl; /* bufctl */ 626 } umem_abort_info; 627 628 static void 629 copy_pattern(uint64_t pattern, void *buf_arg, size_t size) 630 { 631 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 632 uint64_t *buf = buf_arg; 633 634 while (buf < bufend) 635 *buf++ = pattern; 636 } 637 638 static void * 639 verify_pattern(uint64_t pattern, void *buf_arg, size_t size) 640 { 641 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 642 uint64_t *buf; 643 644 for (buf = buf_arg; buf < bufend; buf++) 645 if (*buf != pattern) 646 return (buf); 647 return (NULL); 648 } 649 650 static void * 651 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) 652 { 653 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 654 uint64_t *buf; 655 656 for (buf = buf_arg; buf < bufend; buf++) { 657 if (*buf != old) { 658 copy_pattern(old, buf_arg, 659 (char *)buf - (char *)buf_arg); 660 return (buf); 661 } 662 *buf = new; 663 } 664 665 return (NULL); 666 } 667 668 void 669 umem_cache_applyall(void (*func)(umem_cache_t *)) 670 { 671 umem_cache_t *cp; 672 673 (void) mutex_lock(&umem_cache_lock); 674 for (cp = umem_null_cache.cache_next; cp != &umem_null_cache; 675 cp = cp->cache_next) 676 func(cp); 677 (void) mutex_unlock(&umem_cache_lock); 678 } 679 680 static void 681 umem_add_update_unlocked(umem_cache_t *cp, int flags) 682 { 683 umem_cache_t *cnext, *cprev; 684 685 flags &= ~UMU_ACTIVE; 686 687 if (!flags) 688 return; 689 690 if (cp->cache_uflags & UMU_ACTIVE) { 691 cp->cache_uflags |= flags; 692 } else { 693 if (cp->cache_unext != NULL) { 694 ASSERT(cp->cache_uflags != 0); 695 cp->cache_uflags |= flags; 696 } else { 697 ASSERT(cp->cache_uflags == 0); 698 cp->cache_uflags = flags; 699 cp->cache_unext = cnext = &umem_null_cache; 700 cp->cache_uprev = cprev = umem_null_cache.cache_uprev; 701 cnext->cache_uprev = cp; 702 cprev->cache_unext = cp; 703 } 704 } 705 } 706 707 static void 708 umem_add_update(umem_cache_t *cp, int flags) 709 { 710 (void) mutex_lock(&umem_update_lock); 711 712 umem_add_update_unlocked(cp, flags); 713 714 if (!IN_UPDATE()) 715 (void) cond_broadcast(&umem_update_cv); 716 717 (void) mutex_unlock(&umem_update_lock); 718 } 719 720 /* 721 * Remove a cache from the update list, waiting for any in-progress work to 722 * complete first. 723 */ 724 static void 725 umem_remove_updates(umem_cache_t *cp) 726 { 727 (void) mutex_lock(&umem_update_lock); 728 729 /* 730 * Get it out of the active state 731 */ 732 while (cp->cache_uflags & UMU_ACTIVE) { 733 ASSERT(cp->cache_unext == NULL); 734 735 cp->cache_uflags |= UMU_NOTIFY; 736 737 /* 738 * Make sure the update state is sane, before we wait 739 */ 740 ASSERT(umem_update_thr != 0 || umem_st_update_thr != 0); 741 ASSERT(umem_update_thr != thr_self() && 742 umem_st_update_thr != thr_self()); 743 744 (void) _cond_wait(&umem_update_cv, &umem_update_lock); 745 } 746 /* 747 * Get it out of the Work Requested state 748 */ 749 if (cp->cache_unext != NULL) { 750 cp->cache_uprev->cache_unext = cp->cache_unext; 751 cp->cache_unext->cache_uprev = cp->cache_uprev; 752 cp->cache_uprev = cp->cache_unext = NULL; 753 cp->cache_uflags = 0; 754 } 755 /* 756 * Make sure it is in the Inactive state 757 */ 758 ASSERT(cp->cache_unext == NULL && cp->cache_uflags == 0); 759 (void) mutex_unlock(&umem_update_lock); 760 } 761 762 static void 763 umem_updateall(int flags) 764 { 765 umem_cache_t *cp; 766 767 /* 768 * NOTE: To prevent deadlock, umem_cache_lock is always acquired first. 769 * 770 * (umem_add_update is called from things run via umem_cache_applyall) 771 */ 772 (void) mutex_lock(&umem_cache_lock); 773 (void) mutex_lock(&umem_update_lock); 774 775 for (cp = umem_null_cache.cache_next; cp != &umem_null_cache; 776 cp = cp->cache_next) 777 umem_add_update_unlocked(cp, flags); 778 779 if (!IN_UPDATE()) 780 (void) cond_broadcast(&umem_update_cv); 781 782 (void) mutex_unlock(&umem_update_lock); 783 (void) mutex_unlock(&umem_cache_lock); 784 } 785 786 /* 787 * Debugging support. Given a buffer address, find its slab. 788 */ 789 static umem_slab_t * 790 umem_findslab(umem_cache_t *cp, void *buf) 791 { 792 umem_slab_t *sp; 793 794 (void) mutex_lock(&cp->cache_lock); 795 for (sp = cp->cache_nullslab.slab_next; 796 sp != &cp->cache_nullslab; sp = sp->slab_next) { 797 if (UMEM_SLAB_MEMBER(sp, buf)) { 798 (void) mutex_unlock(&cp->cache_lock); 799 return (sp); 800 } 801 } 802 (void) mutex_unlock(&cp->cache_lock); 803 804 return (NULL); 805 } 806 807 static void 808 umem_error(int error, umem_cache_t *cparg, void *bufarg) 809 { 810 umem_buftag_t *btp = NULL; 811 umem_bufctl_t *bcp = NULL; 812 umem_cache_t *cp = cparg; 813 umem_slab_t *sp; 814 uint64_t *off; 815 void *buf = bufarg; 816 817 int old_logging = umem_logging; 818 819 umem_logging = 0; /* stop logging when a bad thing happens */ 820 821 umem_abort_info.ump_timestamp = gethrtime(); 822 823 sp = umem_findslab(cp, buf); 824 if (sp == NULL) { 825 for (cp = umem_null_cache.cache_prev; cp != &umem_null_cache; 826 cp = cp->cache_prev) { 827 if ((sp = umem_findslab(cp, buf)) != NULL) 828 break; 829 } 830 } 831 832 if (sp == NULL) { 833 cp = NULL; 834 error = UMERR_BADADDR; 835 } else { 836 if (cp != cparg) 837 error = UMERR_BADCACHE; 838 else 839 buf = (char *)bufarg - ((uintptr_t)bufarg - 840 (uintptr_t)sp->slab_base) % cp->cache_chunksize; 841 if (buf != bufarg) 842 error = UMERR_BADBASE; 843 if (cp->cache_flags & UMF_BUFTAG) 844 btp = UMEM_BUFTAG(cp, buf); 845 if (cp->cache_flags & UMF_HASH) { 846 (void) mutex_lock(&cp->cache_lock); 847 for (bcp = *UMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) 848 if (bcp->bc_addr == buf) 849 break; 850 (void) mutex_unlock(&cp->cache_lock); 851 if (bcp == NULL && btp != NULL) 852 bcp = btp->bt_bufctl; 853 if (umem_findslab(cp->cache_bufctl_cache, bcp) == 854 NULL || P2PHASE((uintptr_t)bcp, UMEM_ALIGN) || 855 bcp->bc_addr != buf) { 856 error = UMERR_BADBUFCTL; 857 bcp = NULL; 858 } 859 } 860 } 861 862 umem_abort_info.ump_error = error; 863 umem_abort_info.ump_buffer = bufarg; 864 umem_abort_info.ump_realbuf = buf; 865 umem_abort_info.ump_cache = cparg; 866 umem_abort_info.ump_realcache = cp; 867 umem_abort_info.ump_slab = sp; 868 umem_abort_info.ump_bufctl = bcp; 869 870 umem_printf("umem allocator: "); 871 872 switch (error) { 873 874 case UMERR_MODIFIED: 875 umem_printf("buffer modified after being freed\n"); 876 off = verify_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify); 877 if (off == NULL) /* shouldn't happen */ 878 off = buf; 879 umem_printf("modification occurred at offset 0x%lx " 880 "(0x%llx replaced by 0x%llx)\n", 881 (uintptr_t)off - (uintptr_t)buf, 882 (longlong_t)UMEM_FREE_PATTERN, (longlong_t)*off); 883 break; 884 885 case UMERR_REDZONE: 886 umem_printf("redzone violation: write past end of buffer\n"); 887 break; 888 889 case UMERR_BADADDR: 890 umem_printf("invalid free: buffer not in cache\n"); 891 break; 892 893 case UMERR_DUPFREE: 894 umem_printf("duplicate free: buffer freed twice\n"); 895 break; 896 897 case UMERR_BADBUFTAG: 898 umem_printf("boundary tag corrupted\n"); 899 umem_printf("bcp ^ bxstat = %lx, should be %lx\n", 900 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, 901 UMEM_BUFTAG_FREE); 902 break; 903 904 case UMERR_BADBUFCTL: 905 umem_printf("bufctl corrupted\n"); 906 break; 907 908 case UMERR_BADCACHE: 909 umem_printf("buffer freed to wrong cache\n"); 910 umem_printf("buffer was allocated from %s,\n", cp->cache_name); 911 umem_printf("caller attempting free to %s.\n", 912 cparg->cache_name); 913 break; 914 915 case UMERR_BADSIZE: 916 umem_printf("bad free: free size (%u) != alloc size (%u)\n", 917 UMEM_SIZE_DECODE(((uint32_t *)btp)[0]), 918 UMEM_SIZE_DECODE(((uint32_t *)btp)[1])); 919 break; 920 921 case UMERR_BADBASE: 922 umem_printf("bad free: free address (%p) != alloc address " 923 "(%p)\n", bufarg, buf); 924 break; 925 } 926 927 umem_printf("buffer=%p bufctl=%p cache: %s\n", 928 bufarg, (void *)bcp, cparg->cache_name); 929 930 if (bcp != NULL && (cp->cache_flags & UMF_AUDIT) && 931 error != UMERR_BADBUFCTL) { 932 int d; 933 timespec_t ts; 934 hrtime_t diff; 935 umem_bufctl_audit_t *bcap = (umem_bufctl_audit_t *)bcp; 936 937 diff = umem_abort_info.ump_timestamp - bcap->bc_timestamp; 938 ts.tv_sec = diff / NANOSEC; 939 ts.tv_nsec = diff % NANOSEC; 940 941 umem_printf("previous transaction on buffer %p:\n", buf); 942 umem_printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", 943 (void *)(intptr_t)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, 944 (void *)sp, cp->cache_name); 945 for (d = 0; d < MIN(bcap->bc_depth, umem_stack_depth); d++) { 946 (void) print_sym((void *)bcap->bc_stack[d]); 947 umem_printf("\n"); 948 } 949 } 950 951 umem_err_recoverable("umem: heap corruption detected"); 952 953 umem_logging = old_logging; /* resume logging */ 954 } 955 956 void 957 umem_nofail_callback(umem_nofail_callback_t *cb) 958 { 959 nofail_callback = cb; 960 } 961 962 static int 963 umem_alloc_retry(umem_cache_t *cp, int umflag) 964 { 965 if (cp == &umem_null_cache) { 966 if (umem_init()) 967 return (1); /* retry */ 968 /* 969 * Initialization failed. Do normal failure processing. 