1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2016 Joyent, Inc. 25 * Copyright (c) 2013 by Delphix. All rights reserved. 26 */ 27 28 #include <assert.h> 29 #include <stdio.h> 30 #include <stdlib.h> 31 #include <stddef.h> 32 #include <unistd.h> 33 #include <ctype.h> 34 #include <fcntl.h> 35 #include <string.h> 36 #include <strings.h> 37 #include <memory.h> 38 #include <errno.h> 39 #include <dirent.h> 40 #include <signal.h> 41 #include <limits.h> 42 #include <libgen.h> 43 #include <sys/types.h> 44 #include <sys/stat.h> 45 #include <sys/sysmacros.h> 46 #include <sys/crc32.h> 47 48 #include "libproc.h" 49 #include "Pcontrol.h" 50 #include "Putil.h" 51 #include "Psymtab_machelf.h" 52 53 static file_info_t *build_map_symtab(struct ps_prochandle *, map_info_t *); 54 static map_info_t *exec_map(struct ps_prochandle *); 55 static map_info_t *object_to_map(struct ps_prochandle *, Lmid_t, const char *); 56 static map_info_t *object_name_to_map(struct ps_prochandle *, 57 Lmid_t, const char *); 58 static GElf_Sym *sym_by_name(sym_tbl_t *, const char *, GElf_Sym *, uint_t *); 59 static int read_ehdr32(struct ps_prochandle *, Elf32_Ehdr *, uint_t *, 60 uintptr_t); 61 #ifdef _LP64 62 static int read_ehdr64(struct ps_prochandle *, Elf64_Ehdr *, uint_t *, 63 uintptr_t); 64 #endif 65 static uint32_t psym_crc32[] = { CRC32_TABLE }; 66 67 #define DATA_TYPES \ 68 ((1 << STT_OBJECT) | (1 << STT_FUNC) | \ 69 (1 << STT_COMMON) | (1 << STT_TLS)) 70 #define IS_DATA_TYPE(tp) (((1 << (tp)) & DATA_TYPES) != 0) 71 72 #define MA_RWX (MA_READ | MA_WRITE | MA_EXEC) 73 74 /* 75 * Minimum and maximum length of a build-id that we'll accept. Generally it's a 76 * 20 byte SHA1 and it's expected that the first byte (which is two ascii 77 * characters) indicates a directory and the remaining bytes become the file 78 * name. Therefore, our minimum length is at least 2 bytes (one for the 79 * directory and one for the name) and the max is a bit over the minimum -- 64, 80 * just in case folks do something odd. The string length is three times the max 81 * length. This accounts for the fact that each byte is two characters, a null 82 * terminator, and the directory '/' character. 83 */ 84 #define MINBUILDID 2 85 #define MAXBUILDID 64 86 #define BUILDID_STRLEN (3*MAXBUILDID) 87 #define BUILDID_NAME ".note.gnu.build-id" 88 #define DBGLINK_NAME ".gnu_debuglink" 89 90 typedef enum { 91 PRO_NATURAL, 92 PRO_BYADDR, 93 PRO_BYNAME 94 } pr_order_t; 95 96 static int 97 addr_cmp(const void *aa, const void *bb) 98 { 99 uintptr_t a = *((uintptr_t *)aa); 100 uintptr_t b = *((uintptr_t *)bb); 101 102 if (a > b) 103 return (1); 104 if (a < b) 105 return (-1); 106 return (0); 107 } 108 109 /* 110 * This function creates a list of addresses for a load object's sections. 111 * The list is in ascending address order and alternates start address 112 * then end address for each section we're interested in. The function 113 * returns a pointer to the list, which must be freed by the caller. 114 */ 115 static uintptr_t * 116 get_saddrs(struct ps_prochandle *P, uintptr_t ehdr_start, uint_t *n) 117 { 118 uintptr_t a, addr, *addrs, last = 0; 119 uint_t i, naddrs = 0, unordered = 0; 120 121 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 122 Elf32_Ehdr ehdr; 123 Elf32_Phdr phdr; 124 uint_t phnum; 125 126 if (read_ehdr32(P, &ehdr, &phnum, ehdr_start) != 0) 127 return (NULL); 128 129 addrs = malloc(sizeof (uintptr_t) * phnum * 2); 130 a = ehdr_start + ehdr.e_phoff; 131 for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) { 132 if (Pread(P, &phdr, sizeof (phdr), a) != 133 sizeof (phdr)) { 134 free(addrs); 135 return (NULL); 136 } 137 if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0) 138 continue; 139 140 addr = phdr.p_vaddr; 141 if (ehdr.e_type == ET_DYN) 142 addr += ehdr_start; 143 if (last > addr) 144 unordered = 1; 145 addrs[naddrs++] = addr; 146 addrs[naddrs++] = last = addr + phdr.p_memsz - 1; 147 } 148 #ifdef _LP64 149 } else { 150 Elf64_Ehdr ehdr; 151 Elf64_Phdr phdr; 152 uint_t phnum; 153 154 if (read_ehdr64(P, &ehdr, &phnum, ehdr_start) != 0) 155 return (NULL); 156 157 addrs = malloc(sizeof (uintptr_t) * phnum * 2); 158 a = ehdr_start + ehdr.e_phoff; 159 for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) { 160 if (Pread(P, &phdr, sizeof (phdr), a) != 161 sizeof (phdr)) { 162 free(addrs); 163 return (NULL); 164 } 165 if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0) 166 continue; 167 168 addr = phdr.p_vaddr; 169 if (ehdr.e_type == ET_DYN) 170 addr += ehdr_start; 171 if (last > addr) 172 unordered = 1; 173 addrs[naddrs++] = addr; 174 addrs[naddrs++] = last = addr + phdr.p_memsz - 1; 175 } 176 #endif 177 } 178 179 if (unordered) 180 qsort(addrs, naddrs, sizeof (uintptr_t), addr_cmp); 181 182 *n = naddrs; 183 return (addrs); 184 } 185 186 /* 187 * Allocation function for a new file_info_t 188 */ 189 file_info_t * 190 file_info_new(struct ps_prochandle *P, map_info_t *mptr) 191 { 192 file_info_t *fptr; 193 map_info_t *mp; 194 uintptr_t mstart, mend, sstart, send; 195 uint_t i; 196 197 if ((fptr = calloc(1, sizeof (file_info_t))) == NULL) 198 return (NULL); 199 200 list_link(fptr, &P->file_head); 201 (void) strcpy(fptr->file_pname, mptr->map_pmap.pr_mapname); 202 mptr->map_file = fptr; 203 fptr->file_ref = 1; 204 fptr->file_fd = -1; 205 fptr->file_dbgfile = -1; 206 P->num_files++; 207 208 /* 209 * To figure out which map_info_t instances correspond to the mappings 210 * for this load object we try to obtain the start and end address 211 * for each section of our in-memory ELF image. If successful, we 212 * walk down the list of addresses and the list of map_info_t 213 * instances in lock step to correctly find the mappings that 214 * correspond to this load object. 215 */ 216 if ((fptr->file_saddrs = get_saddrs(P, mptr->map_pmap.pr_vaddr, 217 &fptr->file_nsaddrs)) == NULL) 218 return (fptr); 219 220 mp = P->mappings; 221 i = 0; 222 while (mp < P->mappings + P->map_count && i < fptr->file_nsaddrs) { 223 224 /* Calculate the start and end of the mapping and section */ 225 mstart = mp->map_pmap.pr_vaddr; 226 mend = mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size; 227 sstart = fptr->file_saddrs[i]; 228 send = fptr->file_saddrs[i + 1]; 229 230 if (mend <= sstart) { 231 /* This mapping is below the current section */ 232 mp++; 233 } else if (mstart >= send) { 234 /* This mapping is above the current section */ 235 i += 2; 236 } else { 237 /* This mapping overlaps the current section */ 238 if (mp->map_file == NULL) { 239 dprintf("file_info_new: associating " 240 "segment at %p\n", 241 (void *)mp->map_pmap.pr_vaddr); 242 mp->map_file = fptr; 243 fptr->file_ref++; 244 } else { 245 dprintf("file_info_new: segment at %p " 246 "already associated with %s\n", 247 (void *)mp->map_pmap.pr_vaddr, 248 (mp == mptr ? "this file" : 249 mp->map_file->file_pname)); 250 } 251 mp++; 252 } 253 } 254 255 return (fptr); 256 } 257 258 /* 259 * Deallocation function for a file_info_t 260 */ 261 static void 262 file_info_free(struct ps_prochandle *P, file_info_t *fptr) 263 { 264 if (--fptr->file_ref == 0) { 265 list_unlink(fptr); 266 if (fptr->file_symtab.sym_elf) { 267 (void) elf_end(fptr->file_symtab.sym_elf); 268 free(fptr->file_symtab.sym_elfmem); 269 } 270 if (fptr->file_symtab.sym_byname) 271 free(fptr->file_symtab.sym_byname); 272 if (fptr->file_symtab.sym_byaddr) 273 free(fptr->file_symtab.sym_byaddr); 274 275 if (fptr->file_dynsym.sym_elf) { 276 (void) elf_end(fptr->file_dynsym.sym_elf); 277 free(fptr->file_dynsym.sym_elfmem); 278 } 279 if (fptr->file_dynsym.sym_byname) 280 free(fptr->file_dynsym.sym_byname); 281 if (fptr->file_dynsym.sym_byaddr) 282 free(fptr->file_dynsym.sym_byaddr); 283 284 if (fptr->file_lo) 285 free(fptr->file_lo); 286 if (fptr->file_lname) 287 free(fptr->file_lname); 288 if (fptr->file_rname) 289 free(fptr->file_rname); 290 if (fptr->file_elf) 291 (void) elf_end(fptr->file_elf); 292 if (fptr->file_elfmem != NULL) 293 free(fptr->file_elfmem); 294 if (fptr->file_fd >= 0) 295 (void) close(fptr->file_fd); 296 if (fptr->file_dbgelf) 297 (void) elf_end(fptr->file_dbgelf); 298 if (fptr->file_dbgfile >= 0) 299 (void) close(fptr->file_dbgfile); 300 if (fptr->file_ctfp) { 301 ctf_close(fptr->file_ctfp); 302 free(fptr->file_ctf_buf); 303 } 304 if (fptr->file_saddrs) 305 free(fptr->file_saddrs); 306 free(fptr); 307 P->num_files--; 308 } 309 } 310 311 /* 312 * Deallocation function for a map_info_t 313 */ 314 static void 315 map_info_free(struct ps_prochandle *P, map_info_t *mptr) 316 { 317 file_info_t *fptr; 318 319 if ((fptr = mptr->map_file) != NULL) { 320 if (fptr->file_map == mptr) 321 fptr->file_map = NULL; 322 file_info_free(P, fptr); 323 } 324 if (P->execname && mptr == P->map_exec) { 325 free(P->execname); 326 P->execname = NULL; 327 } 328 if (P->auxv && (mptr == P->map_exec || mptr == P->map_ldso)) { 329 free(P->auxv); 330 P->auxv = NULL; 331 P->nauxv = 0; 332 } 333 if (mptr == P->map_exec) 334 P->map_exec = NULL; 335 if (mptr == P->map_ldso) 336 P->map_ldso = NULL; 337 } 338 339 /* 340 * Call-back function for librtld_db to iterate through all of its shared 341 * libraries. We use this to get the load object names for the mappings. 342 */ 343 static int 344 map_iter(const rd_loadobj_t *lop, void *cd) 345 { 346 char buf[PATH_MAX]; 347 struct ps_prochandle *P = cd; 348 map_info_t *mptr; 349 file_info_t *fptr; 350 351 dprintf("encountered rd object at %p\n", (void *)lop->rl_base); 352 353 if ((mptr = Paddr2mptr(P, lop->rl_base)) == NULL) { 354 dprintf("map_iter: base address doesn't match any mapping\n"); 355 return (1); /* Base address does not match any mapping */ 356 } 357 358 if ((fptr = mptr->map_file) == NULL && 359 (fptr = file_info_new(P, mptr)) == NULL) { 360 dprintf("map_iter: failed to allocate a new file_info_t\n"); 361 return (1); /* Failed to allocate a new file_info_t */ 362 } 363 364 if ((fptr->file_lo == NULL) && 365 (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) { 366 dprintf("map_iter: failed to allocate rd_loadobj_t\n"); 367 file_info_free(P, fptr); 368 return (1); /* Failed to allocate rd_loadobj_t */ 369 } 370 371 fptr->file_map = mptr; 372 *fptr->file_lo = *lop; 373 374 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 375 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 376 377 if (fptr->file_lname) { 378 free(fptr->file_lname); 379 fptr->file_lname = NULL; 380 fptr->file_lbase = NULL; 381 } 382 if (fptr->file_rname) { 383 free(fptr->file_rname); 384 fptr->file_rname = NULL; 385 fptr->file_rbase = NULL; 386 } 387 388 if (Pread_string(P, buf, sizeof (buf), lop->rl_nameaddr) > 0) { 389 if ((fptr->file_lname = strdup(buf)) != NULL) 390 fptr->file_lbase = basename(fptr->file_lname); 391 } else { 392 dprintf("map_iter: failed to read string at %p\n", 393 (void *)lop->rl_nameaddr); 394 } 395 396 if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) && 397 ((fptr->file_rname = strdup(buf)) != NULL)) 398 fptr->file_rbase = basename(fptr->file_rname); 399 400 dprintf("loaded rd object %s lmid %lx\n", 401 fptr->file_lname ? buf : "<NULL>", lop->rl_lmident); 402 return (1); 403 } 404 405 static void 406 map_set(struct ps_prochandle *P, map_info_t *mptr, const char *lname) 407 { 408 file_info_t *fptr; 409 char buf[PATH_MAX]; 410 411 if ((fptr = mptr->map_file) == NULL && 412 (fptr = file_info_new(P, mptr)) == NULL) 413 return; /* Failed to allocate a new file_info_t */ 414 415 fptr->file_map = mptr; 416 417 if ((fptr->file_lo == NULL) && 418 (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) { 419 file_info_free(P, fptr); 420 return; /* Failed to allocate rd_loadobj_t */ 421 } 422 423 (void) memset(fptr->file_lo, 0, sizeof (rd_loadobj_t)); 424 fptr->file_lo->rl_base = mptr->map_pmap.pr_vaddr; 425 fptr->file_lo->rl_bend = 426 mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size; 427 428 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 429 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 430 431 if ((fptr->file_lname == NULL) && 432 (fptr->file_lname = strdup(lname)) != NULL) 433 fptr->file_lbase = basename(fptr->file_lname); 434 435 if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) && 436 ((fptr->file_rname = strdup(buf)) != NULL)) 437 fptr->file_rbase = basename(fptr->file_rname); 438 } 439 440 static void 441 load_static_maps(struct ps_prochandle *P) 442 { 443 map_info_t *mptr; 444 445 /* 446 * Construct the map for the a.out. 447 */ 448 if ((mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_EXEC)) != NULL) 449 map_set(P, mptr, "a.out"); 450 451 /* 452 * If the dynamic linker exists for this process, 453 * construct the map for it. 454 */ 455 if (Pgetauxval(P, AT_BASE) != -1L && 456 (mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_LDSO)) != NULL) 457 map_set(P, mptr, "ld.so.1"); 458 } 459 460 int 461 Preadmaps(struct ps_prochandle *P, prmap_t **Pmapp, ssize_t *nmapp) 462 { 463 return (P->ops.pop_read_maps(P, Pmapp, nmapp, P->data)); 464 } 465 466 /* 467 * Go through all the address space mappings, validating or updating 468 * the information already gathered, or gathering new information. 