xref: /illumos-gate/usr/src/lib/libumem/common/umem.c (revision 7f7322febbcfe774b7270abc3b191c094bfcc517)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
25  * Use is subject to license terms.
26  */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 
30 /*
31  * based on usr/src/uts/common/os/kmem.c r1.64 from 2001/12/18
32  *
33  * The slab allocator, as described in the following two papers:
34  *
35  *	Jeff Bonwick,
36  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator.
37  *	Proceedings of the Summer 1994 Usenix Conference.
38  *	Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
39  *
40  *	Jeff Bonwick and Jonathan Adams,
41  *	Magazines and vmem: Extending the Slab Allocator to Many CPUs and
42  *	Arbitrary Resources.
43  *	Proceedings of the 2001 Usenix Conference.
44  *	Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
45  *
46  * 1. Overview
47  * -----------
48  * umem is very close to kmem in implementation.  There are four major
49  * areas of divergence:
50  *
51  *	* Initialization
52  *
53  *	* CPU handling
54  *
55  *	* umem_update()
56  *
57  *	* KM_SLEEP v.s. UMEM_NOFAIL
58  *
59  *	* lock ordering
60  *
61  * 2. Initialization
62  * -----------------
63  * kmem is initialized early on in boot, and knows that no one will call
64  * into it before it is ready.  umem does not have these luxuries. Instead,
65  * initialization is divided into two phases:
66  *
67  *	* library initialization, and
68  *
69  *	* first use
70  *
71  * umem's full initialization happens at the time of the first allocation
72  * request (via malloc() and friends, umem_alloc(), or umem_zalloc()),
73  * or the first call to umem_cache_create().
74  *
75  * umem_free(), and umem_cache_alloc() do not require special handling,
76  * since the only way to get valid arguments for them is to successfully
77  * call a function from the first group.
78  *
79  * 2.1. Library Initialization: umem_startup()
80  * -------------------------------------------
81  * umem_startup() is libumem.so's .init section.  It calls pthread_atfork()
82  * to install the handlers necessary for umem's Fork1-Safety.  Because of
83  * race condition issues, all other pre-umem_init() initialization is done
84  * statically (i.e. by the dynamic linker).
85  *
86  * For standalone use, umem_startup() returns everything to its initial
87  * state.
88  *
89  * 2.2. First use: umem_init()
90  * ------------------------------
91  * The first time any memory allocation function is used, we have to
92  * create the backing caches and vmem arenas which are needed for it.
93  * umem_init() is the central point for that task.  When it completes,
94  * umem_ready is either UMEM_READY (all set) or UMEM_READY_INIT_FAILED (unable
95  * to initialize, probably due to lack of memory).
96  *
97  * There are four different paths from which umem_init() is called:
98  *
99  *	* from umem_alloc() or umem_zalloc(), with 0 < size < UMEM_MAXBUF,
100  *
101  *	* from umem_alloc() or umem_zalloc(), with size > UMEM_MAXBUF,
102  *
103  *	* from umem_cache_create(), and
104  *
105  *	* from memalign(), with align > UMEM_ALIGN.
106  *
107  * The last three just check if umem is initialized, and call umem_init()
108  * if it is not.  For performance reasons, the first case is more complicated.
109  *
110  * 2.2.1. umem_alloc()/umem_zalloc(), with 0 < size < UMEM_MAXBUF
111  * -----------------------------------------------------------------
112  * In this case, umem_cache_alloc(&umem_null_cache, ...) is called.
113  * There is special case code in which causes any allocation on
114  * &umem_null_cache to fail by returning (NULL), regardless of the
115  * flags argument.
116  *
117  * So umem_cache_alloc() returns NULL, and umem_alloc()/umem_zalloc() call
118  * umem_alloc_retry().  umem_alloc_retry() sees that the allocation
119  * was agains &umem_null_cache, and calls umem_init().
120  *
121  * If initialization is successful, umem_alloc_retry() returns 1, which
122  * causes umem_alloc()/umem_zalloc() to start over, which causes it to load
123  * the (now valid) cache pointer from umem_alloc_table.
124  *
125  * 2.2.2. Dealing with race conditions
126  * -----------------------------------
127  * There are a couple race conditions resulting from the initialization
128  * code that we have to guard against:
129  *
130  *	* In umem_cache_create(), there is a special UMC_INTERNAL cflag
131  *	that is passed for caches created during initialization.  It
132  *	is illegal for a user to try to create a UMC_INTERNAL cache.
133  *	This allows initialization to proceed, but any other
134  *	umem_cache_create()s will block by calling umem_init().
135  *
136  *	* Since umem_null_cache has a 1-element cache_cpu, it's cache_cpu_mask
137  *	is always zero.  umem_cache_alloc uses cp->cache_cpu_mask to
138  *	mask the cpu number.  This prevents a race between grabbing a
139  *	cache pointer out of umem_alloc_table and growing the cpu array.
140  *
141  *
142  * 3. CPU handling
143  * ---------------
144  * kmem uses the CPU's sequence number to determine which "cpu cache" to
145  * use for an allocation.  Currently, there is no way to get the sequence
146  * number in userspace.
147  *
148  * umem keeps track of cpu information in umem_cpus, an array of umem_max_ncpus
149  * umem_cpu_t structures.  CURCPU() is a a "hint" function, which we then mask
150  * with either umem_cpu_mask or cp->cache_cpu_mask to find the actual "cpu" id.
151  * The mechanics of this is all in the CPU(mask) macro.
152  *
153  * Currently, umem uses _lwp_self() as its hint.
154  *
155  *
156  * 4. The update thread
157  * --------------------
158  * kmem uses a task queue, kmem_taskq, to do periodic maintenance on
159  * every kmem cache.  vmem has a periodic timeout for hash table resizing.
160  * The kmem_taskq also provides a separate context for kmem_cache_reap()'s
161  * to be done in, avoiding issues of the context of kmem_reap() callers.
162  *
163  * Instead, umem has the concept of "updates", which are asynchronous requests
164  * for work attached to single caches.  All caches with pending work are
165  * on a doubly linked list rooted at the umem_null_cache.  All update state
166  * is protected by the umem_update_lock mutex, and the umem_update_cv is used
167  * for notification between threads.
168  *
169  * 4.1. Cache states with regards to updates
170  * -----------------------------------------
171  * A given cache is in one of three states:
172  *
173  * Inactive		cache_uflags is zero, cache_u{next,prev} are NULL
174  *
175  * Work Requested	cache_uflags is non-zero (but UMU_ACTIVE is not set),
176  *			cache_u{next,prev} link the cache onto the global
177  *			update list
178  *
179  * Active		cache_uflags has UMU_ACTIVE set, cache_u{next,prev}
180  *			are NULL, and either umem_update_thr or
181  *			umem_st_update_thr are actively doing work on the
182  *			cache.
183  *
184  * An update can be added to any cache in any state -- if the cache is
185  * Inactive, it transitions to being Work Requested.  If the cache is
186  * Active, the worker will notice the new update and act on it before
187  * transitioning the cache to the Inactive state.
188  *
189  * If a cache is in the Active state, UMU_NOTIFY can be set, which asks
190  * the worker to broadcast the umem_update_cv when it has finished.
191  *
192  * 4.2. Update interface
193  * ---------------------
194  * umem_add_update() adds an update to a particular cache.
195  * umem_updateall() adds an update to all caches.
196  * umem_remove_updates() returns a cache to the Inactive state.
197  *
198  * umem_process_updates() process all caches in the Work Requested state.
199  *
200  * 4.3. Reaping
201  * ------------
202  * When umem_reap() is called (at the time of heap growth), it schedule
203  * UMU_REAP updates on every cache.  It then checks to see if the update
204  * thread exists (umem_update_thr != 0).  If it is, it broadcasts
205  * the umem_update_cv to wake the update thread up, and returns.
206  *
207  * If the update thread does not exist (umem_update_thr == 0), and the
208  * program currently has multiple threads, umem_reap() attempts to create
209  * a new update thread.
210  *
211  * If the process is not multithreaded, or the creation fails, umem_reap()
212  * calls umem_st_update() to do an inline update.
213  *
214  * 4.4. The update thread
215  * ----------------------
216  * The update thread spends most of its time in cond_timedwait() on the
217  * umem_update_cv.  It wakes up under two conditions:
218  *
219  *	* The timedwait times out, in which case it needs to run a global
220  *	update, or
221  *
222  *	* someone cond_broadcast(3THR)s the umem_update_cv, in which case
223  *	it needs to check if there are any caches in the Work Requested
224  *	state.
225  *
226  * When it is time for another global update, umem calls umem_cache_update()
227  * on every cache, then calls vmem_update(), which tunes the vmem structures.
228  * umem_cache_update() can request further work using umem_add_update().
229  *
230  * After any work from the global update completes, the update timer is
231  * reset to umem_reap_interval seconds in the future.  This makes the
232  * updates self-throttling.
233  *
234  * Reaps are similarly self-throttling.  After a UMU_REAP update has
235  * been scheduled on all caches, umem_reap() sets a flag and wakes up the
236  * update thread.  The update thread notices the flag, and resets the
237  * reap state.
238  *
239  * 4.5. Inline updates
240  * -------------------
241  * If the update thread is not running, umem_st_update() is used instead.  It
242  * immediately does a global update (as above), then calls
243  * umem_process_updates() to process both the reaps that umem_reap() added and
244  * any work generated by the global update.  Afterwards, it resets the reap
245  * state.
246  *
247  * While the umem_st_update() is running, umem_st_update_thr holds the thread
248  * id of the thread performing the update.
249  *
250  * 4.6. Updates and fork1()
251  * ------------------------
252  * umem has fork1() pre- and post-handlers which lock up (and release) every
253  * mutex in every cache.  They also lock up the umem_update_lock.  Since
254  * fork1() only copies over a single lwp, other threads (including the update
255  * thread) could have been actively using a cache in the parent.  This
256  * can lead to inconsistencies in the child process.
257  *
258  * Because we locked all of the mutexes, the only possible inconsistancies are:
259  *
260  *	* a umem_cache_alloc() could leak its buffer.
261  *
262  *	* a caller of umem_depot_alloc() could leak a magazine, and all the
263  *	buffers contained in it.
264  *
265  *	* a cache could be in the Active update state.  In the child, there
266  *	would be no thread actually working on it.
267  *
268  *	* a umem_hash_rescale() could leak the new hash table.
269  *
270  *	* a umem_magazine_resize() could be in progress.
271  *
272  *	* a umem_reap() could be in progress.
273  *
274  * The memory leaks we can't do anything about.  umem_release_child() resets
275  * the update state, moves any caches in the Active state to the Work Requested
276  * state.  This might cause some updates to be re-run, but UMU_REAP and
277  * UMU_HASH_RESCALE are effectively idempotent, and the worst that can
278  * happen from umem_magazine_resize() is resizing the magazine twice in close
279  * succession.
280  *
281  * Much of the cleanup in umem_release_child() is skipped if
282  * umem_st_update_thr == thr_self().  This is so that applications which call
283  * fork1() from a cache callback does not break.  Needless to say, any such
284  * application is tremendously broken.
285  *
286  *
287  * 5. KM_SLEEP v.s. UMEM_NOFAIL
288  * ----------------------------
289  * Allocations against kmem and vmem have two basic modes:  SLEEP and
290  * NOSLEEP.  A sleeping allocation is will go to sleep (waiting for
291  * more memory) instead of failing (returning NULL).
292  *
293  * SLEEP allocations presume an extremely multithreaded model, with
294  * a lot of allocation and deallocation activity.  umem cannot presume
295  * that its clients have any particular type of behavior.  Instead,
296  * it provides two types of allocations:
297  *
298  *	* UMEM_DEFAULT, equivalent to KM_NOSLEEP (i.e. return NULL on
299  *	failure)
300  *
301  *	* UMEM_NOFAIL, which, on failure, calls an optional callback
302  *	(registered with umem_nofail_callback()).
303  *
304  * The callback is invoked with no locks held, and can do an arbitrary
305  * amount of work.  It then has a choice between:
306  *
307  *	* Returning UMEM_CALLBACK_RETRY, which will cause the allocation
308  *	to be restarted.
309  *
310  *	* Returning UMEM_CALLBACK_EXIT(status), which will cause exit(2)
311  *	to be invoked with status.  If multiple threads attempt to do
312  *	this simultaneously, only one will call exit(2).
313  *
314  *	* Doing some kind of non-local exit (thr_exit(3thr), longjmp(3C),
315  *	etc.)
316  *
317  * The default callback returns UMEM_CALLBACK_EXIT(255).
318  *
319  * To have these callbacks without risk of state corruption (in the case of
320  * a non-local exit), we have to ensure that the callbacks get invoked
321  * close to the original allocation, with no inconsistent state or held
322  * locks.  The following steps are taken:
323  *
324  *	* All invocations of vmem are VM_NOSLEEP.
325  *
326  *	* All constructor callbacks (which can themselves to allocations)
327  *	are passed UMEM_DEFAULT as their required allocation argument.  This
328  *	way, the constructor will fail, allowing the highest-level allocation
329  *	invoke the nofail callback.
330  *
331  *	If a constructor callback _does_ do a UMEM_NOFAIL allocation, and
332  *	the nofail callback does a non-local exit, we will leak the
333  *	partially-constructed buffer.
334  *
335  *
336  * 6. Lock Ordering
337  * ----------------
338  * umem has a few more locks than kmem does, mostly in the update path.  The
339  * overall lock ordering (earlier locks must be acquired first) is:
340  *
341  *	umem_init_lock
342  *
343  *	vmem_list_lock
344  *	vmem_nosleep_lock.vmpl_mutex
345  *	vmem_t's:
346  *		vm_lock
347  *	sbrk_faillock
348  *
349  *	umem_cache_lock
350  *	umem_update_lock
351  *	umem_flags_lock
352  *	umem_cache_t's:
353  *		cache_cpu[*].cc_lock
354  *		cache_depot_lock
355  *		cache_lock
356  *	umem_log_header_t's:
357  *		lh_cpu[*].clh_lock
358  *		lh_lock
359  */
360 
361 #include "c_synonyms.h"
362 #include <umem_impl.h>
363 #include <sys/vmem_impl_user.h>
364 #include "umem_base.h"
365 #include "vmem_base.h"
366 
367 #include <sys/processor.h>
368 #include <sys/sysmacros.h>
369 
370 #include <alloca.h>
371 #include <errno.h>
372 #include <limits.h>
373 #include <stdio.h>
374 #include <stdlib.h>
375 #include <string.h>
376 #include <strings.h>
377 #include <signal.h>
378 #include <unistd.h>
379 #include <atomic.h>
380 
381 #include "misc.h"
382 
383 #define	UMEM_VMFLAGS(umflag)	(VM_NOSLEEP)
384 
385 size_t pagesize;
386 
387 /*
388  * The default set of caches to back umem_alloc().
389  * These sizes should be reevaluated periodically.
390  *
391  * We want allocations that are multiples of the coherency granularity
392  * (64 bytes) to be satisfied from a cache which is a multiple of 64
393  * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
394  * the next kmem_cache_size greater than or equal to it must be a
395  * multiple of 64.