970 */ 971 } 972 if (umflag & UMEM_NOFAIL) { 973 int def_result = UMEM_CALLBACK_EXIT(255); 974 int result = def_result; 975 umem_nofail_callback_t *callback = nofail_callback; 976 977 if (callback != NULL) 978 result = callback(); 979 980 if (result == UMEM_CALLBACK_RETRY) 981 return (1); 982 983 if ((result & ~0xFF) != UMEM_CALLBACK_EXIT(0)) { 984 log_message("nofail callback returned %x\n", result); 985 result = def_result; 986 } 987 988 /* 989 * only one thread will call exit 990 */ 991 if (umem_nofail_exit_thr == thr_self()) 992 umem_panic("recursive UMEM_CALLBACK_EXIT()\n"); 993 994 (void) mutex_lock(&umem_nofail_exit_lock); 995 umem_nofail_exit_thr = thr_self(); 996 exit(result & 0xFF); 997 /*NOTREACHED*/ 998 } 999 return (0); 1000 } 1001 1002 static umem_log_header_t * 1003 umem_log_init(size_t logsize) 1004 { 1005 umem_log_header_t *lhp; 1006 int nchunks = 4 * umem_max_ncpus; 1007 size_t lhsize = offsetof(umem_log_header_t, lh_cpu[umem_max_ncpus]); 1008 int i; 1009 1010 if (logsize == 0) 1011 return (NULL); 1012 1013 /* 1014 * Make sure that lhp->lh_cpu[] is nicely aligned 1015 * to prevent false sharing of cache lines. 1016 */ 1017 lhsize = P2ROUNDUP(lhsize, UMEM_ALIGN); 1018 lhp = vmem_xalloc(umem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, 1019 NULL, NULL, VM_NOSLEEP); 1020 if (lhp == NULL) 1021 goto fail; 1022 1023 bzero(lhp, lhsize); 1024 1025 (void) mutex_init(&lhp->lh_lock, USYNC_THREAD, NULL); 1026 lhp->lh_nchunks = nchunks; 1027 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks, PAGESIZE); 1028 if (lhp->lh_chunksize == 0) 1029 lhp->lh_chunksize = PAGESIZE; 1030 1031 lhp->lh_base = vmem_alloc(umem_log_arena, 1032 lhp->lh_chunksize * nchunks, VM_NOSLEEP); 1033 if (lhp->lh_base == NULL) 1034 goto fail; 1035 1036 lhp->lh_free = vmem_alloc(umem_log_arena, 1037 nchunks * sizeof (int), VM_NOSLEEP); 1038 if (lhp->lh_free == NULL) 1039 goto fail; 1040 1041 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); 1042 1043 for (i = 0; i < umem_max_ncpus; i++) { 1044 umem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; 1045 (void) mutex_init(&clhp->clh_lock, USYNC_THREAD, NULL); 1046 clhp->clh_chunk = i; 1047 } 1048 1049 for (i = umem_max_ncpus; i < nchunks; i++) 1050 lhp->lh_free[i] = i; 1051 1052 lhp->lh_head = umem_max_ncpus; 1053 lhp->lh_tail = 0; 1054 1055 return (lhp); 1056 1057 fail: 1058 if (lhp != NULL) { 1059 if (lhp->lh_base != NULL) 1060 vmem_free(umem_log_arena, lhp->lh_base, 1061 lhp->lh_chunksize * nchunks); 1062 1063 vmem_xfree(umem_log_arena, lhp, lhsize); 1064 } 1065 return (NULL); 1066 } 1067 1068 static void * 1069 umem_log_enter(umem_log_header_t *lhp, void *data, size_t size) 1070 { 1071 void *logspace; 1072 umem_cpu_log_header_t *clhp = 1073 &lhp->lh_cpu[CPU(umem_cpu_mask)->cpu_number]; 1074 1075 if (lhp == NULL || umem_logging == 0) 1076 return (NULL); 1077 1078 (void) mutex_lock(&clhp->clh_lock); 1079 clhp->clh_hits++; 1080 if (size > clhp->clh_avail) { 1081 (void) mutex_lock(&lhp->lh_lock); 1082 lhp->lh_hits++; 1083 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; 1084 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; 1085 clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; 1086 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; 1087 clhp->clh_current = lhp->lh_base + 1088 clhp->clh_chunk * lhp->lh_chunksize; 1089 clhp->clh_avail = lhp->lh_chunksize; 1090 if (size > lhp->lh_chunksize) 1091 size = lhp->lh_chunksize; 1092 (void) mutex_unlock(&lhp->lh_lock); 1093 } 1094 logspace = clhp->clh_current; 1095 clhp->clh_current += size; 1096 clhp->clh_avail -= size; 1097 bcopy(data, logspace, size); 1098 (void) mutex_unlock(&clhp->clh_lock); 1099 return (logspace); 1100 } 1101 1102 #define UMEM_AUDIT(lp, cp, bcp) \ 1103 { \ 1104 umem_bufctl_audit_t *_bcp = (umem_bufctl_audit_t *)(bcp); \ 1105 _bcp->bc_timestamp = gethrtime(); \ 1106 _bcp->bc_thread = thr_self(); \ 1107 _bcp->bc_depth = getpcstack(_bcp->bc_stack, umem_stack_depth, \ 1108 (cp != NULL) && (cp->cache_flags & UMF_CHECKSIGNAL)); \ 1109 _bcp->bc_lastlog = umem_log_enter((lp), _bcp, \ 1110 UMEM_BUFCTL_AUDIT_SIZE); \ 1111 } 1112 1113 static void 1114 umem_log_event(umem_log_header_t *lp, umem_cache_t *cp, 1115 umem_slab_t *sp, void *addr) 1116 { 1117 umem_bufctl_audit_t *bcp; 1118 UMEM_LOCAL_BUFCTL_AUDIT(&bcp); 1119 1120 bzero(bcp, UMEM_BUFCTL_AUDIT_SIZE); 1121 bcp->bc_addr = addr; 1122 bcp->bc_slab = sp; 1123 bcp->bc_cache = cp; 1124 UMEM_AUDIT(lp, cp, bcp); 1125 } 1126 1127 /* 1128 * Create a new slab for cache cp. 1129 */ 1130 static umem_slab_t * 1131 umem_slab_create(umem_cache_t *cp, int umflag) 1132 { 1133 size_t slabsize = cp->cache_slabsize; 1134 size_t chunksize = cp->cache_chunksize; 1135 int cache_flags = cp->cache_flags; 1136 size_t color, chunks; 1137 char *buf, *slab; 1138 umem_slab_t *sp; 1139 umem_bufctl_t *bcp; 1140 vmem_t *vmp = cp->cache_arena; 1141 1142 color = cp->cache_color + cp->cache_align; 1143 if (color > cp->cache_maxcolor) 1144 color = cp->cache_mincolor; 1145 cp->cache_color = color; 1146 1147 slab = vmem_alloc(vmp, slabsize, UMEM_VMFLAGS(umflag)); 1148 1149 if (slab == NULL) 1150 goto vmem_alloc_failure; 1151 1152 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); 1153 1154 if (!(cp->cache_cflags & UMC_NOTOUCH) && 1155 (cp->cache_flags & UMF_DEADBEEF)) 1156 copy_pattern(UMEM_UNINITIALIZED_PATTERN, slab, slabsize); 1157 1158 if (cache_flags & UMF_HASH) { 1159 if ((sp = _umem_cache_alloc(umem_slab_cache, umflag)) == NULL) 1160 goto slab_alloc_failure; 1161 chunks = (slabsize - color) / chunksize; 1162 } else { 1163 sp = UMEM_SLAB(cp, slab); 1164 chunks = (slabsize - sizeof (umem_slab_t) - color) / chunksize; 1165 } 1166 1167 sp->slab_cache = cp; 1168 sp->slab_head = NULL; 1169 sp->slab_refcnt = 0; 1170 sp->slab_base = buf = slab + color; 1171 sp->slab_chunks = chunks; 1172 1173 ASSERT(chunks > 0); 1174 while (chunks-- != 0) { 1175 if (cache_flags & UMF_HASH) { 1176 bcp = _umem_cache_alloc(cp->cache_bufctl_cache, umflag); 1177 if (bcp == NULL) 1178 goto bufctl_alloc_failure; 1179 if (cache_flags & UMF_AUDIT) { 1180 umem_bufctl_audit_t *bcap = 1181 (umem_bufctl_audit_t *)bcp; 1182 bzero(bcap, UMEM_BUFCTL_AUDIT_SIZE); 1183 bcap->bc_cache = cp; 1184 } 1185 bcp->bc_addr = buf; 1186 bcp->bc_slab = sp; 1187 } else { 1188 bcp = UMEM_BUFCTL(cp, buf); 1189 } 1190 if (cache_flags & UMF_BUFTAG) { 1191 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1192 btp->bt_redzone = UMEM_REDZONE_PATTERN; 1193 btp->bt_bufctl = bcp; 1194 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE; 1195 if (cache_flags & UMF_DEADBEEF) { 1196 copy_pattern(UMEM_FREE_PATTERN, buf, 1197 cp->cache_verify); 1198 } 1199 } 1200 bcp->bc_next = sp->slab_head; 1201 sp->slab_head = bcp; 1202 buf += chunksize; 1203 } 1204 1205 umem_log_event(umem_slab_log, cp, sp, slab); 1206 1207 return (sp); 1208 1209 bufctl_alloc_failure: 1210 1211 while ((bcp = sp->slab_head) != NULL) { 1212 sp->slab_head = bcp->bc_next; 1213 _umem_cache_free(cp->cache_bufctl_cache, bcp); 1214 } 1215 _umem_cache_free(umem_slab_cache, sp); 1216 1217 slab_alloc_failure: 1218 1219 vmem_free(vmp, slab, slabsize); 1220 1221 vmem_alloc_failure: 1222 1223 umem_log_event(umem_failure_log, cp, NULL, NULL); 1224 atomic_add_64(&cp->cache_alloc_fail, 1); 1225 1226 return (NULL); 1227 } 1228 1229 /* 1230 * Destroy a slab. 1231 */ 1232 static void 1233 umem_slab_destroy(umem_cache_t *cp, umem_slab_t *sp) 1234 { 1235 vmem_t *vmp = cp->cache_arena; 1236 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); 1237 1238 if (cp->cache_flags & UMF_HASH) { 1239 umem_bufctl_t *bcp; 1240 while ((bcp = sp->slab_head) != NULL) { 1241 sp->slab_head = bcp->bc_next; 1242 _umem_cache_free(cp->cache_bufctl_cache, bcp); 1243 } 1244 _umem_cache_free(umem_slab_cache, sp); 1245 } 1246 vmem_free(vmp, slab, cp->cache_slabsize); 1247 } 1248 1249 /* 1250 * Allocate a raw (unconstructed) buffer from cp's slab layer. 1251 */ 1252 static void * 1253 umem_slab_alloc(umem_cache_t *cp, int umflag) 1254 { 1255 umem_bufctl_t *bcp, **hash_bucket; 1256 umem_slab_t *sp; 1257 void *buf; 1258 1259 (void) mutex_lock(&cp->cache_lock); 1260 cp->cache_slab_alloc++; 1261 sp = cp->cache_freelist; 1262 ASSERT(sp->slab_cache == cp); 1263 if (sp->slab_head == NULL) { 1264 /* 1265 * The freelist is empty. Create a new slab. 1266 */ 1267 (void) mutex_unlock(&cp->cache_lock); 1268 if (cp == &umem_null_cache) 1269 return (NULL); 1270 if ((sp = umem_slab_create(cp, umflag)) == NULL) 1271 return (NULL); 1272 (void) mutex_lock(&cp->cache_lock); 1273 cp->cache_slab_create++; 1274 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) 1275 cp->cache_bufmax = cp->cache_buftotal; 1276 sp->slab_next = cp->cache_freelist; 1277 sp->slab_prev = cp->cache_freelist->slab_prev; 1278 sp->slab_next->slab_prev = sp; 1279 sp->slab_prev->slab_next = sp; 1280 cp->cache_freelist = sp; 1281 } 1282 1283 sp->slab_refcnt++; 1284 ASSERT(sp->slab_refcnt <= sp->slab_chunks); 1285 1286 /* 1287 * If we're taking the last buffer in the slab, 1288 * remove the slab from the cache's freelist. 