469 * 470 * This function is only called when we suspect that the mappings have changed 471 * because this is the first time we're calling it or because of rtld activity. 472 */ 473 void 474 Pupdate_maps(struct ps_prochandle *P) 475 { 476 prmap_t *Pmap = NULL; 477 prmap_t *pmap; 478 ssize_t nmap; 479 int i; 480 uint_t oldmapcount; 481 map_info_t *newmap, *newp; 482 map_info_t *mptr; 483 484 if (P->info_valid || P->state == PS_UNDEAD) 485 return; 486 487 Preadauxvec(P); 488 489 if (Preadmaps(P, &Pmap, &nmap) != 0) 490 return; 491 492 if ((newmap = calloc(1, nmap * sizeof (map_info_t))) == NULL) 493 return; 494 495 /* 496 * We try to merge any file information we may have for existing 497 * mappings, to avoid having to rebuild the file info. 498 */ 499 mptr = P->mappings; 500 pmap = Pmap; 501 newp = newmap; 502 oldmapcount = P->map_count; 503 for (i = 0; i < nmap; i++, pmap++, newp++) { 504 505 if (oldmapcount == 0) { 506 /* 507 * We've exhausted all the old mappings. Every new 508 * mapping should be added. 509 */ 510 newp->map_pmap = *pmap; 511 512 } else if (pmap->pr_vaddr == mptr->map_pmap.pr_vaddr && 513 pmap->pr_size == mptr->map_pmap.pr_size && 514 pmap->pr_offset == mptr->map_pmap.pr_offset && 515 (pmap->pr_mflags & ~(MA_BREAK | MA_STACK)) == 516 (mptr->map_pmap.pr_mflags & ~(MA_BREAK | MA_STACK)) && 517 pmap->pr_pagesize == mptr->map_pmap.pr_pagesize && 518 pmap->pr_shmid == mptr->map_pmap.pr_shmid && 519 strcmp(pmap->pr_mapname, mptr->map_pmap.pr_mapname) == 0) { 520 521 /* 522 * This mapping matches exactly. Copy over the old 523 * mapping, taking care to get the latest flags. 524 * Make sure the associated file_info_t is updated 525 * appropriately. 526 */ 527 *newp = *mptr; 528 if (P->map_exec == mptr) 529 P->map_exec = newp; 530 if (P->map_ldso == mptr) 531 P->map_ldso = newp; 532 newp->map_pmap.pr_mflags = pmap->pr_mflags; 533 if (mptr->map_file != NULL && 534 mptr->map_file->file_map == mptr) 535 mptr->map_file->file_map = newp; 536 oldmapcount--; 537 mptr++; 538 539 } else if (pmap->pr_vaddr + pmap->pr_size > 540 mptr->map_pmap.pr_vaddr) { 541 542 /* 543 * The old mapping doesn't exist any more, remove it 544 * from the list. 545 */ 546 map_info_free(P, mptr); 547 oldmapcount--; 548 i--; 549 newp--; 550 pmap--; 551 mptr++; 552 553 } else { 554 555 /* 556 * This is a new mapping, add it directly. 557 */ 558 newp->map_pmap = *pmap; 559 } 560 } 561 562 /* 563 * Free any old maps 564 */ 565 while (oldmapcount) { 566 map_info_free(P, mptr); 567 oldmapcount--; 568 mptr++; 569 } 570 571 free(Pmap); 572 if (P->mappings != NULL) 573 free(P->mappings); 574 P->mappings = newmap; 575 P->map_count = P->map_alloc = nmap; 576 P->info_valid = 1; 577 578 /* 579 * Consult librtld_db to get the load object 580 * names for all of the shared libraries. 581 */ 582 if (P->rap != NULL) 583 (void) rd_loadobj_iter(P->rap, map_iter, P); 584 } 585 586 /* 587 * Update all of the mappings and rtld_db as if by Pupdate_maps(), and then 588 * forcibly cache all of the symbol tables associated with all object files. 589 */ 590 void 591 Pupdate_syms(struct ps_prochandle *P) 592 { 593 file_info_t *fptr; 594 int i; 595 596 Pupdate_maps(P); 597 598 for (i = 0, fptr = list_next(&P->file_head); i < P->num_files; 599 i++, fptr = list_next(fptr)) { 600 Pbuild_file_symtab(P, fptr); 601 (void) Pbuild_file_ctf(P, fptr); 602 } 603 } 604 605 /* 606 * Return the librtld_db agent handle for the victim process. 607 * The handle will become invalid at the next successful exec() and the 608 * client (caller of proc_rd_agent()) must not use it beyond that point. 609 * If the process is already dead, we've already tried our best to 610 * create the agent during core file initialization. 611 */ 612 rd_agent_t * 613 Prd_agent(struct ps_prochandle *P) 614 { 615 if (P->rap == NULL && P->state != PS_DEAD && P->state != PS_IDLE) { 616 Pupdate_maps(P); 617 if (P->num_files == 0) 618 load_static_maps(P); 619 rd_log(_libproc_debug); 620 if ((P->rap = rd_new(P)) != NULL) 621 (void) rd_loadobj_iter(P->rap, map_iter, P); 622 } 623 return (P->rap); 624 } 625 626 /* 627 * Return the prmap_t structure containing 'addr', but only if it 628 * is in the dynamic linker's link map and is the text section. 629 */ 630 const prmap_t * 631 Paddr_to_text_map(struct ps_prochandle *P, uintptr_t addr) 632 { 633 map_info_t *mptr; 634 635 if (!P->info_valid) 636 Pupdate_maps(P); 637 638 if ((mptr = Paddr2mptr(P, addr)) != NULL) { 639 file_info_t *fptr = build_map_symtab(P, mptr); 640 const prmap_t *pmp = &mptr->map_pmap; 641 642 /* 643 * Assume that if rl_data_base is NULL, it means that no 644 * data section was found for this load object, and that 645 * a section must be text. Otherwise, a section will be 646 * text unless it ends above the start of the data 647 * section. 648 */ 649 if (fptr != NULL && fptr->file_lo != NULL && 650 (fptr->file_lo->rl_data_base == (uintptr_t)NULL || 651 pmp->pr_vaddr + pmp->pr_size <= 652 fptr->file_lo->rl_data_base)) 653 return (pmp); 654 } 655 656 return (NULL); 657 } 658 659 /* 660 * Return the prmap_t structure containing 'addr' (no restrictions on 661 * the type of mapping). 662 */ 663 const prmap_t * 664 Paddr_to_map(struct ps_prochandle *P, uintptr_t addr) 665 { 666 map_info_t *mptr; 667 668 if (!P->info_valid) 669 Pupdate_maps(P); 670 671 if ((mptr = Paddr2mptr(P, addr)) != NULL) 672 return (&mptr->map_pmap); 673 674 return (NULL); 675 } 676 677 /* 678 * Convert a full or partial load object name to the prmap_t for its 679 * corresponding primary text mapping. 680 */ 681 const prmap_t * 682 Plmid_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name) 683 { 684 map_info_t *mptr; 685 686 if (name == PR_OBJ_EVERY) 687 return (NULL); /* A reasonable mistake */ 688 689 if ((mptr = object_name_to_map(P, lmid, name)) != NULL) 690 return (&mptr->map_pmap); 691 692 return (NULL); 693 } 694 695 const prmap_t * 696 Pname_to_map(struct ps_prochandle *P, const char *name) 697 { 698 return (Plmid_to_map(P, PR_LMID_EVERY, name)); 699 } 700 701 const rd_loadobj_t * 702 Paddr_to_loadobj(struct ps_prochandle *P, uintptr_t addr) 703 { 704 map_info_t *mptr; 705 706 if (!P->info_valid) 707 Pupdate_maps(P); 708 709 if ((mptr = Paddr2mptr(P, addr)) == NULL) 710 return (NULL); 711 712 /* 713 * By building the symbol table, we implicitly bring the PLT 714 * information up to date in the load object. 715 */ 716 (void) build_map_symtab(P, mptr); 717 718 return (mptr->map_file->file_lo); 719 } 720 721 const rd_loadobj_t * 722 Plmid_to_loadobj(struct ps_prochandle *P, Lmid_t lmid, const char *name) 723 { 724 map_info_t *mptr; 725 726 if (name == PR_OBJ_EVERY) 727 return (NULL); 728 729 if ((mptr = object_name_to_map(P, lmid, name)) == NULL) 730 return (NULL); 731 732 /* 733 * By building the symbol table, we implicitly bring the PLT 734 * information up to date in the load object. 735 */ 736 (void) build_map_symtab(P, mptr); 737 738 return (mptr->map_file->file_lo); 739 } 740 741 const rd_loadobj_t * 742 Pname_to_loadobj(struct ps_prochandle *P, const char *name) 743 { 744 return (Plmid_to_loadobj(P, PR_LMID_EVERY, name)); 745 } 746 747 ctf_file_t * 748 Pbuild_file_ctf(struct ps_prochandle *P, file_info_t *fptr) 749 { 750 ctf_sect_t ctdata, symtab, strtab; 751 sym_tbl_t *symp; 752 int err; 753 754 if (fptr->file_ctfp != NULL) 755 return (fptr->file_ctfp); 756 757 Pbuild_file_symtab(P, fptr); 758 759 if (fptr->file_ctf_size == 0) 760 return (NULL); 761 762 symp = fptr->file_ctf_dyn ? &fptr->file_dynsym : &fptr->file_symtab; 763 if (symp->sym_data_pri == NULL) 764 return (NULL); 765 766 /* 767 * The buffer may alread be allocated if this is a core file that 768 * contained CTF data for this file. 769 */ 770 if (fptr->file_ctf_buf == NULL) { 771 fptr->file_ctf_buf = malloc(fptr->file_ctf_size); 772 if (fptr->file_ctf_buf == NULL) { 773 dprintf("failed to allocate ctf buffer\n"); 774 return (NULL); 775 } 776 777 if (pread(fptr->file_fd, fptr->file_ctf_buf, 778 fptr->file_ctf_size, fptr->file_ctf_off) != 779 fptr->file_ctf_size) { 780 free(fptr->file_ctf_buf); 781 fptr->file_ctf_buf = NULL; 782 dprintf("failed to read ctf data\n"); 783 return (NULL); 784 } 785 } 786 787 ctdata.cts_name = ".SUNW_ctf"; 788 ctdata.cts_type = SHT_PROGBITS; 789 ctdata.cts_flags = 0; 790 ctdata.cts_data = fptr->file_ctf_buf; 791 ctdata.cts_size = fptr->file_ctf_size; 792 ctdata.cts_entsize = 1; 793 ctdata.cts_offset = 0; 794 795 symtab.cts_name = fptr->file_ctf_dyn ? ".dynsym" : ".symtab"; 796 symtab.cts_type = symp->sym_hdr_pri.sh_type; 797 symtab.cts_flags = symp->sym_hdr_pri.sh_flags; 798 symtab.cts_data = symp->sym_data_pri->d_buf; 799 symtab.cts_size = symp->sym_hdr_pri.sh_size; 800 symtab.cts_entsize = symp->sym_hdr_pri.sh_entsize; 801 symtab.cts_offset = symp->sym_hdr_pri.sh_offset; 802 803 strtab.cts_name = fptr->file_ctf_dyn ? ".dynstr" : ".strtab"; 804 strtab.cts_type = symp->sym_strhdr.sh_type; 805 strtab.cts_flags = symp->sym_strhdr.sh_flags; 806 strtab.cts_data = symp->sym_strs; 807 strtab.cts_size = symp->sym_strhdr.sh_size; 808 strtab.cts_entsize = symp->sym_strhdr.sh_entsize; 809 strtab.cts_offset = symp->sym_strhdr.sh_offset; 810 811 fptr->file_ctfp = ctf_bufopen(&ctdata, &symtab, &strtab, &err); 812 if (fptr->file_ctfp == NULL) { 813 dprintf("ctf_bufopen() failed, error code %d\n", err); 814 free(fptr->file_ctf_buf); 815 fptr->file_ctf_buf = NULL; 816 return (NULL); 817 } 818 819 dprintf("loaded %lu bytes of CTF data for %s\n", 820 (ulong_t)fptr->file_ctf_size, fptr->file_pname); 821 822 return (fptr->file_ctfp); 823 } 824 825 ctf_file_t * 826 Paddr_to_ctf(struct ps_prochandle *P, uintptr_t addr) 827 { 828 map_info_t *mptr; 829 file_info_t *fptr; 830 831 if (!P->info_valid) 832 Pupdate_maps(P); 833 834 if ((mptr = Paddr2mptr(P, addr)) == NULL || 835 (fptr = mptr->map_file) == NULL) 836 return (NULL); 837 838 return (Pbuild_file_ctf(P, fptr)); 839 } 840 841 ctf_file_t * 842 Plmid_to_ctf(struct ps_prochandle *P, Lmid_t lmid, const char *name) 843 { 844 map_info_t *mptr; 845 file_info_t *fptr = NULL; 846 847 if (name == PR_OBJ_EVERY) 848 return (NULL); 849 850 /* 851 * While most idle files are all ELF objects, not all of them have 852 * mapping information available. There's nothing which would make 853 * sense to fake up for ET_REL. Instead, if we're being asked for their 854 * executable object and we know that the information is valid and they 855 * only have a single file, we jump straight to that file pointer. 856 */ 857 if (P->state == PS_IDLE && name == PR_OBJ_EXEC && P->info_valid == 1 && 858 P->num_files == 1 && P->mappings == NULL) { 859 fptr = list_next(&P->file_head); 860 } 861 862 if (fptr == NULL) { 863 if ((mptr = object_name_to_map(P, lmid, name)) == NULL || 864 (fptr = mptr->map_file) == NULL) 865 return (NULL); 866 } 867 868 return (Pbuild_file_ctf(P, fptr)); 869 } 870 871 ctf_file_t * 872 Pname_to_ctf(struct ps_prochandle *P, const char *name) 873 { 874 return (Plmid_to_ctf(P, PR_LMID_EVERY, name)); 875 } 876 877 void 878 Preadauxvec(struct ps_prochandle *P) 879 { 880 if (P->auxv != NULL) { 881 free(P->auxv); 882 P->auxv = NULL; 883 P->nauxv = 0; 884 } 885 886 P->ops.pop_read_aux(P, &P->auxv, &P->nauxv, P->data); 887 } 888 889 /* 890 * Return a requested element from the process's aux vector. 891 * Return -1 on failure (this is adequate for our purposes). 892 */ 893 long 894 Pgetauxval(struct ps_prochandle *P, int type) 895 { 896 auxv_t *auxv; 897 898 if (P->auxv == NULL) 899 Preadauxvec(P); 900 901 if (P->auxv == NULL) 902 return (-1); 903 904 for (auxv = P->auxv; auxv->a_type != AT_NULL; auxv++) { 905 if (auxv->a_type == type) 906 return (auxv->a_un.a_val); 907 } 908 909 return (-1); 910 } 911 912 /* 913 * Return a pointer to our internal copy of the process's aux vector. 914 * The caller should not hold on to this pointer across any libproc calls. 915 */ 916 const auxv_t * 917 Pgetauxvec(struct ps_prochandle *P) 918 { 919 static const auxv_t empty = { AT_NULL, 0L }; 920 921 if (P->auxv == NULL) 922 Preadauxvec(P); 923 924 if (P->auxv == NULL) 925 return (&empty); 926 927 return (P->auxv); 928 } 929 930 /* 931 * Return 1 if the given mapping corresponds to the given file_info_t's 932 * load object; return 0 otherwise. 