396  */
397 static const int umem_alloc_sizes[] = {
398 #ifdef _LP64
399 	1 * 8,
400 	1 * 16,
401 	2 * 16,
402 	3 * 16,
403 #else
404 	1 * 8,
405 	2 * 8,
406 	3 * 8,
407 	4 * 8,		5 * 8,		6 * 8,		7 * 8,
408 #endif
409 	4 * 16,		5 * 16,		6 * 16,		7 * 16,
410 	4 * 32,		5 * 32,		6 * 32,		7 * 32,
411 	4 * 64,		5 * 64,		6 * 64,		7 * 64,
412 	4 * 128,	5 * 128,	6 * 128,	7 * 128,
413 	P2ALIGN(8192 / 7, 64),
414 	P2ALIGN(8192 / 6, 64),
415 	P2ALIGN(8192 / 5, 64),
416 	P2ALIGN(8192 / 4, 64),
417 	P2ALIGN(8192 / 3, 64),
418 	P2ALIGN(8192 / 2, 64),
419 	P2ALIGN(8192 / 1, 64),
420 	4096 * 3,
421 	8192 * 2,
422 };
423 #define	NUM_ALLOC_SIZES (sizeof (umem_alloc_sizes) / sizeof (*umem_alloc_sizes))
424 
425 #define	UMEM_MAXBUF	16384
426 
427 static umem_magtype_t umem_magtype[] = {
428 	{ 1,	8,	3200,	65536	},
429 	{ 3,	16,	256,	32768	},
430 	{ 7,	32,	64,	16384	},
431 	{ 15,	64,	0,	8192	},
432 	{ 31,	64,	0,	4096	},
433 	{ 47,	64,	0,	2048	},
434 	{ 63,	64,	0,	1024	},
435 	{ 95,	64,	0,	512	},
436 	{ 143,	64,	0,	0	},
437 };
438 
439 /*
440  * umem tunables
441  */
442 uint32_t umem_max_ncpus;	/* # of CPU caches. */
443 
444 uint32_t umem_stack_depth = 15; /* # stack frames in a bufctl_audit */
445 uint32_t umem_reap_interval = 10; /* max reaping rate (seconds) */
446 uint_t umem_depot_contention = 2; /* max failed trylocks per real interval */
447 uint_t umem_abort = 1;		/* whether to abort on error */
448 uint_t umem_output = 0;		/* whether to write to standard error */
449 uint_t umem_logging = 0;	/* umem_log_enter() override */
450 uint32_t umem_mtbf = 0;		/* mean time between failures [default: off] */
451 size_t umem_transaction_log_size; /* size of transaction log */
452 size_t umem_content_log_size;	/* size of content log */
453 size_t umem_failure_log_size;	/* failure log [4 pages per CPU] */
454 size_t umem_slab_log_size;	/* slab create log [4 pages per CPU] */
455 size_t umem_content_maxsave = 256; /* UMF_CONTENTS max bytes to log */
456 size_t umem_lite_minsize = 0;	/* minimum buffer size for UMF_LITE */
457 size_t umem_lite_maxalign = 1024; /* maximum buffer alignment for UMF_LITE */
458 size_t umem_maxverify;		/* maximum bytes to inspect in debug routines */
459 size_t umem_minfirewall;	/* hardware-enforced redzone threshold */
460 
461 uint_t umem_flags = 0;
462 
463 mutex_t			umem_init_lock;		/* locks initialization */
464 cond_t			umem_init_cv;		/* initialization CV */
465 thread_t		umem_init_thr;		/* thread initializing */
466 int			umem_init_env_ready;	/* environ pre-initted */
467 int			umem_ready = UMEM_READY_STARTUP;
468 
469 static umem_nofail_callback_t *nofail_callback;
470 static mutex_t		umem_nofail_exit_lock;
471 static thread_t		umem_nofail_exit_thr;
472 
473 static umem_cache_t	*umem_slab_cache;
474 static umem_cache_t	*umem_bufctl_cache;
475 static umem_cache_t	*umem_bufctl_audit_cache;
476 
477 mutex_t			umem_flags_lock;
478 
479 static vmem_t		*heap_arena;
480 static vmem_alloc_t	*heap_alloc;
481 static vmem_free_t	*heap_free;
482 
483 static vmem_t		*umem_internal_arena;
484 static vmem_t		*umem_cache_arena;
485 static vmem_t		*umem_hash_arena;
486 static vmem_t		*umem_log_arena;
487 static vmem_t		*umem_oversize_arena;
488 static vmem_t		*umem_va_arena;
489 static vmem_t		*umem_default_arena;
490 static vmem_t		*umem_firewall_va_arena;
491 static vmem_t		*umem_firewall_arena;
492 
493 vmem_t			*umem_memalign_arena;
494 
495 umem_log_header_t *umem_transaction_log;
496 umem_log_header_t *umem_content_log;
497 umem_log_header_t *umem_failure_log;
498 umem_log_header_t *umem_slab_log;
499 
500 extern thread_t _thr_self(void);
501 #define	CPUHINT()		(_thr_self())
502 #define	CPUHINT_MAX()		INT_MAX
503 
504 #define	CPU(mask)		(umem_cpus + (CPUHINT() & (mask)))
505 static umem_cpu_t umem_startup_cpu = {	/* initial, single, cpu */
506 	UMEM_CACHE_SIZE(0),
507 	0
508 };
509 
510 static uint32_t umem_cpu_mask = 0;			/* global cpu mask */
511 static umem_cpu_t *umem_cpus = &umem_startup_cpu;	/* cpu list */
512 
513 volatile uint32_t umem_reaping;
514 
515 thread_t		umem_update_thr;
516 struct timeval		umem_update_next;	/* timeofday of next update */
517 volatile thread_t	umem_st_update_thr;	/* only used when single-thd */
518 
519 #define	IN_UPDATE()	(thr_self() == umem_update_thr || \
520 			    thr_self() == umem_st_update_thr)
521 #define	IN_REAP()	IN_UPDATE()
522 
523 mutex_t			umem_update_lock;	/* cache_u{next,prev,flags} */
524 cond_t			umem_update_cv;
525 
526 volatile hrtime_t umem_reap_next;	/* min hrtime of next reap */
527 
528 mutex_t			umem_cache_lock;	/* inter-cache linkage only */
529 
530 #ifdef UMEM_STANDALONE
531 umem_cache_t		umem_null_cache;
532 static const umem_cache_t umem_null_cache_template = {
533 #else
534 umem_cache_t		umem_null_cache = {
535 #endif
536 	0, 0, 0, 0, 0,
537 	0, 0,
538 	0, 0,
539 	0, 0,
540 	"invalid_cache",
541 	0, 0,
542 	NULL, NULL, NULL, NULL,
543 	NULL,
544 	0, 0, 0, 0,
545 	&umem_null_cache, &umem_null_cache,
546 	&umem_null_cache, &umem_null_cache,
547 	0,
548 	DEFAULTMUTEX,				/* start of slab layer */
549 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
550 	&umem_null_cache.cache_nullslab,
551 	{
552 		&umem_null_cache,
553 		NULL,
554 		&umem_null_cache.cache_nullslab,
555 		&umem_null_cache.cache_nullslab,
556 		NULL,
557 		-1,
558 		0
559 	},
560 	NULL,
561 	NULL,
562 	DEFAULTMUTEX,				/* start of depot layer */
563 	NULL, {
564 		NULL, 0, 0, 0, 0
565 	}, {
566 		NULL, 0, 0, 0, 0
567 	}, {
568 		{
569 			DEFAULTMUTEX,		/* start of CPU cache */
570 			0, 0, NULL, NULL, -1, -1, 0
571 		}
572 	}
573 };
574 
575 #define	ALLOC_TABLE_4 \
576 	&umem_null_cache, &umem_null_cache, &umem_null_cache, &umem_null_cache
577 
578 #define	ALLOC_TABLE_64 \
579 	ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
580 	ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
581 	ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
582 	ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4
583 
584 #define	ALLOC_TABLE_1024 \
585 	ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
586 	ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
587 	ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
588 	ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64
589 
590 static umem_cache_t *umem_alloc_table[UMEM_MAXBUF >> UMEM_ALIGN_SHIFT] = {
591 	ALLOC_TABLE_1024,
592 	ALLOC_TABLE_1024
593 };
594 
595 
596 /* Used to constrain audit-log stack traces */
597 caddr_t			umem_min_stack;
598 caddr_t			umem_max_stack;
599 
600 
601 /*
602  * we use the _ versions, since we don't want to be cancelled.
603  * Actually, this is automatically taken care of by including "mtlib.h".
604  */
605 extern int _cond_wait(cond_t *cv, mutex_t *mutex);
606 
607 #define	UMERR_MODIFIED	0	/* buffer modified while on freelist */
608 #define	UMERR_REDZONE	1	/* redzone violation (write past end of buf) */
609 #define	UMERR_DUPFREE	2	/* freed a buffer twice */
610 #define	UMERR_BADADDR	3	/* freed a bad (unallocated) address */
611 #define	UMERR_BADBUFTAG	4	/* buftag corrupted */
612 #define	UMERR_BADBUFCTL	5	/* bufctl corrupted */
613 #define	UMERR_BADCACHE	6	/* freed a buffer to the wrong cache */
614 #define	UMERR_BADSIZE	7	/* alloc size != free size */
615 #define	UMERR_BADBASE	8	/* buffer base address wrong */
616 
617 struct {
618 	hrtime_t	ump_timestamp;	/* timestamp of error */
619 	int		ump_error;	/* type of umem error (UMERR_*) */
620 	void		*ump_buffer;	/* buffer that induced abort */
621 	void		*ump_realbuf;	/* real start address for buffer */
622 	umem_cache_t	*ump_cache;	/* buffer's cache according to client */
623 	umem_cache_t	*ump_realcache;	/* actual cache containing buffer */
624 	umem_slab_t	*ump_slab;	/* slab accoring to umem_findslab() */
625 	umem_bufctl_t	*ump_bufctl;	/* bufctl */
626 } umem_abort_info;
627 
628 static void
629 copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
630 {
631 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
632 	uint64_t *buf = buf_arg;
633 
634 	while (buf < bufend)
635 		*buf++ = pattern;
636 }
637 
638 static void *
639 verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
640 {
641 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
642 	uint64_t *buf;
643 
644 	for (buf = buf_arg; buf < bufend; buf++)
645 		if (*buf != pattern)
646 			return (buf);
647 	return (NULL);
648 }
649 
650 static void *
651 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
652 {
653 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
654 	uint64_t *buf;
655 
656 	for (buf = buf_arg; buf < bufend; buf++) {
657 		if (*buf != old) {
658 			copy_pattern(old, buf_arg,
659 			    (char *)buf - (char *)buf_arg);
660 			return (buf);
661 		}
662 		*buf = new;
663 	}
664 
665 	return (NULL);
666 }
667 
668 void
669 umem_cache_applyall(void (*func)(umem_cache_t *))
670 {
671 	umem_cache_t *cp;
672 
673 	(void) mutex_lock(&umem_cache_lock);
674 	for (cp = umem_null_cache.cache_next; cp != &umem_null_cache;
675 	    cp = cp->cache_next)
676 		func(cp);
677 	(void) mutex_unlock(&umem_cache_lock);
678 }
679 
680 static void
681 umem_add_update_unlocked(umem_cache_t *cp, int flags)
682 {
683 	umem_cache_t *cnext, *cprev;
684 
685 	flags &= ~UMU_ACTIVE;
686 
687 	if (!flags)
688 		return;
689 
690 	if (cp->cache_uflags & UMU_ACTIVE) {
691 		cp->cache_uflags |= flags;
692 	} else {
693 		if (cp->cache_unext != NULL) {
694 			ASSERT(cp->cache_uflags != 0);
695 			cp->cache_uflags |= flags;
696 		} else {
697 			ASSERT(cp->cache_uflags == 0);
698 			cp->cache_uflags = flags;
699 			cp->cache_unext = cnext = &umem_null_cache;
700 			cp->cache_uprev = cprev = umem_null_cache.cache_uprev;
701 			cnext->cache_uprev = cp;
702 			cprev->cache_unext = cp;
703 		}
704 	}
705 }
706 
707 static void
708 umem_add_update(umem_cache_t *cp, int flags)
709 {
710 	(void) mutex_lock(&umem_update_lock);
711 
712 	umem_add_update_unlocked(cp, flags);
713 
714 	if (!IN_UPDATE())
715 		(void) cond_broadcast(&umem_update_cv);
716 
717 	(void) mutex_unlock(&umem_update_lock);
718 }
719 
720 /*
721  * Remove a cache from the update list, waiting for any in-progress work to
722  * complete first.
723  */
724 static void
725 umem_remove_updates(umem_cache_t *cp)
726 {
727 	(void) mutex_lock(&umem_update_lock);
728 
729 	/*
730 	 * Get it out of the active state
731 	 */
732 	while (cp->cache_uflags & UMU_ACTIVE) {
733 		ASSERT(cp->cache_unext == NULL);
734 
735 		cp->cache_uflags |= UMU_NOTIFY;
736 
737 		/*
738 		 * Make sure the update state is sane, before we wait
739 		 */
740 		ASSERT(umem_update_thr != 0 || umem_st_update_thr != 0);
741 		ASSERT(umem_update_thr != thr_self() &&
742 		    umem_st_update_thr != thr_self());
743 
744 		(void) _cond_wait(&umem_update_cv, &umem_update_lock);
745 	}
746 	/*
747 	 * Get it out of the Work Requested state
748 	 */
749 	if (cp->cache_unext != NULL) {
750 		cp->cache_uprev->cache_unext = cp->cache_unext;
751 		cp->cache_unext->cache_uprev = cp->cache_uprev;
752 		cp->cache_uprev = cp->cache_unext = NULL;
753 		cp->cache_uflags = 0;
754 	}
755 	/*
756 	 * Make sure it is in the Inactive state
757 	 */
758 	ASSERT(cp->cache_unext == NULL && cp->cache_uflags == 0);
759 	(void) mutex_unlock(&umem_update_lock);
760 }
761 
762 static void
763 umem_updateall(int flags)
764 {
765 	umem_cache_t *cp;
766 
767 	/*
768 	 * NOTE:  To prevent deadlock, umem_cache_lock is always acquired first.
769 	 *
770 	 * (umem_add_update is called from things run via umem_cache_applyall)
771 	 */
772 	(void) mutex_lock(&umem_cache_lock);
773 	(void) mutex_lock(&umem_update_lock);
774 
775 	for (cp = umem_null_cache.cache_next; cp != &umem_null_cache;
776 	    cp = cp->cache_next)
777 		umem_add_update_unlocked(cp, flags);
778 
779 	if (!IN_UPDATE())
780 		(void) cond_broadcast(&umem_update_cv);
781 
782 	(void) mutex_unlock(&umem_update_lock);
783 	(void) mutex_unlock(&umem_cache_lock);
784 }
785 
786 /*
787  * Debugging support.  Given a buffer address, find its slab.