1289 */ 1290 bcp = sp->slab_head; 1291 if ((sp->slab_head = bcp->bc_next) == NULL) { 1292 cp->cache_freelist = sp->slab_next; 1293 ASSERT(sp->slab_refcnt == sp->slab_chunks); 1294 } 1295 1296 if (cp->cache_flags & UMF_HASH) { 1297 /* 1298 * Add buffer to allocated-address hash table. 1299 */ 1300 buf = bcp->bc_addr; 1301 hash_bucket = UMEM_HASH(cp, buf); 1302 bcp->bc_next = *hash_bucket; 1303 *hash_bucket = bcp; 1304 if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) { 1305 UMEM_AUDIT(umem_transaction_log, cp, bcp); 1306 } 1307 } else { 1308 buf = UMEM_BUF(cp, bcp); 1309 } 1310 1311 ASSERT(UMEM_SLAB_MEMBER(sp, buf)); 1312 1313 (void) mutex_unlock(&cp->cache_lock); 1314 1315 return (buf); 1316 } 1317 1318 /* 1319 * Free a raw (unconstructed) buffer to cp's slab layer. 1320 */ 1321 static void 1322 umem_slab_free(umem_cache_t *cp, void *buf) 1323 { 1324 umem_slab_t *sp; 1325 umem_bufctl_t *bcp, **prev_bcpp; 1326 1327 ASSERT(buf != NULL); 1328 1329 (void) mutex_lock(&cp->cache_lock); 1330 cp->cache_slab_free++; 1331 1332 if (cp->cache_flags & UMF_HASH) { 1333 /* 1334 * Look up buffer in allocated-address hash table. 1335 */ 1336 prev_bcpp = UMEM_HASH(cp, buf); 1337 while ((bcp = *prev_bcpp) != NULL) { 1338 if (bcp->bc_addr == buf) { 1339 *prev_bcpp = bcp->bc_next; 1340 sp = bcp->bc_slab; 1341 break; 1342 } 1343 cp->cache_lookup_depth++; 1344 prev_bcpp = &bcp->bc_next; 1345 } 1346 } else { 1347 bcp = UMEM_BUFCTL(cp, buf); 1348 sp = UMEM_SLAB(cp, buf); 1349 } 1350 1351 if (bcp == NULL || sp->slab_cache != cp || !UMEM_SLAB_MEMBER(sp, buf)) { 1352 (void) mutex_unlock(&cp->cache_lock); 1353 umem_error(UMERR_BADADDR, cp, buf); 1354 return; 1355 } 1356 1357 if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) { 1358 if (cp->cache_flags & UMF_CONTENTS) 1359 ((umem_bufctl_audit_t *)bcp)->bc_contents = 1360 umem_log_enter(umem_content_log, buf, 1361 cp->cache_contents); 1362 UMEM_AUDIT(umem_transaction_log, cp, bcp); 1363 } 1364 1365 /* 1366 * If this slab isn't currently on the freelist, put it there. 1367 */ 1368 if (sp->slab_head == NULL) { 1369 ASSERT(sp->slab_refcnt == sp->slab_chunks); 1370 ASSERT(cp->cache_freelist != sp); 1371 sp->slab_next->slab_prev = sp->slab_prev; 1372 sp->slab_prev->slab_next = sp->slab_next; 1373 sp->slab_next = cp->cache_freelist; 1374 sp->slab_prev = cp->cache_freelist->slab_prev; 1375 sp->slab_next->slab_prev = sp; 1376 sp->slab_prev->slab_next = sp; 1377 cp->cache_freelist = sp; 1378 } 1379 1380 bcp->bc_next = sp->slab_head; 1381 sp->slab_head = bcp; 1382 1383 ASSERT(sp->slab_refcnt >= 1); 1384 if (--sp->slab_refcnt == 0) { 1385 /* 1386 * There are no outstanding allocations from this slab, 1387 * so we can reclaim the memory. 1388 */ 1389 sp->slab_next->slab_prev = sp->slab_prev; 1390 sp->slab_prev->slab_next = sp->slab_next; 1391 if (sp == cp->cache_freelist) 1392 cp->cache_freelist = sp->slab_next; 1393 cp->cache_slab_destroy++; 1394 cp->cache_buftotal -= sp->slab_chunks; 1395 (void) mutex_unlock(&cp->cache_lock); 1396 umem_slab_destroy(cp, sp); 1397 return; 1398 } 1399 (void) mutex_unlock(&cp->cache_lock); 1400 } 1401 1402 static int 1403 umem_cache_alloc_debug(umem_cache_t *cp, void *buf, int umflag) 1404 { 1405 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1406 umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl; 1407 uint32_t mtbf; 1408 int flags_nfatal; 1409 1410 if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) { 1411 umem_error(UMERR_BADBUFTAG, cp, buf); 1412 return (-1); 1413 } 1414 1415 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_ALLOC; 1416 1417 if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) { 1418 umem_error(UMERR_BADBUFCTL, cp, buf); 1419 return (-1); 1420 } 1421 1422 btp->bt_redzone = UMEM_REDZONE_PATTERN; 1423 1424 if (cp->cache_flags & UMF_DEADBEEF) { 1425 if (verify_and_copy_pattern(UMEM_FREE_PATTERN, 1426 UMEM_UNINITIALIZED_PATTERN, buf, cp->cache_verify)) { 1427 umem_error(UMERR_MODIFIED, cp, buf); 1428 return (-1); 1429 } 1430 } 1431 1432 if ((mtbf = umem_mtbf | cp->cache_mtbf) != 0 && 1433 gethrtime() % mtbf == 0 && 1434 (umflag & (UMEM_FATAL_FLAGS)) == 0) { 1435 umem_log_event(umem_failure_log, cp, NULL, NULL); 1436 } else { 1437 mtbf = 0; 1438 } 1439 1440 /* 1441 * We do not pass fatal flags on to the constructor. This prevents 1442 * leaking buffers in the event of a subordinate constructor failing. 1443 */ 1444 flags_nfatal = UMEM_DEFAULT; 1445 if (mtbf || (cp->cache_constructor != NULL && 1446 cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0)) { 1447 atomic_add_64(&cp->cache_alloc_fail, 1); 1448 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE; 1449 copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify); 1450 umem_slab_free(cp, buf); 1451 return (-1); 1452 } 1453 1454 if (cp->cache_flags & UMF_AUDIT) { 1455 UMEM_AUDIT(umem_transaction_log, cp, bcp); 1456 } 1457 1458 return (0); 1459 } 1460 1461 static int 1462 umem_cache_free_debug(umem_cache_t *cp, void *buf) 1463 { 1464 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1465 umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl; 1466 umem_slab_t *sp; 1467 1468 if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_ALLOC)) { 1469 if (btp->bt_bxstat == ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) { 1470 umem_error(UMERR_DUPFREE, cp, buf); 1471 return (-1); 1472 } 1473 sp = umem_findslab(cp, buf); 1474 if (sp == NULL || sp->slab_cache != cp) 1475 umem_error(UMERR_BADADDR, cp, buf); 1476 else 1477 umem_error(UMERR_REDZONE, cp, buf); 1478 return (-1); 1479 } 1480 1481 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE; 1482 1483 if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) { 1484 umem_error(UMERR_BADBUFCTL, cp, buf); 1485 return (-1); 1486 } 1487 1488 if (btp->bt_redzone != UMEM_REDZONE_PATTERN) { 1489 umem_error(UMERR_REDZONE, cp, buf); 1490 return (-1); 1491 } 1492 1493 if (cp->cache_flags & UMF_AUDIT) { 1494 if (cp->cache_flags & UMF_CONTENTS) 1495 bcp->bc_contents = umem_log_enter(umem_content_log, 1496 buf, cp->cache_contents); 1497 UMEM_AUDIT(umem_transaction_log, cp, bcp); 1498 } 1499 1500 if (cp->cache_destructor != NULL) 1501 cp->cache_destructor(buf, cp->cache_private); 1502 1503 if (cp->cache_flags & UMF_DEADBEEF) 1504 copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify); 1505 1506 return (0); 1507 } 1508 1509 /* 1510 * Free each object in magazine mp to cp's slab layer, and free mp itself. 1511 */ 1512 static void 1513 umem_magazine_destroy(umem_cache_t *cp, umem_magazine_t *mp, int nrounds) 1514 { 1515 int round; 1516 1517 ASSERT(cp->cache_next == NULL || IN_UPDATE()); 1518 1519 for (round = 0; round < nrounds; round++) { 1520 void *buf = mp->mag_round[round]; 1521 1522 if ((cp->cache_flags & UMF_DEADBEEF) && 1523 verify_pattern(UMEM_FREE_PATTERN, buf, 1524 cp->cache_verify) != NULL) { 1525 umem_error(UMERR_MODIFIED, cp, buf); 1526 continue; 1527 } 1528 1529 if (!(cp->cache_flags & UMF_BUFTAG) && 1530 cp->cache_destructor != NULL) 1531 cp->cache_destructor(buf, cp->cache_private); 1532 1533 umem_slab_free(cp, buf); 1534 } 1535 ASSERT(UMEM_MAGAZINE_VALID(cp, mp)); 1536 _umem_cache_free(cp->cache_magtype->mt_cache, mp); 1537 } 1538 1539 /* 1540 * Allocate a magazine from the depot. 1541 */ 1542 static umem_magazine_t * 1543 umem_depot_alloc(umem_cache_t *cp, umem_maglist_t *mlp) 1544 { 1545 umem_magazine_t *mp; 1546 1547 /* 1548 * If we can't get the depot lock without contention, 1549 * update our contention count. We use the depot 1550 * contention rate to determine whether we need to 1551 * increase the magazine size for better scalability. 1552 */ 1553 if (mutex_trylock(&cp->cache_depot_lock) != 0) { 1554 (void) mutex_lock(&cp->cache_depot_lock); 1555 cp->cache_depot_contention++; 1556 } 1557 1558 if ((mp = mlp->ml_list) != NULL) { 1559 ASSERT(UMEM_MAGAZINE_VALID(cp, mp)); 1560 mlp->ml_list = mp->mag_next; 1561 if (--mlp->ml_total < mlp->ml_min) 1562 mlp->ml_min = mlp->ml_total; 1563 mlp->ml_alloc++; 1564 } 1565 1566 (void) mutex_unlock(&cp->cache_depot_lock); 1567 1568 return (mp); 1569 } 1570 1571 /* 1572 * Free a magazine to the depot. 1573 */ 1574 static void 1575 umem_depot_free(umem_cache_t *cp, umem_maglist_t *mlp, umem_magazine_t *mp) 1576 { 1577 (void) mutex_lock(&cp->cache_depot_lock); 1578 ASSERT(UMEM_MAGAZINE_VALID(cp, mp)); 1579 mp->mag_next = mlp->ml_list; 1580 mlp->ml_list = mp; 1581 mlp->ml_total++; 1582 (void) mutex_unlock(&cp->cache_depot_lock); 1583 } 1584 1585 /* 1586 * Update the working set statistics for cp's depot. 