xref: /illumos-gate/usr/src/lib/libproc/common/Psymtab_machelf32.c (revision beee6fc0eea41662170c4dea38a7e5605ab59507)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright (c) 2015, Joyent, Inc. All rights reserved.
29  */
30 
31 #include <assert.h>
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <stddef.h>
35 #include <string.h>
36 #include <memory.h>
37 #include <sys/sysmacros.h>
38 #include <sys/machelf.h>
39 
40 #include "Pcontrol.h"
41 #include "Psymtab_machelf.h"
42 
43 
44 /*
45  * This file contains code for use by Psymtab.c that is compiled once
46  * for each supported ELFCLASS.
47  *
48  * When processing ELF files, it is common to encounter a situation where
49  * a program with one ELFCLASS (32 or 64-bit) is required to examine a
50  * file with a different ELFCLASS. For example, the 32-bit linker (ld) may
51  * be used to link a 64-bit program. The simplest solution to this problem
52  * is to duplicate each such piece of code, modifying only the data types,
53  * and to use if statements to select the code to run. The problem with
54  * doing it that way is that the resulting code is difficult to maintain.
55  * It is inevitable that the copies will not always get modified identically,
56  * and will drift apart. The only robust solution is to generate the
57  * multiple instances of code automatically from a single piece of code.
58  *
59  * The solution used within the Solaris linker is to write the code once,
60  * using the data types defined in sys/machelf.h, and then to compile that
61  * code twice, once with _ELF64 defined (to generate ELFCLASS64 code) and
62  * once without (to generate ELFCLASS32). We use the same approach here.
63  *
64  * Note that the _ELF64 definition does not refer to the ELFCLASS of
65  * the resulting code, but rather, to the ELFCLASS of the data it
66  * examines. By repeating the above double-compilation for both 32-bit
67  * and 64-bit builds, we end up with 4 instances, which collectively
68  * can handle any combination of program and ELF data class:
69  *
70  *		    \  Compilation class
71  *		     \	  32	64
72  *		      \------------------
73  *		       |
74  *		    32 |   X	 X
75  *   ELF Data Class    |
76  *		    64 |   X	 X
77  */
78 
79 
80 
81 /*
82  * Read data from the specified process and construct an in memory
83  * image of an ELF file that will let us use libelf for most of the
84  * work we need to later (e.g. symbol table lookups). This is used
85  * in cases where no usable on-disk image for the process is available.
86  * We need sections for the dynsym, dynstr, and plt, and we need
87  * the program headers from the text section. The former is used in
88  * Pbuild_file_symtab(); the latter is used in several functions in
89  * Pcore.c to reconstruct the origin of each mapping from the load
90  * object that spawned it.
91  *
92  * Here are some useful pieces of elf trivia that will help
93  * to elucidate this code.
94  *
95  * All the information we need about the dynstr can be found in these
96  * two entries in the dynamic section:
97  *
98  *	DT_STRTAB	base of dynstr
99  *	DT_STRSZ	size of dynstr
100  *
101  * So deciphering the dynstr is pretty straightforward.
102  *
103  * The dynsym is a little trickier.
104  *
105  *	DT_SYMTAB	base of dynsym
106  *	DT_SYMENT	size of a dynstr entry (Elf{32,64}_Sym)
107  *	DT_HASH		base of hash table for dynamic lookups
108  *
109  * The DT_SYMTAB entry gives us any easy way of getting to the base
110  * of the dynsym, but getting the size involves rooting around in the
111  * dynamic lookup hash table. Here's the layout of the hash table:
112  *
113  *		+-------------------+
114  *		|	nbucket	    |	All values are 32-bit
115  *		+-------------------+	(Elf32_Word or Elf64_Word)
116  *		|	nchain	    |
117  *		+-------------------+
118  *		|	bucket[0]   |
119  *		|	. . .	    |
120  *		| bucket[nbucket-1] |
121  *		+-------------------+
122  *		|	chain[0]    |
123  *		|	. . .	    |
124  *		|  chain[nchain-1]  |
125  *		+-------------------+
126  *	(figure 5-12 from the SYS V Generic ABI)
127  *
128  * Symbols names are hashed into a particular bucket which contains
129  * an index into the symbol table. Each entry in the symbol table
130  * has a corresponding entry in the chain table which tells the
131  * consumer where the next entry in the hash chain is. We can use
132  * the nchain field to find out the size of the dynsym.