788  */
789 static umem_slab_t *
790 umem_findslab(umem_cache_t *cp, void *buf)
791 {
792 	umem_slab_t *sp;
793 
794 	(void) mutex_lock(&cp->cache_lock);
795 	for (sp = cp->cache_nullslab.slab_next;
796 	    sp != &cp->cache_nullslab; sp = sp->slab_next) {
797 		if (UMEM_SLAB_MEMBER(sp, buf)) {
798 			(void) mutex_unlock(&cp->cache_lock);
799 			return (sp);
800 		}
801 	}
802 	(void) mutex_unlock(&cp->cache_lock);
803 
804 	return (NULL);
805 }
806 
807 static void
808 umem_error(int error, umem_cache_t *cparg, void *bufarg)
809 {
810 	umem_buftag_t *btp = NULL;
811 	umem_bufctl_t *bcp = NULL;
812 	umem_cache_t *cp = cparg;
813 	umem_slab_t *sp;
814 	uint64_t *off;
815 	void *buf = bufarg;
816 
817 	int old_logging = umem_logging;
818 
819 	umem_logging = 0;	/* stop logging when a bad thing happens */
820 
821 	umem_abort_info.ump_timestamp = gethrtime();
822 
823 	sp = umem_findslab(cp, buf);
824 	if (sp == NULL) {
825 		for (cp = umem_null_cache.cache_prev; cp != &umem_null_cache;
826 		    cp = cp->cache_prev) {
827 			if ((sp = umem_findslab(cp, buf)) != NULL)
828 				break;
829 		}
830 	}
831 
832 	if (sp == NULL) {
833 		cp = NULL;
834 		error = UMERR_BADADDR;
835 	} else {
836 		if (cp != cparg)
837 			error = UMERR_BADCACHE;
838 		else
839 			buf = (char *)bufarg - ((uintptr_t)bufarg -
840 			    (uintptr_t)sp->slab_base) % cp->cache_chunksize;
841 		if (buf != bufarg)
842 			error = UMERR_BADBASE;
843 		if (cp->cache_flags & UMF_BUFTAG)
844 			btp = UMEM_BUFTAG(cp, buf);
845 		if (cp->cache_flags & UMF_HASH) {
846 			(void) mutex_lock(&cp->cache_lock);
847 			for (bcp = *UMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
848 				if (bcp->bc_addr == buf)
849 					break;
850 			(void) mutex_unlock(&cp->cache_lock);
851 			if (bcp == NULL && btp != NULL)
852 				bcp = btp->bt_bufctl;
853 			if (umem_findslab(cp->cache_bufctl_cache, bcp) ==
854 			    NULL || P2PHASE((uintptr_t)bcp, UMEM_ALIGN) ||
855 			    bcp->bc_addr != buf) {
856 				error = UMERR_BADBUFCTL;
857 				bcp = NULL;
858 			}
859 		}
860 	}
861 
862 	umem_abort_info.ump_error = error;
863 	umem_abort_info.ump_buffer = bufarg;
864 	umem_abort_info.ump_realbuf = buf;
865 	umem_abort_info.ump_cache = cparg;
866 	umem_abort_info.ump_realcache = cp;
867 	umem_abort_info.ump_slab = sp;
868 	umem_abort_info.ump_bufctl = bcp;
869 
870 	umem_printf("umem allocator: ");
871 
872 	switch (error) {
873 
874 	case UMERR_MODIFIED:
875 		umem_printf("buffer modified after being freed\n");
876 		off = verify_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify);
877 		if (off == NULL)	/* shouldn't happen */
878 			off = buf;
879 		umem_printf("modification occurred at offset 0x%lx "
880 		    "(0x%llx replaced by 0x%llx)\n",
881 		    (uintptr_t)off - (uintptr_t)buf,
882 		    (longlong_t)UMEM_FREE_PATTERN, (longlong_t)*off);
883 		break;
884 
885 	case UMERR_REDZONE:
886 		umem_printf("redzone violation: write past end of buffer\n");
887 		break;
888 
889 	case UMERR_BADADDR:
890 		umem_printf("invalid free: buffer not in cache\n");
891 		break;
892 
893 	case UMERR_DUPFREE:
894 		umem_printf("duplicate free: buffer freed twice\n");
895 		break;
896 
897 	case UMERR_BADBUFTAG:
898 		umem_printf("boundary tag corrupted\n");
899 		umem_printf("bcp ^ bxstat = %lx, should be %lx\n",
900 		    (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
901 		    UMEM_BUFTAG_FREE);
902 		break;
903 
904 	case UMERR_BADBUFCTL:
905 		umem_printf("bufctl corrupted\n");
906 		break;
907 
908 	case UMERR_BADCACHE:
909 		umem_printf("buffer freed to wrong cache\n");
910 		umem_printf("buffer was allocated from %s,\n", cp->cache_name);
911 		umem_printf("caller attempting free to %s.\n",
912 		    cparg->cache_name);
913 		break;
914 
915 	case UMERR_BADSIZE:
916 		umem_printf("bad free: free size (%u) != alloc size (%u)\n",
917 		    UMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
918 		    UMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
919 		break;
920 
921 	case UMERR_BADBASE:
922 		umem_printf("bad free: free address (%p) != alloc address "
923 		    "(%p)\n", bufarg, buf);
924 		break;
925 	}
926 
927 	umem_printf("buffer=%p  bufctl=%p  cache: %s\n",
928 	    bufarg, (void *)bcp, cparg->cache_name);
929 
930 	if (bcp != NULL && (cp->cache_flags & UMF_AUDIT) &&
931 	    error != UMERR_BADBUFCTL) {
932 		int d;
933 		timespec_t ts;
934 		hrtime_t diff;
935 		umem_bufctl_audit_t *bcap = (umem_bufctl_audit_t *)bcp;
936 
937 		diff = umem_abort_info.ump_timestamp - bcap->bc_timestamp;
938 		ts.tv_sec = diff / NANOSEC;
939 		ts.tv_nsec = diff % NANOSEC;
940 
941 		umem_printf("previous transaction on buffer %p:\n", buf);
942 		umem_printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
943 		    (void *)(intptr_t)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
944 		    (void *)sp, cp->cache_name);
945 		for (d = 0; d < MIN(bcap->bc_depth, umem_stack_depth); d++) {
946 			(void) print_sym((void *)bcap->bc_stack[d]);
947 			umem_printf("\n");
948 		}
949 	}
950 
951 	umem_err_recoverable("umem: heap corruption detected");
952 
953 	umem_logging = old_logging;	/* resume logging */
954 }
955 
956 void
957 umem_nofail_callback(umem_nofail_callback_t *cb)
958 {
959 	nofail_callback = cb;
960 }
961 
962 static int
963 umem_alloc_retry(umem_cache_t *cp, int umflag)
964 {
965 	if (cp == &umem_null_cache) {
966 		if (umem_init())
967 			return (1);				/* retry */
968 		/*
969 		 * Initialization failed.  Do normal failure processing.
970 		 */
971 	}
972 	if (umflag & UMEM_NOFAIL) {
973 		int def_result = UMEM_CALLBACK_EXIT(255);
974 		int result = def_result;
975 		umem_nofail_callback_t *callback = nofail_callback;
976 
977 		if (callback != NULL)
978 			result = callback();
979 
980 		if (result == UMEM_CALLBACK_RETRY)
981 			return (1);
982 
983 		if ((result & ~0xFF) != UMEM_CALLBACK_EXIT(0)) {
984 			log_message("nofail callback returned %x\n", result);
985 			result = def_result;
986 		}
987 
988 		/*
989 		 * only one thread will call exit
990 		 */
991 		if (umem_nofail_exit_thr == thr_self())
992 			umem_panic("recursive UMEM_CALLBACK_EXIT()\n");
993 
994 		(void) mutex_lock(&umem_nofail_exit_lock);
995 		umem_nofail_exit_thr = thr_self();
996 		exit(result & 0xFF);
997 		/*NOTREACHED*/
998 	}
999 	return (0);
1000 }
1001 
1002 static umem_log_header_t *
1003 umem_log_init(size_t logsize)
1004 {
1005 	umem_log_header_t *lhp;
1006 	int nchunks = 4 * umem_max_ncpus;
1007 	size_t lhsize = offsetof(umem_log_header_t, lh_cpu[umem_max_ncpus]);
1008 	int i;
1009 
1010 	if (logsize == 0)
1011 		return (NULL);
1012 
1013 	/*
1014 	 * Make sure that lhp->lh_cpu[] is nicely aligned
1015 	 * to prevent false sharing of cache lines.
1016 	 */
1017 	lhsize = P2ROUNDUP(lhsize, UMEM_ALIGN);
1018 	lhp = vmem_xalloc(umem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1019 	    NULL, NULL, VM_NOSLEEP);
1020 	if (lhp == NULL)
1021 		goto fail;
1022 
1023 	bzero(lhp, lhsize);
1024 
1025 	(void) mutex_init(&lhp->lh_lock, USYNC_THREAD, NULL);
1026 	lhp->lh_nchunks = nchunks;
1027 	lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks, PAGESIZE);
1028 	if (lhp->lh_chunksize == 0)
1029 		lhp->lh_chunksize = PAGESIZE;
1030 
1031 	lhp->lh_base = vmem_alloc(umem_log_arena,
1032 	    lhp->lh_chunksize * nchunks, VM_NOSLEEP);
1033 	if (lhp->lh_base == NULL)
1034 		goto fail;
1035 
1036 	lhp->lh_free = vmem_alloc(umem_log_arena,
1037 	    nchunks * sizeof (int), VM_NOSLEEP);
1038 	if (lhp->lh_free == NULL)
1039 		goto fail;
1040 
1041 	bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1042 
1043 	for (i = 0; i < umem_max_ncpus; i++) {
1044 		umem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1045 		(void) mutex_init(&clhp->clh_lock, USYNC_THREAD, NULL);
1046 		clhp->clh_chunk = i;
1047 	}
1048 
1049 	for (i = umem_max_ncpus; i < nchunks; i++)
1050 		lhp->lh_free[i] = i;
1051 
1052 	lhp->lh_head = umem_max_ncpus;
1053 	lhp->lh_tail = 0;
1054 
1055 	return (lhp);
1056 
1057 fail:
1058 	if (lhp != NULL) {
1059 		if (lhp->lh_base != NULL)
1060 			vmem_free(umem_log_arena, lhp->lh_base,
1061 			    lhp->lh_chunksize * nchunks);
1062 
1063 		vmem_xfree(umem_log_arena, lhp, lhsize);
1064 	}
1065 	return (NULL);
1066 }
1067 
1068 static void *
1069 umem_log_enter(umem_log_header_t *lhp, void *data, size_t size)
1070 {
1071 	void *logspace;
1072 	umem_cpu_log_header_t *clhp =
1073 	    &lhp->lh_cpu[CPU(umem_cpu_mask)->cpu_number];
1074 
1075 	if (lhp == NULL || umem_logging == 0)
1076 		return (NULL);
1077 
1078 	(void) mutex_lock(&clhp->clh_lock);
1079 	clhp->clh_hits++;
1080 	if (size > clhp->clh_avail) {
1081 		(void) mutex_lock(&lhp->lh_lock);
1082 		lhp->lh_hits++;
1083 		lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1084 		lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1085 		clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1086 		lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1087 		clhp->clh_current = lhp->lh_base +
1088 		    clhp->clh_chunk * lhp->lh_chunksize;
1089 		clhp->clh_avail = lhp->lh_chunksize;
1090 		if (size > lhp->lh_chunksize)
1091 			size = lhp->lh_chunksize;
1092 		(void) mutex_unlock(&lhp->lh_lock);
1093 	}
1094 	logspace = clhp->clh_current;
1095 	clhp->clh_current += size;
1096 	clhp->clh_avail -= size;
1097 	bcopy(data, logspace, size);
1098 	(void) mutex_unlock(&clhp->clh_lock);
1099 	return (logspace);
1100 }
1101 
1102 #define	UMEM_AUDIT(lp, cp, bcp)						\
1103 {									\
1104 	umem_bufctl_audit_t *_bcp = (umem_bufctl_audit_t *)(bcp);	\
1105 	_bcp->bc_timestamp = gethrtime();				\
1106 	_bcp->bc_thread = thr_self();					\
1107 	_bcp->bc_depth = getpcstack(_bcp->bc_stack, umem_stack_depth,	\
1108 	    (cp != NULL) && (cp->cache_flags & UMF_CHECKSIGNAL));	\
1109 	_bcp->bc_lastlog = umem_log_enter((lp), _bcp,			\
1110 	    UMEM_BUFCTL_AUDIT_SIZE);					\
1111 }
1112 
1113 static void
1114 umem_log_event(umem_log_header_t *lp, umem_cache_t *cp,
1115 	umem_slab_t *sp, void *addr)
1116 {
1117 	umem_bufctl_audit_t *bcp;
1118 	UMEM_LOCAL_BUFCTL_AUDIT(&bcp);
1119 
1120 	bzero(bcp, UMEM_BUFCTL_AUDIT_SIZE);
1121 	bcp->bc_addr = addr;
1122 	bcp->bc_slab = sp;
1123 	bcp->bc_cache = cp;
1124 	UMEM_AUDIT(lp, cp, bcp);
1125 }
1126 
1127 /*
1128  * Create a new slab for cache cp.
1129  */
1130 static umem_slab_t *
1131 umem_slab_create(umem_cache_t *cp, int umflag)
1132 {
1133 	size_t slabsize = cp->cache_slabsize;
1134 	size_t chunksize = cp->cache_chunksize;
1135 	int cache_flags = cp->cache_flags;
1136 	size_t color, chunks;
1137 	char *buf, *slab;
1138 	umem_slab_t *sp;
1139 	umem_bufctl_t *bcp;
1140 	vmem_t *vmp = cp->cache_arena;
1141 
1142 	color = cp->cache_color + cp->cache_align;
1143 	if (color > cp->cache_maxcolor)
1144 		color = cp->cache_mincolor;
1145 	cp->cache_color = color;
1146 
1147 	slab = vmem_alloc(vmp, slabsize, UMEM_VMFLAGS(umflag));
1148 
1149 	if (slab == NULL)
1150 		goto vmem_alloc_failure;
1151 
1152 	ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1153 
1154 	if (!(cp->cache_cflags & UMC_NOTOUCH) &&
1155 	    (cp->cache_flags & UMF_DEADBEEF))
1156 		copy_pattern(UMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1157 
1158 	if (cache_flags & UMF_HASH) {
1159 		if ((sp = _umem_cache_alloc(umem_slab_cache, umflag)) == NULL)
1160 			goto slab_alloc_failure;
1161 		chunks = (slabsize - color) / chunksize;
1162 	} else {
1163 		sp = UMEM_SLAB(cp, slab);
1164 		chunks = (slabsize - sizeof (umem_slab_t) - color) / chunksize;
1165 	}
1166 
1167 	sp->slab_cache	= cp;
1168 	sp->slab_head	= NULL;
1169 	sp->slab_refcnt	= 0;
1170 	sp->slab_base	= buf = slab + color;
1171 	sp->slab_chunks	= chunks;
1172 
1173 	ASSERT(chunks > 0);
1174 	while (chunks-- != 0) {
1175 		if (cache_flags & UMF_HASH) {
1176 			bcp = _umem_cache_alloc(cp->cache_bufctl_cache, umflag);
1177 			if (bcp == NULL)
1178 				goto bufctl_alloc_failure;
1179 			if (cache_flags & UMF_AUDIT) {
1180 				umem_bufctl_audit_t *bcap =
1181 				    (umem_bufctl_audit_t *)bcp;
1182 				bzero(bcap, UMEM_BUFCTL_AUDIT_SIZE);
1183 				bcap->bc_cache = cp;
1184 			}
1185 			bcp->bc_addr = buf;
1186 			bcp->bc_slab = sp;
1187 		} else {
1188 			bcp = UMEM_BUFCTL(cp, buf);
1189 		}
1190 		if (cache_flags & UMF_BUFTAG) {
1191 			umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1192 			btp->bt_redzone = UMEM_REDZONE_PATTERN;
1193 			btp->bt_bufctl = bcp;
1194 			btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE;
1195 			if (cache_flags & UMF_DEADBEEF) {
1196 				copy_pattern(UMEM_FREE_PATTERN, buf,
1197 				    cp->cache_verify);
1198 			}
1199 		}
1200 		bcp->bc_next = sp->slab_head;
1201 		sp->slab_head = bcp;
1202 		buf += chunksize;
1203 	}
1204 
1205 	umem_log_event(umem_slab_log, cp, sp, slab);
1206 
1207 	return (sp);
1208 
1209 bufctl_alloc_failure:
1210 
1211 	while ((bcp = sp->slab_head) != NULL) {
1212 		sp->slab_head = bcp->bc_next;
1213 		_umem_cache_free(cp->cache_bufctl_cache, bcp);
1214 	}
1215 	_umem_cache_free(umem_slab_cache, sp);
1216 
1217 slab_alloc_failure:
1218 
1219 	vmem_free(vmp, slab, slabsize);
1220 
1221 vmem_alloc_failure:
1222 
1223 	umem_log_event(umem_failure_log, cp, NULL, NULL);
1224 	atomic_add_64(&cp->cache_alloc_fail, 1);
1225 
1226 	return (NULL);
1227 }
1228 
1229 /*
1230  * Destroy a slab.