1587 */ 1588 static void 1589 umem_depot_ws_update(umem_cache_t *cp) 1590 { 1591 (void) mutex_lock(&cp->cache_depot_lock); 1592 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; 1593 cp->cache_full.ml_min = cp->cache_full.ml_total; 1594 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; 1595 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 1596 (void) mutex_unlock(&cp->cache_depot_lock); 1597 } 1598 1599 /* 1600 * Reap all magazines that have fallen out of the depot's working set. 1601 */ 1602 static void 1603 umem_depot_ws_reap(umem_cache_t *cp) 1604 { 1605 long reap; 1606 umem_magazine_t *mp; 1607 1608 ASSERT(cp->cache_next == NULL || IN_REAP()); 1609 1610 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 1611 while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_full)) != NULL) 1612 umem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); 1613 1614 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); 1615 while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_empty)) != NULL) 1616 umem_magazine_destroy(cp, mp, 0); 1617 } 1618 1619 static void 1620 umem_cpu_reload(umem_cpu_cache_t *ccp, umem_magazine_t *mp, int rounds) 1621 { 1622 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || 1623 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); 1624 ASSERT(ccp->cc_magsize > 0); 1625 1626 ccp->cc_ploaded = ccp->cc_loaded; 1627 ccp->cc_prounds = ccp->cc_rounds; 1628 ccp->cc_loaded = mp; 1629 ccp->cc_rounds = rounds; 1630 } 1631 1632 /* 1633 * Allocate a constructed object from cache cp. 1634 */ 1635 #pragma weak umem_cache_alloc = _umem_cache_alloc 1636 void * 1637 _umem_cache_alloc(umem_cache_t *cp, int umflag) 1638 { 1639 umem_cpu_cache_t *ccp; 1640 umem_magazine_t *fmp; 1641 void *buf; 1642 int flags_nfatal; 1643 1644 retry: 1645 ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask)); 1646 (void) mutex_lock(&ccp->cc_lock); 1647 for (;;) { 1648 /* 1649 * If there's an object available in the current CPU's 1650 * loaded magazine, just take it and return. 1651 */ 1652 if (ccp->cc_rounds > 0) { 1653 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; 1654 ccp->cc_alloc++; 1655 (void) mutex_unlock(&ccp->cc_lock); 1656 if ((ccp->cc_flags & UMF_BUFTAG) && 1657 umem_cache_alloc_debug(cp, buf, umflag) == -1) { 1658 if (umem_alloc_retry(cp, umflag)) { 1659 goto retry; 1660 } 1661 1662 return (NULL); 1663 } 1664 return (buf); 1665 } 1666 1667 /* 1668 * The loaded magazine is empty. If the previously loaded 1669 * magazine was full, exchange them and try again. 1670 */ 1671 if (ccp->cc_prounds > 0) { 1672 umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 1673 continue; 1674 } 1675 1676 /* 1677 * If the magazine layer is disabled, break out now. 1678 */ 1679 if (ccp->cc_magsize == 0) 1680 break; 1681 1682 /* 1683 * Try to get a full magazine from the depot. 1684 */ 1685 fmp = umem_depot_alloc(cp, &cp->cache_full); 1686 if (fmp != NULL) { 1687 if (ccp->cc_ploaded != NULL) 1688 umem_depot_free(cp, &cp->cache_empty, 1689 ccp->cc_ploaded); 1690 umem_cpu_reload(ccp, fmp, ccp->cc_magsize); 1691 continue; 1692 } 1693 1694 /* 1695 * There are no full magazines in the depot, 1696 * so fall through to the slab layer. 1697 */ 1698 break; 1699 } 1700 (void) mutex_unlock(&ccp->cc_lock); 1701 1702 /* 1703 * We couldn't allocate a constructed object from the magazine layer, 1704 * so get a raw buffer from the slab layer and apply its constructor. 1705 */ 1706 buf = umem_slab_alloc(cp, umflag); 1707 1708 if (buf == NULL) { 1709 if (cp == &umem_null_cache) 1710 return (NULL); 1711 if (umem_alloc_retry(cp, umflag)) { 1712 goto retry; 1713 } 1714 1715 return (NULL); 1716 } 1717 1718 if (cp->cache_flags & UMF_BUFTAG) { 1719 /* 1720 * Let umem_cache_alloc_debug() apply the constructor for us. 1721 */ 1722 if (umem_cache_alloc_debug(cp, buf, umflag) == -1) { 1723 if (umem_alloc_retry(cp, umflag)) { 1724 goto retry; 1725 } 1726 return (NULL); 1727 } 1728 return (buf); 1729 } 1730 1731 /* 1732 * We do not pass fatal flags on to the constructor. This prevents 1733 * leaking buffers in the event of a subordinate constructor failing. 1734 */ 1735 flags_nfatal = UMEM_DEFAULT; 1736 if (cp->cache_constructor != NULL && 1737 cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0) { 1738 atomic_add_64(&cp->cache_alloc_fail, 1); 1739 umem_slab_free(cp, buf); 1740 1741 if (umem_alloc_retry(cp, umflag)) { 1742 goto retry; 1743 } 1744 return (NULL); 1745 } 1746 1747 return (buf); 1748 } 1749 1750 /* 1751 * Free a constructed object to cache cp. 1752 */ 1753 #pragma weak umem_cache_free = _umem_cache_free 1754 void 1755 _umem_cache_free(umem_cache_t *cp, void *buf) 1756 { 1757 umem_cpu_cache_t *ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask)); 1758 umem_magazine_t *emp; 1759 umem_magtype_t *mtp; 1760 1761 if (ccp->cc_flags & UMF_BUFTAG) 1762 if (umem_cache_free_debug(cp, buf) == -1) 1763 return; 1764 1765 (void) mutex_lock(&ccp->cc_lock); 1766 for (;;) { 1767 /* 1768 * If there's a slot available in the current CPU's 1769 * loaded magazine, just put the object there and return. 1770 */ 1771 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 1772 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; 1773 ccp->cc_free++; 1774 (void) mutex_unlock(&ccp->cc_lock); 1775 return; 1776 } 1777 1778 /* 1779 * The loaded magazine is full. If the previously loaded 1780 * magazine was empty, exchange them and try again. 1781 */ 1782 if (ccp->cc_prounds == 0) { 1783 umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 1784 continue; 1785 } 1786 1787 /* 1788 * If the magazine layer is disabled, break out now. 1789 */ 1790 if (ccp->cc_magsize == 0) 1791 break; 1792 1793 /* 1794 * Try to get an empty magazine from the depot. 1795 */ 1796 emp = umem_depot_alloc(cp, &cp->cache_empty); 1797 if (emp != NULL) { 1798 if (ccp->cc_ploaded != NULL) 1799 umem_depot_free(cp, &cp->cache_full, 1800 ccp->cc_ploaded); 1801 umem_cpu_reload(ccp, emp, 0); 1802 continue; 1803 } 1804 1805 /* 1806 * There are no empty magazines in the depot, 1807 * so try to allocate a new one. We must drop all locks 1808 * across umem_cache_alloc() because lower layers may 1809 * attempt to allocate from this cache. 1810 */ 1811 mtp = cp->cache_magtype; 1812 (void) mutex_unlock(&ccp->cc_lock); 1813 emp = _umem_cache_alloc(mtp->mt_cache, UMEM_DEFAULT); 1814 (void) mutex_lock(&ccp->cc_lock); 1815 1816 if (emp != NULL) { 1817 /* 1818 * We successfully allocated an empty magazine. 1819 * However, we had to drop ccp->cc_lock to do it, 1820 * so the cache's magazine size may have changed. 1821 * If so, free the magazine and try again. 1822 */ 1823 if (ccp->cc_magsize != mtp->mt_magsize) { 1824 (void) mutex_unlock(&ccp->cc_lock); 1825 _umem_cache_free(mtp->mt_cache, emp); 1826 (void) mutex_lock(&ccp->cc_lock); 1827 continue; 1828 } 1829 1830 /* 1831 * We got a magazine of the right size. Add it to 1832 * the depot and try the whole dance again. 1833 */ 1834 umem_depot_free(cp, &cp->cache_empty, emp); 1835 continue; 1836 } 1837 1838 /* 1839 * We couldn't allocate an empty magazine, 1840 * so fall through to the slab layer. 1841 */ 1842 break; 1843 } 1844 (void) mutex_unlock(&ccp->cc_lock); 1845 1846 /* 1847 * We couldn't free our constructed object to the magazine layer, 1848 * so apply its destructor and free it to the slab layer. 1849 * Note that if UMF_BUFTAG is in effect, umem_cache_free_debug() 1850 * will have already applied the destructor. 1851 */ 1852 if (!(cp->cache_flags & UMF_BUFTAG) && cp->cache_destructor != NULL) 1853 cp->cache_destructor(buf, cp->cache_private); 1854 1855 umem_slab_free(cp, buf); 1856 } 1857 1858 #pragma weak umem_zalloc = _umem_zalloc 1859 void * 1860 _umem_zalloc(size_t size, int umflag) 1861 { 1862 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT; 1863 void *buf; 1864 1865 retry: 1866 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) { 1867 umem_cache_t *cp = umem_alloc_table[index]; 1868 buf = _umem_cache_alloc(cp, umflag); 1869 if (buf != NULL) { 1870 if (cp->cache_flags & UMF_BUFTAG) { 1871 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1872 ((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE; 1873 ((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size); 1874 } 1875 bzero(buf, size); 1876 } else if (umem_alloc_retry(cp, umflag)) 1877 goto retry; 1878 } else { 1879 buf = _umem_alloc(size, umflag); /* handles failure */ 1880 if (buf != NULL) 1881 bzero(buf, size); 1882 } 1883 return (buf); 1884 } 1885 1886 #pragma weak umem_alloc = _umem_alloc 1887 void * 1888 _umem_alloc(size_t size, int umflag) 1889 { 1890 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT; 1891 void *buf; 1892 umem_alloc_retry: 1893 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) { 1894 umem_cache_t *cp = umem_alloc_table[index]; 1895 buf = _umem_cache_alloc(cp, umflag); 1896 if ((cp->cache_flags & UMF_BUFTAG) && buf != NULL) { 1897 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1898 ((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE; 1899 ((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size); 1900 } 1901 if (buf == NULL && umem_alloc_retry(cp, umflag)) 1902 goto umem_alloc_retry; 1903 return (buf); 1904 } 1905 if (size == 0) 1906 return (NULL); 1907 if (umem_oversize_arena == NULL) { 1908 if (umem_init()) 1909 ASSERT(umem_oversize_arena != NULL); 1910 else 1911 return (NULL); 1912 } 1913 buf = vmem_alloc(umem_oversize_arena, size, UMEM_VMFLAGS(umflag)); 1914 if (buf == NULL) { 1915 umem_log_event(umem_failure_log, NULL, NULL, (void *)size); 1916 if (umem_alloc_retry(NULL, umflag)) 1917 goto umem_alloc_retry; 1918 } 1919 return (buf); 1920 } 1921 1922 #pragma weak umem_alloc_align = _umem_alloc_align 1923 void * 1924 _umem_alloc_align(size_t size, size_t align, int umflag) 1925 { 1926 void *buf; 1927 1928 if (size == 0) 1929 return (NULL); 1930 if ((align & (align - 1)) != 0) 1931 return (NULL); 1932 if (align < UMEM_ALIGN) 1933 align = UMEM_ALIGN; 1934 1935 umem_alloc_align_retry: 1936 if (umem_memalign_arena == NULL) { 1937 if (umem_init()) 1938 ASSERT(umem_oversize_arena != NULL); 1939 else 1940 return (NULL); 1941 } 1942 buf = vmem_xalloc(umem_memalign_arena, size, align, 0, 0, NULL, NULL, 1943 UMEM_VMFLAGS(umflag)); 1944 if (buf == NULL) { 1945 umem_log_event(umem_failure_log, NULL, NULL, (void *)size); 1946 if (umem_alloc_retry(NULL, umflag)) 1947 goto umem_alloc_align_retry; 1948 } 1949 return (buf); 1950 } 1951 1952 #pragma weak umem_free = _umem_free 1953 void 1954 _umem_free(void *buf, size_t size) 1955 { 1956 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT; 1957 1958 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) { 1959 umem_cache_t *cp = umem_alloc_table[index]; 1960 if (cp->cache_flags & UMF_BUFTAG) { 1961 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1962 uint32_t *ip = (uint32_t *)btp; 1963 if (ip[1] != UMEM_SIZE_ENCODE(size)) { 1964 if (*(uint64_t *)buf == UMEM_FREE_PATTERN) { 1965 umem_error(UMERR_DUPFREE, cp, buf); 1966 return; 1967 } 1968 if (UMEM_SIZE_VALID(ip[1])) { 1969 ip[0] = UMEM_SIZE_ENCODE(size); 1970 umem_error(UMERR_BADSIZE, cp, buf); 1971 } else { 1972 umem_error(UMERR_REDZONE, cp, buf); 1973 } 1974 return; 1975 } 1976 if (((uint8_t *)buf)[size] != UMEM_REDZONE_BYTE) { 1977 umem_error(UMERR_REDZONE, cp, buf); 1978 return; 1979 } 1980 btp->bt_redzone = UMEM_REDZONE_PATTERN; 1981 } 1982 _umem_cache_free(cp, buf); 1983 } else { 1984 if (buf == NULL && size == 0) 1985 return; 1986 vmem_free(umem_oversize_arena, buf, size); 1987 } 1988 } 1989 1990 #pragma weak umem_free_align = _umem_free_align 1991 void 1992 _umem_free_align(void *buf, size_t size) 1993 { 1994 if (buf == NULL && size == 0) 1995 return; 1996 vmem_xfree(umem_memalign_arena, buf, size); 1997 } 1998 1999 static void * 2000 umem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) 2001 { 2002 size_t realsize = size + vmp->vm_quantum; 2003 2004 /* 2005 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding 2006 * vm_quantum will cause integer wraparound. Check for this, and 2007 * blow off the firewall page in this case. Note that such a 2008 * giant allocation (the entire address space) can never be 2009 * satisfied, so it will either fail immediately (VM_NOSLEEP) 2010 * or sleep forever (VM_SLEEP). Thus, there is no need for a 2011 * corresponding check in umem_firewall_va_free(). 2012 */ 2013 if (realsize < size) 2014 realsize = size; 2015 2016 return (vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT)); 2017 } 2018 2019 static void 2020 umem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) 2021 { 2022 vmem_free(vmp, addr, size + vmp->vm_quantum); 2023 } 2024 2025 /* 2026 * Reclaim all unused memory from a cache. 2027 */ 2028 static void 2029 umem_cache_reap(umem_cache_t *cp) 2030 { 2031 /* 2032 * Ask the cache's owner to free some memory if possible. 2033 * The idea is to handle things like the inode cache, which 2034 * typically sits on a bunch of memory that it doesn't truly 2035 * *need*. Reclaim policy is entirely up to the owner; this 2036 * callback is just an advisory plea for help. 2037 */ 2038 if (cp->cache_reclaim != NULL) 2039 cp->cache_reclaim(cp->cache_private); 2040 2041 umem_depot_ws_reap(cp); 2042 } 2043 2044 /* 2045 * Purge all magazines from a cache and set its magazine limit to zero. 2046 * All calls are serialized by being done by the update thread, except for 2047 * the final call from umem_cache_destroy(). 2048 */ 2049 static void 2050 umem_cache_magazine_purge(umem_cache_t *cp) 2051 { 2052 umem_cpu_cache_t *ccp; 2053 umem_magazine_t *mp, *pmp; 2054 int rounds, prounds, cpu_seqid; 2055 2056 ASSERT(cp->cache_next == NULL || IN_UPDATE()); 2057 2058 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) { 2059 ccp = &cp->cache_cpu[cpu_seqid]; 2060 2061 (void) mutex_lock(&ccp->cc_lock); 2062 mp = ccp->cc_loaded; 2063 pmp = ccp->cc_ploaded; 2064 rounds = ccp->cc_rounds; 2065 prounds = ccp->cc_prounds; 2066 ccp->cc_loaded = NULL; 2067 ccp->cc_ploaded = NULL; 2068 ccp->cc_rounds = -1; 2069 ccp->cc_prounds = -1; 2070 ccp->cc_magsize = 0; 2071 (void) mutex_unlock(&ccp->cc_lock); 2072 2073 if (mp) 2074 umem_magazine_destroy(cp, mp, rounds); 2075 if (pmp) 2076 umem_magazine_destroy(cp, pmp, prounds); 2077 } 2078 2079 /* 2080 * Updating the working set statistics twice in a row has the 2081 * effect of setting the working set size to zero, so everything 2082 * is eligible for reaping. 2083 */ 2084 umem_depot_ws_update(cp); 2085 umem_depot_ws_update(cp); 2086 2087 umem_depot_ws_reap(cp); 2088 } 2089 2090 /* 2091 * Enable per-cpu magazines on a cache. 2092 */ 2093 static void 2094 umem_cache_magazine_enable(umem_cache_t *cp) 2095 { 2096 int cpu_seqid; 2097 2098 if (cp->cache_flags & UMF_NOMAGAZINE) 2099 return; 2100 2101 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) { 2102 umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 2103 (void) mutex_lock(&ccp->cc_lock); 2104 ccp->cc_magsize = cp->cache_magtype->mt_magsize; 2105 (void) mutex_unlock(&ccp->cc_lock); 2106 } 2107 2108 } 2109 2110 /* 2111 * Recompute a cache's magazine size. The trade-off is that larger magazines 2112 * provide a higher transfer rate with the depot, while smaller magazines 2113 * reduce memory consumption. Magazine resizing is an expensive operation; 2114 * it should not be done frequently. 2115 * 2116 * Changes to the magazine size are serialized by only having one thread 2117 * doing updates. (the update thread) 2118 * 2119 * Note: at present this only grows the magazine size. It might be useful 2120 * to allow shrinkage too. 2121 */ 2122 static void 2123 umem_cache_magazine_resize(umem_cache_t *cp) 2124 { 2125 umem_magtype_t *mtp = cp->cache_magtype; 2126 2127 ASSERT(IN_UPDATE()); 2128 2129 if (cp->cache_chunksize < mtp->mt_maxbuf) { 2130 umem_cache_magazine_purge(cp); 2131 (void) mutex_lock(&cp->cache_depot_lock); 2132 cp->cache_magtype = ++mtp; 2133 cp->cache_depot_contention_prev = 2134 cp->cache_depot_contention + INT_MAX; 2135 (void) mutex_unlock(&cp->cache_depot_lock); 2136 umem_cache_magazine_enable(cp); 2137 } 2138 } 2139 2140 /* 2141 * Rescale a cache's hash table, so that the table size is roughly the 2142 * cache size. We want the average lookup time to be extremely small. 2143 */ 2144 static void 2145 umem_hash_rescale(umem_cache_t *cp) 2146 { 2147 umem_bufctl_t **old_table, **new_table, *bcp; 2148 size_t old_size, new_size, h; 2149 2150 ASSERT(IN_UPDATE()); 2151 2152 new_size = MAX(UMEM_HASH_INITIAL, 2153 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); 2154 old_size = cp->cache_hash_mask + 1; 2155 2156 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 2157 return; 2158 2159 new_table = vmem_alloc(umem_hash_arena, new_size * sizeof (void *), 2160 VM_NOSLEEP); 2161 if (new_table == NULL) 2162 return; 2163 bzero(new_table, new_size * sizeof (void *)); 2164 2165 (void) mutex_lock(&cp->cache_lock); 2166 2167 old_size = cp->cache_hash_mask + 1; 2168 old_table = cp->cache_hash_table; 2169 2170 cp->cache_hash_mask = new_size - 1; 2171 cp->cache_hash_table = new_table; 2172 cp->cache_rescale++; 2173 2174 for (h = 0; h < old_size; h++) { 2175 bcp = old_table[h]; 2176 while (bcp != NULL) { 2177 void *addr = bcp->bc_addr; 2178 umem_bufctl_t *next_bcp = bcp->bc_next; 2179 umem_bufctl_t **hash_bucket = UMEM_HASH(cp, addr); 2180 bcp->bc_next = *hash_bucket; 2181 *hash_bucket = bcp; 2182 bcp = next_bcp; 2183 } 2184 } 2185 2186 (void) mutex_unlock(&cp->cache_lock); 2187 2188 vmem_free(umem_hash_arena, old_table, old_size * sizeof (void *)); 2189 } 2190 2191 /* 2192 * Perform periodic maintenance on a cache: hash rescaling, 2193 * depot working-set update, and magazine resizing. 2194 */ 2195 void 2196 umem_cache_update(umem_cache_t *cp) 2197 { 2198 int update_flags = 0; 2199 2200 ASSERT(MUTEX_HELD(&umem_cache_lock)); 2201 2202 /* 2203 * If the cache has become much larger or smaller than its hash table, 2204 * fire off a request to rescale the hash table. 2205 */ 2206 (void) mutex_lock(&cp->cache_lock); 2207 2208 if ((cp->cache_flags & UMF_HASH) && 2209 (cp->cache_buftotal > (cp->cache_hash_mask << 1) || 2210 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && 2211 cp->cache_hash_mask > UMEM_HASH_INITIAL))) 2212 update_flags |= UMU_HASH_RESCALE; 2213 2214 (void) mutex_unlock(&cp->cache_lock); 2215 2216 /* 2217 * Update the depot working set statistics. 2218 */ 2219 umem_depot_ws_update(cp); 2220 2221 /* 2222 * If there's a lot of contention in the depot, 2223 * increase the magazine size. 2224 */ 2225 (void) mutex_lock(&cp->cache_depot_lock); 2226 2227 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && 2228 (int)(cp->cache_depot_contention - 2229 cp->cache_depot_contention_prev) > umem_depot_contention) 2230 update_flags |= UMU_MAGAZINE_RESIZE; 2231 2232 cp->cache_depot_contention_prev = cp->cache_depot_contention; 2233 2234 (void) mutex_unlock(&cp->cache_depot_lock); 2235 2236 if (update_flags) 2237 umem_add_update(cp, update_flags); 2238 } 2239 2240 /* 2241 * Runs all pending updates. 