933 */ 934 static int 935 is_mapping_in_file(struct ps_prochandle *P, map_info_t *mptr, file_info_t *fptr) 936 { 937 prmap_t *pmap = &mptr->map_pmap; 938 rd_loadobj_t *lop = fptr->file_lo; 939 uint_t i; 940 uintptr_t mstart, mend, sstart, send; 941 942 /* 943 * We can get for free the start address of the text and data 944 * sections of the load object. Start by seeing if the mapping 945 * encloses either of these. 946 */ 947 if ((pmap->pr_vaddr <= lop->rl_base && 948 lop->rl_base < pmap->pr_vaddr + pmap->pr_size) || 949 (pmap->pr_vaddr <= lop->rl_data_base && 950 lop->rl_data_base < pmap->pr_vaddr + pmap->pr_size)) 951 return (1); 952 953 /* 954 * It's still possible that this mapping correponds to the load 955 * object. Consider the example of a mapping whose start and end 956 * addresses correspond to those of the load object's text section. 957 * If the mapping splits, e.g. as a result of a segment demotion, 958 * then although both mappings are still backed by the same section, 959 * only one will be seen to enclose that section's start address. 960 * Thus, to be rigorous, we ask not whether this mapping encloses 961 * the start of a section, but whether there exists a section that 962 * overlaps this mapping. 963 * 964 * If we don't already have the section addresses, and we successfully 965 * get them, then we cache them in case we come here again. 966 */ 967 if (fptr->file_saddrs == NULL && 968 (fptr->file_saddrs = get_saddrs(P, 969 fptr->file_map->map_pmap.pr_vaddr, &fptr->file_nsaddrs)) == NULL) 970 return (0); 971 972 mstart = mptr->map_pmap.pr_vaddr; 973 mend = mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size; 974 for (i = 0; i < fptr->file_nsaddrs; i += 2) { 975 /* Does this section overlap the mapping? */ 976 sstart = fptr->file_saddrs[i]; 977 send = fptr->file_saddrs[i + 1]; 978 if (!(mend <= sstart || mstart >= send)) 979 return (1); 980 } 981 982 return (0); 983 } 984 985 /* 986 * Find or build the symbol table for the given mapping. 987 */ 988 static file_info_t * 989 build_map_symtab(struct ps_prochandle *P, map_info_t *mptr) 990 { 991 prmap_t *pmap = &mptr->map_pmap; 992 file_info_t *fptr; 993 uint_t i; 994 995 if ((fptr = mptr->map_file) != NULL) { 996 Pbuild_file_symtab(P, fptr); 997 return (fptr); 998 } 999 1000 if (pmap->pr_mapname[0] == '\0') 1001 return (NULL); 1002 1003 /* 1004 * Attempt to find a matching file. 1005 * (A file can be mapped at several different addresses.) 1006 */ 1007 for (i = 0, fptr = list_next(&P->file_head); i < P->num_files; 1008 i++, fptr = list_next(fptr)) { 1009 if (strcmp(fptr->file_pname, pmap->pr_mapname) == 0 && 1010 fptr->file_lo && is_mapping_in_file(P, mptr, fptr)) { 1011 mptr->map_file = fptr; 1012 fptr->file_ref++; 1013 Pbuild_file_symtab(P, fptr); 1014 return (fptr); 1015 } 1016 } 1017 1018 /* 1019 * If we need to create a new file_info structure, iterate 1020 * through the load objects in order to attempt to connect 1021 * this new file with its primary text mapping. We again 1022 * need to handle ld.so as a special case because we need 1023 * to be able to bootstrap librtld_db. 1024 */ 1025 if ((fptr = file_info_new(P, mptr)) == NULL) 1026 return (NULL); 1027 1028 if (P->map_ldso != mptr) { 1029 if (P->rap != NULL) 1030 (void) rd_loadobj_iter(P->rap, map_iter, P); 1031 else 1032 (void) Prd_agent(P); 1033 } else { 1034 fptr->file_map = mptr; 1035 } 1036 1037 /* 1038 * If librtld_db wasn't able to help us connect the file to a primary 1039 * text mapping, set file_map to the current mapping because we require 1040 * fptr->file_map to be set in Pbuild_file_symtab. librtld_db may be 1041 * unaware of what's going on in the rare case that a legitimate ELF 1042 * file has been mmap(2)ed into the process address space *without* 1043 * the use of dlopen(3x). 1044 */ 1045 if (fptr->file_map == NULL) 1046 fptr->file_map = mptr; 1047 1048 Pbuild_file_symtab(P, fptr); 1049 1050 return (fptr); 1051 } 1052 1053 static int 1054 read_ehdr32(struct ps_prochandle *P, Elf32_Ehdr *ehdr, uint_t *phnum, 1055 uintptr_t addr) 1056 { 1057 if (Pread(P, ehdr, sizeof (*ehdr), addr) != sizeof (*ehdr)) 1058 return (-1); 1059 1060 if (ehdr->e_ident[EI_MAG0] != ELFMAG0 || 1061 ehdr->e_ident[EI_MAG1] != ELFMAG1 || 1062 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 1063 ehdr->e_ident[EI_MAG3] != ELFMAG3 || 1064 ehdr->e_ident[EI_CLASS] != ELFCLASS32 || 1065 #ifdef _BIG_ENDIAN 1066 ehdr->e_ident[EI_DATA] != ELFDATA2MSB || 1067 #else 1068 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 1069 #endif 1070 ehdr->e_ident[EI_VERSION] != EV_CURRENT) 1071 return (-1); 1072 1073 if ((*phnum = ehdr->e_phnum) == PN_XNUM) { 1074 Elf32_Shdr shdr0; 1075 1076 if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) || 1077 Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) != 1078 sizeof (shdr0)) 1079 return (-1); 1080 1081 if (shdr0.sh_info != 0) 1082 *phnum = shdr0.sh_info; 1083 } 1084 1085 return (0); 1086 } 1087 1088 static int 1089 read_dynamic_phdr32(struct ps_prochandle *P, const Elf32_Ehdr *ehdr, 1090 uint_t phnum, Elf32_Phdr *phdr, uintptr_t addr) 1091 { 1092 uint_t i; 1093 1094 for (i = 0; i < phnum; i++) { 1095 uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize; 1096 if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr)) 1097 return (-1); 1098 1099 if (phdr->p_type == PT_DYNAMIC) 1100 return (0); 1101 } 1102 1103 return (-1); 1104 } 1105 1106 #ifdef _LP64 1107 static int 1108 read_ehdr64(struct ps_prochandle *P, Elf64_Ehdr *ehdr, uint_t *phnum, 1109 uintptr_t addr) 1110 { 1111 if (Pread(P, ehdr, sizeof (Elf64_Ehdr), addr) != sizeof (Elf64_Ehdr)) 1112 return (-1); 1113 1114 if (ehdr->e_ident[EI_MAG0] != ELFMAG0 || 1115 ehdr->e_ident[EI_MAG1] != ELFMAG1 || 1116 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 1117 ehdr->e_ident[EI_MAG3] != ELFMAG3 || 1118 ehdr->e_ident[EI_CLASS] != ELFCLASS64 || 1119 #ifdef _BIG_ENDIAN 1120 ehdr->e_ident[EI_DATA] != ELFDATA2MSB || 1121 #else 1122 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 1123 #endif 1124 ehdr->e_ident[EI_VERSION] != EV_CURRENT) 1125 return (-1); 1126 1127 if ((*phnum = ehdr->e_phnum) == PN_XNUM) { 1128 Elf64_Shdr shdr0; 1129 1130 if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) || 1131 Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) != 1132 sizeof (shdr0)) 1133 return (-1); 1134 1135 if (shdr0.sh_info != 0) 1136 *phnum = shdr0.sh_info; 1137 } 1138 1139 return (0); 1140 } 1141 1142 static int 1143 read_dynamic_phdr64(struct ps_prochandle *P, const Elf64_Ehdr *ehdr, 1144 uint_t phnum, Elf64_Phdr *phdr, uintptr_t addr) 1145 { 1146 uint_t i; 1147 1148 for (i = 0; i < phnum; i++) { 1149 uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize; 1150 if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr)) 1151 return (-1); 1152 1153 if (phdr->p_type == PT_DYNAMIC) 1154 return (0); 1155 } 1156 1157 return (-1); 1158 } 1159 #endif /* _LP64 */ 1160 1161 /* 1162 * The text segment for each load object contains the elf header and 1163 * program headers. We can use this information to determine if the 1164 * file that corresponds to the load object is the same file that 1165 * was loaded into the process's address space. There can be a discrepency 1166 * if a file is recompiled after the process is started or if the target 1167 * represents a core file from a differently configured system -- two 1168 * common examples. The DT_CHECKSUM entry in the dynamic section 1169 * provides an easy method of comparison. It is important to note that 1170 * the dynamic section usually lives in the data segment, but the meta 1171 * data we use to find the dynamic section lives in the text segment so 1172 * if either of those segments is absent we can't proceed. 1173 * 1174 * We're looking through the elf file for several items: the symbol tables 1175 * (both dynsym and symtab), the procedure linkage table (PLT) base, 1176 * size, and relocation base, and the CTF information. Most of this can 1177 * be recovered from the loaded image of the file itself, the exceptions 1178 * being the symtab and CTF data. 1179 * 1180 * First we try to open the file that we think corresponds to the load 1181 * object, if the DT_CHECKSUM values match, we're all set, and can simply 1182 * recover all the information we need from the file. If the values of 1183 * DT_CHECKSUM don't match, or if we can't access the file for whatever 1184 * reasaon, we fake up a elf file to use in its stead. If we can't read 1185 * the elf data in the process's address space, we fall back to using 1186 * the file even though it may give inaccurate information. 1187 * 1188 * The elf file that we fake up has to consist of sections for the 1189 * dynsym, the PLT and the dynamic section. Note that in the case of a 1190 * core file, we'll get the CTF data in the file_info_t later on from 1191 * a section embedded the core file (if it's present). 1192 * 1193 * file_differs() conservatively looks for mismatched files, identifying 1194 * a match when there is any ambiguity (since that's the legacy behavior). 1195 */ 1196 static int 1197 file_differs(struct ps_prochandle *P, Elf *elf, file_info_t *fptr) 1198 { 1199 Elf_Scn *scn; 1200 GElf_Shdr shdr; 1201 GElf_Dyn dyn; 1202 Elf_Data *data; 1203 uint_t i, ndyn; 1204 GElf_Xword cksum; 1205 uintptr_t addr; 1206 1207 if (fptr->file_map == NULL) 1208 return (0); 1209 1210 if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) != 1211 (CC_CONTENT_TEXT | CC_CONTENT_DATA)) 1212 return (0); 1213 1214 /* 1215 * First, we find the checksum value in the elf file. 1216 */ 1217 scn = NULL; 1218 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1219 if (gelf_getshdr(scn, &shdr) != NULL && 1220 shdr.sh_type == SHT_DYNAMIC) 1221 goto found_shdr; 1222 } 1223 return (0); 1224 1225 found_shdr: 1226 if ((data = elf_getdata(scn, NULL)) == NULL) 1227 return (0); 1228 1229 if (P->status.pr_dmodel == PR_MODEL_ILP32) 1230 ndyn = shdr.sh_size / sizeof (Elf32_Dyn); 1231 #ifdef _LP64 1232 else if (P->status.pr_dmodel == PR_MODEL_LP64) 1233 ndyn = shdr.sh_size / sizeof (Elf64_Dyn); 1234 #endif 1235 else 1236 return (0); 1237 1238 for (i = 0; i < ndyn; i++) { 1239 if (gelf_getdyn(data, i, &dyn) != NULL && 1240 dyn.d_tag == DT_CHECKSUM) 1241 goto found_cksum; 1242 } 1243 1244 /* 1245 * The in-memory ELF has no DT_CHECKSUM section, but we will report it 1246 * as matching the file anyhow. 1247 */ 1248 return (0); 1249 1250 found_cksum: 1251 cksum = dyn.d_un.d_val; 1252 dprintf("elf cksum value is %llx\n", (u_longlong_t)cksum); 1253 1254 /* 1255 * Get the base of the text mapping that corresponds to this file. 1256 */ 1257 addr = fptr->file_map->map_pmap.pr_vaddr; 1258 1259 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 1260 Elf32_Ehdr ehdr; 1261 Elf32_Phdr phdr; 1262 Elf32_Dyn dync, *dynp; 1263 uint_t phnum, i; 1264 1265 if (read_ehdr32(P, &ehdr, &phnum, addr) != 0 || 1266 read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0) 1267 return (0); 1268 1269 if (ehdr.e_type == ET_DYN) 1270 phdr.p_vaddr += addr; 1271 if ((dynp = malloc(phdr.p_filesz)) == NULL) 1272 return (0); 1273 dync.d_tag = DT_NULL; 1274 if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) != 1275 phdr.p_filesz) { 1276 free(dynp); 1277 return (0); 1278 } 1279 1280 for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) { 1281 if (dynp[i].d_tag == DT_CHECKSUM) 1282 dync = dynp[i]; 1283 } 1284 1285 free(dynp); 1286 1287 if (dync.d_tag != DT_CHECKSUM) 1288 return (0); 1289 1290 dprintf("image cksum value is %llx\n", 1291 (u_longlong_t)dync.d_un.d_val); 1292 return (dync.d_un.d_val != cksum); 1293 #ifdef _LP64 1294 } else if (P->status.pr_dmodel == PR_MODEL_LP64) { 1295 Elf64_Ehdr ehdr; 1296 Elf64_Phdr phdr; 1297 Elf64_Dyn dync, *dynp; 1298 uint_t phnum, i; 1299 1300 if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 || 1301 read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0) 1302 return (0); 1303 1304 if (ehdr.e_type == ET_DYN) 1305 phdr.p_vaddr += addr; 1306 if ((dynp = malloc(phdr.p_filesz)) == NULL) 1307 return (0); 1308 dync.d_tag = DT_NULL; 1309 if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) != 1310 phdr.p_filesz) { 1311 free(dynp); 1312 return (0); 1313 } 1314 1315 for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) { 1316 if (dynp[i].d_tag == DT_CHECKSUM) 1317 dync = dynp[i]; 1318 } 1319 1320 free(dynp); 1321 1322 if (dync.d_tag != DT_CHECKSUM) 1323 return (0); 1324 1325 dprintf("image cksum value is %llx\n", 1326 (u_longlong_t)dync.d_un.d_val); 1327 return (dync.d_un.d_val != cksum); 1328 #endif /* _LP64 */ 1329 } 1330 1331 return (0); 1332 } 1333 1334 /* 1335 * Read data from the specified process and construct an in memory 1336 * image of an ELF file that represents it well enough to let 1337 * us probe it for information. 