1231  */
1232 static void
1233 umem_slab_destroy(umem_cache_t *cp, umem_slab_t *sp)
1234 {
1235 	vmem_t *vmp = cp->cache_arena;
1236 	void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1237 
1238 	if (cp->cache_flags & UMF_HASH) {
1239 		umem_bufctl_t *bcp;
1240 		while ((bcp = sp->slab_head) != NULL) {
1241 			sp->slab_head = bcp->bc_next;
1242 			_umem_cache_free(cp->cache_bufctl_cache, bcp);
1243 		}
1244 		_umem_cache_free(umem_slab_cache, sp);
1245 	}
1246 	vmem_free(vmp, slab, cp->cache_slabsize);
1247 }
1248 
1249 /*
1250  * Allocate a raw (unconstructed) buffer from cp's slab layer.
1251  */
1252 static void *
1253 umem_slab_alloc(umem_cache_t *cp, int umflag)
1254 {
1255 	umem_bufctl_t *bcp, **hash_bucket;
1256 	umem_slab_t *sp;
1257 	void *buf;
1258 
1259 	(void) mutex_lock(&cp->cache_lock);
1260 	cp->cache_slab_alloc++;
1261 	sp = cp->cache_freelist;
1262 	ASSERT(sp->slab_cache == cp);
1263 	if (sp->slab_head == NULL) {
1264 		/*
1265 		 * The freelist is empty.  Create a new slab.
1266 		 */
1267 		(void) mutex_unlock(&cp->cache_lock);
1268 		if (cp == &umem_null_cache)
1269 			return (NULL);
1270 		if ((sp = umem_slab_create(cp, umflag)) == NULL)
1271 			return (NULL);
1272 		(void) mutex_lock(&cp->cache_lock);
1273 		cp->cache_slab_create++;
1274 		if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1275 			cp->cache_bufmax = cp->cache_buftotal;
1276 		sp->slab_next = cp->cache_freelist;
1277 		sp->slab_prev = cp->cache_freelist->slab_prev;
1278 		sp->slab_next->slab_prev = sp;
1279 		sp->slab_prev->slab_next = sp;
1280 		cp->cache_freelist = sp;
1281 	}
1282 
1283 	sp->slab_refcnt++;
1284 	ASSERT(sp->slab_refcnt <= sp->slab_chunks);
1285 
1286 	/*
1287 	 * If we're taking the last buffer in the slab,
1288 	 * remove the slab from the cache's freelist.
1289 	 */
1290 	bcp = sp->slab_head;
1291 	if ((sp->slab_head = bcp->bc_next) == NULL) {
1292 		cp->cache_freelist = sp->slab_next;
1293 		ASSERT(sp->slab_refcnt == sp->slab_chunks);
1294 	}
1295 
1296 	if (cp->cache_flags & UMF_HASH) {
1297 		/*
1298 		 * Add buffer to allocated-address hash table.
1299 		 */
1300 		buf = bcp->bc_addr;
1301 		hash_bucket = UMEM_HASH(cp, buf);
1302 		bcp->bc_next = *hash_bucket;
1303 		*hash_bucket = bcp;
1304 		if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) {
1305 			UMEM_AUDIT(umem_transaction_log, cp, bcp);
1306 		}
1307 	} else {
1308 		buf = UMEM_BUF(cp, bcp);
1309 	}
1310 
1311 	ASSERT(UMEM_SLAB_MEMBER(sp, buf));
1312 
1313 	(void) mutex_unlock(&cp->cache_lock);
1314 
1315 	return (buf);
1316 }
1317 
1318 /*
1319  * Free a raw (unconstructed) buffer to cp's slab layer.
1320  */
1321 static void
1322 umem_slab_free(umem_cache_t *cp, void *buf)
1323 {
1324 	umem_slab_t *sp;
1325 	umem_bufctl_t *bcp, **prev_bcpp;
1326 
1327 	ASSERT(buf != NULL);
1328 
1329 	(void) mutex_lock(&cp->cache_lock);
1330 	cp->cache_slab_free++;
1331 
1332 	if (cp->cache_flags & UMF_HASH) {
1333 		/*
1334 		 * Look up buffer in allocated-address hash table.
1335 		 */
1336 		prev_bcpp = UMEM_HASH(cp, buf);
1337 		while ((bcp = *prev_bcpp) != NULL) {
1338 			if (bcp->bc_addr == buf) {
1339 				*prev_bcpp = bcp->bc_next;
1340 				sp = bcp->bc_slab;
1341 				break;
1342 			}
1343 			cp->cache_lookup_depth++;
1344 			prev_bcpp = &bcp->bc_next;
1345 		}
1346 	} else {
1347 		bcp = UMEM_BUFCTL(cp, buf);
1348 		sp = UMEM_SLAB(cp, buf);
1349 	}
1350 
1351 	if (bcp == NULL || sp->slab_cache != cp || !UMEM_SLAB_MEMBER(sp, buf)) {
1352 		(void) mutex_unlock(&cp->cache_lock);
1353 		umem_error(UMERR_BADADDR, cp, buf);
1354 		return;
1355 	}
1356 
1357 	if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) {
1358 		if (cp->cache_flags & UMF_CONTENTS)
1359 			((umem_bufctl_audit_t *)bcp)->bc_contents =
1360 			    umem_log_enter(umem_content_log, buf,
1361 			    cp->cache_contents);
1362 		UMEM_AUDIT(umem_transaction_log, cp, bcp);
1363 	}
1364 
1365 	/*
1366 	 * If this slab isn't currently on the freelist, put it there.
1367 	 */
1368 	if (sp->slab_head == NULL) {
1369 		ASSERT(sp->slab_refcnt == sp->slab_chunks);
1370 		ASSERT(cp->cache_freelist != sp);
1371 		sp->slab_next->slab_prev = sp->slab_prev;
1372 		sp->slab_prev->slab_next = sp->slab_next;
1373 		sp->slab_next = cp->cache_freelist;
1374 		sp->slab_prev = cp->cache_freelist->slab_prev;
1375 		sp->slab_next->slab_prev = sp;
1376 		sp->slab_prev->slab_next = sp;
1377 		cp->cache_freelist = sp;
1378 	}
1379 
1380 	bcp->bc_next = sp->slab_head;
1381 	sp->slab_head = bcp;
1382 
1383 	ASSERT(sp->slab_refcnt >= 1);
1384 	if (--sp->slab_refcnt == 0) {
1385 		/*
1386 		 * There are no outstanding allocations from this slab,
1387 		 * so we can reclaim the memory.
1388 		 */
1389 		sp->slab_next->slab_prev = sp->slab_prev;
1390 		sp->slab_prev->slab_next = sp->slab_next;
1391 		if (sp == cp->cache_freelist)
1392 			cp->cache_freelist = sp->slab_next;
1393 		cp->cache_slab_destroy++;
1394 		cp->cache_buftotal -= sp->slab_chunks;
1395 		(void) mutex_unlock(&cp->cache_lock);
1396 		umem_slab_destroy(cp, sp);
1397 		return;
1398 	}
1399 	(void) mutex_unlock(&cp->cache_lock);
1400 }
1401 
1402 static int
1403 umem_cache_alloc_debug(umem_cache_t *cp, void *buf, int umflag)
1404 {
1405 	umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1406 	umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl;
1407 	uint32_t mtbf;
1408 	int flags_nfatal;
1409 
1410 	if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) {
1411 		umem_error(UMERR_BADBUFTAG, cp, buf);
1412 		return (-1);
1413 	}
1414 
1415 	btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_ALLOC;
1416 
1417 	if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) {
1418 		umem_error(UMERR_BADBUFCTL, cp, buf);
1419 		return (-1);
1420 	}
1421 
1422 	btp->bt_redzone = UMEM_REDZONE_PATTERN;
1423 
1424 	if (cp->cache_flags & UMF_DEADBEEF) {
1425 		if (verify_and_copy_pattern(UMEM_FREE_PATTERN,
1426 		    UMEM_UNINITIALIZED_PATTERN, buf, cp->cache_verify)) {
1427 			umem_error(UMERR_MODIFIED, cp, buf);
1428 			return (-1);
1429 		}
1430 	}
1431 
1432 	if ((mtbf = umem_mtbf | cp->cache_mtbf) != 0 &&
1433 	    gethrtime() % mtbf == 0 &&
1434 	    (umflag & (UMEM_FATAL_FLAGS)) == 0) {
1435 		umem_log_event(umem_failure_log, cp, NULL, NULL);
1436 	} else {
1437 		mtbf = 0;
1438 	}
1439 
1440 	/*
1441 	 * We do not pass fatal flags on to the constructor.  This prevents
1442 	 * leaking buffers in the event of a subordinate constructor failing.
1443 	 */
1444 	flags_nfatal = UMEM_DEFAULT;
1445 	if (mtbf || (cp->cache_constructor != NULL &&
1446 	    cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0)) {
1447 		atomic_add_64(&cp->cache_alloc_fail, 1);
1448 		btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE;
1449 		copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify);
1450 		umem_slab_free(cp, buf);
1451 		return (-1);
1452 	}
1453 
1454 	if (cp->cache_flags & UMF_AUDIT) {
1455 		UMEM_AUDIT(umem_transaction_log, cp, bcp);
1456 	}
1457 
1458 	return (0);
1459 }
1460 
1461 static int
1462 umem_cache_free_debug(umem_cache_t *cp, void *buf)
1463 {
1464 	umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1465 	umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl;
1466 	umem_slab_t *sp;
1467 
1468 	if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_ALLOC)) {
1469 		if (btp->bt_bxstat == ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) {
1470 			umem_error(UMERR_DUPFREE, cp, buf);
1471 			return (-1);
1472 		}
1473 		sp = umem_findslab(cp, buf);
1474 		if (sp == NULL || sp->slab_cache != cp)
1475 			umem_error(UMERR_BADADDR, cp, buf);
1476 		else
1477 			umem_error(UMERR_REDZONE, cp, buf);
1478 		return (-1);
1479 	}
1480 
1481 	btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE;
1482 
1483 	if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) {
1484 		umem_error(UMERR_BADBUFCTL, cp, buf);
1485 		return (-1);
1486 	}
1487 
1488 	if (btp->bt_redzone != UMEM_REDZONE_PATTERN) {
1489 		umem_error(UMERR_REDZONE, cp, buf);
1490 		return (-1);
1491 	}
1492 
1493 	if (cp->cache_flags & UMF_AUDIT) {
1494 		if (cp->cache_flags & UMF_CONTENTS)
1495 			bcp->bc_contents = umem_log_enter(umem_content_log,
1496 			    buf, cp->cache_contents);
1497 		UMEM_AUDIT(umem_transaction_log, cp, bcp);
1498 	}
1499 
1500 	if (cp->cache_destructor != NULL)
1501 		cp->cache_destructor(buf, cp->cache_private);
1502 
1503 	if (cp->cache_flags & UMF_DEADBEEF)
1504 		copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify);
1505 
1506 	return (0);
1507 }
1508 
1509 /*
1510  * Free each object in magazine mp to cp's slab layer, and free mp itself.
1511  */
1512 static void
1513 umem_magazine_destroy(umem_cache_t *cp, umem_magazine_t *mp, int nrounds)
1514 {
1515 	int round;
1516 
1517 	ASSERT(cp->cache_next == NULL || IN_UPDATE());
1518 
1519 	for (round = 0; round < nrounds; round++) {
1520 		void *buf = mp->mag_round[round];
1521 
1522 		if ((cp->cache_flags & UMF_DEADBEEF) &&
1523 		    verify_pattern(UMEM_FREE_PATTERN, buf,
1524 		    cp->cache_verify) != NULL) {
1525 			umem_error(UMERR_MODIFIED, cp, buf);
1526 			continue;
1527 		}
1528 
1529 		if (!(cp->cache_flags & UMF_BUFTAG) &&
1530 		    cp->cache_destructor != NULL)
1531 			cp->cache_destructor(buf, cp->cache_private);
1532 
1533 		umem_slab_free(cp, buf);
1534 	}
1535 	ASSERT(UMEM_MAGAZINE_VALID(cp, mp));
1536 	_umem_cache_free(cp->cache_magtype->mt_cache, mp);
1537 }
1538 
1539 /*
1540  * Allocate a magazine from the depot.
1541  */
1542 static umem_magazine_t *
1543 umem_depot_alloc(umem_cache_t *cp, umem_maglist_t *mlp)
1544 {
1545 	umem_magazine_t *mp;
1546 
1547 	/*
1548 	 * If we can't get the depot lock without contention,
1549 	 * update our contention count.  We use the depot
1550 	 * contention rate to determine whether we need to
1551 	 * increase the magazine size for better scalability.
1552 	 */
1553 	if (mutex_trylock(&cp->cache_depot_lock) != 0) {
1554 		(void) mutex_lock(&cp->cache_depot_lock);
1555 		cp->cache_depot_contention++;
1556 	}
1557 
1558 	if ((mp = mlp->ml_list) != NULL) {
1559 		ASSERT(UMEM_MAGAZINE_VALID(cp, mp));
1560 		mlp->ml_list = mp->mag_next;
1561 		if (--mlp->ml_total < mlp->ml_min)
1562 			mlp->ml_min = mlp->ml_total;
1563 		mlp->ml_alloc++;
1564 	}
1565 
1566 	(void) mutex_unlock(&cp->cache_depot_lock);
1567 
1568 	return (mp);
1569 }
1570 
1571 /*
1572  * Free a magazine to the depot.
1573  */
1574 static void
1575 umem_depot_free(umem_cache_t *cp, umem_maglist_t *mlp, umem_magazine_t *mp)
1576 {
1577 	(void) mutex_lock(&cp->cache_depot_lock);
1578 	ASSERT(UMEM_MAGAZINE_VALID(cp, mp));
1579 	mp->mag_next = mlp->ml_list;
1580 	mlp->ml_list = mp;
1581 	mlp->ml_total++;
1582 	(void) mutex_unlock(&cp->cache_depot_lock);
1583 }
1584 
1585 /*
1586  * Update the working set statistics for cp's depot.
1587  */
1588 static void
1589 umem_depot_ws_update(umem_cache_t *cp)
1590 {
1591 	(void) mutex_lock(&cp->cache_depot_lock);
1592 	cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
1593 	cp->cache_full.ml_min = cp->cache_full.ml_total;
1594 	cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
1595 	cp->cache_empty.ml_min = cp->cache_empty.ml_total;
1596 	(void) mutex_unlock(&cp->cache_depot_lock);
1597 }
1598 
1599 /*
1600  * Reap all magazines that have fallen out of the depot's working set.