133  *
134  * If there is a dynsym present, there may also be an optional
135  * section called the SUNW_ldynsym that augments the dynsym by
136  * providing local function symbols. When the Solaris linker lays
137  * out a file that has both of these sections, it makes sure that
138  * the data for the two sections is adjacent with the SUNW_ldynsym
139  * in front. This allows the runtime linker to treat these two
140  * symbol tables as being a single larger table. There are two
141  * items in the dynamic section for this:
142  *
143  *	DT_SUNW_SYMTAB	base of the SUNW_ldynsym
144  *	DT_SUNW_SYMSZ	total size of SUNW_ldynsym and dynsym
145  *			added together. We can figure out the
146  *			size of the SUNW_ldynsym section by
147  *			subtracting the size of the dynsym
148  *			(described above) from this value.
149  *
150  * We can figure out the size of the .plt section, but it takes some
151  * doing. We need to use the following information:
152  *
153  *	DT_PLTGOT	GOT PLT entry offset (on x86) or PLT offset (on sparc)
154  *	DT_JMPREL	base of the PLT's relocation section
155  *	DT_PLTRELSZ	size of the PLT's relocation section
156  *	DT_PLTREL	type of the PLT's relocation section
157  *
158  * We can use the number of relocation entries to calculate the size of
159  * the PLT.  We get the address of the PLT by looking up the
160  * _PROCEDURE_LINKAGE_TABLE_ symbol.
161  *
162  * For more information, check out the System V Generic ABI.
163  */
164 
165 
166 /*
167  * The fake_elfXX() function generated by this file uses the following
168  * string as the string table for the section names. Since it is critical
169  * to count correctly, and to improve readability, the SHSTR_NDX_ macros
170  * supply the proper offset for each name within the string.
171  */
172 static char shstr[] =
173 	".shstrtab\0.dynsym\0.dynstr\0.dynamic\0.plt\0.SUNW_ldynsym";
174 
175 /* Offsets within shstr for each name */
176 #define	SHSTR_NDX_shstrtab	0
177 #define	SHSTR_NDX_dynsym	10
178 #define	SHSTR_NDX_dynstr	18
179 #define	SHSTR_NDX_dynamic	26
180 #define	SHSTR_NDX_plt		35
181 #define	SHSTR_NDX_SUNW_ldynsym	40
182 
183 
184 /*
185  * Section header alignment for 32 and 64-bit ELF files differs
186  */
187 #ifdef _ELF64
188 #define	SH_ADDRALIGN	8
189 #else
190 #define	SH_ADDRALIGN	4
191 #endif
192 
193 /*
194  * This is the smallest number of PLT relocation entries allowed in a proper
195  * .plt section.
196  */
197 #ifdef	__sparc
198 #define	PLTREL_MIN_ENTRIES	4	/* SPARC psABI 3.0 and SCD 2.4 */
199 #else
200 #ifdef	__lint
201 /*
202  * On x86, lint would complain about unsigned comparison with
203  * PLTREL_MIN_ENTRIES. This define fakes up the value of PLTREL_MIN_ENTRIES
204  * and silences lint. On SPARC, there is no such issue.
205  */
206 #define	PLTREL_MIN_ENTRIES	1
207 #else
208 #define	PLTREL_MIN_ENTRIES	0
209 #endif
210 #endif
211 
212 #ifdef _ELF64
213 Elf *
214 fake_elf64(struct ps_prochandle *P, file_info_t *fptr, uintptr_t addr,
215     Ehdr *ehdr, uint_t phnum, Phdr *phdr)
216 #else
217 Elf *
218 fake_elf32(struct ps_prochandle *P, file_info_t *fptr, uintptr_t addr,
219     Ehdr *ehdr, uint_t phnum, Phdr *phdr)
220 #endif
221 {
222 	enum {
223 		DI_PLTGOT,
224 		DI_JMPREL,
225 		DI_PLTRELSZ,
226 		DI_PLTREL,
227 		DI_SYMTAB,
228 		DI_HASH,
229 		DI_SYMENT,
230 		DI_STRTAB,
231 		DI_STRSZ,
232 		DI_SUNW_SYMTAB,
233 		DI_SUNW_SYMSZ,
234 		DI_NENT
235 	};
236 	/*
237 	 * Mask of dynamic options that must be present in a well
238 	 * formed dynamic section. We need all of these in order to
239 	 * put together a complete set of elf sections. They are
240 	 * mandatory in both executables and shared objects so if one
241 	 * of them is missing, we're in some trouble and should abort.