1338 */ 1339 static Elf * 1340 fake_elf(struct ps_prochandle *P, file_info_t *fptr) 1341 { 1342 Elf *elf; 1343 uintptr_t addr; 1344 uint_t phnum; 1345 1346 if (fptr->file_map == NULL) 1347 return (NULL); 1348 1349 if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) != 1350 (CC_CONTENT_TEXT | CC_CONTENT_DATA)) 1351 return (NULL); 1352 1353 addr = fptr->file_map->map_pmap.pr_vaddr; 1354 1355 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 1356 Elf32_Ehdr ehdr; 1357 Elf32_Phdr phdr; 1358 1359 if ((read_ehdr32(P, &ehdr, &phnum, addr) != 0) || 1360 read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0) 1361 return (NULL); 1362 1363 elf = fake_elf32(P, fptr, addr, &ehdr, phnum, &phdr); 1364 #ifdef _LP64 1365 } else { 1366 Elf64_Ehdr ehdr; 1367 Elf64_Phdr phdr; 1368 1369 if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 || 1370 read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0) 1371 return (NULL); 1372 1373 elf = fake_elf64(P, fptr, addr, &ehdr, phnum, &phdr); 1374 #endif 1375 } 1376 1377 return (elf); 1378 } 1379 1380 /* 1381 * We wouldn't need these if qsort(3C) took an argument for the callback... 1382 */ 1383 static mutex_t sort_mtx = DEFAULTMUTEX; 1384 static char *sort_strs; 1385 static GElf_Sym *sort_syms; 1386 1387 int 1388 byaddr_cmp_common(GElf_Sym *a, char *aname, GElf_Sym *b, char *bname) 1389 { 1390 if (a->st_value < b->st_value) 1391 return (-1); 1392 if (a->st_value > b->st_value) 1393 return (1); 1394 1395 /* 1396 * Prefer the function to the non-function. 1397 */ 1398 if (GELF_ST_TYPE(a->st_info) != GELF_ST_TYPE(b->st_info)) { 1399 if (GELF_ST_TYPE(a->st_info) == STT_FUNC) 1400 return (-1); 1401 if (GELF_ST_TYPE(b->st_info) == STT_FUNC) 1402 return (1); 1403 } 1404 1405 /* 1406 * Prefer the weak or strong global symbol to the local symbol. 1407 */ 1408 if (GELF_ST_BIND(a->st_info) != GELF_ST_BIND(b->st_info)) { 1409 if (GELF_ST_BIND(b->st_info) == STB_LOCAL) 1410 return (-1); 1411 if (GELF_ST_BIND(a->st_info) == STB_LOCAL) 1412 return (1); 1413 } 1414 1415 /* 1416 * Prefer the symbol that doesn't begin with a '$' since compilers and 1417 * other symbol generators often use it as a prefix. 1418 */ 1419 if (*bname == '$') 1420 return (-1); 1421 if (*aname == '$') 1422 return (1); 1423 1424 /* 1425 * Prefer the name with fewer leading underscores in the name. 1426 */ 1427 while (*aname == '_' && *bname == '_') { 1428 aname++; 1429 bname++; 1430 } 1431 1432 if (*bname == '_') 1433 return (-1); 1434 if (*aname == '_') 1435 return (1); 1436 1437 /* 1438 * Prefer the symbol with the smaller size. 1439 */ 1440 if (a->st_size < b->st_size) 1441 return (-1); 1442 if (a->st_size > b->st_size) 1443 return (1); 1444 1445 /* 1446 * All other factors being equal, fall back to lexicographic order. 1447 */ 1448 return (strcmp(aname, bname)); 1449 } 1450 1451 static int 1452 byaddr_cmp(const void *aa, const void *bb) 1453 { 1454 GElf_Sym *a = &sort_syms[*(uint_t *)aa]; 1455 GElf_Sym *b = &sort_syms[*(uint_t *)bb]; 1456 char *aname = sort_strs + a->st_name; 1457 char *bname = sort_strs + b->st_name; 1458 1459 return (byaddr_cmp_common(a, aname, b, bname)); 1460 } 1461 1462 static int 1463 byname_cmp(const void *aa, const void *bb) 1464 { 1465 GElf_Sym *a = &sort_syms[*(uint_t *)aa]; 1466 GElf_Sym *b = &sort_syms[*(uint_t *)bb]; 1467 char *aname = sort_strs + a->st_name; 1468 char *bname = sort_strs + b->st_name; 1469 1470 return (strcmp(aname, bname)); 1471 } 1472 1473 /* 1474 * Given a symbol index, look up the corresponding symbol from the 1475 * given symbol table. 1476 * 1477 * This function allows the caller to treat the symbol table as a single 1478 * logical entity even though there may be 2 actual ELF symbol tables 1479 * involved. See the comments in Pcontrol.h for details. 1480 */ 1481 static GElf_Sym * 1482 symtab_getsym(sym_tbl_t *symtab, int ndx, GElf_Sym *dst) 1483 { 1484 /* If index is in range of primary symtab, look it up there */ 1485 if (ndx >= symtab->sym_symn_aux) { 1486 return (gelf_getsym(symtab->sym_data_pri, 1487 ndx - symtab->sym_symn_aux, dst)); 1488 } 1489 1490 /* Not in primary: Look it up in the auxiliary symtab */ 1491 return (gelf_getsym(symtab->sym_data_aux, ndx, dst)); 1492 } 1493 1494 void 1495 optimize_symtab(sym_tbl_t *symtab) 1496 { 1497 GElf_Sym *symp, *syms; 1498 uint_t i, *indexa, *indexb; 1499 size_t symn, strsz, count; 1500 1501 if (symtab == NULL || symtab->sym_data_pri == NULL || 1502 symtab->sym_byaddr != NULL) 1503 return; 1504 1505 symn = symtab->sym_symn; 1506 strsz = symtab->sym_strsz; 1507 1508 symp = syms = malloc(sizeof (GElf_Sym) * symn); 1509 if (symp == NULL) { 1510 dprintf("optimize_symtab: failed to malloc symbol array"); 1511 return; 1512 } 1513 1514 /* 1515 * First record all the symbols into a table and count up the ones 1516 * that we're interested in. We mark symbols as invalid by setting 1517 * the st_name to an illegal value. 1518 */ 1519 for (i = 0, count = 0; i < symn; i++, symp++) { 1520 if (symtab_getsym(symtab, i, symp) != NULL && 1521 symp->st_name < strsz && 1522 IS_DATA_TYPE(GELF_ST_TYPE(symp->st_info))) 1523 count++; 1524 else 1525 symp->st_name = strsz; 1526 } 1527 1528 /* 1529 * Allocate sufficient space for both tables and populate them 1530 * with the same symbols we just counted. 1531 */ 1532 symtab->sym_count = count; 1533 indexa = symtab->sym_byaddr = calloc(sizeof (uint_t), count); 1534 indexb = symtab->sym_byname = calloc(sizeof (uint_t), count); 1535 if (indexa == NULL || indexb == NULL) { 1536 dprintf( 1537 "optimize_symtab: failed to malloc symbol index arrays"); 1538 symtab->sym_count = 0; 1539 if (indexa != NULL) { /* First alloc succeeded. Free it */ 1540 free(indexa); 1541 symtab->sym_byaddr = NULL; 1542 } 1543 free(syms); 1544 return; 1545 } 1546 for (i = 0, symp = syms; i < symn; i++, symp++) { 1547 if (symp->st_name < strsz) 1548 *indexa++ = *indexb++ = i; 1549 } 1550 1551 /* 1552 * Sort the two tables according to the appropriate criteria, 1553 * unless the user has overridden this behaviour. 1554 * 1555 * An example where we might not sort the tables is the relatively 1556 * unusual case of a process with very large symbol tables in which 1557 * we perform few lookups. In such a case the total time would be 1558 * dominated by the sort. It is difficult to determine a priori 1559 * how many lookups an arbitrary client will perform, and 1560 * hence whether the symbol tables should be sorted. We therefore 1561 * sort the tables by default, but provide the user with a 1562 * "chicken switch" in the form of the LIBPROC_NO_QSORT 1563 * environment variable. 1564 */ 1565 if (!_libproc_no_qsort) { 1566 (void) mutex_lock(&sort_mtx); 1567 sort_strs = symtab->sym_strs; 1568 sort_syms = syms; 1569 1570 qsort(symtab->sym_byaddr, count, sizeof (uint_t), byaddr_cmp); 1571 qsort(symtab->sym_byname, count, sizeof (uint_t), byname_cmp); 1572 1573 sort_strs = NULL; 1574 sort_syms = NULL; 1575 (void) mutex_unlock(&sort_mtx); 1576 } 1577 1578 free(syms); 1579 } 1580 1581 1582 static Elf * 1583 build_fake_elf(struct ps_prochandle *P, file_info_t *fptr, GElf_Ehdr *ehdr, 1584 size_t *nshdrs, Elf_Data **shdata) 1585 { 1586 size_t shstrndx; 1587 Elf_Scn *scn; 1588 Elf *elf; 1589 1590 if ((elf = fake_elf(P, fptr)) == NULL || 1591 elf_kind(elf) != ELF_K_ELF || 1592 gelf_getehdr(elf, ehdr) == NULL || 1593 elf_getshdrnum(elf, nshdrs) == -1 || 1594 elf_getshdrstrndx(elf, &shstrndx) == -1 || 1595 (scn = elf_getscn(elf, shstrndx)) == NULL || 1596 (*shdata = elf_getdata(scn, NULL)) == NULL) { 1597 if (elf != NULL) 1598 (void) elf_end(elf); 1599 dprintf("failed to fake up ELF file\n"); 1600 return (NULL); 1601 } 1602 1603 return (elf); 1604 } 1605 1606 /* 1607 * Try and find the file described by path in the file system and validate that 1608 * it matches our CRC before we try and process it for symbol information. If we 1609 * instead have an ELF data section, then that means we're checking a build-id 1610 * section instead. In that case we just need to find and bcmp the corresponding 1611 * section. 1612 * 1613 * Before we validate if it's a valid CRC or data section, we check to ensure 1614 * that it's a normal file and not anything else. 1615 */ 1616 static boolean_t 1617 build_alt_debug(file_info_t *fptr, const char *path, uint32_t crc, 1618 Elf_Data *data) 1619 { 1620 int fd; 1621 struct stat st; 1622 Elf *elf; 1623 Elf_Scn *scn; 1624 GElf_Shdr symshdr, strshdr; 1625 Elf_Data *symdata, *strdata; 1626 boolean_t valid; 1627 uint32_t c = -1U; 1628 1629 if ((fd = open(path, O_RDONLY)) < 0) 1630 return (B_FALSE); 1631 1632 if (fstat(fd, &st) != 0) { 1633 (void) close(fd); 1634 return (B_FALSE); 1635 } 1636 1637 if (S_ISREG(st.st_mode) == 0) { 1638 (void) close(fd); 1639 return (B_FALSE); 1640 } 1641 1642 /* 1643 * Only check the CRC if we've come here through a GNU debug link 1644 * section as opposed to the build id. This is indicated by having the 1645 * value of data be NULL. 1646 */ 1647 if (data == NULL) { 1648 for (;;) { 1649 char buf[4096]; 1650 ssize_t ret = read(fd, buf, sizeof (buf)); 1651 if (ret == -1) { 1652 if (ret == EINTR) 1653 continue; 1654 (void) close(fd); 1655 return (B_FALSE); 1656 } 1657 if (ret == 0) { 1658 c = ~c; 1659 if (c != crc) { 1660 dprintf("crc mismatch, found: 0x%x " 1661 "expected 0x%x\n", c, crc); 1662 (void) close(fd); 1663 return (B_FALSE); 1664 } 1665 break; 1666 } 1667 CRC32(c, buf, ret, c, psym_crc32); 1668 } 1669 } 1670 1671 elf = elf_begin(fd, ELF_C_READ, NULL); 1672 if (elf == NULL) { 1673 (void) close(fd); 1674 return (B_FALSE); 1675 } 1676 1677 if (elf_kind(elf) != ELF_K_ELF) { 1678 goto fail; 1679 } 1680 1681 /* 1682 * If we have a data section, that indicates we have a build-id which 1683 * means we need to find the corresponding build-id section and compare 1684 * it. 1685 */ 1686 scn = NULL; 1687 valid = B_FALSE; 1688 for (scn = elf_nextscn(elf, scn); data != NULL && scn != NULL; 1689 scn = elf_nextscn(elf, scn)) { 1690 GElf_Shdr hdr; 1691 Elf_Data *ntdata; 1692 1693 if (gelf_getshdr(scn, &hdr) == NULL) 1694 goto fail; 1695 1696 if (hdr.sh_type != SHT_NOTE) 1697 continue; 1698 1699 if ((ntdata = elf_getdata(scn, NULL)) == NULL) 1700 goto fail; 1701 1702 /* 1703 * First verify the data section sizes are equal, then the 1704 * section name. If that's all true, then we can just do a bcmp. 1705 */ 1706 if (data->d_size != ntdata->d_size) 1707 continue; 1708 1709 dprintf("found corresponding section in alternate file\n"); 1710 if (bcmp(ntdata->d_buf, data->d_buf, data->d_size) != 0) 1711 goto fail; 1712 1713 valid = B_TRUE; 1714 break; 1715 } 1716 if (data != NULL && valid == B_FALSE) { 1717 dprintf("failed to find a matching %s section in %s\n", 1718 BUILDID_NAME, path); 1719 goto fail; 1720 } 1721 1722 1723 /* 1724 * Do two passes, first see if we have a symbol header, then see if we 1725 * can find the corresponding linked string table. 1726 */ 1727 scn = NULL; 1728 for (scn = elf_nextscn(elf, scn); scn != NULL; 1729 scn = elf_nextscn(elf, scn)) { 1730 1731 if (gelf_getshdr(scn, &symshdr) == NULL) 1732 goto fail; 1733 1734 if (symshdr.sh_type != SHT_SYMTAB) 1735 continue; 1736 1737 if ((symdata = elf_getdata(scn, NULL)) == NULL) 1738 goto fail; 1739 1740 break; 1741 } 1742 if (scn == NULL) 1743 goto fail; 1744 1745 if ((scn = elf_getscn(elf, symshdr.sh_link)) == NULL) 1746 goto fail; 1747 1748 if (gelf_getshdr(scn, &strshdr) == NULL) 1749 goto fail; 1750 1751 if ((strdata = elf_getdata(scn, NULL)) == NULL) 1752 goto fail; 1753 1754 fptr->file_symtab.sym_data_pri = symdata; 1755 fptr->file_symtab.sym_symn += symshdr.sh_size / symshdr.sh_entsize; 1756 fptr->file_symtab.sym_strs = strdata->d_buf; 1757 fptr->file_symtab.sym_strsz = strdata->d_size; 1758 fptr->file_symtab.sym_hdr_pri = symshdr; 1759 fptr->file_symtab.sym_strhdr = strshdr; 1760 1761 dprintf("successfully loaded additional debug symbols for %s from %s\n", 1762 fptr->file_rname, path); 1763 1764 fptr->file_dbgfile = fd; 1765 fptr->file_dbgelf = elf; 1766 return (B_TRUE); 1767 fail: 1768 (void) elf_end(elf); 1769 (void) close(fd); 1770 return (B_FALSE); 1771 } 1772 1773 /* 1774 * We're here because the object in question has no symbol information, that's a 1775 * bit unfortunate. However, we've found that there's a .gnu_debuglink sitting 1776 * around. By convention that means that given the current location of the 1777 * object on disk, and the debug name that we found in the binary we need to 1778 * search the following locations for a matching file. 1779 * 1780 * <dirname>/.debug/<debug-name> 1781 * /usr/lib/debug/<dirname>/<debug-name> 1782 * 1783 * In the future, we should consider supporting looking in the prefix's 1784 * lib/debug directory for a matching object or supporting an arbitrary user 1785 * defined set of places to look. 1786 */ 1787 static void 1788 find_alt_debuglink(file_info_t *fptr, const char *name, uint32_t crc) 1789 { 1790 boolean_t r; 1791 char *dup = NULL, *path = NULL, *dname; 1792 1793 dprintf("find_alt_debug: looking for %s, crc 0x%x\n", name, crc); 1794 if (fptr->file_rname == NULL) { 1795 dprintf("find_alt_debug: encountered null file_rname\n"); 1796 return; 1797 } 1798 1799 dup = strdup(fptr->file_rname); 1800 if (dup == NULL) 1801 return; 1802 1803 dname = dirname(dup); 1804 if (asprintf(&path, "%s/.debug/%s", dname, name) != -1) { 1805 dprintf("attempting to load alternate debug information " 1806 "from %s\n", path); 1807 r = build_alt_debug(fptr, path, crc, NULL); 1808 free(path); 1809 if (r == B_TRUE) 1810 goto out; 1811 } 1812 1813 if (asprintf(&path, "/usr/lib/debug/%s/%s", dname, name) != -1) { 1814 dprintf("attempting to load alternate debug information " 1815 "from %s\n", path); 1816 r = build_alt_debug(fptr, path, crc, NULL); 1817 free(path); 1818 if (r == B_TRUE) 1819 goto out; 1820 } 1821 out: 1822 free(dup); 1823 } 1824 1825 /* 1826 * Build the symbol table for the given mapped file. 1827 */ 1828 void 1829 Pbuild_file_symtab(struct ps_prochandle *P, file_info_t *fptr) 1830 { 1831 char objectfile[PATH_MAX]; 1832 uint_t i; 1833 1834 GElf_Ehdr ehdr; 1835 GElf_Sym s; 1836 1837 Elf_Data *shdata; 1838 Elf_Scn *scn; 1839 Elf *elf; 1840 size_t nshdrs, shstrndx; 1841 1842 struct { 1843 GElf_Shdr c_shdr; 1844 Elf_Data *c_data; 1845 const char *c_name; 1846 } *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL, 1847 *dbglink = NULL, *buildid = NULL; 1848 1849 if (fptr->file_init) 1850 return; /* We've already processed this file */ 1851 1852 /* 1853 * Mark the file_info struct as having the symbol table initialized 1854 * even if we fail below. We tried once; we don't try again. 