1601  */
1602 static void
1603 umem_depot_ws_reap(umem_cache_t *cp)
1604 {
1605 	long reap;
1606 	umem_magazine_t *mp;
1607 
1608 	ASSERT(cp->cache_next == NULL || IN_REAP());
1609 
1610 	reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
1611 	while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_full)) != NULL)
1612 		umem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
1613 
1614 	reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
1615 	while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_empty)) != NULL)
1616 		umem_magazine_destroy(cp, mp, 0);
1617 }
1618 
1619 static void
1620 umem_cpu_reload(umem_cpu_cache_t *ccp, umem_magazine_t *mp, int rounds)
1621 {
1622 	ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
1623 	    (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
1624 	ASSERT(ccp->cc_magsize > 0);
1625 
1626 	ccp->cc_ploaded = ccp->cc_loaded;
1627 	ccp->cc_prounds = ccp->cc_rounds;
1628 	ccp->cc_loaded = mp;
1629 	ccp->cc_rounds = rounds;
1630 }
1631 
1632 /*
1633  * Allocate a constructed object from cache cp.
1634  */
1635 #pragma weak umem_cache_alloc = _umem_cache_alloc
1636 void *
1637 _umem_cache_alloc(umem_cache_t *cp, int umflag)
1638 {
1639 	umem_cpu_cache_t *ccp;
1640 	umem_magazine_t *fmp;
1641 	void *buf;
1642 	int flags_nfatal;
1643 
1644 retry:
1645 	ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask));
1646 	(void) mutex_lock(&ccp->cc_lock);
1647 	for (;;) {
1648 		/*
1649 		 * If there's an object available in the current CPU's
1650 		 * loaded magazine, just take it and return.
1651 		 */
1652 		if (ccp->cc_rounds > 0) {
1653 			buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
1654 			ccp->cc_alloc++;
1655 			(void) mutex_unlock(&ccp->cc_lock);
1656 			if ((ccp->cc_flags & UMF_BUFTAG) &&
1657 			    umem_cache_alloc_debug(cp, buf, umflag) == -1) {
1658 				if (umem_alloc_retry(cp, umflag)) {
1659 					goto retry;
1660 				}
1661 
1662 				return (NULL);
1663 			}
1664 			return (buf);
1665 		}
1666 
1667 		/*
1668 		 * The loaded magazine is empty.  If the previously loaded
1669 		 * magazine was full, exchange them and try again.
1670 		 */
1671 		if (ccp->cc_prounds > 0) {
1672 			umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
1673 			continue;
1674 		}
1675 
1676 		/*
1677 		 * If the magazine layer is disabled, break out now.
1678 		 */
1679 		if (ccp->cc_magsize == 0)
1680 			break;
1681 
1682 		/*
1683 		 * Try to get a full magazine from the depot.
1684 		 */
1685 		fmp = umem_depot_alloc(cp, &cp->cache_full);
1686 		if (fmp != NULL) {
1687 			if (ccp->cc_ploaded != NULL)
1688 				umem_depot_free(cp, &cp->cache_empty,
1689 				    ccp->cc_ploaded);
1690 			umem_cpu_reload(ccp, fmp, ccp->cc_magsize);
1691 			continue;
1692 		}
1693 
1694 		/*
1695 		 * There are no full magazines in the depot,
1696 		 * so fall through to the slab layer.
1697 		 */
1698 		break;
1699 	}
1700 	(void) mutex_unlock(&ccp->cc_lock);
1701 
1702 	/*
1703 	 * We couldn't allocate a constructed object from the magazine layer,
1704 	 * so get a raw buffer from the slab layer and apply its constructor.
1705 	 */
1706 	buf = umem_slab_alloc(cp, umflag);
1707 
1708 	if (buf == NULL) {
1709 		if (cp == &umem_null_cache)
1710 			return (NULL);
1711 		if (umem_alloc_retry(cp, umflag)) {
1712 			goto retry;
1713 		}
1714 
1715 		return (NULL);
1716 	}
1717 
1718 	if (cp->cache_flags & UMF_BUFTAG) {
1719 		/*
1720 		 * Let umem_cache_alloc_debug() apply the constructor for us.
1721 		 */
1722 		if (umem_cache_alloc_debug(cp, buf, umflag) == -1) {
1723 			if (umem_alloc_retry(cp, umflag)) {
1724 				goto retry;
1725 			}
1726 			return (NULL);
1727 		}
1728 		return (buf);
1729 	}
1730 
1731 	/*
1732 	 * We do not pass fatal flags on to the constructor.  This prevents
1733 	 * leaking buffers in the event of a subordinate constructor failing.
1734 	 */
1735 	flags_nfatal = UMEM_DEFAULT;
1736 	if (cp->cache_constructor != NULL &&
1737 	    cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0) {
1738 		atomic_add_64(&cp->cache_alloc_fail, 1);
1739 		umem_slab_free(cp, buf);
1740 
1741 		if (umem_alloc_retry(cp, umflag)) {
1742 			goto retry;
1743 		}
1744 		return (NULL);
1745 	}
1746 
1747 	return (buf);
1748 }
1749 
1750 /*
1751  * Free a constructed object to cache cp.
1752  */
1753 #pragma weak umem_cache_free = _umem_cache_free
1754 void
1755 _umem_cache_free(umem_cache_t *cp, void *buf)
1756 {
1757 	umem_cpu_cache_t *ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask));
1758 	umem_magazine_t *emp;
1759 	umem_magtype_t *mtp;
1760 
1761 	if (ccp->cc_flags & UMF_BUFTAG)
1762 		if (umem_cache_free_debug(cp, buf) == -1)
1763 			return;
1764 
1765 	(void) mutex_lock(&ccp->cc_lock);
1766 	for (;;) {
1767 		/*
1768 		 * If there's a slot available in the current CPU's
1769 		 * loaded magazine, just put the object there and return.
1770 		 */
1771 		if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
1772 			ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
1773 			ccp->cc_free++;
1774 			(void) mutex_unlock(&ccp->cc_lock);
1775 			return;
1776 		}
1777 
1778 		/*
1779 		 * The loaded magazine is full.  If the previously loaded
1780 		 * magazine was empty, exchange them and try again.
1781 		 */
1782 		if (ccp->cc_prounds == 0) {
1783 			umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
1784 			continue;
1785 		}
1786 
1787 		/*
1788 		 * If the magazine layer is disabled, break out now.
1789 		 */
1790 		if (ccp->cc_magsize == 0)
1791 			break;
1792 
1793 		/*
1794 		 * Try to get an empty magazine from the depot.
1795 		 */
1796 		emp = umem_depot_alloc(cp, &cp->cache_empty);
1797 		if (emp != NULL) {
1798 			if (ccp->cc_ploaded != NULL)
1799 				umem_depot_free(cp, &cp->cache_full,
1800 				    ccp->cc_ploaded);
1801 			umem_cpu_reload(ccp, emp, 0);
1802 			continue;
1803 		}
1804 
1805 		/*
1806 		 * There are no empty magazines in the depot,
1807 		 * so try to allocate a new one.  We must drop all locks
1808 		 * across umem_cache_alloc() because lower layers may
1809 		 * attempt to allocate from this cache.
1810 		 */
1811 		mtp = cp->cache_magtype;
1812 		(void) mutex_unlock(&ccp->cc_lock);
1813 		emp = _umem_cache_alloc(mtp->mt_cache, UMEM_DEFAULT);
1814 		(void) mutex_lock(&ccp->cc_lock);
1815 
1816 		if (emp != NULL) {
1817 			/*
1818 			 * We successfully allocated an empty magazine.
1819 			 * However, we had to drop ccp->cc_lock to do it,
1820 			 * so the cache's magazine size may have changed.
1821 			 * If so, free the magazine and try again.
1822 			 */
1823 			if (ccp->cc_magsize != mtp->mt_magsize) {
1824 				(void) mutex_unlock(&ccp->cc_lock);
1825 				_umem_cache_free(mtp->mt_cache, emp);
1826 				(void) mutex_lock(&ccp->cc_lock);
1827 				continue;
1828 			}
1829 
1830 			/*
1831 			 * We got a magazine of the right size.  Add it to
1832 			 * the depot and try the whole dance again.
1833 			 */
1834 			umem_depot_free(cp, &cp->cache_empty, emp);
1835 			continue;
1836 		}
1837 
1838 		/*
1839 		 * We couldn't allocate an empty magazine,
1840 		 * so fall through to the slab layer.
1841 		 */
1842 		break;
1843 	}
1844 	(void) mutex_unlock(&ccp->cc_lock);
1845 
1846 	/*
1847 	 * We couldn't free our constructed object to the magazine layer,
1848 	 * so apply its destructor and free it to the slab layer.
1849 	 * Note that if UMF_BUFTAG is in effect, umem_cache_free_debug()
1850 	 * will have already applied the destructor.
1851 	 */
1852 	if (!(cp->cache_flags & UMF_BUFTAG) && cp->cache_destructor != NULL)
1853 		cp->cache_destructor(buf, cp->cache_private);
1854 
1855 	umem_slab_free(cp, buf);
1856 }
1857 
1858 #pragma weak umem_zalloc = _umem_zalloc
1859 void *
1860 _umem_zalloc(size_t size, int umflag)
1861 {
1862 	size_t index = (size - 1) >> UMEM_ALIGN_SHIFT;
1863 	void *buf;
1864 
1865 retry:
1866 	if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) {
1867 		umem_cache_t *cp = umem_alloc_table[index];
1868 		buf = _umem_cache_alloc(cp, umflag);
1869 		if (buf != NULL) {
1870 			if (cp->cache_flags & UMF_BUFTAG) {
1871 				umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1872 				((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE;
1873 				((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size);
1874 			}
1875 			bzero(buf, size);
1876 		} else if (umem_alloc_retry(cp, umflag))
1877 			goto retry;
1878 	} else {
1879 		buf = _umem_alloc(size, umflag);	/* handles failure */
1880 		if (buf != NULL)
1881 			bzero(buf, size);
1882 	}
1883 	return (buf);
1884 }
1885 
1886 #pragma weak umem_alloc = _umem_alloc
1887 void *
1888 _umem_alloc(size_t size, int umflag)
1889 {
1890 	size_t index = (size - 1) >> UMEM_ALIGN_SHIFT;
1891 	void *buf;
1892 umem_alloc_retry:
1893 	if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) {
1894 		umem_cache_t *cp = umem_alloc_table[index];
1895 		buf = _umem_cache_alloc(cp, umflag);
1896 		if ((cp->cache_flags & UMF_BUFTAG) && buf != NULL) {
1897 			umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1898 			((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE;
1899 			((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size);
1900 		}
1901 		if (buf == NULL && umem_alloc_retry(cp, umflag))
1902 			goto umem_alloc_retry;
1903 		return (buf);
1904 	}
1905 	if (size == 0)
1906 		return (NULL);
1907 	if (umem_oversize_arena == NULL) {
1908 		if (umem_init())
1909 			ASSERT(umem_oversize_arena != NULL);
1910 		else
1911 			return (NULL);
1912 	}
1913 	buf = vmem_alloc(umem_oversize_arena, size, UMEM_VMFLAGS(umflag));
1914 	if (buf == NULL) {
1915 		umem_log_event(umem_failure_log, NULL, NULL, (void *)size);
1916 		if (umem_alloc_retry(NULL, umflag))
1917 			goto umem_alloc_retry;
1918 	}
1919 	return (buf);
1920 }
1921 
1922 #pragma weak umem_alloc_align = _umem_alloc_align
1923 void *
1924 _umem_alloc_align(size_t size, size_t align, int umflag)
1925 {
1926 	void *buf;
1927 
1928 	if (size == 0)
1929 		return (NULL);
1930 	if ((align & (align - 1)) != 0)
1931 		return (NULL);
1932 	if (align < UMEM_ALIGN)
1933 		align = UMEM_ALIGN;
1934 
1935 umem_alloc_align_retry:
1936 	if (umem_memalign_arena == NULL) {
1937 		if (umem_init())
1938 			ASSERT(umem_oversize_arena != NULL);
1939 		else
1940 			return (NULL);
1941 	}
1942 	buf = vmem_xalloc(umem_memalign_arena, size, align, 0, 0, NULL, NULL,
1943 	    UMEM_VMFLAGS(umflag));
1944 	if (buf == NULL) {
1945 		umem_log_event(umem_failure_log, NULL, NULL, (void *)size);
1946 		if (umem_alloc_retry(NULL, umflag))
1947 			goto umem_alloc_align_retry;
1948 	}
1949 	return (buf);
1950 }
1951 
1952 #pragma weak umem_free = _umem_free
1953 void
1954 _umem_free(void *buf, size_t size)
1955 {
1956 	size_t index = (size - 1) >> UMEM_ALIGN_SHIFT;
1957 
1958 	if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) {
1959 		umem_cache_t *cp = umem_alloc_table[index];
1960 		if (cp->cache_flags & UMF_BUFTAG) {
1961 			umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1962 			uint32_t *ip = (uint32_t *)btp;
1963 			if (ip[1] != UMEM_SIZE_ENCODE(size)) {
1964 				if (*(uint64_t *)buf == UMEM_FREE_PATTERN) {
1965 					umem_error(UMERR_DUPFREE, cp, buf);
1966 					return;
1967 				}
1968 				if (UMEM_SIZE_VALID(ip[1])) {
1969 					ip[0] = UMEM_SIZE_ENCODE(size);
1970 					umem_error(UMERR_BADSIZE, cp, buf);
1971 				} else {
1972 					umem_error(UMERR_REDZONE, cp, buf);
1973 				}
1974 				return;
1975 			}
1976 			if (((uint8_t *)buf)[size] != UMEM_REDZONE_BYTE) {
1977 				umem_error(UMERR_REDZONE, cp, buf);
1978 				return;
1979 			}
1980 			btp->bt_redzone = UMEM_REDZONE_PATTERN;
1981 		}
1982 		_umem_cache_free(cp, buf);
1983 	} else {
1984 		if (buf == NULL && size == 0)
1985 			return;
1986 		vmem_free(umem_oversize_arena, buf, size);
1987 	}
1988 }
1989 
1990 #pragma weak umem_free_align = _umem_free_align
1991 void
1992 _umem_free_align(void *buf, size_t size)
1993 {
1994 	if (buf == NULL && size == 0)
1995 		return;
1996 	vmem_xfree(umem_memalign_arena, buf, size);
1997 }
1998 
1999 static void *
2000 umem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
2001 {
2002 	size_t realsize = size + vmp->vm_quantum;
2003 
2004 	/*
2005 	 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
2006 	 * vm_quantum will cause integer wraparound.  Check for this, and
2007 	 * blow off the firewall page in this case.  Note that such a
2008 	 * giant allocation (the entire address space) can never be
2009 	 * satisfied, so it will either fail immediately (VM_NOSLEEP)
2010 	 * or sleep forever (VM_SLEEP).  Thus, there is no need for a
2011 	 * corresponding check in umem_firewall_va_free().
2012 	 */
2013 	if (realsize < size)
2014 		realsize = size;
2015 
2016 	return (vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT));
2017 }
2018 
2019 static void
2020 umem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
2021 {
2022 	vmem_free(vmp, addr, size + vmp->vm_quantum);
2023 }
2024 
2025 /*
2026  * Reclaim all unused memory from a cache.