242 	 * The PLT items are expected, but we will let them slide if
243 	 * need be. The DI_SUNW_SYM* items are completely optional, so
244 	 * we use them if they are present and ignore them otherwise.
245 	 */
246 	const int di_req_mask = (1 << DI_SYMTAB) | (1 << DI_HASH) |
247 		(1 << DI_SYMENT) | (1 << DI_STRTAB) | (1 << DI_STRSZ);
248 	int di_mask = 0;
249 	size_t size = 0;
250 	caddr_t elfdata = NULL;
251 	Elf *elf;
252 	size_t dynsym_size = 0, ldynsym_size;
253 	int dynstr_shndx;
254 	Ehdr *ep;
255 	Shdr *sp;
256 	Dyn *dp = NULL;
257 	Dyn *d[DI_NENT] = { 0 };
258 	uint_t i;
259 	Off off;
260 	size_t pltsz = 0, pltentries = 0;
261 	uintptr_t hptr = NULL;
262 	Word hnchains, hnbuckets;
263 
264 	if (ehdr->e_type == ET_DYN)
265 		phdr->p_vaddr += addr;
266 
267 	if (P->rap != NULL) {
268 		if (rd_get_dyns(P->rap, addr, (void **)&dp, NULL) != RD_OK)
269 			goto bad;
270 	} else {
271 		if ((dp = malloc(phdr->p_filesz)) == NULL)
272 			goto bad;
273 		if (Pread(P, dp, phdr->p_filesz, phdr->p_vaddr) !=
274 		    phdr->p_filesz)
275 			goto bad;
276 	}
277 
278 	/*
279 	 * Iterate over the items in the dynamic section, grabbing
280 	 * the address of items we want and saving them in dp[].
281 	 */
282 	for (i = 0; i < phdr->p_filesz / sizeof (Dyn); i++) {
283 		switch (dp[i].d_tag) {
284 		/* For the .plt section */
285 		case DT_PLTGOT:
286 			d[DI_PLTGOT] = &dp[i];
287 			break;
288 		case DT_JMPREL:
289 			d[DI_JMPREL] = &dp[i];
290 			break;
291 		case DT_PLTRELSZ:
292 			d[DI_PLTRELSZ] = &dp[i];
293 			break;
294 		case DT_PLTREL:
295 			d[DI_PLTREL] = &dp[i];
296 			break;
297 
298 		/* For the .dynsym section */
299 		case DT_SYMTAB:
300 			d[DI_SYMTAB] = &dp[i];
301 			di_mask |= (1 << DI_SYMTAB);
302 			break;
303 		case DT_HASH:
304 			d[DI_HASH] = &dp[i];
305 			di_mask |= (1 << DI_HASH);
306 			break;
307 		case DT_SYMENT:
308 			d[DI_SYMENT] = &dp[i];
309 			di_mask |= (1 << DI_SYMENT);
310 			break;
311 		case DT_SUNW_SYMTAB:
312 			d[DI_SUNW_SYMTAB] = &dp[i];
313 			break;
314 		case DT_SUNW_SYMSZ:
315 			d[DI_SUNW_SYMSZ] = &dp[i];
316 			break;
317 
318 		/* For the .dynstr section */
319 		case DT_STRTAB:
320 			d[DI_STRTAB] = &dp[i];
321 			di_mask |= (1 << DI_STRTAB);
322 			break;
323 		case DT_STRSZ:
324 			d[DI_STRSZ] = &dp[i];
325 			di_mask |= (1 << DI_STRSZ);
326 			break;
327 		}
328 	}
329 
330 	/* Ensure all required entries were collected */
331 	if ((di_mask & di_req_mask) != di_req_mask) {
332 		dprintf("text section missing required dynamic entries\n");
333 		goto bad;
334 	}
335 
336 	/* SUNW_ldynsym must be adjacent to dynsym. Ignore if not */
337 	if ((d[DI_SUNW_SYMTAB] != NULL) && (d[DI_SUNW_SYMSZ] != NULL) &&
338 	    ((d[DI_SYMTAB]->d_un.d_ptr <= d[DI_SUNW_SYMTAB]->d_un.d_ptr) ||
339 	    (d[DI_SYMTAB]->d_un.d_ptr >= (d[DI_SUNW_SYMTAB]->d_un.d_ptr +
340 	    d[DI_SUNW_SYMSZ]->d_un.d_val)))) {
341 		d[DI_SUNW_SYMTAB] = NULL;
342 		d[DI_SUNW_SYMSZ] = NULL;
343 	}
344 
345 	/* elf header */
346 	size = sizeof (Ehdr);
347 