1855 */ 1856 fptr->file_init = 1; 1857 1858 if (elf_version(EV_CURRENT) == EV_NONE) { 1859 dprintf("libproc ELF version is more recent than libelf\n"); 1860 return; 1861 } 1862 1863 if (P->state == PS_DEAD || P->state == PS_IDLE) { 1864 char *name; 1865 /* 1866 * If we're a not live, we can't open files from the /proc 1867 * object directory; we have only the mapping and file names 1868 * to guide us. We prefer the file_lname, but need to handle 1869 * the case of it being NULL in order to bootstrap: we first 1870 * come here during rd_new() when the only information we have 1871 * is interpreter name associated with the AT_BASE mapping. 1872 * 1873 * Also, if the zone associated with the core file seems 1874 * to exists on this machine we'll try to open the object 1875 * file within the zone. 1876 */ 1877 if (fptr->file_rname != NULL) 1878 name = fptr->file_rname; 1879 else if (fptr->file_lname != NULL) 1880 name = fptr->file_lname; 1881 else 1882 name = fptr->file_pname; 1883 (void) strlcpy(objectfile, name, sizeof (objectfile)); 1884 } else { 1885 (void) snprintf(objectfile, sizeof (objectfile), 1886 "%s/%d/object/%s", 1887 procfs_path, (int)P->pid, fptr->file_pname); 1888 } 1889 1890 /* 1891 * Open the object file, create the elf file, and then get the elf 1892 * header and .shstrtab data buffer so we can process sections by 1893 * name. If anything goes wrong try to fake up an elf file from 1894 * the in-core elf image. 1895 */ 1896 1897 if (_libproc_incore_elf || (P->flags & INCORE)) { 1898 dprintf("Pbuild_file_symtab: using in-core data for: %s\n", 1899 fptr->file_pname); 1900 1901 if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) == 1902 NULL) 1903 return; 1904 1905 } else if ((fptr->file_fd = open(objectfile, O_RDONLY)) < 0) { 1906 dprintf("Pbuild_file_symtab: failed to open %s: %s\n", 1907 objectfile, strerror(errno)); 1908 1909 if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) == 1910 NULL) 1911 return; 1912 1913 } else if ((elf = elf_begin(fptr->file_fd, ELF_C_READ, NULL)) == NULL || 1914 elf_kind(elf) != ELF_K_ELF || 1915 gelf_getehdr(elf, &ehdr) == NULL || 1916 elf_getshdrnum(elf, &nshdrs) == -1 || 1917 elf_getshdrstrndx(elf, &shstrndx) == -1 || 1918 (scn = elf_getscn(elf, shstrndx)) == NULL || 1919 (shdata = elf_getdata(scn, NULL)) == NULL) { 1920 int err = elf_errno(); 1921 1922 dprintf("failed to process ELF file %s: %s\n", 1923 objectfile, (err == 0) ? "<null>" : elf_errmsg(err)); 1924 (void) elf_end(elf); 1925 1926 if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) == 1927 NULL) 1928 return; 1929 1930 } else if (file_differs(P, elf, fptr)) { 1931 Elf *newelf; 1932 1933 /* 1934 * Before we get too excited about this elf file, we'll check 1935 * its checksum value against the value we have in memory. If 1936 * they don't agree, we try to fake up a new elf file and 1937 * proceed with that instead. 1938 */ 1939 dprintf("ELF file %s (%lx) doesn't match in-core image\n", 1940 fptr->file_pname, 1941 (ulong_t)fptr->file_map->map_pmap.pr_vaddr); 1942 1943 if ((newelf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) 1944 != NULL) { 1945 (void) elf_end(elf); 1946 elf = newelf; 1947 dprintf("switched to faked up ELF file\n"); 1948 1949 /* 1950 * Check to see if the file that we just discovered 1951 * to be an imposter matches the execname that was 1952 * determined by Pfindexec(). If it does, we (clearly) 1953 * don't have the right binary, and we zero out 1954 * execname before anyone gets hurt. 1955 */ 1956 if (fptr->file_rname != NULL && P->execname != NULL && 1957 strcmp(fptr->file_rname, P->execname) == 0) { 1958 dprintf("file/in-core image mismatch was " 1959 "on P->execname; discarding\n"); 1960 free(P->execname); 1961 P->execname = NULL; 1962 } 1963 } 1964 } 1965 1966 if ((cache = malloc(nshdrs * sizeof (*cache))) == NULL) { 1967 dprintf("failed to malloc section cache for %s\n", objectfile); 1968 goto bad; 1969 } 1970 1971 dprintf("processing ELF file %s\n", objectfile); 1972 fptr->file_class = ehdr.e_ident[EI_CLASS]; 1973 fptr->file_etype = ehdr.e_type; 1974 fptr->file_elf = elf; 1975 fptr->file_shstrs = shdata->d_buf; 1976 fptr->file_shstrsz = shdata->d_size; 1977 1978 /* 1979 * Iterate through each section, caching its section header, data 1980 * pointer, and name. We use this for handling sh_link values below. 1981 */ 1982 for (cp = cache + 1, scn = NULL; scn = elf_nextscn(elf, scn); cp++) { 1983 if (gelf_getshdr(scn, &cp->c_shdr) == NULL) { 1984 dprintf("Pbuild_file_symtab: Failed to get section " 1985 "header\n"); 1986 goto bad; /* Failed to get section header */ 1987 } 1988 1989 if ((cp->c_data = elf_getdata(scn, NULL)) == NULL) { 1990 dprintf("Pbuild_file_symtab: Failed to get section " 1991 "data\n"); 1992 goto bad; /* Failed to get section data */ 1993 } 1994 1995 if (cp->c_shdr.sh_name >= shdata->d_size) { 1996 dprintf("Pbuild_file_symtab: corrupt section name"); 1997 goto bad; /* Corrupt section name */ 1998 } 1999 2000 cp->c_name = (const char *)shdata->d_buf + cp->c_shdr.sh_name; 2001 } 2002 2003 /* 2004 * Now iterate through the section cache in order to locate info 2005 * for the .symtab, .dynsym, .SUNW_ldynsym, .dynamic, .plt, 2006 * and .SUNW_ctf sections: 2007 */ 2008 for (i = 1, cp = cache + 1; i < nshdrs; i++, cp++) { 2009 GElf_Shdr *shp = &cp->c_shdr; 2010 2011 if (shp->sh_type == SHT_SYMTAB || shp->sh_type == SHT_DYNSYM) { 2012 sym_tbl_t *symp = shp->sh_type == SHT_SYMTAB ? 2013 &fptr->file_symtab : &fptr->file_dynsym; 2014 /* 2015 * It's possible that the we already got the symbol 2016 * table from the core file itself. Either the file 2017 * differs in which case our faked up elf file will 2018 * only contain the dynsym (not the symtab) or the 2019 * file matches in which case we'll just be replacing 2020 * the symbol table we pulled out of the core file 2021 * with an equivalent one. In either case, this 2022 * check isn't essential, but it's a good idea. 2023 */ 2024 if (symp->sym_data_pri == NULL) { 2025 dprintf("Symbol table found for %s\n", 2026 objectfile); 2027 symp->sym_data_pri = cp->c_data; 2028 symp->sym_symn += 2029 shp->sh_size / shp->sh_entsize; 2030 symp->sym_strs = 2031 cache[shp->sh_link].c_data->d_buf; 2032 symp->sym_strsz = 2033 cache[shp->sh_link].c_data->d_size; 2034 symp->sym_hdr_pri = cp->c_shdr; 2035 symp->sym_strhdr = cache[shp->sh_link].c_shdr; 2036 } else { 2037 dprintf("Symbol table already there for %s\n", 2038 objectfile); 2039 } 2040 } else if (shp->sh_type == SHT_SUNW_LDYNSYM) { 2041 /* .SUNW_ldynsym section is auxiliary to .dynsym */ 2042 if (fptr->file_dynsym.sym_data_aux == NULL) { 2043 dprintf(".SUNW_ldynsym symbol table" 2044 " found for %s\n", objectfile); 2045 fptr->file_dynsym.sym_data_aux = cp->c_data; 2046 fptr->file_dynsym.sym_symn_aux = 2047 shp->sh_size / shp->sh_entsize; 2048 fptr->file_dynsym.sym_symn += 2049 fptr->file_dynsym.sym_symn_aux; 2050 fptr->file_dynsym.sym_hdr_aux = cp->c_shdr; 2051 } else { 2052 dprintf(".SUNW_ldynsym symbol table already" 2053 " there for %s\n", objectfile); 2054 } 2055 } else if (shp->sh_type == SHT_DYNAMIC) { 2056 dyn = cp; 2057 } else if (strcmp(cp->c_name, ".plt") == 0) { 2058 plt = cp; 2059 } else if (strcmp(cp->c_name, ".SUNW_ctf") == 0) { 2060 /* 2061 * Skip over bogus CTF sections so they don't come back 2062 * to haunt us later. 2063 */ 2064 if (shp->sh_link == 0 || 2065 shp->sh_link >= nshdrs || 2066 (cache[shp->sh_link].c_shdr.sh_type != SHT_DYNSYM && 2067 cache[shp->sh_link].c_shdr.sh_type != SHT_SYMTAB)) { 2068 dprintf("Bad sh_link %d for " 2069 "CTF\n", shp->sh_link); 2070 continue; 2071 } 2072 ctf = cp; 2073 } else if (strcmp(cp->c_name, BUILDID_NAME) == 0) { 2074 dprintf("Found a %s section for %s\n", BUILDID_NAME, 2075 fptr->file_rname); 2076 /* The ElfXX_Nhdr is 32/64-bit neutral */ 2077 if (cp->c_shdr.sh_type == SHT_NOTE && 2078 cp->c_data->d_buf != NULL && 2079 cp->c_data->d_size >= sizeof (Elf32_Nhdr)) { 2080 Elf32_Nhdr *hdr = cp->c_data->d_buf; 2081 if (hdr->n_type != 3) 2082 continue; 2083 if (hdr->n_namesz != 4) 2084 continue; 2085 if (hdr->n_descsz < MINBUILDID) 2086 continue; 2087 /* Set a reasonable upper bound */ 2088 if (hdr->n_descsz > MAXBUILDID) { 2089 dprintf("Skipped %s as too large " 2090 "(%ld)\n", BUILDID_NAME, 2091 (unsigned long)hdr->n_descsz); 2092 continue; 2093 } 2094 2095 if (cp->c_data->d_size < sizeof (hdr) + 2096 hdr->n_namesz + hdr->n_descsz) 2097 continue; 2098 buildid = cp; 2099 } 2100 } else if (strcmp(cp->c_name, DBGLINK_NAME) == 0) { 2101 dprintf("found %s section for %s\n", DBGLINK_NAME, 2102 fptr->file_rname); 2103 /* 2104 * Let's make sure of a few things before we do this. 2105 */ 2106 if (cp->c_shdr.sh_type == SHT_PROGBITS && 2107 cp->c_data->d_buf != NULL && 2108 cp->c_data->d_size) { 2109 dbglink = cp; 2110 } 2111 } 2112 } 2113 2114 /* 2115 * If we haven't found any symbol table information and we have found 2116 * either a .note.gnu.build-id or a .gnu_debuglink, it's time to try and 2117 * figure out where we might find this. Originally, GNU used the 2118 * .gnu_debuglink solely, but then they added a .note.gnu.build-id. The 2119 * build-id is some size, usually 16 or 20 bytes, often a SHA1 sum of 2120 * parts of the original file. This is maintained across all versions of 2121 * the subsequent file. 2122 * 2123 * For the .note.gnu.build-id, we're going to check a few things before 2124 * using it, first that the name is 4 bytes, and is GNU and that the 2125 * type is 3, which they say is the build-id identifier. 2126 * 2127 * To verify that the elf data for the .gnu_debuglink seems somewhat 2128 * sane, eg. the elf data should be a string, so we want to verify we 2129 * have a null-terminator. 2130 */ 2131 if (fptr->file_symtab.sym_data_pri == NULL && buildid != NULL) { 2132 int i, bo; 2133 uint8_t *dp; 2134 char buf[BUILDID_STRLEN], *path; 2135 Elf32_Nhdr *hdr = buildid->c_data->d_buf; 2136 2137 /* 2138 * This was checked for validity when assigning the buildid 2139 * variable. 2140 */ 2141 bzero(buf, sizeof (buf)); 2142 dp = (uint8_t *)((uintptr_t)hdr + sizeof (*hdr) + 2143 hdr->n_namesz); 2144 for (i = 0, bo = 0; i < hdr->n_descsz; i++, bo += 2, dp++) { 2145 assert(sizeof (buf) - bo > 0); 2146 2147 /* 2148 * Recall that the build-id is structured as a series of 2149 * bytes. However, the first two characters are supposed 2150 * to represent a directory. Hence, once we reach offset 2151 * two, we insert a '/' character. 2152 */ 2153 if (bo == 2) { 2154 buf[bo] = '/'; 2155 bo++; 2156 } 2157 (void) snprintf(buf + bo, sizeof (buf) - bo, "%2x", 2158 *dp); 2159 } 2160 2161 if (asprintf(&path, "/usr/lib/debug/.build-id/%s.debug", 2162 buf) != -1) { 2163 boolean_t r; 2164 dprintf("attempting to find build id alternate debug " 2165 "file at %s\n", path); 2166 r = build_alt_debug(fptr, path, 0, buildid->c_data); 2167 dprintf("attempt %s\n", r == B_TRUE ? 