2027  */
2028 static void
2029 umem_cache_reap(umem_cache_t *cp)
2030 {
2031 	/*
2032 	 * Ask the cache's owner to free some memory if possible.
2033 	 * The idea is to handle things like the inode cache, which
2034 	 * typically sits on a bunch of memory that it doesn't truly
2035 	 * *need*.  Reclaim policy is entirely up to the owner; this
2036 	 * callback is just an advisory plea for help.
2037 	 */
2038 	if (cp->cache_reclaim != NULL)
2039 		cp->cache_reclaim(cp->cache_private);
2040 
2041 	umem_depot_ws_reap(cp);
2042 }
2043 
2044 /*
2045  * Purge all magazines from a cache and set its magazine limit to zero.
2046  * All calls are serialized by being done by the update thread, except for
2047  * the final call from umem_cache_destroy().
2048  */
2049 static void
2050 umem_cache_magazine_purge(umem_cache_t *cp)
2051 {
2052 	umem_cpu_cache_t *ccp;
2053 	umem_magazine_t *mp, *pmp;
2054 	int rounds, prounds, cpu_seqid;
2055 
2056 	ASSERT(cp->cache_next == NULL || IN_UPDATE());
2057 
2058 	for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) {
2059 		ccp = &cp->cache_cpu[cpu_seqid];
2060 
2061 		(void) mutex_lock(&ccp->cc_lock);
2062 		mp = ccp->cc_loaded;
2063 		pmp = ccp->cc_ploaded;
2064 		rounds = ccp->cc_rounds;
2065 		prounds = ccp->cc_prounds;
2066 		ccp->cc_loaded = NULL;
2067 		ccp->cc_ploaded = NULL;
2068 		ccp->cc_rounds = -1;
2069 		ccp->cc_prounds = -1;
2070 		ccp->cc_magsize = 0;
2071 		(void) mutex_unlock(&ccp->cc_lock);
2072 
2073 		if (mp)
2074 			umem_magazine_destroy(cp, mp, rounds);
2075 		if (pmp)
2076 			umem_magazine_destroy(cp, pmp, prounds);
2077 	}
2078 
2079 	/*
2080 	 * Updating the working set statistics twice in a row has the
2081 	 * effect of setting the working set size to zero, so everything
2082 	 * is eligible for reaping.
2083 	 */
2084 	umem_depot_ws_update(cp);
2085 	umem_depot_ws_update(cp);
2086 
2087 	umem_depot_ws_reap(cp);
2088 }
2089 
2090 /*
2091  * Enable per-cpu magazines on a cache.
2092  */
2093 static void
2094 umem_cache_magazine_enable(umem_cache_t *cp)
2095 {
2096 	int cpu_seqid;
2097 
2098 	if (cp->cache_flags & UMF_NOMAGAZINE)
2099 		return;
2100 
2101 	for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) {
2102 		umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
2103 		(void) mutex_lock(&ccp->cc_lock);
2104 		ccp->cc_magsize = cp->cache_magtype->mt_magsize;
2105 		(void) mutex_unlock(&ccp->cc_lock);
2106 	}
2107 
2108 }
2109 
2110 /*
2111  * Recompute a cache's magazine size.  The trade-off is that larger magazines
2112  * provide a higher transfer rate with the depot, while smaller magazines
2113  * reduce memory consumption.  Magazine resizing is an expensive operation;
2114  * it should not be done frequently.
2115  *
2116  * Changes to the magazine size are serialized by only having one thread
2117  * doing updates. (the update thread)
2118  *
2119  * Note: at present this only grows the magazine size.  It might be useful
2120  * to allow shrinkage too.
2121  */
2122 static void
2123 umem_cache_magazine_resize(umem_cache_t *cp)
2124 {
2125 	umem_magtype_t *mtp = cp->cache_magtype;
2126 
2127 	ASSERT(IN_UPDATE());
2128 
2129 	if (cp->cache_chunksize < mtp->mt_maxbuf) {
2130 		umem_cache_magazine_purge(cp);
2131 		(void) mutex_lock(&cp->cache_depot_lock);
2132 		cp->cache_magtype = ++mtp;
2133 		cp->cache_depot_contention_prev =
2134 		    cp->cache_depot_contention + INT_MAX;
2135 		(void) mutex_unlock(&cp->cache_depot_lock);
2136 		umem_cache_magazine_enable(cp);
2137 	}
2138 }
2139 
2140 /*
2141  * Rescale a cache's hash table, so that the table size is roughly the
2142  * cache size.  We want the average lookup time to be extremely small.
2143  */
2144 static void
2145 umem_hash_rescale(umem_cache_t *cp)
2146 {
2147 	umem_bufctl_t **old_table, **new_table, *bcp;
2148 	size_t old_size, new_size, h;
2149 
2150 	ASSERT(IN_UPDATE());
2151 
2152 	new_size = MAX(UMEM_HASH_INITIAL,
2153 	    1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
2154 	old_size = cp->cache_hash_mask + 1;
2155 
2156 	if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
2157 		return;
2158 
2159 	new_table = vmem_alloc(umem_hash_arena, new_size * sizeof (void *),
2160 	    VM_NOSLEEP);
2161 	if (new_table == NULL)
2162 		return;
2163 	bzero(new_table, new_size * sizeof (void *));
2164 
2165 	(void) mutex_lock(&cp->cache_lock);
2166 
2167 	old_size = cp->cache_hash_mask + 1;
2168 	old_table = cp->cache_hash_table;
2169 
2170 	cp->cache_hash_mask = new_size - 1;
2171 	cp->cache_hash_table = new_table;
2172 	cp->cache_rescale++;
2173 
2174 	for (h = 0; h < old_size; h++) {
2175 		bcp = old_table[h];
2176 		while (bcp != NULL) {
2177 			void *addr = bcp->bc_addr;
2178 			umem_bufctl_t *next_bcp = bcp->bc_next;
2179 			umem_bufctl_t **hash_bucket = UMEM_HASH(cp, addr);
2180 			bcp->bc_next = *hash_bucket;
2181 			*hash_bucket = bcp;
2182 			bcp = next_bcp;
2183 		}
2184 	}
2185 
2186 	(void) mutex_unlock(&cp->cache_lock);
2187 
2188 	vmem_free(umem_hash_arena, old_table, old_size * sizeof (void *));
2189 }
2190 
2191 /*
2192  * Perform periodic maintenance on a cache: hash rescaling,
2193  * depot working-set update, and magazine resizing.
2194  */
2195 void
2196 umem_cache_update(umem_cache_t *cp)
2197 {
2198 	int update_flags = 0;
2199 
2200 	ASSERT(MUTEX_HELD(&umem_cache_lock));
2201 
2202 	/*
2203 	 * If the cache has become much larger or smaller than its hash table,
2204 	 * fire off a request to rescale the hash table.
2205 	 */
2206 	(void) mutex_lock(&cp->cache_lock);
2207 
2208 	if ((cp->cache_flags & UMF_HASH) &&
2209 	    (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
2210 	    (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
2211 	    cp->cache_hash_mask > UMEM_HASH_INITIAL)))
2212 		update_flags |= UMU_HASH_RESCALE;
2213 
2214 	(void) mutex_unlock(&cp->cache_lock);
2215 
2216 	/*
2217 	 * Update the depot working set statistics.
2218 	 */
2219 	umem_depot_ws_update(cp);
2220 
2221 	/*
2222 	 * If there's a lot of contention in the depot,
2223 	 * increase the magazine size.
2224 	 */
2225 	(void) mutex_lock(&cp->cache_depot_lock);
2226 
2227 	if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
2228 	    (int)(cp->cache_depot_contention -
2229 	    cp->cache_depot_contention_prev) > umem_depot_contention)
2230 		update_flags |= UMU_MAGAZINE_RESIZE;
2231 
2232 	cp->cache_depot_contention_prev = cp->cache_depot_contention;
2233 
2234 	(void) mutex_unlock(&cp->cache_depot_lock);
2235 
2236 	if (update_flags)
2237 		umem_add_update(cp, update_flags);
2238 }
2239 
2240 /*
2241  * Runs all pending updates.
2242  *
2243  * The update lock must be held on entrance, and will be held on exit.
2244  */
2245 void
2246 umem_process_updates(void)
2247 {
2248 	ASSERT(MUTEX_HELD(&umem_update_lock));
2249 
2250 	while (umem_null_cache.cache_unext != &umem_null_cache) {
2251 		int notify = 0;
2252 		umem_cache_t *cp = umem_null_cache.cache_unext;
2253 
2254 		cp->cache_uprev->cache_unext = cp->cache_unext;
2255 		cp->cache_unext->cache_uprev = cp->cache_uprev;
2256 		cp->cache_uprev = cp->cache_unext = NULL;
2257 
2258 		ASSERT(!(cp->cache_uflags & UMU_ACTIVE));
2259 
2260 		while (cp->cache_uflags) {
2261 			int uflags = (cp->cache_uflags |= UMU_ACTIVE);
2262 			(void) mutex_unlock(&umem_update_lock);
2263 
2264 			/*
2265 			 * The order here is important.  Each step can speed up
2266 			 * later steps.
2267 			 */
2268 
2269 			if (uflags & UMU_HASH_RESCALE)
2270 				umem_hash_rescale(cp);
2271 
2272 			if (uflags & UMU_MAGAZINE_RESIZE)
2273 				umem_cache_magazine_resize(cp);
2274 
2275 			if (uflags & UMU_REAP)
2276 				umem_cache_reap(cp);
2277 
2278 			(void) mutex_lock(&umem_update_lock);
2279 
2280 			/*
2281 			 * check if anyone has requested notification
2282 			 */
2283 			if (cp->cache_uflags & UMU_NOTIFY) {
2284 				uflags |= UMU_NOTIFY;
2285 				notify = 1;
2286 			}
2287 			cp->cache_uflags &= ~uflags;
2288 		}
2289 		if (notify)
2290 			(void) cond_broadcast(&umem_update_cv);
2291 	}
2292 }
2293 
2294 #ifndef UMEM_STANDALONE
2295 static void
2296 umem_st_update(void)
2297 {
2298 	ASSERT(MUTEX_HELD(&umem_update_lock));
2299 	ASSERT(umem_update_thr == 0 && umem_st_update_thr == 0);
2300 
2301 	umem_st_update_thr = thr_self();
2302 
2303 	(void) mutex_unlock(&umem_update_lock);
2304 
2305 	vmem_update(NULL);
2306 	umem_cache_applyall(umem_cache_update);
2307 
2308 	(void) mutex_lock(&umem_update_lock);
2309 
2310 	umem_process_updates();	/* does all of the requested work */
2311 
2312 	umem_reap_next = gethrtime() +
2313 	    (hrtime_t)umem_reap_interval * NANOSEC;
2314 
2315 	umem_reaping = UMEM_REAP_DONE;
2316 
2317 	umem_st_update_thr = 0;
2318 }
2319 #endif
2320 
2321 /*
2322  * Reclaim all unused memory from all caches.  Called from vmem when memory
2323  * gets tight.  Must be called with no locks held.
2324  *
2325  * This just requests a reap on all caches, and notifies the update thread.
2326  */
2327 void
2328 umem_reap(void)
2329 {
2330 #ifndef UMEM_STANDALONE
2331 	extern int __nthreads(void);
2332 #endif
2333 
2334 	if (umem_ready != UMEM_READY || umem_reaping != UMEM_REAP_DONE ||
2335 	    gethrtime() < umem_reap_next)
2336 		return;
2337 
2338 	(void) mutex_lock(&umem_update_lock);
2339 
2340 	if (umem_reaping != UMEM_REAP_DONE || gethrtime() < umem_reap_next) {
2341 		(void) mutex_unlock(&umem_update_lock);
2342 		return;
2343 	}
2344 	umem_reaping = UMEM_REAP_ADDING;	/* lock out other reaps */
2345 
2346 	(void) mutex_unlock(&umem_update_lock);
2347 
2348 	umem_updateall(UMU_REAP);
2349 
2350 	(void) mutex_lock(&umem_update_lock);
2351 
2352 	umem_reaping = UMEM_REAP_ACTIVE;
2353 
2354 	/* Standalone is single-threaded */
2355 #ifndef UMEM_STANDALONE
2356 	if (umem_update_thr == 0) {
2357 		/*
2358 		 * The update thread does not exist.  If the process is
2359 		 * multi-threaded, create it.  If not, or the creation fails,
2360 		 * do the update processing inline.
2361 		 */
2362 		ASSERT(umem_st_update_thr == 0);
2363 
2364 		if (__nthreads() <= 1 || umem_create_update_thread() == 0)
2365 			umem_st_update();
2366 	}
2367 
2368 	(void) cond_broadcast(&umem_update_cv);	/* wake up the update thread */
2369 #endif
2370 
2371 	(void) mutex_unlock(&umem_update_lock);
2372 }
2373 
2374 umem_cache_t *
2375 umem_cache_create(
2376 	char *name,		/* descriptive name for this cache */
2377 	size_t bufsize,		/* size of the objects it manages */
2378 	size_t align,		/* required object alignment */
2379 	umem_constructor_t *constructor, /* object constructor */
2380 	umem_destructor_t *destructor, /* object destructor */
2381 	umem_reclaim_t *reclaim, /* memory reclaim callback */
2382 	void *private,		/* pass-thru arg for constr/destr/reclaim */
2383 	vmem_t *vmp,		/* vmem source for slab allocation */
2384 	int cflags)		/* cache creation flags */
2385 {
2386 	int cpu_seqid;
2387 	size_t chunksize;
2388 	umem_cache_t *cp, *cnext, *cprev;
2389 	umem_magtype_t *mtp;
2390 	size_t csize;
2391 	size_t phase;
2392 
2393 	/*
2394 	 * The init thread is allowed to create internal and quantum caches.
2395 	 *
2396 	 * Other threads must wait until until initialization is complete.
2397 	 */
2398 	if (umem_init_thr == thr_self())
2399 		ASSERT((cflags & (UMC_INTERNAL | UMC_QCACHE)) != 0);
2400 	else {
2401 		ASSERT(!(cflags & UMC_INTERNAL));
2402 		if (umem_ready != UMEM_READY && umem_init() == 0) {
2403 			errno = EAGAIN;
2404 			return (NULL);
2405 		}
2406 	}
2407 
2408 	csize = UMEM_CACHE_SIZE(umem_max_ncpus);
2409 	phase = P2NPHASE(csize, UMEM_CPU_CACHE_SIZE);
2410 
2411 	if (vmp == NULL)
2412 		vmp = umem_default_arena;
2413 
2414 	ASSERT(P2PHASE(phase, UMEM_ALIGN) == 0);
2415 
2416 	/*
2417 	 * Check that the arguments are reasonable
2418 	 */
2419 	if ((align & (align - 1)) != 0 || align > vmp->vm_quantum ||
2420 	    ((cflags & UMC_NOHASH) && (cflags & UMC_NOTOUCH)) ||
2421 	    name == NULL || bufsize == 0) {
2422 		errno = EINVAL;
2423 		return (NULL);
2424 	}
2425 
2426 	/*
2427 	 * If align == 0, we set it to the minimum required alignment.
2428 	 *
2429 	 * If align < UMEM_ALIGN, we round it up to UMEM_ALIGN, unless
2430 	 * UMC_NOTOUCH was passed.