348 	/* program headers from in-core elf fragment */
349 	size += phnum * ehdr->e_phentsize;
350 
351 	/* unused shdr, and .shstrtab section */
352 	size += sizeof (Shdr);
353 	size += sizeof (Shdr);
354 	size += roundup(sizeof (shstr), SH_ADDRALIGN);
355 
356 	if (d[DI_HASH] != NULL) {
357 		Word hash[2];
358 
359 		hptr = d[DI_HASH]->d_un.d_ptr;
360 		if (ehdr->e_type == ET_DYN)
361 			hptr += addr;
362 
363 		if (Pread(P, hash, sizeof (hash), hptr) != sizeof (hash)) {
364 			dprintf("Pread of .hash at %lx failed\n",
365 			    (long)(hptr));
366 			goto bad;
367 		}
368 
369 		hnbuckets = hash[0];
370 		hnchains = hash[1];
371 	}
372 
373 	if ((d[DI_HASH] == NULL) || (hnbuckets == 0) || (hnchains == 0)) {
374 		dprintf("empty or missing .hash\n");
375 		goto bad;
376 	}
377 
378 	/*
379 	 * .dynsym and .SUNW_ldynsym sections.
380 	 *
381 	 * The string table section used for the symbol table and
382 	 * dynamic sections lies immediately after the dynsym, so the
383 	 * presence of SUNW_ldynsym changes the dynstr section index.
384 	 */
385 	if (d[DI_SUNW_SYMTAB] != NULL) {
386 		size += sizeof (Shdr);	/* SUNW_ldynsym shdr */
387 		ldynsym_size = (size_t)d[DI_SUNW_SYMSZ]->d_un.d_val;
388 		dynsym_size = ldynsym_size - (d[DI_SYMTAB]->d_un.d_ptr
389 		    - d[DI_SUNW_SYMTAB]->d_un.d_ptr);
390 		ldynsym_size -= dynsym_size;
391 		dynstr_shndx = 4;
392 	} else {
393 		dynsym_size = sizeof (Sym) * hnchains;
394 		ldynsym_size = 0;
395 		dynstr_shndx = 3;
396 	}
397 	size += sizeof (Shdr) + ldynsym_size + dynsym_size;
398 
399 	/* .dynstr section */
400 	size += sizeof (Shdr);
401 	size += roundup(d[DI_STRSZ]->d_un.d_val, SH_ADDRALIGN);
402 
403 	/* .dynamic section */
404 	size += sizeof (Shdr);
405 	size += roundup(phdr->p_filesz, SH_ADDRALIGN);
406 
407 	/* .plt section */
408 	if (d[DI_PLTGOT] != NULL && d[DI_JMPREL] != NULL &&
409 	    d[DI_PLTRELSZ] != NULL && d[DI_PLTREL] != NULL) {
410 		size_t pltrelsz = d[DI_PLTRELSZ]->d_un.d_val;
411 
412 		if (d[DI_PLTREL]->d_un.d_val == DT_RELA) {
413 			pltentries = pltrelsz / sizeof (Rela);
414 		} else if (d[DI_PLTREL]->d_un.d_val == DT_REL) {
415 			pltentries = pltrelsz / sizeof (Rel);
416 		} else {
417 			/* fall back to the platform default */
418 #if ((defined(__i386) || defined(__amd64)) && !defined(_ELF64))
419 			pltentries = pltrelsz / sizeof (Rel);
420 			dprintf("DI_PLTREL not found, defaulting to Rel");
421 #else /* (!(__i386 || __amd64)) || _ELF64 */
422 			pltentries = pltrelsz / sizeof (Rela);
423 			dprintf("DI_PLTREL not found, defaulting to Rela");
424 #endif /* (!(__i386 || __amd64) || _ELF64 */
425 		}
426 
427 		if (pltentries < PLTREL_MIN_ENTRIES) {
428 			dprintf("too few PLT relocation entries "
429 			    "(found %lu, expected at least %d)\n",
430 			    (long)pltentries, PLTREL_MIN_ENTRIES);
431 			goto bad;
432 		}
433 		if (pltentries < PLTREL_MIN_ENTRIES + 2)
434 			goto done_with_plt;
435 
436 		/*
437 		 * Now that we know the number of plt relocation entries
438 		 * we can calculate the size of the plt.