2168 "succeeded" : "failed"); 2169 free(path); 2170 } else { 2171 dprintf("failed to construct build id path: %s\n", 2172 strerror(errno)); 2173 } 2174 } 2175 2176 if (fptr->file_symtab.sym_data_pri == NULL && dbglink != NULL) { 2177 char *c = dbglink->c_data->d_buf; 2178 size_t i; 2179 boolean_t found = B_FALSE; 2180 Elf_Data *ed = dbglink->c_data; 2181 uint32_t crc; 2182 2183 for (i = 0; i < ed->d_size; i++) { 2184 if (c[i] == '\0') { 2185 uintptr_t off; 2186 dprintf("got .gnu_debuglink terminator at " 2187 "offset %lu\n", (unsigned long)i); 2188 /* 2189 * After the null terminator, there should be 2190 * padding, followed by a 4 byte CRC of the 2191 * file. If we don't see this, we're going to 2192 * assume this is bogus. 2193 */ 2194 if ((i % sizeof (uint32_t)) == 0) { 2195 i += 4; 2196 } else { 2197 i += sizeof (uint32_t) - 2198 (i % sizeof (uint32_t)); 2199 } 2200 if (i + sizeof (uint32_t) == 2201 dbglink->c_data->d_size) { 2202 found = B_TRUE; 2203 off = (uintptr_t)ed->d_buf + i; 2204 crc = *(uint32_t *)off; 2205 } else { 2206 dprintf(".gnu_debuglink size mismatch, " 2207 "expected: %lu, found: %lu\n", 2208 (unsigned long)i, 2209 (unsigned long)ed->d_size); 2210 } 2211 break; 2212 } 2213 } 2214 2215 if (found == B_TRUE) 2216 find_alt_debuglink(fptr, dbglink->c_data->d_buf, crc); 2217 } 2218 2219 /* 2220 * At this point, we've found all the symbol tables we're ever going 2221 * to find: the ones in the loop above and possibly the symtab that 2222 * was included in the core file. Before we perform any lookups, we 2223 * create sorted versions to optimize for lookups. 2224 */ 2225 optimize_symtab(&fptr->file_symtab); 2226 optimize_symtab(&fptr->file_dynsym); 2227 2228 /* 2229 * Fill in the base address of the text mapping for shared libraries. 2230 * This allows us to translate symbols before librtld_db is ready. 2231 */ 2232 if (fptr->file_etype == ET_DYN) { 2233 fptr->file_dyn_base = fptr->file_map->map_pmap.pr_vaddr - 2234 fptr->file_map->map_pmap.pr_offset; 2235 dprintf("setting file_dyn_base for %s to %lx\n", 2236 objectfile, (long)fptr->file_dyn_base); 2237 } 2238 2239 /* 2240 * Record the CTF section information in the file info structure. 2241 */ 2242 if (ctf != NULL) { 2243 fptr->file_ctf_off = ctf->c_shdr.sh_offset; 2244 fptr->file_ctf_size = ctf->c_shdr.sh_size; 2245 if (ctf->c_shdr.sh_link != 0 && 2246 cache[ctf->c_shdr.sh_link].c_shdr.sh_type == SHT_DYNSYM) 2247 fptr->file_ctf_dyn = 1; 2248 } 2249 2250 if (fptr->file_lo == NULL) 2251 goto done; /* Nothing else to do if no load object info */ 2252 2253 /* 2254 * If the object is a shared library and we have a different rl_base 2255 * value, reset file_dyn_base according to librtld_db's information. 2256 */ 2257 if (fptr->file_etype == ET_DYN && 2258 fptr->file_lo->rl_base != fptr->file_dyn_base) { 2259 dprintf("resetting file_dyn_base for %s to %lx\n", 2260 objectfile, (long)fptr->file_lo->rl_base); 2261 fptr->file_dyn_base = fptr->file_lo->rl_base; 2262 } 2263 2264 /* 2265 * Fill in the PLT information for this file if a PLT symbol is found. 2266 */ 2267 if (sym_by_name(&fptr->file_dynsym, "_PROCEDURE_LINKAGE_TABLE_", &s, 2268 NULL) != NULL) { 2269 fptr->file_plt_base = s.st_value + fptr->file_dyn_base; 2270 fptr->file_plt_size = (plt != NULL) ? plt->c_shdr.sh_size : 0; 2271 2272 /* 2273 * Bring the load object up to date; it is the only way the 2274 * user has to access the PLT data. The PLT information in the 2275 * rd_loadobj_t is not set in the call to map_iter() (the 2276 * callback for rd_loadobj_iter) where we set file_lo. 2277 */ 2278 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 2279 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 2280 2281 dprintf("PLT found at %p, size = %lu\n", 2282 (void *)fptr->file_plt_base, (ulong_t)fptr->file_plt_size); 2283 } 2284 2285 /* 2286 * Fill in the PLT information. 2287 */ 2288 if (dyn != NULL) { 2289 uintptr_t dynaddr = dyn->c_shdr.sh_addr + fptr->file_dyn_base; 2290 size_t ndyn = dyn->c_shdr.sh_size / dyn->c_shdr.sh_entsize; 2291 GElf_Dyn d; 2292 2293 for (i = 0; i < ndyn; i++) { 2294 if (gelf_getdyn(dyn->c_data, i, &d) == NULL) 2295 continue; 2296 2297 switch (d.d_tag) { 2298 case DT_JMPREL: 2299 dprintf("DT_JMPREL is %p\n", 2300 (void *)(uintptr_t)d.d_un.d_ptr); 2301 fptr->file_jmp_rel = 2302 d.d_un.d_ptr + fptr->file_dyn_base; 2303 break; 2304 case DT_STRTAB: 2305 dprintf("DT_STRTAB is %p\n", 2306 (void *)(uintptr_t)d.d_un.d_ptr); 2307 break; 2308 case DT_PLTGOT: 2309 dprintf("DT_PLTGOT is %p\n", 2310 (void *)(uintptr_t)d.d_un.d_ptr); 2311 break; 2312 case DT_SUNW_SYMTAB: 2313 dprintf("DT_SUNW_SYMTAB is %p\n", 2314 (void *)(uintptr_t)d.d_un.d_ptr); 2315 break; 2316 case DT_SYMTAB: 2317 dprintf("DT_SYMTAB is %p\n", 2318 (void *)(uintptr_t)d.d_un.d_ptr); 2319 break; 2320 case DT_HASH: 2321 dprintf("DT_HASH is %p\n", 2322 (void *)(uintptr_t)d.d_un.d_ptr); 2323 break; 2324 } 2325 } 2326 2327 dprintf("_DYNAMIC found at %p, %lu entries, DT_JMPREL = %p\n", 2328 (void *)dynaddr, (ulong_t)ndyn, (void *)fptr->file_jmp_rel); 2329 } 2330 2331 done: 2332 free(cache); 2333 return; 2334 2335 bad: 2336 if (cache != NULL) 2337 free(cache); 2338 2339 (void) elf_end(elf); 2340 fptr->file_elf = NULL; 2341 if (fptr->file_elfmem != NULL) { 2342 free(fptr->file_elfmem); 2343 fptr->file_elfmem = NULL; 2344 } 2345 (void) close(fptr->file_fd); 2346 if (fptr->file_dbgelf != NULL) 2347 (void) elf_end(fptr->file_dbgelf); 2348 fptr->file_dbgelf = NULL; 2349 if (fptr->file_dbgfile >= 0) 2350 (void) close(fptr->file_dbgfile); 2351 fptr->file_fd = -1; 2352 fptr->file_dbgfile = -1; 2353 } 2354 2355 /* 2356 * Given a process virtual address, return the map_info_t containing it. 2357 * If none found, return NULL. 2358 */ 2359 map_info_t * 2360 Paddr2mptr(struct ps_prochandle *P, uintptr_t addr) 2361 { 2362 int lo = 0; 2363 int hi = P->map_count - 1; 2364 int mid; 2365 map_info_t *mp; 2366 2367 while (lo <= hi) { 2368 2369 mid = (lo + hi) / 2; 2370 mp = &P->mappings[mid]; 2371 2372 /* check that addr is in [vaddr, vaddr + size) */ 2373 if ((addr - mp->map_pmap.pr_vaddr) < mp->map_pmap.pr_size) 2374 return (mp); 2375 2376 if (addr < mp->map_pmap.pr_vaddr) 2377 hi = mid - 1; 2378 else 2379 lo = mid + 1; 2380 } 2381 2382 return (NULL); 2383 } 2384 2385 /* 2386 * Return the map_info_t for the executable file. 2387 * If not found, return NULL. 2388 */ 2389 static map_info_t * 2390 exec_map(struct ps_prochandle *P) 2391 { 2392 uint_t i; 2393 map_info_t *mptr; 2394 map_info_t *mold = NULL; 2395 file_info_t *fptr; 2396 uintptr_t base; 2397 2398 for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) { 2399 if (mptr->map_pmap.pr_mapname[0] == '\0') 2400 continue; 2401 if (strcmp(mptr->map_pmap.pr_mapname, "a.out") == 0) { 2402 if ((fptr = mptr->map_file) != NULL && 2403 fptr->file_lo != NULL) { 2404 base = fptr->file_lo->rl_base; 2405 if (base >= mptr->map_pmap.pr_vaddr && 2406 base < mptr->map_pmap.pr_vaddr + 2407 mptr->map_pmap.pr_size) /* text space */ 2408 return (mptr); 2409 mold = mptr; /* must be the data */ 2410 continue; 2411 } 2412 /* This is a poor way to test for text space */ 2413 if (!(mptr->map_pmap.pr_mflags & MA_EXEC) || 2414 (mptr->map_pmap.pr_mflags & MA_WRITE)) { 2415 mold = mptr; 2416 continue; 2417 } 2418 return (mptr); 2419 } 2420 } 2421 2422 return (mold); 2423 } 2424 2425 /* 2426 * Given a shared object name, return the map_info_t for it. If no matching 2427 * object is found, return NULL. Normally, the link maps contain the full 2428 * object pathname, e.g. /usr/lib/libc.so.1. We allow the object name to 2429 * take one of the following forms: 2430 * 2431 * 1. An exact match (i.e. a full pathname): "/usr/lib/libc.so.1" 2432 * 2. An exact basename match: "libc.so.1" 2433 * 3. An initial basename match up to a '.' suffix: "libc.so" or "libc" 2434 * 4. The literal string "a.out" is an alias for the executable mapping 2435 * 2436 * The third case is a convenience for callers and may not be necessary. 2437 * 2438 * As the exact same object name may be loaded on different link maps (see 2439 * dlmopen(3DL)), we also allow the caller to resolve the object name by 2440 * specifying a particular link map id. If lmid is PR_LMID_EVERY, the 2441 * first matching name will be returned, regardless of the link map id. 2442 */ 2443 static map_info_t * 2444 object_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *objname) 2445 { 2446 map_info_t *mp; 2447 file_info_t *fp; 2448 size_t objlen; 2449 uint_t i; 2450 2451 /* 2452 * If we have no rtld_db, then always treat a request as one for all 2453 * link maps. 2454 */ 2455 if (P->rap == NULL) 2456 lmid = PR_LMID_EVERY; 2457 2458 /* 2459 * First pass: look for exact matches of the entire pathname or 2460 * basename (cases 1 and 2 above): 2461 */ 2462 for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) { 2463 2464 if (mp->map_pmap.pr_mapname[0] == '\0' || 2465 (fp = mp->map_file) == NULL || 2466 ((fp->file_lname == NULL) && (fp->file_rname == NULL))) 2467 continue; 2468 2469 if (lmid != PR_LMID_EVERY && 2470 (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident)) 2471 continue; 2472 2473 /* 2474 * If we match, return the primary text mapping; otherwise 2475 * just return the mapping we matched. 2476 */ 2477 if ((fp->file_lbase && strcmp(fp->file_lbase, objname) == 0) || 2478 (fp->file_rbase && strcmp(fp->file_rbase, objname) == 0) || 2479 (fp->file_lname && strcmp(fp->file_lname, objname) == 0) || 2480 (fp->file_rname && strcmp(fp->file_rname, objname) == 0)) 2481 return (fp->file_map ? fp->file_map : mp); 2482 } 2483 2484 objlen = strlen(objname); 2485 2486 /* 2487 * Second pass: look for partial matches (case 3 above): 2488 */ 2489 for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) { 2490 2491 if (mp->map_pmap.pr_mapname[0] == '\0' || 2492 (fp = mp->map_file) == NULL || 2493 ((fp->file_lname == NULL) && (fp->file_rname == NULL))) 2494 continue; 2495 2496 if (lmid != PR_LMID_EVERY && 2497 (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident)) 2498 continue; 2499 2500 /* 2501 * If we match, return the primary text mapping; otherwise 2502 * just return the mapping we matched. 2503 */ 2504 if ((fp->file_lbase != NULL) && 2505 (strncmp(fp->file_lbase, objname, objlen) == 0) && 2506 (fp->file_lbase[objlen] == '.')) 2507 return (fp->file_map ? fp->file_map : mp); 2508 if ((fp->file_rbase != NULL) && 2509 (strncmp(fp->file_rbase, objname, objlen) == 0) && 2510 (fp->file_rbase[objlen] == '.')) 2511 return (fp->file_map ? fp->file_map : mp); 2512 } 2513 2514 /* 2515 * One last check: we allow "a.out" to always alias the executable, 2516 * assuming this name was not in use for something else. 2517 */ 2518 if ((lmid == PR_LMID_EVERY || lmid == LM_ID_BASE) && 2519 (strcmp(objname, "a.out") == 0)) 2520 return (P->map_exec); 2521 2522 return (NULL); 2523 } 2524 2525 static map_info_t * 2526 object_name_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name) 2527 { 2528 map_info_t *mptr; 2529 2530 if (!P->info_valid) 2531 Pupdate_maps(P); 2532 2533 if (P->map_exec == NULL && ((mptr = Paddr2mptr(P, 2534 Pgetauxval(P, AT_ENTRY))) != NULL || (mptr = exec_map(P)) != NULL)) 2535 P->map_exec = mptr; 2536 2537 if (P->map_ldso == NULL && (mptr = Paddr2mptr(P, 2538 Pgetauxval(P, AT_BASE))) != NULL) 2539 P->map_ldso = mptr; 2540 2541 if (name == PR_OBJ_EXEC) 2542 mptr = P->map_exec; 2543 else if (name == PR_OBJ_LDSO) 2544 mptr = P->map_ldso; 2545 else if (Prd_agent(P) != NULL || P->state == PS_IDLE) 2546 mptr = object_to_map(P, lmid, name); 2547 else 2548 mptr = NULL; 2549 2550 return (mptr); 2551 } 2552 2553 /* 2554 * When two symbols are found by address, decide which one is to be preferred. 2555 */ 2556 static GElf_Sym * 2557 sym_prefer(GElf_Sym *sym1, char *name1, GElf_Sym *sym2, char *name2) 2558 { 2559 /* 2560 * Prefer the non-NULL symbol. 2561 */ 2562 if (sym1 == NULL) 2563 return (sym2); 2564 if (sym2 == NULL) 2565 return (sym1); 2566 2567 /* 2568 * Defer to the sort ordering... 2569 */ 2570 return (byaddr_cmp_common(sym1, name1, sym2, name2) <= 0 ? sym1 : sym2); 2571 } 2572 2573 /* 2574 * Use a binary search to do the work of sym_by_addr(). 2575 */ 2576 static GElf_Sym * 2577 sym_by_addr_binary(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, 2578 uint_t *idp) 2579 { 2580 GElf_Sym sym, osym; 2581 uint_t i, oid, *byaddr = symtab->sym_byaddr; 2582 int min, max, mid, omid, found = 0; 2583 2584 if (symtab->sym_data_pri == NULL || symtab->sym_count == 0) 2585 return (NULL); 2586 2587 min = 0; 2588 max = symtab->sym_count - 1; 2589 osym.st_value = 0; 2590 2591 /* 2592 * We can't return when we've found a match, we have to continue 2593 * searching for the closest matching symbol. 2594 */ 2595 while (min <= max) { 2596 mid = (max + min) / 2; 2597 2598 i = byaddr[mid]; 2599 (void) symtab_getsym(symtab, i, &sym); 2600 2601 if (addr >= sym.st_value && 2602 addr < sym.st_value + sym.st_size && 2603 (!found || sym.st_value > osym.st_value)) { 2604 osym = sym; 2605 omid = mid; 2606 oid = i; 2607 found = 1; 2608 } 2609 2610 if (addr < sym.st_value) 2611 max = mid - 1; 2612 else 2613 min = mid + 1; 2614 } 2615 2616 if (!found) 2617 return (NULL); 2618 2619 /* 2620 * There may be many symbols with identical values so we walk 2621 * backward in the byaddr table to find the best match. 