2431 	 */
2432 	if (align == 0) {
2433 		if (P2ROUNDUP(bufsize, UMEM_ALIGN) >= UMEM_SECOND_ALIGN)
2434 			align = UMEM_SECOND_ALIGN;
2435 		else
2436 			align = UMEM_ALIGN;
2437 	} else if (align < UMEM_ALIGN && (cflags & UMC_NOTOUCH) == 0)
2438 		align = UMEM_ALIGN;
2439 
2440 
2441 	/*
2442 	 * Get a umem_cache structure.  We arrange that cp->cache_cpu[]
2443 	 * is aligned on a UMEM_CPU_CACHE_SIZE boundary to prevent
2444 	 * false sharing of per-CPU data.
2445 	 */
2446 	cp = vmem_xalloc(umem_cache_arena, csize, UMEM_CPU_CACHE_SIZE, phase,
2447 	    0, NULL, NULL, VM_NOSLEEP);
2448 
2449 	if (cp == NULL) {
2450 		errno = EAGAIN;
2451 		return (NULL);
2452 	}
2453 
2454 	bzero(cp, csize);
2455 
2456 	(void) mutex_lock(&umem_flags_lock);
2457 	if (umem_flags & UMF_RANDOMIZE)
2458 		umem_flags = (((umem_flags | ~UMF_RANDOM) + 1) & UMF_RANDOM) |
2459 		    UMF_RANDOMIZE;
2460 	cp->cache_flags = umem_flags | (cflags & UMF_DEBUG);
2461 	(void) mutex_unlock(&umem_flags_lock);
2462 
2463 	/*
2464 	 * Make sure all the various flags are reasonable.
2465 	 */
2466 	if (cp->cache_flags & UMF_LITE) {
2467 		if (bufsize >= umem_lite_minsize &&
2468 		    align <= umem_lite_maxalign &&
2469 		    P2PHASE(bufsize, umem_lite_maxalign) != 0) {
2470 			cp->cache_flags |= UMF_BUFTAG;
2471 			cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL);
2472 		} else {
2473 			cp->cache_flags &= ~UMF_DEBUG;
2474 		}
2475 	}
2476 
2477 	if ((cflags & UMC_QCACHE) && (cp->cache_flags & UMF_AUDIT))
2478 		cp->cache_flags |= UMF_NOMAGAZINE;
2479 
2480 	if (cflags & UMC_NODEBUG)
2481 		cp->cache_flags &= ~UMF_DEBUG;
2482 
2483 	if (cflags & UMC_NOTOUCH)
2484 		cp->cache_flags &= ~UMF_TOUCH;
2485 
2486 	if (cflags & UMC_NOHASH)
2487 		cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL);
2488 
2489 	if (cflags & UMC_NOMAGAZINE)
2490 		cp->cache_flags |= UMF_NOMAGAZINE;
2491 
2492 	if ((cp->cache_flags & UMF_AUDIT) && !(cflags & UMC_NOTOUCH))
2493 		cp->cache_flags |= UMF_REDZONE;
2494 
2495 	if ((cp->cache_flags & UMF_BUFTAG) && bufsize >= umem_minfirewall &&
2496 	    !(cp->cache_flags & UMF_LITE) && !(cflags & UMC_NOHASH))
2497 		cp->cache_flags |= UMF_FIREWALL;
2498 
2499 	if (vmp != umem_default_arena || umem_firewall_arena == NULL)
2500 		cp->cache_flags &= ~UMF_FIREWALL;
2501 
2502 	if (cp->cache_flags & UMF_FIREWALL) {
2503 		cp->cache_flags &= ~UMF_BUFTAG;
2504 		cp->cache_flags |= UMF_NOMAGAZINE;
2505 		ASSERT(vmp == umem_default_arena);
2506 		vmp = umem_firewall_arena;
2507 	}
2508 
2509 	/*
2510 	 * Set cache properties.
2511 	 */
2512 	(void) strncpy(cp->cache_name, name, sizeof (cp->cache_name) - 1);
2513 	cp->cache_bufsize = bufsize;
2514 	cp->cache_align = align;
2515 	cp->cache_constructor = constructor;
2516 	cp->cache_destructor = destructor;
2517 	cp->cache_reclaim = reclaim;
2518 	cp->cache_private = private;
2519 	cp->cache_arena = vmp;
2520 	cp->cache_cflags = cflags;
2521 	cp->cache_cpu_mask = umem_cpu_mask;
2522 
2523 	/*
2524 	 * Determine the chunk size.
2525 	 */
2526 	chunksize = bufsize;
2527 
2528 	if (align >= UMEM_ALIGN) {
2529 		chunksize = P2ROUNDUP(chunksize, UMEM_ALIGN);
2530 		cp->cache_bufctl = chunksize - UMEM_ALIGN;
2531 	}
2532 
2533 	if (cp->cache_flags & UMF_BUFTAG) {
2534 		cp->cache_bufctl = chunksize;
2535 		cp->cache_buftag = chunksize;
2536 		chunksize += sizeof (umem_buftag_t);
2537 	}
2538 
2539 	if (cp->cache_flags & UMF_DEADBEEF) {
2540 		cp->cache_verify = MIN(cp->cache_buftag, umem_maxverify);
2541 		if (cp->cache_flags & UMF_LITE)
2542 			cp->cache_verify = MIN(cp->cache_verify, UMEM_ALIGN);
2543 	}
2544 
2545 	cp->cache_contents = MIN(cp->cache_bufctl, umem_content_maxsave);
2546 
2547 	cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
2548 
2549 	if (chunksize < bufsize) {
2550 		errno = ENOMEM;
2551 		goto fail;
2552 	}
2553 
2554 	/*
2555 	 * Now that we know the chunk size, determine the optimal slab size.
2556 	 */
2557 	if (vmp == umem_firewall_arena) {
2558 		cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
2559 		cp->cache_mincolor = cp->cache_slabsize - chunksize;
2560 		cp->cache_maxcolor = cp->cache_mincolor;
2561 		cp->cache_flags |= UMF_HASH;
2562 		ASSERT(!(cp->cache_flags & UMF_BUFTAG));
2563 	} else if ((cflags & UMC_NOHASH) || (!(cflags & UMC_NOTOUCH) &&
2564 	    !(cp->cache_flags & UMF_AUDIT) &&
2565 	    chunksize < vmp->vm_quantum / UMEM_VOID_FRACTION)) {
2566 		cp->cache_slabsize = vmp->vm_quantum;
2567 		cp->cache_mincolor = 0;
2568 		cp->cache_maxcolor =
2569 		    (cp->cache_slabsize - sizeof (umem_slab_t)) % chunksize;
2570 
2571 		if (chunksize + sizeof (umem_slab_t) > cp->cache_slabsize) {
2572 			errno = EINVAL;
2573 			goto fail;
2574 		}
2575 		ASSERT(!(cp->cache_flags & UMF_AUDIT));
2576 	} else {
2577 		size_t chunks, bestfit, waste, slabsize;
2578 		size_t minwaste = LONG_MAX;
2579 
2580 		for (chunks = 1; chunks <= UMEM_VOID_FRACTION; chunks++) {
2581 			slabsize = P2ROUNDUP(chunksize * chunks,
2582 			    vmp->vm_quantum);
2583 			/*
2584 			 * check for overflow
2585 			 */
2586 			if ((slabsize / chunks) < chunksize) {
2587 				errno = ENOMEM;
2588 				goto fail;
2589 			}
2590 			chunks = slabsize / chunksize;
2591 			waste = (slabsize % chunksize) / chunks;
2592 			if (waste < minwaste) {
2593 				minwaste = waste;
2594 				bestfit = slabsize;
2595 			}
2596 		}
2597 		if (cflags & UMC_QCACHE)
2598 			bestfit = MAX(1 << highbit(3 * vmp->vm_qcache_max), 64);
2599 		cp->cache_slabsize = bestfit;
2600 		cp->cache_mincolor = 0;
2601 		cp->cache_maxcolor = bestfit % chunksize;
2602 		cp->cache_flags |= UMF_HASH;
2603 	}
2604 
2605 	if (cp->cache_flags & UMF_HASH) {
2606 		ASSERT(!(cflags & UMC_NOHASH));
2607 		cp->cache_bufctl_cache = (cp->cache_flags & UMF_AUDIT) ?
2608 		    umem_bufctl_audit_cache : umem_bufctl_cache;
2609 	}
2610 
2611 	if (cp->cache_maxcolor >= vmp->vm_quantum)
2612 		cp->cache_maxcolor = vmp->vm_quantum - 1;
2613 
2614 	cp->cache_color = cp->cache_mincolor;
2615 
2616 	/*
2617 	 * Initialize the rest of the slab layer.
2618 	 */
2619 	(void) mutex_init(&cp->cache_lock, USYNC_THREAD, NULL);
2620 
2621 	cp->cache_freelist = &cp->cache_nullslab;
2622 	cp->cache_nullslab.slab_cache = cp;
2623 	cp->cache_nullslab.slab_refcnt = -1;
2624 	cp->cache_nullslab.slab_next = &cp->cache_nullslab;
2625 	cp->cache_nullslab.slab_prev = &cp->cache_nullslab;
2626 
2627 	if (cp->cache_flags & UMF_HASH) {
2628 		cp->cache_hash_table = vmem_alloc(umem_hash_arena,
2629 		    UMEM_HASH_INITIAL * sizeof (void *), VM_NOSLEEP);
2630 		if (cp->cache_hash_table == NULL) {
2631 			errno = EAGAIN;
2632 			goto fail_lock;
2633 		}
2634 		bzero(cp->cache_hash_table,
2635 		    UMEM_HASH_INITIAL * sizeof (void *));
2636 		cp->cache_hash_mask = UMEM_HASH_INITIAL - 1;
2637 		cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
2638 	}
2639 
2640 	/*
2641 	 * Initialize the depot.
2642 	 */
2643 	(void) mutex_init(&cp->cache_depot_lock, USYNC_THREAD, NULL);
2644 
2645 	for (mtp = umem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
2646 		continue;
2647 
2648 	cp->cache_magtype = mtp;
2649 
2650 	/*
2651 	 * Initialize the CPU layer.
2652 	 */
2653 	for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) {
2654 		umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
2655 		(void) mutex_init(&ccp->cc_lock, USYNC_THREAD, NULL);
2656 		ccp->cc_flags = cp->cache_flags;
2657 		ccp->cc_rounds = -1;
2658 		ccp->cc_prounds = -1;
2659 	}
2660 
2661 	/*
2662 	 * Add the cache to the global list.  This makes it visible
2663 	 * to umem_update(), so the cache must be ready for business.
2664 	 */
2665 	(void) mutex_lock(&umem_cache_lock);
2666 	cp->cache_next = cnext = &umem_null_cache;
2667 	cp->cache_prev = cprev = umem_null_cache.cache_prev;
2668 	cnext->cache_prev = cp;
2669 	cprev->cache_next = cp;
2670 	(void) mutex_unlock(&umem_cache_lock);
2671 
2672 	if (umem_ready == UMEM_READY)
2673 		umem_cache_magazine_enable(cp);
2674 
2675 	return (cp);
2676 
2677 fail_lock:
2678 	(void) mutex_destroy(&cp->cache_lock);
2679 fail:
2680 	vmem_xfree(umem_cache_arena, cp, csize);
2681 	return (NULL);
2682 }
2683 
2684 void
2685 umem_cache_destroy(umem_cache_t *cp)
2686 {
2687 	int cpu_seqid;
2688 
2689 	/*
2690 	 * Remove the cache from the global cache list so that no new updates
2691 	 * will be scheduled on its behalf, wait for any pending tasks to
2692 	 * complete, purge the cache, and then destroy it.
2693 	 */
2694 	(void) mutex_lock(&umem_cache_lock);
2695 	cp->cache_prev->cache_next = cp->cache_next;
2696 	cp->cache_next->cache_prev = cp->cache_prev;
2697 	cp->cache_prev = cp->cache_next = NULL;
2698 	(void) mutex_unlock(&umem_cache_lock);
2699 
2700 	umem_remove_updates(cp);
2701 
2702 	umem_cache_magazine_purge(cp);
2703 
2704 	(void) mutex_lock(&cp->cache_lock);
2705 	if (cp->cache_buftotal != 0)
2706 		log_message("umem_cache_destroy: '%s' (%p) not empty\n",
2707 		    cp->cache_name, (void *)cp);
2708 	cp->cache_reclaim = NULL;
2709 	/*
2710 	 * The cache is now dead.  There should be no further activity.
2711 	 * We enforce this by setting land mines in the constructor and
2712 	 * destructor routines that induce a segmentation fault if invoked.
2713 	 */
2714 	cp->cache_constructor = (umem_constructor_t *)1;
2715 	cp->cache_destructor = (umem_destructor_t *)2;
2716 	(void) mutex_unlock(&cp->cache_lock);
2717 
2718 	if (cp->cache_hash_table != NULL)
2719 		vmem_free(umem_hash_arena, cp->cache_hash_table,
2720 		    (cp->cache_hash_mask + 1) * sizeof (void *));
2721 
2722 	for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++)
2723 		(void) mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
2724 
2725 	(void) mutex_destroy(&cp->cache_depot_lock);
2726 	(void) mutex_destroy(&cp->cache_lock);
2727 
2728 	vmem_free(umem_cache_arena, cp, UMEM_CACHE_SIZE(umem_max_ncpus));
2729 }
2730 
2731 static int
2732 umem_cache_init(void)
2733 {
2734 	int i;
2735 	size_t size, max_size;
2736 	umem_cache_t *cp;
2737 	umem_magtype_t *mtp;
2738 	char name[UMEM_CACHE_NAMELEN + 1];
2739 	umem_cache_t *umem_alloc_caches[NUM_ALLOC_SIZES];
2740 
2741 	for (i = 0; i < sizeof (umem_magtype) / sizeof (*mtp); i++) {
2742 		mtp = &umem_magtype[i];
2743 		(void) snprintf(name, sizeof (name), "umem_magazine_%d",
2744 		    mtp->mt_magsize);
2745 		mtp->mt_cache = umem_cache_create(name,
2746 		    (mtp->mt_magsize + 1) * sizeof (void *),
2747 		    mtp->mt_align, NULL, NULL, NULL, NULL,
2748 		    umem_internal_arena, UMC_NOHASH | UMC_INTERNAL);
2749 		if (mtp->mt_cache == NULL)
2750 			return (0);
2751 	}
2752 
2753 	umem_slab_cache = umem_cache_create("umem_slab_cache",
2754 	    sizeof (umem_slab_t), 0, NULL, NULL, NULL, NULL,
2755 	    umem_internal_arena, UMC_NOHASH | UMC_INTERNAL);
2756 
2757 	if (umem_slab_cache == NULL)
2758 		return (0);
2759 
2760 	umem_bufctl_cache = umem_cache_create("umem_bufctl_cache",
2761 	    sizeof (umem_bufctl_t), 0, NULL, NULL, NULL, NULL,
2762 	    umem_internal_arena, UMC_NOHASH | UMC_INTERNAL);
2763 
2764 	if (umem_bufctl_cache == NULL)
2765 		return (0);
2766 
2767 	/*
2768 	 * The size of the umem_bufctl_audit structure depends upon
2769 	 * umem_stack_depth.   See umem_impl.h for details on the size
2770 	 * restrictions.