2242 * 2243 * The update lock must be held on entrance, and will be held on exit. 2244 */ 2245 void 2246 umem_process_updates(void) 2247 { 2248 ASSERT(MUTEX_HELD(&umem_update_lock)); 2249 2250 while (umem_null_cache.cache_unext != &umem_null_cache) { 2251 int notify = 0; 2252 umem_cache_t *cp = umem_null_cache.cache_unext; 2253 2254 cp->cache_uprev->cache_unext = cp->cache_unext; 2255 cp->cache_unext->cache_uprev = cp->cache_uprev; 2256 cp->cache_uprev = cp->cache_unext = NULL; 2257 2258 ASSERT(!(cp->cache_uflags & UMU_ACTIVE)); 2259 2260 while (cp->cache_uflags) { 2261 int uflags = (cp->cache_uflags |= UMU_ACTIVE); 2262 (void) mutex_unlock(&umem_update_lock); 2263 2264 /* 2265 * The order here is important. Each step can speed up 2266 * later steps. 2267 */ 2268 2269 if (uflags & UMU_HASH_RESCALE) 2270 umem_hash_rescale(cp); 2271 2272 if (uflags & UMU_MAGAZINE_RESIZE) 2273 umem_cache_magazine_resize(cp); 2274 2275 if (uflags & UMU_REAP) 2276 umem_cache_reap(cp); 2277 2278 (void) mutex_lock(&umem_update_lock); 2279 2280 /* 2281 * check if anyone has requested notification 2282 */ 2283 if (cp->cache_uflags & UMU_NOTIFY) { 2284 uflags |= UMU_NOTIFY; 2285 notify = 1; 2286 } 2287 cp->cache_uflags &= ~uflags; 2288 } 2289 if (notify) 2290 (void) cond_broadcast(&umem_update_cv); 2291 } 2292 } 2293 2294 #ifndef UMEM_STANDALONE 2295 static void 2296 umem_st_update(void) 2297 { 2298 ASSERT(MUTEX_HELD(&umem_update_lock)); 2299 ASSERT(umem_update_thr == 0 && umem_st_update_thr == 0); 2300 2301 umem_st_update_thr = thr_self(); 2302 2303 (void) mutex_unlock(&umem_update_lock); 2304 2305 vmem_update(NULL); 2306 umem_cache_applyall(umem_cache_update); 2307 2308 (void) mutex_lock(&umem_update_lock); 2309 2310 umem_process_updates(); /* does all of the requested work */ 2311 2312 umem_reap_next = gethrtime() + 2313 (hrtime_t)umem_reap_interval * NANOSEC; 2314 2315 umem_reaping = UMEM_REAP_DONE; 2316 2317 umem_st_update_thr = 0; 2318 } 2319 #endif 2320 2321 /* 2322 * Reclaim all unused memory from all caches. Called from vmem when memory 2323 * gets tight. Must be called with no locks held. 2324 * 2325 * This just requests a reap on all caches, and notifies the update thread. 2326 */ 2327 void 2328 umem_reap(void) 2329 { 2330 #ifndef UMEM_STANDALONE 2331 extern int __nthreads(void); 2332 #endif 2333 2334 if (umem_ready != UMEM_READY || umem_reaping != UMEM_REAP_DONE || 2335 gethrtime() < umem_reap_next) 2336 return; 2337 2338 (void) mutex_lock(&umem_update_lock); 2339 2340 if (umem_reaping != UMEM_REAP_DONE || gethrtime() < umem_reap_next) { 2341 (void) mutex_unlock(&umem_update_lock); 2342 return; 2343 } 2344 umem_reaping = UMEM_REAP_ADDING; /* lock out other reaps */ 2345 2346 (void) mutex_unlock(&umem_update_lock); 2347 2348 umem_updateall(UMU_REAP); 2349 2350 (void) mutex_lock(&umem_update_lock); 2351 2352 umem_reaping = UMEM_REAP_ACTIVE; 2353 2354 /* Standalone is single-threaded */ 2355 #ifndef UMEM_STANDALONE 2356 if (umem_update_thr == 0) { 2357 /* 2358 * The update thread does not exist. If the process is 2359 * multi-threaded, create it. If not, or the creation fails, 2360 * do the update processing inline. 2361 */ 2362 ASSERT(umem_st_update_thr == 0); 2363 2364 if (__nthreads() <= 1 || umem_create_update_thread() == 0) 2365 umem_st_update(); 2366 } 2367 2368 (void) cond_broadcast(&umem_update_cv); /* wake up the update thread */ 2369 #endif 2370 2371 (void) mutex_unlock(&umem_update_lock); 2372 } 2373 2374 umem_cache_t * 2375 umem_cache_create( 2376 char *name, /* descriptive name for this cache */ 2377 size_t bufsize, /* size of the objects it manages */ 2378 size_t align, /* required object alignment */ 2379 umem_constructor_t *constructor, /* object constructor */ 2380 umem_destructor_t *destructor, /* object destructor */ 2381 umem_reclaim_t *reclaim, /* memory reclaim callback */ 2382 void *private, /* pass-thru arg for constr/destr/reclaim */ 2383 vmem_t *vmp, /* vmem source for slab allocation */ 2384 int cflags) /* cache creation flags */ 2385 { 2386 int cpu_seqid; 2387 size_t chunksize; 2388 umem_cache_t *cp, *cnext, *cprev; 2389 umem_magtype_t *mtp; 2390 size_t csize; 2391 size_t phase; 2392 2393 /* 2394 * The init thread is allowed to create internal and quantum caches. 2395 * 2396 * Other threads must wait until until initialization is complete. 2397 */ 2398 if (umem_init_thr == thr_self()) 2399 ASSERT((cflags & (UMC_INTERNAL | UMC_QCACHE)) != 0); 2400 else { 2401 ASSERT(!(cflags & UMC_INTERNAL)); 2402 if (umem_ready != UMEM_READY && umem_init() == 0) { 2403 errno = EAGAIN; 2404 return (NULL); 2405 } 2406 } 2407 2408 csize = UMEM_CACHE_SIZE(umem_max_ncpus); 2409 phase = P2NPHASE(csize, UMEM_CPU_CACHE_SIZE); 2410 2411 if (vmp == NULL) 2412 vmp = umem_default_arena; 2413 2414 ASSERT(P2PHASE(phase, UMEM_ALIGN) == 0); 2415 2416 /* 2417 * Check that the arguments are reasonable 2418 */ 2419 if ((align & (align - 1)) != 0 || align > vmp->vm_quantum || 2420 ((cflags & UMC_NOHASH) && (cflags & UMC_NOTOUCH)) || 2421 name == NULL || bufsize == 0) { 2422 errno = EINVAL; 2423 return (NULL); 2424 } 2425 2426 /* 2427 * If align == 0, we set it to the minimum required alignment. 2428 * 2429 * If align < UMEM_ALIGN, we round it up to UMEM_ALIGN, unless 2430 * UMC_NOTOUCH was passed. 2431 */ 2432 if (align == 0) { 2433 if (P2ROUNDUP(bufsize, UMEM_ALIGN) >= UMEM_SECOND_ALIGN) 2434 align = UMEM_SECOND_ALIGN; 2435 else 2436 align = UMEM_ALIGN; 2437 } else if (align < UMEM_ALIGN && (cflags & UMC_NOTOUCH) == 0) 2438 align = UMEM_ALIGN; 2439 2440 2441 /* 2442 * Get a umem_cache structure. We arrange that cp->cache_cpu[] 2443 * is aligned on a UMEM_CPU_CACHE_SIZE boundary to prevent 2444 * false sharing of per-CPU data. 2445 */ 2446 cp = vmem_xalloc(umem_cache_arena, csize, UMEM_CPU_CACHE_SIZE, phase, 2447 0, NULL, NULL, VM_NOSLEEP); 2448 2449 if (cp == NULL) { 2450 errno = EAGAIN; 2451 return (NULL); 2452 } 2453 2454 bzero(cp, csize); 2455 2456 (void) mutex_lock(&umem_flags_lock); 2457 if (umem_flags & UMF_RANDOMIZE) 2458 umem_flags = (((umem_flags | ~UMF_RANDOM) + 1) & UMF_RANDOM) | 2459 UMF_RANDOMIZE; 2460 cp->cache_flags = umem_flags | (cflags & UMF_DEBUG); 2461 (void) mutex_unlock(&umem_flags_lock); 2462 2463 /* 2464 * Make sure all the various flags are reasonable. 2465 */ 2466 if (cp->cache_flags & UMF_LITE) { 2467 if (bufsize >= umem_lite_minsize && 2468 align <= umem_lite_maxalign && 2469 P2PHASE(bufsize, umem_lite_maxalign) != 0) { 2470 cp->cache_flags |= UMF_BUFTAG; 2471 cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL); 2472 } else { 2473 cp->cache_flags &= ~UMF_DEBUG; 2474 } 2475 } 2476 2477 if ((cflags & UMC_QCACHE) && (cp->cache_flags & UMF_AUDIT)) 2478 cp->cache_flags |= UMF_NOMAGAZINE; 2479 2480 if (cflags & UMC_NODEBUG) 2481 cp->cache_flags &= ~UMF_DEBUG; 2482 2483 if (cflags & UMC_NOTOUCH) 2484 cp->cache_flags &= ~UMF_TOUCH; 2485 2486 if (cflags & UMC_NOHASH) 2487 cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL); 2488 2489 if (cflags & UMC_NOMAGAZINE) 2490 cp->cache_flags |= UMF_NOMAGAZINE; 2491 2492 if ((cp->cache_flags & UMF_AUDIT) && !(cflags & UMC_NOTOUCH)) 2493 cp->cache_flags |= UMF_REDZONE; 2494 2495 if ((cp->cache_flags & UMF_BUFTAG) && bufsize >= umem_minfirewall && 2496 !(cp->cache_flags & UMF_LITE) && !(cflags & UMC_NOHASH)) 2497 cp->cache_flags |= UMF_FIREWALL; 2498 2499 if (vmp != umem_default_arena || umem_firewall_arena == NULL) 2500 cp->cache_flags &= ~UMF_FIREWALL; 2501 2502 if (cp->cache_flags & UMF_FIREWALL) { 2503 cp->cache_flags &= ~UMF_BUFTAG; 2504 cp->cache_flags |= UMF_NOMAGAZINE; 2505 ASSERT(vmp == umem_default_arena); 2506 vmp = umem_firewall_arena; 2507 } 2508 2509 /* 2510 * Set cache properties. 2511 */ 2512 (void) strncpy(cp->cache_name, name, sizeof (cp->cache_name) - 1); 2513 cp->cache_bufsize = bufsize; 2514 cp->cache_align = align; 2515 cp->cache_constructor = constructor; 2516 cp->cache_destructor = destructor; 2517 cp->cache_reclaim = reclaim; 2518 cp->cache_private = private; 2519 cp->cache_arena = vmp; 2520 cp->cache_cflags = cflags; 2521 cp->cache_cpu_mask = umem_cpu_mask; 2522 2523 /* 2524 * Determine the chunk size. 2525 */ 2526 chunksize = bufsize; 2527 2528 if (align >= UMEM_ALIGN) { 2529 chunksize = P2ROUNDUP(chunksize, UMEM_ALIGN); 2530 cp->cache_bufctl = chunksize - UMEM_ALIGN; 2531 } 2532 2533 if (cp->cache_flags & UMF_BUFTAG) { 2534 cp->cache_bufctl = chunksize; 2535 cp->cache_buftag = chunksize; 2536 chunksize += sizeof (umem_buftag_t); 2537 } 2538 2539 if (cp->cache_flags & UMF_DEADBEEF) { 2540 cp->cache_verify = MIN(cp->cache_buftag, umem_maxverify); 2541 if (cp->cache_flags & UMF_LITE) 2542 cp->cache_verify = MIN(cp->cache_verify, UMEM_ALIGN); 2543 } 2544 2545 cp->cache_contents = MIN(cp->cache_bufctl, umem_content_maxsave); 2546 2547 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); 2548 2549 if (chunksize < bufsize) { 2550 errno = ENOMEM; 2551 goto fail; 2552 } 2553 2554 /* 2555 * Now that we know the chunk size, determine the optimal slab size. 2556 */ 2557 if (vmp == umem_firewall_arena) { 2558 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); 2559 cp->cache_mincolor = cp->cache_slabsize - chunksize; 2560 cp->cache_maxcolor = cp->cache_mincolor; 2561 cp->cache_flags |= UMF_HASH; 2562 ASSERT(!