439 		 */
440 		pltsz = (pltentries + M_PLT_XNumber) * M_PLT_ENTSIZE;
441 #if defined(__sparc)
442 		/* The sparc PLT always has a (delay slot) nop at the end */
443 		pltsz += 4;
444 #endif /* __sparc */
445 
446 		size += sizeof (Shdr);
447 		size += roundup(pltsz, SH_ADDRALIGN);
448 	}
449 done_with_plt:
450 
451 	if ((elfdata = calloc(1, size)) == NULL)
452 		goto bad;
453 
454 	/* LINTED - alignment */
455 	ep = (Ehdr *)elfdata;
456 	(void) memcpy(ep, ehdr, offsetof(Ehdr, e_phoff));
457 
458 	ep->e_ehsize = sizeof (Ehdr);
459 	ep->e_phoff = sizeof (Ehdr);
460 	ep->e_phentsize = ehdr->e_phentsize;
461 	ep->e_phnum = phnum;
462 	ep->e_shoff = ep->e_phoff + phnum * ep->e_phentsize;
463 	ep->e_shentsize = sizeof (Shdr);
464 	/*
465 	 * Plt and SUNW_ldynsym sections are optional. C logical
466 	 * binary operators return a 0 or 1 value, so the following
467 	 * adds 1 for each optional section present.
468 	 */
469 	ep->e_shnum = 5 + (pltsz != 0) + (d[DI_SUNW_SYMTAB] != NULL);
470 	ep->e_shstrndx = 1;
471 
472 	/* LINTED - alignment */
473 	sp = (Shdr *)(elfdata + ep->e_shoff);
474 	off = ep->e_shoff + ep->e_shentsize * ep->e_shnum;
475 
476 	/*
477 	 * Copying the program headers directly from the process's
478 	 * address space is a little suspect, but since we only
479 	 * use them for their address and size values, this is fine.
480 	 */
481 	if (Pread(P, &elfdata[ep->e_phoff], phnum * ep->e_phentsize,
482 	    addr + ehdr->e_phoff) != phnum * ep->e_phentsize) {
483 		dprintf("failed to read program headers\n");
484 		goto bad;
485 	}
486 
487 	/*
488 	 * The first elf section is always skipped.
489 	 */
490 	sp++;
491 
492 	/*
493 	 * Section Header: .shstrtab
494 	 */
495 	sp->sh_name = SHSTR_NDX_shstrtab;
496 	sp->sh_type = SHT_STRTAB;
497 	sp->sh_flags = SHF_STRINGS;
498 	sp->sh_addr = 0;
499 	sp->sh_offset = off;
500 	sp->sh_size = sizeof (shstr);
501 	sp->sh_link = 0;
502 	sp->sh_info = 0;
503 	sp->sh_addralign = 1;
504 	sp->sh_entsize = 0;
505 
506 	(void) memcpy(&elfdata[off], shstr, sizeof (shstr));
507 	off += roundup(sp->sh_size, SH_ADDRALIGN);
508 	sp++;
509 
510 	/*
511 	 * Section Header: .SUNW_ldynsym
512 	 */
513 	if (d[DI_SUNW_SYMTAB] != NULL) {
514 		sp->sh_name = SHSTR_NDX_SUNW_ldynsym;
515 		sp->sh_type = SHT_SUNW_LDYNSYM;
516 		sp->sh_flags = SHF_ALLOC;
517 		sp->sh_addr = d[DI_SUNW_SYMTAB]->d_un.d_ptr;
518 		if (ehdr->e_type == ET_DYN)
519 			sp->sh_addr += addr;
520 		sp->sh_offset = off;
521 		sp->sh_size = ldynsym_size;
522 		sp->sh_link = dynstr_shndx;
523 		/* Index of 1st global in table that has none == # items */
524 		sp->sh_info = sp->sh_size / sizeof (Sym);
525 		sp->sh_addralign = SH_ADDRALIGN;
526 		sp->sh_entsize = sizeof (Sym);