2622 */ 2623 do { 2624 sym = osym; 2625 i = oid; 2626 2627 if (omid == 0) 2628 break; 2629 2630 oid = byaddr[--omid]; 2631 (void) symtab_getsym(symtab, oid, &osym); 2632 } while (addr >= osym.st_value && 2633 addr < sym.st_value + osym.st_size && 2634 osym.st_value == sym.st_value); 2635 2636 *symp = sym; 2637 if (idp != NULL) 2638 *idp = i; 2639 return (symp); 2640 } 2641 2642 /* 2643 * Use a linear search to do the work of sym_by_addr(). 2644 */ 2645 static GElf_Sym * 2646 sym_by_addr_linear(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symbolp, 2647 uint_t *idp) 2648 { 2649 size_t symn = symtab->sym_symn; 2650 char *strs = symtab->sym_strs; 2651 GElf_Sym sym, *symp = NULL; 2652 GElf_Sym osym, *osymp = NULL; 2653 int i, id; 2654 2655 if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL) 2656 return (NULL); 2657 2658 for (i = 0; i < symn; i++) { 2659 if ((symp = symtab_getsym(symtab, i, &sym)) != NULL) { 2660 if (addr >= sym.st_value && 2661 addr < sym.st_value + sym.st_size) { 2662 if (osymp) 2663 symp = sym_prefer( 2664 symp, strs + symp->st_name, 2665 osymp, strs + osymp->st_name); 2666 if (symp != osymp) { 2667 osym = sym; 2668 osymp = &osym; 2669 id = i; 2670 } 2671 } 2672 } 2673 } 2674 if (osymp) { 2675 *symbolp = osym; 2676 if (idp) 2677 *idp = id; 2678 return (symbolp); 2679 } 2680 return (NULL); 2681 } 2682 2683 /* 2684 * Look up a symbol by address in the specified symbol table. 2685 * Adjustment to 'addr' must already have been made for the 2686 * offset of the symbol if this is a dynamic library symbol table. 2687 * 2688 * Use a linear or a binary search depending on whether or not we 2689 * chose to sort the table in optimize_symtab(). 2690 */ 2691 static GElf_Sym * 2692 sym_by_addr(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, uint_t *idp) 2693 { 2694 if (_libproc_no_qsort) { 2695 return (sym_by_addr_linear(symtab, addr, symp, idp)); 2696 } else { 2697 return (sym_by_addr_binary(symtab, addr, symp, idp)); 2698 } 2699 } 2700 2701 /* 2702 * Use a binary search to do the work of sym_by_name(). 2703 */ 2704 static GElf_Sym * 2705 sym_by_name_binary(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, 2706 uint_t *idp) 2707 { 2708 char *strs = symtab->sym_strs; 2709 uint_t i, *byname = symtab->sym_byname; 2710 int min, mid, max, cmp; 2711 2712 if (symtab->sym_data_pri == NULL || strs == NULL || 2713 symtab->sym_count == 0) 2714 return (NULL); 2715 2716 min = 0; 2717 max = symtab->sym_count - 1; 2718 2719 while (min <= max) { 2720 mid = (max + min) / 2; 2721 2722 i = byname[mid]; 2723 (void) symtab_getsym(symtab, i, symp); 2724 2725 if ((cmp = strcmp(name, strs + symp->st_name)) == 0) { 2726 if (idp != NULL) 2727 *idp = i; 2728 return (symp); 2729 } 2730 2731 if (cmp < 0) 2732 max = mid - 1; 2733 else 2734 min = mid + 1; 2735 } 2736 2737 return (NULL); 2738 } 2739 2740 /* 2741 * Use a linear search to do the work of sym_by_name(). 2742 */ 2743 static GElf_Sym * 2744 sym_by_name_linear(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, 2745 uint_t *idp) 2746 { 2747 size_t symn = symtab->sym_symn; 2748 char *strs = symtab->sym_strs; 2749 int i; 2750 2751 if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL) 2752 return (NULL); 2753 2754 for (i = 0; i < symn; i++) { 2755 if (symtab_getsym(symtab, i, symp) && 2756 strcmp(name, strs + symp->st_name) == 0) { 2757 if (idp) 2758 *idp = i; 2759 return (symp); 2760 } 2761 } 2762 2763 return (NULL); 2764 } 2765 2766 /* 2767 * Look up a symbol by name in the specified symbol table. 2768 * 2769 * Use a linear or a binary search depending on whether or not we 2770 * chose to sort the table in optimize_symtab(). 2771 */ 2772 static GElf_Sym * 2773 sym_by_name(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, uint_t *idp) 2774 { 2775 if (_libproc_no_qsort) { 2776 return (sym_by_name_linear(symtab, name, symp, idp)); 2777 } else { 2778 return (sym_by_name_binary(symtab, name, symp, idp)); 2779 } 2780 } 2781 2782 /* 2783 * Search the process symbol tables looking for a symbol whose 2784 * value to value+size contain the address specified by addr. 2785 * Return values are: 2786 * sym_name_buffer containing the symbol name 2787 * GElf_Sym symbol table entry 2788 * prsyminfo_t ancillary symbol information 2789 * Returns 0 on success, -1 on failure. 2790 */ 2791 static int 2792 i_Pxlookup_by_addr( 2793 struct ps_prochandle *P, 2794 int lmresolve, /* use resolve linker object names */ 2795 uintptr_t addr, /* process address being sought */ 2796 char *sym_name_buffer, /* buffer for the symbol name */ 2797 size_t bufsize, /* size of sym_name_buffer */ 2798 GElf_Sym *symbolp, /* returned symbol table entry */ 2799 prsyminfo_t *sip) /* returned symbol info */ 2800 { 2801 GElf_Sym *symp; 2802 char *name; 2803 GElf_Sym sym1, *sym1p = NULL; 2804 GElf_Sym sym2, *sym2p = NULL; 2805 char *name1 = NULL; 2806 char *name2 = NULL; 2807 uint_t i1; 2808 uint_t i2; 2809 map_info_t *mptr; 2810 file_info_t *fptr; 2811 2812 (void) Prd_agent(P); 2813 2814 if ((mptr = Paddr2mptr(P, addr)) == NULL || /* no such address */ 2815 (fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */ 2816 fptr->file_elf == NULL) /* not an ELF file */ 2817 return (-1); 2818 2819 /* 2820 * Adjust the address by the load object base address in 2821 * case the address turns out to be in a shared library. 2822 */ 2823 addr -= fptr->file_dyn_base; 2824 2825 /* 2826 * Search both symbol tables, symtab first, then dynsym. 2827 */ 2828 if ((sym1p = sym_by_addr(&fptr->file_symtab, addr, &sym1, &i1)) != NULL) 2829 name1 = fptr->file_symtab.sym_strs + sym1.st_name; 2830 if ((sym2p = sym_by_addr(&fptr->file_dynsym, addr, &sym2, &i2)) != NULL) 2831 name2 = fptr->file_dynsym.sym_strs + sym2.st_name; 2832 2833 if ((symp = sym_prefer(sym1p, name1, sym2p, name2)) == NULL) 2834 return (-1); 2835 2836 name = (symp == sym1p) ? name1 : name2; 2837 if (bufsize > 0) { 2838 (void) strncpy(sym_name_buffer, name, bufsize); 2839 sym_name_buffer[bufsize - 1] = '\0'; 2840 } 2841 2842 *symbolp = *symp; 2843 if (sip != NULL) { 2844 sip->prs_name = bufsize == 0 ? NULL : sym_name_buffer; 2845 if (lmresolve && (fptr->file_rname != NULL)) 2846 sip->prs_object = fptr->file_rbase; 2847 else 2848 sip->prs_object = fptr->file_lbase; 2849 sip->prs_id = (symp == sym1p) ? i1 : i2; 2850 sip->prs_table = (symp == sym1p) ? PR_SYMTAB : PR_DYNSYM; 2851 sip->prs_lmid = (fptr->file_lo == NULL) ? LM_ID_BASE : 2852 fptr->file_lo->rl_lmident; 2853 } 2854 2855 if (GELF_ST_TYPE(symbolp->st_info) != STT_TLS) 2856 symbolp->st_value += fptr->file_dyn_base; 2857 2858 return (0); 2859 } 2860 2861 int 2862 Pxlookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf, 2863 size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip) 2864 { 2865 return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, bufsize, symp, sip)); 2866 } 2867 2868 int 2869 Pxlookup_by_addr_resolved(struct ps_prochandle *P, uintptr_t addr, char *buf, 2870 size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip) 2871 { 2872 return (i_Pxlookup_by_addr(P, B_TRUE, addr, buf, bufsize, symp, sip)); 2873 } 2874 2875 int 2876 Plookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf, 2877 size_t size, GElf_Sym *symp) 2878 { 2879 return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, size, symp, NULL)); 2880 } 2881 2882 /* 2883 * Search the process symbol tables looking for a symbol whose name matches the 2884 * specified name and whose object and link map optionally match the specified 2885 * parameters. On success, the function returns 0 and fills in the GElf_Sym 2886 * symbol table entry. On failure, -1 is returned. 2887 */ 2888 int 2889 Pxlookup_by_name( 2890 struct ps_prochandle *P, 2891 Lmid_t lmid, /* link map to match, or -1 for any */ 2892 const char *oname, /* load object name */ 2893 const char *sname, /* symbol name */ 2894 GElf_Sym *symp, /* returned symbol table entry */ 2895 prsyminfo_t *sip) /* returned symbol info */ 2896 { 2897 map_info_t *mptr; 2898 file_info_t *fptr; 2899 int cnt; 2900 2901 GElf_Sym sym; 2902 prsyminfo_t si; 2903 int rv = -1; 2904 uint_t id; 2905 2906 if (oname == PR_OBJ_EVERY) { 2907 /* create all the file_info_t's for all the mappings */ 2908 (void) Prd_agent(P); 2909 cnt = P->num_files; 2910 fptr = list_next(&P->file_head); 2911 } else { 2912 cnt = 1; 2913 if ((mptr = object_name_to_map(P, lmid, oname)) == NULL || 2914 (fptr = build_map_symtab(P, mptr)) == NULL) 2915 return (-1); 2916 } 2917 2918 /* 2919 * Iterate through the loaded object files and look for the symbol 2920 * name in the .symtab and .dynsym of each. If we encounter a match 2921 * with SHN_UNDEF, keep looking in hopes of finding a better match. 2922 * This means that a name such as "puts" will match the puts function 2923 * in libc instead of matching the puts PLT entry in the a.out file. 2924 */ 2925 for (; cnt > 0; cnt--, fptr = list_next(fptr)) { 2926 Pbuild_file_symtab(P, fptr); 2927 2928 if (fptr->file_elf == NULL) 2929 continue; 2930 2931 if (lmid != PR_LMID_EVERY && fptr->file_lo != NULL && 2932 lmid != fptr->file_lo->rl_lmident) 2933 continue; 2934 2935 if (fptr->file_symtab.sym_data_pri != NULL && 2936 sym_by_name(&fptr->file_symtab, sname, symp, &id)) { 2937 if (sip != NULL) { 2938 sip->prs_id = id; 2939 sip->prs_table = PR_SYMTAB; 2940 sip->prs_object = oname; 2941 sip->prs_name = sname; 2942 sip->prs_lmid = fptr->file_lo == NULL ? 2943 LM_ID_BASE : fptr->file_lo->rl_lmident; 2944 } 2945 } else if (fptr->file_dynsym.sym_data_pri != NULL && 2946 sym_by_name(&fptr->file_dynsym, sname, symp, &id)) { 2947 if (sip != NULL) { 2948 sip->prs_id = id; 2949 sip->prs_table = PR_DYNSYM; 2950 sip->prs_object = oname; 2951 sip->prs_name = sname; 2952 sip->prs_lmid = fptr->file_lo == NULL ? 2953 LM_ID_BASE : fptr->file_lo->rl_lmident; 2954 } 2955 } else { 2956 continue; 2957 } 2958 2959 if (GELF_ST_TYPE(symp->st_info) != STT_TLS) 2960 symp->st_value += fptr->file_dyn_base; 2961 2962 if (symp->st_shndx != SHN_UNDEF) 2963 return (0); 2964 2965 if (rv != 0) { 2966 if (sip != NULL) 2967 si = *sip; 2968 sym = *symp; 2969 rv = 0; 2970 } 2971 } 2972 2973 if (rv == 0) { 2974 if (sip != NULL) 2975 *sip = si; 2976 *symp = sym; 2977 } 2978 2979 return (rv); 2980 } 2981 2982 /* 2983 * Search the process symbol tables looking for a symbol whose name matches the 2984 * specified name, but without any restriction on the link map id. 2985 */ 2986 int 2987 Plookup_by_name(struct ps_prochandle *P, const char *object, 2988 const char *symbol, GElf_Sym *symp) 2989 { 2990 return (Pxlookup_by_name(P, PR_LMID_EVERY, object, symbol, symp, NULL)); 2991 } 2992 2993 /* 2994 * Iterate over the process's address space mappings. 2995 */ 2996 static int 2997 i_Pmapping_iter(struct ps_prochandle *P, boolean_t lmresolve, 2998 proc_map_f *func, void *cd) 2999 { 3000 map_info_t *mptr; 3001 file_info_t *fptr; 3002 char *object_name; 3003 int rc = 0; 3004 int i; 3005 3006 /* create all the file_info_t's for all the mappings */ 3007 (void) Prd_agent(P); 3008 3009 for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) { 3010 if ((fptr = mptr->map_file) == NULL) 3011 object_name = NULL; 3012 else if (lmresolve && (fptr->file_rname != NULL)) 3013 object_name = fptr->file_rname; 3014 else 3015 object_name = fptr->file_lname; 3016 if ((rc = func(cd, &mptr->map_pmap, object_name)) != 0) 3017 return (rc); 3018 } 3019 return (0); 3020 } 3021 3022 int 3023 Pmapping_iter(struct ps_prochandle *P, proc_map_f *func, void *cd) 3024 { 3025 return (i_Pmapping_iter(P, B_FALSE, func, cd)); 3026 } 3027 3028 int 3029 Pmapping_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd) 3030 { 3031 return (i_Pmapping_iter(P, B_TRUE, func, cd)); 3032 } 3033 3034 /* 3035 * Iterate over the process's mapped objects. 