2771 	 */
2772 
2773 	size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth);
2774 	max_size = UMEM_BUFCTL_AUDIT_MAX_SIZE;
2775 
2776 	if (size > max_size) {			/* too large -- truncate */
2777 		int max_frames = UMEM_MAX_STACK_DEPTH;
2778 
2779 		ASSERT(UMEM_BUFCTL_AUDIT_SIZE_DEPTH(max_frames) <= max_size);
2780 
2781 		umem_stack_depth = max_frames;
2782 		size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth);
2783 	}
2784 
2785 	umem_bufctl_audit_cache = umem_cache_create("umem_bufctl_audit_cache",
2786 	    size, 0, NULL, NULL, NULL, NULL, umem_internal_arena,
2787 	    UMC_NOHASH | UMC_INTERNAL);
2788 
2789 	if (umem_bufctl_audit_cache == NULL)
2790 		return (0);
2791 
2792 	if (vmem_backend & VMEM_BACKEND_MMAP)
2793 		umem_va_arena = vmem_create("umem_va",
2794 		    NULL, 0, pagesize,
2795 		    vmem_alloc, vmem_free, heap_arena,
2796 		    8 * pagesize, VM_NOSLEEP);
2797 	else
2798 		umem_va_arena = heap_arena;
2799 
2800 	if (umem_va_arena == NULL)
2801 		return (0);
2802 
2803 	umem_default_arena = vmem_create("umem_default",
2804 	    NULL, 0, pagesize,
2805 	    heap_alloc, heap_free, umem_va_arena,
2806 	    0, VM_NOSLEEP);
2807 
2808 	if (umem_default_arena == NULL)
2809 		return (0);
2810 
2811 	/*
2812 	 * make sure the umem_alloc table initializer is correct
2813 	 */
2814 	i = sizeof (umem_alloc_table) / sizeof (*umem_alloc_table);
2815 	ASSERT(umem_alloc_table[i - 1] == &umem_null_cache);
2816 
2817 	/*
2818 	 * Create the default caches to back umem_alloc()
2819 	 */
2820 	for (i = 0; i < NUM_ALLOC_SIZES; i++) {
2821 		size_t cache_size = umem_alloc_sizes[i];
2822 		size_t align = 0;
2823 		/*
2824 		 * If they allocate a multiple of the coherency granularity,
2825 		 * they get a coherency-granularity-aligned address.
2826 		 */
2827 		if (IS_P2ALIGNED(cache_size, 64))
2828 			align = 64;
2829 		if (IS_P2ALIGNED(cache_size, pagesize))
2830 			align = pagesize;
2831 		(void) snprintf(name, sizeof (name), "umem_alloc_%lu",
2832 		    (long)cache_size);
2833 
2834 		cp = umem_cache_create(name, cache_size, align,
2835 		    NULL, NULL, NULL, NULL, NULL, UMC_INTERNAL);
2836 		if (cp == NULL)
2837 			return (0);
2838 
2839 		umem_alloc_caches[i] = cp;
2840 	}
2841 
2842 	/*
2843 	 * Initialization cannot fail at this point.  Make the caches
2844 	 * visible to umem_alloc() and friends.
2845 	 */
2846 	size = UMEM_ALIGN;
2847 	for (i = 0; i < NUM_ALLOC_SIZES; i++) {
2848 		size_t cache_size = umem_alloc_sizes[i];
2849 
2850 		cp = umem_alloc_caches[i];
2851 
2852 		while (size <= cache_size) {
2853 			umem_alloc_table[(size - 1) >> UMEM_ALIGN_SHIFT] = cp;
2854 			size += UMEM_ALIGN;
2855 		}
2856 	}
2857 	return (1);
2858 }
2859 
2860 /*
2861  * umem_startup() is called early on, and must be called explicitly if we're
2862  * the standalone version.
2863  */
2864 #ifdef UMEM_STANDALONE
2865 void
2866 #else
2867 #pragma init(umem_startup)
2868 static void
2869 #endif
2870 umem_startup(caddr_t start, size_t len, size_t pagesize, caddr_t minstack,
2871     caddr_t maxstack)
2872 {
2873 #ifdef UMEM_STANDALONE
2874 	int idx;
2875 	/* Standalone doesn't fork */
2876 #else
2877 	umem_forkhandler_init(); /* register the fork handler */
2878 #endif
2879 
2880 #ifdef __lint
2881 	/* make lint happy */
2882 	minstack = maxstack;
2883 #endif
2884 
2885 #ifdef UMEM_STANDALONE
2886 	umem_ready = UMEM_READY_STARTUP;
2887 	umem_init_env_ready = 0;
2888 
2889 	umem_min_stack = minstack;
2890 	umem_max_stack = maxstack;
2891 
2892 	nofail_callback = NULL;
2893 	umem_slab_cache = NULL;
2894 	umem_bufctl_cache = NULL;
2895 	umem_bufctl_audit_cache = NULL;
2896 	heap_arena = NULL;
2897 	heap_alloc = NULL;
2898 	heap_free = NULL;
2899 	umem_internal_arena = NULL;
2900 	umem_cache_arena = NULL;
2901 	umem_hash_arena = NULL;
2902 	umem_log_arena = NULL;
2903 	umem_oversize_arena = NULL;
2904 	umem_va_arena = NULL;
2905 	umem_default_arena = NULL;
2906 	umem_firewall_va_arena = NULL;
2907 	umem_firewall_arena = NULL;
2908 	umem_memalign_arena = NULL;
2909 	umem_transaction_log = NULL;
2910 	umem_content_log = NULL;
2911 	umem_failure_log = NULL;
2912 	umem_slab_log = NULL;
2913 	umem_cpu_mask = 0;
2914 
2915 	umem_cpus = &umem_startup_cpu;
2916 	umem_startup_cpu.cpu_cache_offset = UMEM_CACHE_SIZE(0);
2917 	umem_startup_cpu.cpu_number = 0;
2918 
2919 	bcopy(&umem_null_cache_template, &umem_null_cache,
2920 	    sizeof (umem_cache_t));
2921 
2922 	for (idx = 0; idx < (UMEM_MAXBUF >> UMEM_ALIGN_SHIFT); idx++)
2923 		umem_alloc_table[idx] = &umem_null_cache;
2924 #endif
2925 
2926 	/*
2927 	 * Perform initialization specific to the way we've been compiled
2928 	 * (library or standalone)
2929 	 */
2930 	umem_type_init(start, len, pagesize);
2931 
2932 	vmem_startup();
2933 }
2934 
2935 int
2936 umem_init(void)
2937 {
2938 	size_t maxverify, minfirewall;
2939 	size_t size;
2940 	int idx;
2941 	umem_cpu_t *new_cpus;
2942 
2943 	vmem_t *memalign_arena, *oversize_arena;
2944 
2945 	if (thr_self() != umem_init_thr) {
2946 		/*
2947 		 * The usual case -- non-recursive invocation of umem_init().
2948 		 */
2949 		(void) mutex_lock(&umem_init_lock);
2950 		if (umem_ready != UMEM_READY_STARTUP) {
2951 			/*
2952 			 * someone else beat us to initializing umem.  Wait
2953 			 * for them to complete, then return.
2954 			 */
2955 			while (umem_ready == UMEM_READY_INITING)
2956 				(void) _cond_wait(&umem_init_cv,
2957 				    &umem_init_lock);
2958 			ASSERT(umem_ready == UMEM_READY ||
2959 			    umem_ready == UMEM_READY_INIT_FAILED);
2960 			(void) mutex_unlock(&umem_init_lock);
2961 			return (umem_ready == UMEM_READY);
2962 		}
2963 
2964 		ASSERT(umem_ready == UMEM_READY_STARTUP);
2965 		ASSERT(umem_init_env_ready == 0);
2966 
2967 		umem_ready = UMEM_READY_INITING;
2968 		umem_init_thr = thr_self();
2969 
2970 		(void) mutex_unlock(&umem_init_lock);
2971 		umem_setup_envvars(0);		/* can recurse -- see below */
2972 		if (umem_init_env_ready) {
2973 			/*
2974 			 * initialization was completed already
2975 			 */
2976 			ASSERT(umem_ready == UMEM_READY ||
2977 			    umem_ready == UMEM_READY_INIT_FAILED);
2978 			ASSERT(umem_init_thr == 0);
2979 			return (umem_ready == UMEM_READY);
2980 		}
2981 	} else if (!umem_init_env_ready) {
2982 		/*
2983 		 * The umem_setup_envvars() call (above) makes calls into
2984 		 * the dynamic linker and directly into user-supplied code.
2985 		 * Since we cannot know what that code will do, we could be
2986 		 * recursively invoked (by, say, a malloc() call in the code
2987 		 * itself, or in a (C++) _init section it causes to be fired).
2988 		 *
2989 		 * This code is where we end up if such recursion occurs.  We
2990 		 * first clean up any partial results in the envvar code, then
2991 		 * proceed to finish initialization processing in the recursive
2992 		 * call.  The original call will notice this, and return
2993 		 * immediately.
2994 		 */
2995 		umem_setup_envvars(1);		/* clean up any partial state */
2996 	} else {
2997 		umem_panic(
2998 		    "recursive allocation while initializing umem\n");
2999 	}
3000 	umem_init_env_ready = 1;
3001 
3002 	/*
3003 	 * From this point until we finish, recursion into umem_init() will
3004 	 * cause a umem_panic().
3005 	 */
3006 	maxverify = minfirewall = ULONG_MAX;
3007 
3008 	/* LINTED constant condition */
3009 	if (sizeof (umem_cpu_cache_t) != UMEM_CPU_CACHE_SIZE) {
3010 		umem_panic("sizeof (umem_cpu_cache_t) = %d, should be %d\n",
3011 		    sizeof (umem_cpu_cache_t), UMEM_CPU_CACHE_SIZE);
3012 	}
3013 
3014 	umem_max_ncpus = umem_get_max_ncpus();
3015 
3016 	/*
3017 	 * load tunables from environment
3018 	 */
3019 	umem_process_envvars();
3020 
3021 	if (issetugid())
3022 		umem_mtbf = 0;
3023 
3024 	/*
3025 	 * set up vmem
3026 	 */
3027 	if (!(umem_flags & UMF_AUDIT))
3028 		vmem_no_debug();
3029 
3030 	heap_arena = vmem_heap_arena(&heap_alloc, &heap_free);
3031 
3032 	pagesize = heap_arena->vm_quantum;
3033 
3034 	umem_internal_arena = vmem_create("umem_internal", NULL, 0, pagesize,
3035 	    heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP);
3036 
3037 	umem_default_arena = umem_internal_arena;
3038 
3039 	if (umem_internal_arena == NULL)
3040 		goto fail;
3041 
3042 	umem_cache_arena = vmem_create("umem_cache", NULL, 0, UMEM_ALIGN,
3043 	    vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP);
3044 
3045 	umem_hash_arena = vmem_create("umem_hash", NULL, 0, UMEM_ALIGN,
3046 	    vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP);
3047 
3048 	umem_log_arena = vmem_create("umem_log", NULL, 0, UMEM_ALIGN,
3049 	    heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP);
3050 
3051 	umem_firewall_va_arena = vmem_create("umem_firewall_va",
3052 	    NULL, 0, pagesize,
3053 	    umem_firewall_va_alloc, umem_firewall_va_free, heap_arena,
3054 	    0, VM_NOSLEEP);
3055 
3056 	if (umem_cache_arena == NULL || umem_hash_arena == NULL ||
3057 	    umem_log_arena == NULL || umem_firewall_va_arena == NULL)
3058 		goto fail;
3059 
3060 	umem_firewall_arena = vmem_create("umem_firewall", NULL, 0, pagesize,
3061 	    heap_alloc, heap_free, umem_firewall_va_arena, 0,
3062 	    VM_NOSLEEP);
3063 
3064 	if (umem_firewall_arena == NULL)
3065 		goto fail;
3066 
3067 	oversize_arena = vmem_create("umem_oversize", NULL, 0, pagesize,
3068 	    heap_alloc, heap_free, minfirewall < ULONG_MAX ?
3069 	    umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP);
3070 
3071 	memalign_arena = vmem_create("umem_memalign", NULL, 0, UMEM_ALIGN,
3072 	    heap_alloc, heap_free, minfirewall < ULONG_MAX ?
3073 	    umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP);
3074 
3075 	if (oversize_arena == NULL || memalign_arena == NULL)
3076 		goto fail;
3077 
3078 	if (umem_max_ncpus > CPUHINT_MAX())
3079 		umem_max_ncpus = CPUHINT_MAX();
3080 
3081 	while ((umem_max_ncpus & (umem_max_ncpus - 1)) != 0)
3082 		umem_max_ncpus++;
3083 
3084 	if (umem_max_ncpus == 0)
3085 		umem_max_ncpus = 1;
3086 
3087 	size = umem_max_ncpus * sizeof (umem_cpu_t);
3088 	new_cpus = vmem_alloc(umem_internal_arena, size, VM_NOSLEEP);
3089 	if (new_cpus == NULL)
3090 		goto fail;
3091 
3092 	bzero(new_cpus, size);
3093 	for (idx = 0; idx < umem_max_ncpus; idx++) {
3094 		new_cpus[idx].cpu_number = idx;
3095 		new_cpus[idx].cpu_cache_offset = UMEM_CACHE_SIZE(idx);
3096 	}
3097 	umem_cpus = new_cpus;
3098 	umem_cpu_mask = (umem_max_ncpus - 1);
3099 
3100 	if (umem_maxverify == 0)
3101 		umem_maxverify = maxverify;
3102 
3103 	if (umem_minfirewall == 0)
3104 		umem_minfirewall = minfirewall;
3105 
3106 	/*
3107 	 * Set up updating and reaping
3108 	 */
3109 	umem_reap_next = gethrtime() + NANOSEC;
3110 
3111 #ifndef UMEM_STANDALONE
3112 	(void) gettimeofday(&umem_update_next, NULL);
3113 #endif
3114 
3115 	/*
3116 	 * Set up logging -- failure here is okay, since it will just disable
3117 	 * the logs
3118 	 */
3119 	if (umem_logging) {
3120 		umem_transaction_log = umem_log_init(umem_transaction_log_size);
3121 		umem_content_log = umem_log_init(umem_content_log_size);
3122 		umem_failure_log = umem_log_init(umem_failure_log_size);
3123 		umem_slab_log = umem_log_init(umem_slab_log_size);
3124 	}
3125 
3126 	/*
3127 	 * Set up caches -- if successful, initialization cannot fail, since
3128 	 * allocations from other threads can now succeed.
3129 	 */
3130 	if (umem_cache_init() == 0) {
3131 		log_message("unable to create initial caches\n");
3132 		goto fail;
3133 	}
3134 	umem_oversize_arena = oversize_arena;
3135 	umem_memalign_arena = memalign_arena;
3136 
3137 	umem_cache_applyall(umem_cache_magazine_enable);
3138 
3139 	/*
3140 	 * initialization done, ready to go
3141 	 */
3142 	(void) mutex_lock(&umem_init_lock);
3143 	umem_ready = UMEM_READY;
3144 	umem_init_thr = 0;
3145 	(void) cond_broadcast(&umem_init_cv);
3146 	(void) mutex_unlock(&umem_init_lock);
3147 	return (1);
3148 
3149 fail:
3150 	log_message("umem initialization failed\n");
3151 
3152 	(void) mutex_lock(&umem_init_lock);
3153 	umem_ready = UMEM_READY_INIT_FAILED;
3154 	umem_init_thr = 0;
3155 	(void) cond_broadcast(&umem_init_cv);
3156 	(void) mutex_unlock(&umem_init_lock);
3157 	return (0);
3158 }
3159