527 
528 		if (Pread(P, &elfdata[off], sp->sh_size,
529 		    sp->sh_addr) != sp->sh_size) {
530 			dprintf("failed to read .SUNW_ldynsym at %lx\n",
531 			    (long)sp->sh_addr);
532 			goto bad;
533 		}
534 		off += sp->sh_size;
535 		/* No need to round up ldynsym data. Dynsym data is same type */
536 		sp++;
537 	}
538 
539 	/*
540 	 * Section Header: .dynsym
541 	 */
542 	sp->sh_name = SHSTR_NDX_dynsym;
543 	sp->sh_type = SHT_DYNSYM;
544 	sp->sh_flags = SHF_ALLOC;
545 	sp->sh_addr = d[DI_SYMTAB]->d_un.d_ptr;
546 	if (ehdr->e_type == ET_DYN)
547 		sp->sh_addr += addr;
548 	sp->sh_offset = off;
549 	sp->sh_size = dynsym_size;
550 	sp->sh_link = dynstr_shndx;
551 	sp->sh_info = 1;	/* Index of 1st global in table */
552 	sp->sh_addralign = SH_ADDRALIGN;
553 	sp->sh_entsize = sizeof (Sym);
554 
555 	if (Pread(P, &elfdata[off], sp->sh_size,
556 	    sp->sh_addr) != sp->sh_size) {
557 		dprintf("failed to read .dynsym at %lx\n",
558 		    (long)sp->sh_addr);
559 		goto bad;
560 	}
561 
562 	off += roundup(sp->sh_size, SH_ADDRALIGN);
563 	sp++;
564 
565 	/*
566 	 * Section Header: .dynstr
567 	 */
568 	sp->sh_name = SHSTR_NDX_dynstr;
569 	sp->sh_type = SHT_STRTAB;
570 	sp->sh_flags = SHF_ALLOC | SHF_STRINGS;
571 	sp->sh_addr = d[DI_STRTAB]->d_un.d_ptr;
572 	if (ehdr->e_type == ET_DYN)
573 		sp->sh_addr += addr;
574 	sp->sh_offset = off;
575 	sp->sh_size = d[DI_STRSZ]->d_un.d_val;
576 	sp->sh_link = 0;
577 	sp->sh_info = 0;
578 	sp->sh_addralign = 1;
579 	sp->sh_entsize = 0;
580 
581 	if (Pread(P, &elfdata[off], sp->sh_size,
582 	    sp->sh_addr) != sp->sh_size) {
583 		dprintf("failed to read .dynstr\n");
584 		goto bad;
585 	}
586 	off += roundup(sp->sh_size, SH_ADDRALIGN);
587 	sp++;
588 
589 	/*
590 	 * Section Header: .dynamic
591 	 */
592 	sp->sh_name = SHSTR_NDX_dynamic;
593 	sp->sh_type = SHT_DYNAMIC;
594 	sp->sh_flags = SHF_WRITE | SHF_ALLOC;
595 	sp->sh_addr = phdr->p_vaddr;
596 	if (ehdr->e_type == ET_DYN)
597 		sp->sh_addr -= addr;
598 	sp->sh_offset = off;
599 	sp->sh_size = phdr->p_filesz;
600 	sp->sh_link = dynstr_shndx;
601 	sp->sh_info = 0;
602 	sp->sh_addralign = SH_ADDRALIGN;
603 	sp->sh_entsize = sizeof (Dyn);
604 
605 	(void) memcpy(&elfdata[off], dp, sp->sh_size);
606 	off += roundup(sp->sh_size, SH_ADDRALIGN);
607 	sp++;
608 
609 	/*
610 	 * Section Header: .plt
611 	 */
612 	if (pltsz != 0) {
613 		ulong_t		plt_symhash;
614 		uint_t		htmp, ndx;
615 		uintptr_t	strtabptr, strtabname;
616 		Sym		sym, *symtabptr;
617 		uint_t		*hash;
618 		char		strbuf[sizeof ("_PROCEDURE_LINKAGE_TABLE_")];
619 
620 		/*
621 		 * Now we need to find the address of the plt by looking
622 		 * up the "_PROCEDURE_LINKAGE_TABLE_" symbol.