(cp->cache_flags & UMF_BUFTAG)); 2563 } else if ((cflags & UMC_NOHASH) || (!(cflags & UMC_NOTOUCH) && 2564 !(cp->cache_flags & UMF_AUDIT) && 2565 chunksize < vmp->vm_quantum / UMEM_VOID_FRACTION)) { 2566 cp->cache_slabsize = vmp->vm_quantum; 2567 cp->cache_mincolor = 0; 2568 cp->cache_maxcolor = 2569 (cp->cache_slabsize - sizeof (umem_slab_t)) % chunksize; 2570 2571 if (chunksize + sizeof (umem_slab_t) > cp->cache_slabsize) { 2572 errno = EINVAL; 2573 goto fail; 2574 } 2575 ASSERT(!(cp->cache_flags & UMF_AUDIT)); 2576 } else { 2577 size_t chunks, bestfit, waste, slabsize; 2578 size_t minwaste = LONG_MAX; 2579 2580 for (chunks = 1; chunks <= UMEM_VOID_FRACTION; chunks++) { 2581 slabsize = P2ROUNDUP(chunksize * chunks, 2582 vmp->vm_quantum); 2583 /* 2584 * check for overflow 2585 */ 2586 if ((slabsize / chunks) < chunksize) { 2587 errno = ENOMEM; 2588 goto fail; 2589 } 2590 chunks = slabsize / chunksize; 2591 waste = (slabsize % chunksize) / chunks; 2592 if (waste < minwaste) { 2593 minwaste = waste; 2594 bestfit = slabsize; 2595 } 2596 } 2597 if (cflags & UMC_QCACHE) 2598 bestfit = MAX(1 << highbit(3 * vmp->vm_qcache_max), 64); 2599 cp->cache_slabsize = bestfit; 2600 cp->cache_mincolor = 0; 2601 cp->cache_maxcolor = bestfit % chunksize; 2602 cp->cache_flags |= UMF_HASH; 2603 } 2604 2605 if (cp->cache_flags & UMF_HASH) { 2606 ASSERT(!(cflags & UMC_NOHASH)); 2607 cp->cache_bufctl_cache = (cp->cache_flags & UMF_AUDIT) ? 2608 umem_bufctl_audit_cache : umem_bufctl_cache; 2609 } 2610 2611 if (cp->cache_maxcolor >= vmp->vm_quantum) 2612 cp->cache_maxcolor = vmp->vm_quantum - 1; 2613 2614 cp->cache_color = cp->cache_mincolor; 2615 2616 /* 2617 * Initialize the rest of the slab layer. 2618 */ 2619 (void) mutex_init(&cp->cache_lock, USYNC_THREAD, NULL); 2620 2621 cp->cache_freelist = &cp->cache_nullslab; 2622 cp->cache_nullslab.slab_cache = cp; 2623 cp->cache_nullslab.slab_refcnt = -1; 2624 cp->cache_nullslab.slab_next = &cp->cache_nullslab; 2625 cp->cache_nullslab.slab_prev = &cp->cache_nullslab; 2626 2627 if (cp->cache_flags & UMF_HASH) { 2628 cp->cache_hash_table = vmem_alloc(umem_hash_arena, 2629 UMEM_HASH_INITIAL * sizeof (void *), VM_NOSLEEP); 2630 if (cp->cache_hash_table == NULL) { 2631 errno = EAGAIN; 2632 goto fail_lock; 2633 } 2634 bzero(cp->cache_hash_table, 2635 UMEM_HASH_INITIAL * sizeof (void *)); 2636 cp->cache_hash_mask = UMEM_HASH_INITIAL - 1; 2637 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; 2638 } 2639 2640 /* 2641 * Initialize the depot. 2642 */ 2643 (void) mutex_init(&cp->cache_depot_lock, USYNC_THREAD, NULL); 2644 2645 for (mtp = umem_magtype; chunksize <= mtp->mt_minbuf; mtp++) 2646 continue; 2647 2648 cp->cache_magtype = mtp; 2649 2650 /* 2651 * Initialize the CPU layer. 2652 */ 2653 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) { 2654 umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 2655 (void) mutex_init(&ccp->cc_lock, USYNC_THREAD, NULL); 2656 ccp->cc_flags = cp->cache_flags; 2657 ccp->cc_rounds = -1; 2658 ccp->cc_prounds = -1; 2659 } 2660 2661 /* 2662 * Add the cache to the global list. This makes it visible 2663 * to umem_update(), so the cache must be ready for business. 2664 */ 2665 (void) mutex_lock(&umem_cache_lock); 2666 cp->cache_next = cnext = &umem_null_cache; 2667 cp->cache_prev = cprev = umem_null_cache.cache_prev; 2668 cnext->cache_prev = cp; 2669 cprev->cache_next = cp; 2670 (void) mutex_unlock(&umem_cache_lock); 2671 2672 if (umem_ready == UMEM_READY) 2673 umem_cache_magazine_enable(cp); 2674 2675 return (cp); 2676 2677 fail_lock: 2678 (void) mutex_destroy(&cp->cache_lock); 2679 fail: 2680 vmem_xfree(umem_cache_arena, cp, csize); 2681 return (NULL); 2682 } 2683 2684 void 2685 umem_cache_destroy(umem_cache_t *cp) 2686 { 2687 int cpu_seqid; 2688 2689 /* 2690 * Remove the cache from the global cache list so that no new updates 2691 * will be scheduled on its behalf, wait for any pending tasks to 2692 * complete, purge the cache, and then destroy it. 2693 */ 2694 (void) mutex_lock(&umem_cache_lock); 2695 cp->cache_prev->cache_next = cp->cache_next; 2696 cp->cache_next->cache_prev = cp->cache_prev; 2697 cp->cache_prev = cp->cache_next = NULL; 2698 (void) mutex_unlock(&umem_cache_lock); 2699 2700 umem_remove_updates(cp); 2701 2702 umem_cache_magazine_purge(cp); 2703 2704 (void) mutex_lock(&cp->cache_lock); 2705 if (cp->cache_buftotal != 0) 2706 log_message("umem_cache_destroy: '%s' (%p) not empty\n", 2707 cp->cache_name, (void *)cp); 2708 cp->cache_reclaim = NULL; 2709 /* 2710 * The cache is now dead. There should be no further activity. 2711 * We enforce this by setting land mines in the constructor and 2712 * destructor routines that induce a segmentation fault if invoked. 2713 */ 2714 cp->cache_constructor = (umem_constructor_t *)1; 2715 cp->cache_destructor = (umem_destructor_t *)2; 2716 (void) mutex_unlock(&cp->cache_lock); 2717 2718 if (cp->cache_hash_table != NULL) 2719 vmem_free(umem_hash_arena, cp->cache_hash_table, 2720 (cp->cache_hash_mask + 1) * sizeof (void *)); 2721 2722 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) 2723 (void) mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); 2724 2725 (void) mutex_destroy(&cp->cache_depot_lock); 2726 (void) mutex_destroy(&cp->cache_lock); 2727 2728 vmem_free(umem_cache_arena, cp, UMEM_CACHE_SIZE(umem_max_ncpus)); 2729 } 2730 2731 static int 2732 umem_cache_init(void) 2733 { 2734 int i; 2735 size_t size, max_size; 2736 umem_cache_t *cp; 2737 umem_magtype_t *mtp; 2738 char name[UMEM_CACHE_NAMELEN + 1]; 2739 umem_cache_t *umem_alloc_caches[NUM_ALLOC_SIZES]; 2740 2741 for (i = 0; i < sizeof (umem_magtype) / sizeof (*mtp); i++) { 2742 mtp = &umem_magtype[i]; 2743 (void) snprintf(name, sizeof (name), "umem_magazine_%d", 2744 mtp->mt_magsize); 2745 mtp->mt_cache = umem_cache_create(name, 2746 (mtp->mt_magsize + 1) * sizeof (void *), 2747 mtp->mt_align, NULL, NULL, NULL, NULL, 2748 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL); 2749 if (mtp->mt_cache == NULL) 2750 return (0); 2751 } 2752 2753 umem_slab_cache = umem_cache_create("umem_slab_cache", 2754 sizeof (umem_slab_t), 0, NULL, NULL, NULL, NULL, 2755 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL); 2756 2757 if (umem_slab_cache == NULL) 2758 return (0); 2759 2760 umem_bufctl_cache = umem_cache_create("umem_bufctl_cache", 2761 sizeof (umem_bufctl_t), 0, NULL, NULL, NULL, NULL, 2762 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL); 2763 2764 if (umem_bufctl_cache == NULL) 2765 return (0); 2766 2767 /* 2768 * The size of the umem_bufctl_audit structure depends upon 2769 * umem_stack_depth. See umem_impl.h for details on the size 2770 * restrictions. 2771 */ 2772 2773 size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth); 2774 max_size = UMEM_BUFCTL_AUDIT_MAX_SIZE; 2775 2776 if (size > max_size) { /* too large -- truncate */ 2777 int max_frames = UMEM_MAX_STACK_DEPTH; 2778 2779 ASSERT(UMEM_BUFCTL_AUDIT_SIZE_DEPTH(max_frames) <= max_size); 2780 2781 umem_stack_depth = max_frames; 2782 size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth); 2783 } 2784 2785 umem_bufctl_audit_cache = umem_cache_create("umem_bufctl_audit_cache", 2786 size, 0, NULL, NULL, NULL, NULL, umem_internal_arena, 2787 UMC_NOHASH | UMC_INTERNAL); 2788 2789 if (umem_bufctl_audit_cache == NULL) 2790 return (0); 2791 2792 if (vmem_backend & VMEM_BACKEND_MMAP) 2793 umem_va_arena = vmem_create("umem_va", 2794 NULL, 0, pagesize, 2795 vmem_alloc, vmem_free, heap_arena, 2796 8 * pagesize, VM_NOSLEEP); 2797 else 2798 umem_va_arena = heap_arena; 2799 2800 if (umem_va_arena == NULL) 2801 return (0); 2802 2803 umem_default_arena = vmem_create("umem_default", 2804 NULL, 0, pagesize, 2805 heap_alloc, heap_free, umem_va_arena, 2806 0, VM_NOSLEEP); 2807 2808 if (umem_default_arena == NULL) 2809 return (0); 2810 2811 /* 2812 * make sure the umem_alloc table initializer is correct 2813 */ 2814 i = sizeof (umem_alloc_table) / sizeof (*umem_alloc_table); 2815 ASSERT(umem_alloc_table[i - 1] == &umem_null_cache); 2816 2817 /* 2818 * Create the default caches to back umem_alloc() 2819 */ 2820 for (i = 0; i < NUM_ALLOC_SIZES; i++) { 2821 size_t cache_size = umem_alloc_sizes[i]; 2822 size_t align = 0; 2823 /* 2824 * If they allocate a multiple of the coherency granularity, 2825 * they get a coherency-granularity-aligned address. 2826 */ 2827 if (IS_P2ALIGNED(cache_size, 64)) 2828 align = 64; 2829 if (IS_P2ALIGNED(cache_size, pagesize)) 2830 align = pagesize; 2831 (void) snprintf(name, sizeof (name), "umem_alloc_%lu", 2832 (long)cache_size); 2833 2834 cp = umem_cache_create(name, cache_size, align, 2835 NULL, NULL, NULL, NULL, NULL, UMC_INTERNAL); 2836 if (cp == NULL) 2837 return (0); 2838 2839 umem_alloc_caches[i] = cp; 2840 } 2841 2842 /* 2843 * Initialization cannot fail at this point. Make the caches 2844 * visible to umem_alloc() and friends. 