3036 */ 3037 static int 3038 i_Pobject_iter(struct ps_prochandle *P, boolean_t lmresolve, 3039 proc_map_f *func, void *cd) 3040 { 3041 map_info_t *mptr; 3042 file_info_t *fptr; 3043 uint_t cnt; 3044 int rc = 0; 3045 3046 (void) Prd_agent(P); /* create file_info_t's for all the mappings */ 3047 Pupdate_maps(P); 3048 3049 for (cnt = P->num_files, fptr = list_next(&P->file_head); 3050 cnt; cnt--, fptr = list_next(fptr)) { 3051 const char *lname; 3052 3053 if (lmresolve && (fptr->file_rname != NULL)) 3054 lname = fptr->file_rname; 3055 else if (fptr->file_lname != NULL) 3056 lname = fptr->file_lname; 3057 else 3058 lname = ""; 3059 3060 if ((mptr = fptr->file_map) == NULL) 3061 continue; 3062 3063 if ((rc = func(cd, &mptr->map_pmap, lname)) != 0) 3064 return (rc); 3065 3066 if (!P->info_valid) 3067 Pupdate_maps(P); 3068 } 3069 return (0); 3070 } 3071 3072 int 3073 Pobject_iter(struct ps_prochandle *P, proc_map_f *func, void *cd) 3074 { 3075 return (i_Pobject_iter(P, B_FALSE, func, cd)); 3076 } 3077 3078 int 3079 Pobject_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd) 3080 { 3081 return (i_Pobject_iter(P, B_TRUE, func, cd)); 3082 } 3083 3084 static char * 3085 i_Pobjname(struct ps_prochandle *P, boolean_t lmresolve, uintptr_t addr, 3086 char *buffer, size_t bufsize) 3087 { 3088 map_info_t *mptr; 3089 file_info_t *fptr; 3090 3091 /* create all the file_info_t's for all the mappings */ 3092 (void) Prd_agent(P); 3093 3094 if ((mptr = Paddr2mptr(P, addr)) == NULL) 3095 return (NULL); 3096 3097 if (!lmresolve) { 3098 if (((fptr = mptr->map_file) == NULL) || 3099 (fptr->file_lname == NULL)) 3100 return (NULL); 3101 (void) strlcpy(buffer, fptr->file_lname, bufsize); 3102 return (buffer); 3103 } 3104 3105 /* Check for a cached copy of the resolved path */ 3106 if (Pfindmap(P, mptr, buffer, bufsize) != NULL) 3107 return (buffer); 3108 3109 return (NULL); 3110 } 3111 3112 /* 3113 * Given a virtual address, return the name of the underlying 3114 * mapped object (file) as provided by the dynamic linker. 3115 * Return NULL if we can't find any name information for the object. 3116 */ 3117 char * 3118 Pobjname(struct ps_prochandle *P, uintptr_t addr, 3119 char *buffer, size_t bufsize) 3120 { 3121 return (i_Pobjname(P, B_FALSE, addr, buffer, bufsize)); 3122 } 3123 3124 /* 3125 * Given a virtual address, try to return a filesystem path to the 3126 * underlying mapped object (file). If we're in the global zone, 3127 * this path could resolve to an object in another zone. If we're 3128 * unable return a valid filesystem path, we'll fall back to providing 3129 * the mapped object (file) name provided by the dynamic linker in 3130 * the target process (ie, the object reported by Pobjname()). 3131 */ 3132 char * 3133 Pobjname_resolved(struct ps_prochandle *P, uintptr_t addr, 3134 char *buffer, size_t bufsize) 3135 { 3136 return (i_Pobjname(P, B_TRUE, addr, buffer, bufsize)); 3137 } 3138 3139 /* 3140 * Given a virtual address, return the link map id of the underlying mapped 3141 * object (file), as provided by the dynamic linker. Return -1 on failure. 3142 */ 3143 int 3144 Plmid(struct ps_prochandle *P, uintptr_t addr, Lmid_t *lmidp) 3145 { 3146 map_info_t *mptr; 3147 file_info_t *fptr; 3148 3149 /* create all the file_info_t's for all the mappings */ 3150 (void) Prd_agent(P); 3151 3152 if ((mptr = Paddr2mptr(P, addr)) != NULL && 3153 (fptr = mptr->map_file) != NULL && fptr->file_lo != NULL) { 3154 *lmidp = fptr->file_lo->rl_lmident; 3155 return (0); 3156 } 3157 3158 return (-1); 3159 } 3160 3161 /* 3162 * Given an object name and optional lmid, iterate over the object's symbols. 3163 * If which == PR_SYMTAB, search the normal symbol table. 3164 * If which == PR_DYNSYM, search the dynamic symbol table. 3165 */ 3166 static int 3167 Psymbol_iter_com(struct ps_prochandle *P, Lmid_t lmid, const char *object_name, 3168 int which, int mask, pr_order_t order, proc_xsym_f *func, void *cd) 3169 { 3170 #if STT_NUM != (STT_TLS + 1) 3171 #error "STT_NUM has grown. update Psymbol_iter_com()" 3172 #endif 3173 3174 GElf_Sym sym; 3175 GElf_Shdr shdr; 3176 map_info_t *mptr; 3177 file_info_t *fptr; 3178 sym_tbl_t *symtab; 3179 size_t symn; 3180 const char *strs; 3181 size_t strsz; 3182 prsyminfo_t si; 3183 int rv; 3184 uint_t *map, i, count, ndx; 3185 3186 if ((mptr = object_name_to_map(P, lmid, object_name)) == NULL) 3187 return (-1); 3188 3189 if ((fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */ 3190 fptr->file_elf == NULL) /* not an ELF file */ 3191 return (-1); 3192 3193 /* 3194 * Search the specified symbol table. 3195 */ 3196 switch (which) { 3197 case PR_SYMTAB: 3198 symtab = &fptr->file_symtab; 3199 si.prs_table = PR_SYMTAB; 3200 break; 3201 case PR_DYNSYM: 3202 symtab = &fptr->file_dynsym; 3203 si.prs_table = PR_DYNSYM; 3204 break; 3205 default: 3206 return (-1); 3207 } 3208 3209 si.prs_object = object_name; 3210 si.prs_lmid = fptr->file_lo == NULL ? 3211 LM_ID_BASE : fptr->file_lo->rl_lmident; 3212 3213 symn = symtab->sym_symn; 3214 strs = symtab->sym_strs; 3215 strsz = symtab->sym_strsz; 3216 3217 switch (order) { 3218 case PRO_NATURAL: 3219 map = NULL; 3220 count = symn; 3221 break; 3222 case PRO_BYNAME: 3223 map = symtab->sym_byname; 3224 count = symtab->sym_count; 3225 break; 3226 case PRO_BYADDR: 3227 map = symtab->sym_byaddr; 3228 count = symtab->sym_count; 3229 break; 3230 default: 3231 return (-1); 3232 } 3233 3234 if (symtab->sym_data_pri == NULL || strs == NULL || count == 0) 3235 return (-1); 3236 3237 rv = 0; 3238 3239 for (i = 0; i < count; i++) { 3240 ndx = map == NULL ? i : map[i]; 3241 if (symtab_getsym(symtab, ndx, &sym) != NULL) { 3242 uint_t s_bind, s_type, type; 3243 3244 if (sym.st_name >= strsz) /* invalid st_name */ 3245 continue; 3246 3247 s_bind = GELF_ST_BIND(sym.st_info); 3248 s_type = GELF_ST_TYPE(sym.st_info); 3249 3250 /* 3251 * In case you haven't already guessed, this relies on 3252 * the bitmask used in <libproc.h> for encoding symbol 3253 * type and binding matching the order of STB and STT 3254 * constants in <sys/elf.h>. Changes to ELF must 3255 * maintain binary compatibility, so I think this is 3256 * reasonably fair game. 3257 */ 3258 if (s_bind < STB_NUM && s_type < STT_NUM) { 3259 type = (1 << (s_type + 8)) | (1 << s_bind); 3260 if ((type & ~mask) != 0) 3261 continue; 3262 } else 3263 continue; /* Invalid type or binding */ 3264 3265 if (GELF_ST_TYPE(sym.st_info) != STT_TLS) 3266 sym.st_value += fptr->file_dyn_base; 3267 3268 si.prs_name = strs + sym.st_name; 3269 3270 /* 3271 * If symbol's type is STT_SECTION, then try to lookup 3272 * the name of the corresponding section. 3273 */ 3274 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && 3275 fptr->file_shstrs != NULL && 3276 gelf_getshdr(elf_getscn(fptr->file_elf, 3277 sym.st_shndx), &shdr) != NULL && 3278 shdr.sh_name != 0 && 3279 shdr.sh_name < fptr->file_shstrsz) 3280 si.prs_name = fptr->file_shstrs + shdr.sh_name; 3281 3282 si.prs_id = ndx; 3283 if ((rv = func(cd, &sym, si.prs_name, &si)) != 0) 3284 break; 3285 } 3286 } 3287 3288 return (rv); 3289 } 3290 3291 int 3292 Pxsymbol_iter(struct ps_prochandle *P, Lmid_t lmid, const char *object_name, 3293 int which, int mask, proc_xsym_f *func, void *cd) 3294 { 3295 return (Psymbol_iter_com(P, lmid, object_name, which, mask, 3296 PRO_NATURAL, func, cd)); 3297 } 3298 3299 int 3300 Psymbol_iter_by_lmid(struct ps_prochandle *P, Lmid_t lmid, 3301 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 3302 { 3303 return (Psymbol_iter_com(P, lmid, object_name, which, mask, 3304 PRO_NATURAL, (proc_xsym_f *)(uintptr_t)func, cd)); 3305 } 3306 3307 int 3308 Psymbol_iter(struct ps_prochandle *P, 3309 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 3310 { 3311 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 3312 PRO_NATURAL, (proc_xsym_f *)(uintptr_t)func, cd)); 3313 } 3314 3315 int 3316 Psymbol_iter_by_addr(struct ps_prochandle *P, 3317 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 3318 { 3319 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 3320 PRO_BYADDR, (proc_xsym_f *)(uintptr_t)func, cd)); 3321 } 3322 3323 int 3324 Psymbol_iter_by_name(struct ps_prochandle *P, 3325 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 3326 { 3327 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 3328 PRO_BYNAME, (proc_xsym_f *)(uintptr_t)func, cd)); 3329 } 3330 3331 /* 3332 * Get the platform string. 3333 */ 3334 char * 3335 Pplatform(struct ps_prochandle *P, char *s, size_t n) 3336 { 3337 return (P->ops.pop_platform(P, s, n, P->data)); 3338 } 3339 3340 /* 3341 * Get the uname(2) information. 3342 */ 3343 int 3344 Puname(struct ps_prochandle *P, struct utsname *u) 3345 { 3346 return (P->ops.pop_uname(P, u, P->data)); 3347 } 3348 3349 /* 3350 * Called from Pcreate(), Pgrab(), and Pfgrab_core() to initialize 3351 * the symbol table heads in the new ps_prochandle. 3352 */ 3353 void 3354 Pinitsym(struct ps_prochandle *P) 3355 { 3356 P->num_files = 0; 3357 list_link(&P->file_head, NULL); 3358 } 3359 3360 /* 3361 * Called from Prelease() to destroy the symbol tables. 3362 * Must be called by the client after an exec() in the victim process. 3363 */ 3364 void 3365 Preset_maps(struct ps_prochandle *P) 3366 { 3367 int i; 3368 3369 if (P->rap != NULL) { 3370 rd_delete(P->rap); 3371 P->rap = NULL; 3372 } 3373 3374 if (P->execname != NULL) { 3375 free(P->execname); 3376 P->execname = NULL; 3377 } 3378 3379 if (P->auxv != NULL) { 3380 free(P->auxv); 3381 P->auxv = NULL; 3382 P->nauxv = 0; 3383 } 3384 3385 for (i = 0; i < P->map_count; i++) 3386 map_info_free(P, &P->mappings[i]); 3387 3388 if (P->mappings != NULL) { 3389 free(P->mappings); 3390 P->mappings = NULL; 3391 } 3392 P->map_count = P->map_alloc = 0; 3393 3394 P->info_valid = 0; 3395 } 3396 3397 typedef struct getenv_data { 3398 char *buf; 3399 size_t bufsize; 3400 const char *search; 3401 size_t searchlen; 3402 } getenv_data_t; 3403 3404 /*ARGSUSED*/ 3405 static int 3406 getenv_func(void *data, struct ps_prochandle *P, uintptr_t addr, 3407 const char *nameval) 3408 { 3409 getenv_data_t *d = data; 3410 size_t len; 3411 3412 if (nameval == NULL) 3413 return (0); 3414 3415 if (d->searchlen < strlen(nameval) && 3416 strncmp(nameval, d->search, d->searchlen) == 0 && 3417 nameval[d->searchlen] == '=') { 3418 len = MIN(strlen(nameval), d->bufsize - 1); 3419 (void) strncpy(d->buf, nameval, len); 3420 d->buf[len] = '\0'; 3421 return (1); 3422 } 3423 3424 return (0); 3425 } 3426 3427 char * 3428 Pgetenv(struct ps_prochandle *P, const char *name, char *buf, size_t buflen) 3429 { 3430 getenv_data_t d; 3431 3432 d.buf = buf; 3433 d.bufsize = buflen; 3434 d.search = name; 3435 d.searchlen = strlen(name); 3436 3437 if (Penv_iter(P, getenv_func, &d) == 1) { 3438 char *equals = strchr(d.buf, '='); 3439 3440 if (equals != NULL) { 3441 (void) memmove(d.buf, equals + 1, 3442 d.buf + buflen - equals - 1); 3443 d.buf[d.buf + buflen - equals] = '\0'; 3444 3445 return (buf); 3446 } 3447 } 3448 3449 return (NULL); 3450 } 3451 3452 /* number of argument or environment pointers to read all at once */ 3453 #define NARG 100 3454 3455 int 3456 Penv_iter(struct ps_prochandle *P, proc_env_f *func, void *data) 3457 { 3458 const psinfo_t *psp; 3459 uintptr_t envpoff; 3460 GElf_Sym sym; 3461 int ret; 3462 char *buf, *nameval; 3463 size_t buflen; 3464 3465 int nenv = NARG; 3466 long envp[NARG]; 3467 3468 /* 3469 * Attempt to find the "_environ" variable in the process. 3470 * Failing that, use the original value provided by Ppsinfo(). 3471 */ 3472 if ((psp = Ppsinfo(P)) == NULL) 3473 return (-1); 3474 3475 envpoff = psp->pr_envp; /* Default if no _environ found */ 3476 3477 if (Plookup_by_name(P, PR_OBJ_EXEC, "_environ", &sym) == 0) { 3478 if (P->status.pr_dmodel == PR_MODEL_NATIVE) { 3479 if (Pread(P, &envpoff, sizeof (envpoff), 3480 sym.st_value) != sizeof (envpoff)) 3481 envpoff = psp->pr_envp; 3482 } else if (P->status.pr_dmodel == PR_MODEL_ILP32) { 3483 uint32_t envpoff32; 3484 3485 if (Pread(P, &envpoff32, sizeof (envpoff32), 3486 sym.st_value) != sizeof (envpoff32)) 3487 envpoff = psp->pr_envp; 3488 else 3489 envpoff = envpoff32; 3490 } 3491 } 3492 3493 buflen = 128; 3494 buf = malloc(buflen); 3495 3496 ret = 0; 3497 for (;;) { 3498 uintptr_t envoff; 3499 3500 if (nenv == NARG) { 3501 (void) memset(envp, 0, sizeof (envp)); 3502 if (P->status.pr_dmodel == PR_MODEL_NATIVE) { 3503 if (Pread(P, envp, 3504 sizeof (envp), envpoff) <= 0) { 3505 ret = -1; 3506 break; 3507 } 3508 } else if (P->status.pr_dmodel == PR_MODEL_ILP32) { 3509 uint32_t e32[NARG]; 3510 int i; 3511 3512 (void) memset(e32, 0, sizeof (e32)); 3513 if (Pread(P, e32, sizeof (e32), envpoff) <= 0) { 3514 ret = -1; 3515 break; 3516 } 3517 for (i = 0; i < NARG; i++) 3518 envp[i] = e32[i]; 3519 } 3520 nenv = 0; 3521 } 3522 3523 if ((envoff = envp[nenv++]) == (uintptr_t)NULL) 3524 break; 3525 3526 /* 3527 * Attempt to read the string from the process. 3528 */ 3529 again: 3530 ret = Pread_string(P, buf, buflen, envoff); 3531 3532 if (ret <= 0) { 3533 nameval = NULL; 3534 } else if (ret == buflen - 1) { 3535 free(buf); 3536 /* 3537 * Bail if we have a corrupted environment 3538 */ 3539 if (buflen >= ARG_MAX) 3540 return (-1); 3541 buflen *= 2; 3542 buf = malloc(buflen); 3543 goto again; 3544 } else { 3545 nameval = buf; 3546 } 3547 3548 if ((ret = func(data, P, envoff, nameval)) != 0) 3549 break; 3550 3551 envpoff += (P->status.pr_dmodel == PR_MODEL_LP64)? 8 : 4; 3552 } 3553 3554 free(buf); 3555 3556 return (ret); 3557 } 3558