623 		 */
624 
625 		/* get the address of the symtab and strtab sections */
626 		strtabptr = d[DI_STRTAB]->d_un.d_ptr;
627 		symtabptr = (Sym *)(uintptr_t)d[DI_SYMTAB]->d_un.d_ptr;
628 		if (ehdr->e_type == ET_DYN) {
629 			strtabptr += addr;
630 			symtabptr = (Sym*)((uintptr_t)symtabptr + addr);
631 		}
632 
633 		/* find the .hash bucket address for this symbol */
634 		plt_symhash = elf_hash("_PROCEDURE_LINKAGE_TABLE_");
635 		htmp = plt_symhash % hnbuckets;
636 		hash = &((uint_t *)hptr)[2 + htmp];
637 
638 		/* read the elf hash bucket index */
639 		if (Pread(P, &ndx, sizeof (ndx), (uintptr_t)hash) !=
640 		    sizeof (ndx)) {
641 			dprintf("Pread of .hash at %lx failed\n", (long)hash);
642 			goto badplt;
643 		}
644 
645 		while (ndx) {
646 			if (Pread(P, &sym, sizeof (sym),
647 			    (uintptr_t)&symtabptr[ndx]) != sizeof (sym)) {
648 				dprintf("Pread of .symtab at %lx failed\n",
649 				    (long)&symtabptr[ndx]);
650 				goto badplt;
651 			}
652 
653 			strtabname = strtabptr + sym.st_name;
654 			if (Pread_string(P, strbuf, sizeof (strbuf),
655 			    strtabname) < 0) {
656 				dprintf("Pread of .strtab at %lx failed\n",
657 				    (long)strtabname);
658 				goto badplt;
659 			}
660 
661 			if (strcmp("_PROCEDURE_LINKAGE_TABLE_", strbuf) == 0)
662 				break;
663 
664 			hash = &((uint_t *)hptr)[2 + hnbuckets + ndx];
665 			if (Pread(P, &ndx, sizeof (ndx), (uintptr_t)hash) !=
666 			    sizeof (ndx)) {
667 				dprintf("Pread of .hash at %lx failed\n",
668 				    (long)hash);
669 				goto badplt;
670 			}
671 		}
672 
673 #if defined(__sparc)
674 		if (sym.st_value != d[DI_PLTGOT]->d_un.d_ptr) {
675 			dprintf("warning: DI_PLTGOT (%lx) doesn't match "
676 			    ".plt symbol pointer (%lx)",
677 			    (long)d[DI_PLTGOT]->d_un.d_ptr,
678 			    (long)sym.st_value);
679 		}
680 #endif /* __sparc */
681 
682 		if (ndx == 0) {
683 			dprintf(
684 			    "Failed to find \"_PROCEDURE_LINKAGE_TABLE_\"\n");
685 			goto badplt;
686 		}
687 
688 		sp->sh_name = SHSTR_NDX_plt;
689 		sp->sh_type = SHT_PROGBITS;
690 		sp->sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR;
691 		sp->sh_addr = sym.st_value;
692 		if (ehdr->e_type == ET_DYN)
693 			sp->sh_addr += addr;
694 		sp->sh_offset = off;
695 		sp->sh_size = pltsz;
696 		sp->sh_link = 0;
697 		sp->sh_info = 0;
698 		sp->sh_addralign = SH_ADDRALIGN;
699 		sp->sh_entsize = M_PLT_ENTSIZE;
700 
701 		if (Pread(P, &elfdata[off], sp->sh_size, sp->sh_addr) !=
702 		    sp->sh_size) {
703 			dprintf("failed to read .plt at %lx\n",
704 			    (long)sp->sh_addr);
705 			goto badplt;
706 		}
707 		off += roundup(sp->sh_size, SH_ADDRALIGN);
708 		sp++;
709 	}
710 
711 badplt:
712 	/* make sure we didn't write past the end of allocated memory */
713 	sp++;
714 	assert(((uintptr_t)(sp) - 1) < ((uintptr_t)elfdata + size));
715 
716 	free(dp);
717 	if ((elf = elf_memory(elfdata, size)) == NULL) {
718 		free(elfdata);
719 		return (NULL);
720 	}
721 
722 	fptr->file_elfmem = elfdata;
723 
724 	return (elf);
725 
726 bad:
727 	if (dp != NULL)
728 		free(dp);
729 	if (elfdata != NULL)
730 		free(elfdata);
731 	return (NULL);
732 }
733