2845 */ 2846 size = UMEM_ALIGN; 2847 for (i = 0; i < NUM_ALLOC_SIZES; i++) { 2848 size_t cache_size = umem_alloc_sizes[i]; 2849 2850 cp = umem_alloc_caches[i]; 2851 2852 while (size <= cache_size) { 2853 umem_alloc_table[(size - 1) >> UMEM_ALIGN_SHIFT] = cp; 2854 size += UMEM_ALIGN; 2855 } 2856 } 2857 return (1); 2858 } 2859 2860 /* 2861 * umem_startup() is called early on, and must be called explicitly if we're 2862 * the standalone version. 2863 */ 2864 #ifdef UMEM_STANDALONE 2865 void 2866 #else 2867 #pragma init(umem_startup) 2868 static void 2869 #endif 2870 umem_startup(caddr_t start, size_t len, size_t pagesize, caddr_t minstack, 2871 caddr_t maxstack) 2872 { 2873 #ifdef UMEM_STANDALONE 2874 int idx; 2875 /* Standalone doesn't fork */ 2876 #else 2877 umem_forkhandler_init(); /* register the fork handler */ 2878 #endif 2879 2880 #ifdef __lint 2881 /* make lint happy */ 2882 minstack = maxstack; 2883 #endif 2884 2885 #ifdef UMEM_STANDALONE 2886 umem_ready = UMEM_READY_STARTUP; 2887 umem_init_env_ready = 0; 2888 2889 umem_min_stack = minstack; 2890 umem_max_stack = maxstack; 2891 2892 nofail_callback = NULL; 2893 umem_slab_cache = NULL; 2894 umem_bufctl_cache = NULL; 2895 umem_bufctl_audit_cache = NULL; 2896 heap_arena = NULL; 2897 heap_alloc = NULL; 2898 heap_free = NULL; 2899 umem_internal_arena = NULL; 2900 umem_cache_arena = NULL; 2901 umem_hash_arena = NULL; 2902 umem_log_arena = NULL; 2903 umem_oversize_arena = NULL; 2904 umem_va_arena = NULL; 2905 umem_default_arena = NULL; 2906 umem_firewall_va_arena = NULL; 2907 umem_firewall_arena = NULL; 2908 umem_memalign_arena = NULL; 2909 umem_transaction_log = NULL; 2910 umem_content_log = NULL; 2911 umem_failure_log = NULL; 2912 umem_slab_log = NULL; 2913 umem_cpu_mask = 0; 2914 2915 umem_cpus = &umem_startup_cpu; 2916 umem_startup_cpu.cpu_cache_offset = UMEM_CACHE_SIZE(0); 2917 umem_startup_cpu.cpu_number = 0; 2918 2919 bcopy(&umem_null_cache_template, &umem_null_cache, 2920 sizeof (umem_cache_t)); 2921 2922 for (idx = 0; idx < (UMEM_MAXBUF >> UMEM_ALIGN_SHIFT); idx++) 2923 umem_alloc_table[idx] = &umem_null_cache; 2924 #endif 2925 2926 /* 2927 * Perform initialization specific to the way we've been compiled 2928 * (library or standalone) 2929 */ 2930 umem_type_init(start, len, pagesize); 2931 2932 vmem_startup(); 2933 } 2934 2935 int 2936 umem_init(void) 2937 { 2938 size_t maxverify, minfirewall; 2939 size_t size; 2940 int idx; 2941 umem_cpu_t *new_cpus; 2942 2943 vmem_t *memalign_arena, *oversize_arena; 2944 2945 if (thr_self() != umem_init_thr) { 2946 /* 2947 * The usual case -- non-recursive invocation of umem_init(). 2948 */ 2949 (void) mutex_lock(&umem_init_lock); 2950 if (umem_ready != UMEM_READY_STARTUP) { 2951 /* 2952 * someone else beat us to initializing umem. Wait 2953 * for them to complete, then return. 2954 */ 2955 while (umem_ready == UMEM_READY_INITING) 2956 (void) _cond_wait(&umem_init_cv, 2957 &umem_init_lock); 2958 ASSERT(umem_ready == UMEM_READY || 2959 umem_ready == UMEM_READY_INIT_FAILED); 2960 (void) mutex_unlock(&umem_init_lock); 2961 return (umem_ready == UMEM_READY); 2962 } 2963 2964 ASSERT(umem_ready == UMEM_READY_STARTUP); 2965 ASSERT(umem_init_env_ready == 0); 2966 2967 umem_ready = UMEM_READY_INITING; 2968 umem_init_thr = thr_self(); 2969 2970 (void) mutex_unlock(&umem_init_lock); 2971 umem_setup_envvars(0); /* can recurse -- see below */ 2972 if (umem_init_env_ready) { 2973 /* 2974 * initialization was completed already 2975 */ 2976 ASSERT(umem_ready == UMEM_READY || 2977 umem_ready == UMEM_READY_INIT_FAILED); 2978 ASSERT(umem_init_thr == 0); 2979 return (umem_ready == UMEM_READY); 2980 } 2981 } else if (!umem_init_env_ready) { 2982 /* 2983 * The umem_setup_envvars() call (above) makes calls into 2984 * the dynamic linker and directly into user-supplied code. 2985 * Since we cannot know what that code will do, we could be 2986 * recursively invoked (by, say, a malloc() call in the code 2987 * itself, or in a (C++) _init section it causes to be fired). 2988 * 2989 * This code is where we end up if such recursion occurs. We 2990 * first clean up any partial results in the envvar code, then 2991 * proceed to finish initialization processing in the recursive 2992 * call. The original call will notice this, and return 2993 * immediately. 2994 */ 2995 umem_setup_envvars(1); /* clean up any partial state */ 2996 } else { 2997 umem_panic( 2998 "recursive allocation while initializing umem\n"); 2999 } 3000 umem_init_env_ready = 1; 3001 3002 /* 3003 * From this point until we finish, recursion into umem_init() will 3004 * cause a umem_panic(). 3005 */ 3006 maxverify = minfirewall = ULONG_MAX; 3007 3008 /* LINTED constant condition */ 3009 if (sizeof (umem_cpu_cache_t) != UMEM_CPU_CACHE_SIZE) { 3010 umem_panic("sizeof (umem_cpu_cache_t) = %d, should be %d\n", 3011 sizeof (umem_cpu_cache_t), UMEM_CPU_CACHE_SIZE); 3012 } 3013 3014 umem_max_ncpus = umem_get_max_ncpus(); 3015 3016 /* 3017 * load tunables from environment 3018 */ 3019 umem_process_envvars(); 3020 3021 if (issetugid()) 3022 umem_mtbf = 0; 3023 3024 /* 3025 * set up vmem 3026 */ 3027 if (!(umem_flags & UMF_AUDIT)) 3028 vmem_no_debug(); 3029 3030 heap_arena = vmem_heap_arena(&heap_alloc, &heap_free); 3031 3032 pagesize = heap_arena->vm_quantum; 3033 3034 umem_internal_arena = vmem_create("umem_internal", NULL, 0, pagesize, 3035 heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP); 3036 3037 umem_default_arena = umem_internal_arena; 3038 3039 if (umem_internal_arena == NULL) 3040 goto fail; 3041 3042 umem_cache_arena = vmem_create("umem_cache", NULL, 0, UMEM_ALIGN, 3043 vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP); 3044 3045 umem_hash_arena = vmem_create("umem_hash", NULL, 0, UMEM_ALIGN, 3046 vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP); 3047 3048 umem_log_arena = vmem_create("umem_log", NULL, 0, UMEM_ALIGN, 3049 heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP); 3050 3051 umem_firewall_va_arena = vmem_create("umem_firewall_va", 3052 NULL, 0, pagesize, 3053 umem_firewall_va_alloc, umem_firewall_va_free, heap_arena, 3054 0, VM_NOSLEEP); 3055 3056 if (umem_cache_arena == NULL || umem_hash_arena == NULL || 3057 umem_log_arena == NULL || umem_firewall_va_arena == NULL) 3058 goto fail; 3059 3060 umem_firewall_arena = vmem_create("umem_firewall", NULL, 0, pagesize, 3061 heap_alloc, heap_free, umem_firewall_va_arena, 0, 3062 VM_NOSLEEP); 3063 3064 if (umem_firewall_arena == NULL) 3065 goto fail; 3066 3067 oversize_arena = vmem_create("umem_oversize", NULL, 0, pagesize, 3068 heap_alloc, heap_free, minfirewall < ULONG_MAX ? 3069 umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP); 3070 3071 memalign_arena = vmem_create("umem_memalign", NULL, 0, UMEM_ALIGN, 3072 heap_alloc, heap_free, minfirewall < ULONG_MAX ? 3073 umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP); 3074 3075 if (oversize_arena == NULL || memalign_arena == NULL) 3076 goto fail; 3077 3078 if (umem_max_ncpus > CPUHINT_MAX()) 3079 umem_max_ncpus = CPUHINT_MAX(); 3080 3081 while ((umem_max_ncpus & (umem_max_ncpus - 1)) != 0) 3082 umem_max_ncpus++; 3083 3084 if (umem_max_ncpus == 0) 3085 umem_max_ncpus = 1; 3086 3087 size = umem_max_ncpus * sizeof (umem_cpu_t); 3088 new_cpus = vmem_alloc(umem_internal_arena, size, VM_NOSLEEP); 3089 if (new_cpus == NULL) 3090 goto fail; 3091 3092 bzero(new_cpus, size); 3093 for (idx = 0; idx < umem_max_ncpus; idx++) { 3094 new_cpus[idx].cpu_number = idx; 3095 new_cpus[idx].cpu_cache_offset = UMEM_CACHE_SIZE(idx); 3096 } 3097 umem_cpus = new_cpus; 3098 umem_cpu_mask = (umem_max_ncpus - 1); 3099 3100 if (umem_maxverify == 0) 3101 umem_maxverify = maxverify; 3102 3103 if (umem_minfirewall == 0) 3104 umem_minfirewall = minfirewall; 3105 3106 /* 3107 * Set up updating and reaping 3108 */ 3109 umem_reap_next = gethrtime() + NANOSEC; 3110 3111 #ifndef UMEM_STANDALONE 3112 (void) gettimeofday(&umem_update_next, NULL); 3113 #endif 3114 3115 /* 3116 * Set up logging -- failure here is okay, since it will just disable 3117 * the logs 3118 */ 3119 if (umem_logging) { 3120 umem_transaction_log = umem_log_init(umem_transaction_log_size); 3121 umem_content_log = umem_log_init(umem_content_log_size); 3122 umem_failure_log = umem_log_init(umem_failure_log_size); 3123 umem_slab_log = umem_log_init(umem_slab_log_size); 3124 } 3125 3126 /* 3127 * Set up caches -- if successful, initialization cannot fail, since 3128 * allocations from other threads can now succeed. 3129 */ 3130 if (umem_cache_init() == 0) { 3131 log_message("unable to create initial caches\n"); 3132 goto fail; 3133 } 3134 umem_oversize_arena = oversize_arena; 3135 umem_memalign_arena = memalign_arena; 3136 3137 umem_cache_applyall(umem_cache_magazine_enable); 3138 3139 /* 3140 * initialization done, ready to go 3141 */ 3142 (void) mutex_lock(&umem_init_lock); 3143 umem_ready = UMEM_READY; 3144 umem_init_thr = 0; 3145 (void) cond_broadcast(&umem_init_cv); 3146 (void) mutex_unlock(&umem_init_lock); 3147 return (1); 3148 3149 fail: 3150 log_message("umem initialization failed\n"); 3151 3152 (void) mutex_lock(&umem_init_lock); 3153 umem_ready = UMEM_READY_INIT_FAILED; 3154 umem_init_thr = 0; 3155 (void) cond_broadcast(&umem_init_cv); 3156 (void) mutex_unlock(&umem_init_lock); 3157 return (0); 3158 } 3159