xref: /illumos-gate/usr/src/lib/libproc/common/Psymtab.c (revision a92282e44f968185a6bba094d1e5fece2da819cf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2016 Joyent, Inc.
25  * Copyright (c) 2013 by Delphix. All rights reserved.
26  */
27 
28 #include <assert.h>
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <stddef.h>
32 #include <unistd.h>
33 #include <ctype.h>
34 #include <fcntl.h>
35 #include <string.h>
36 #include <strings.h>
37 #include <memory.h>
38 #include <errno.h>
39 #include <dirent.h>
40 #include <signal.h>
41 #include <limits.h>
42 #include <libgen.h>
43 #include <sys/types.h>
44 #include <sys/stat.h>
45 #include <sys/sysmacros.h>
46 #include <sys/crc32.h>
47 
48 #include "libproc.h"
49 #include "Pcontrol.h"
50 #include "Putil.h"
51 #include "Psymtab_machelf.h"
52 
53 static file_info_t *build_map_symtab(struct ps_prochandle *, map_info_t *);
54 static map_info_t *exec_map(struct ps_prochandle *);
55 static map_info_t *object_to_map(struct ps_prochandle *, Lmid_t, const char *);
56 static map_info_t *object_name_to_map(struct ps_prochandle *,
57 	Lmid_t, const char *);
58 static GElf_Sym *sym_by_name(sym_tbl_t *, const char *, GElf_Sym *, uint_t *);
59 static int read_ehdr32(struct ps_prochandle *, Elf32_Ehdr *, uint_t *,
60     uintptr_t);
61 #ifdef _LP64
62 static int read_ehdr64(struct ps_prochandle *, Elf64_Ehdr *, uint_t *,
63     uintptr_t);
64 #endif
65 static uint32_t psym_crc32[] = { CRC32_TABLE };
66 
67 #define	DATA_TYPES	\
68 	((1 << STT_OBJECT) | (1 << STT_FUNC) | \
69 	(1 << STT_COMMON) | (1 << STT_TLS))
70 #define	IS_DATA_TYPE(tp)	(((1 << (tp)) & DATA_TYPES) != 0)
71 
72 #define	MA_RWX	(MA_READ | MA_WRITE | MA_EXEC)
73 
74 /*
75  * Minimum and maximum length of a build-id that we'll accept. Generally it's a
76  * 20 byte SHA1 and it's expected that the first byte (which is two ascii
77  * characters) indicates a directory and the remaining bytes become the file
78  * name. Therefore, our minimum length is at least 2 bytes (one for the
79  * directory and one for the name) and the max is a bit over the minimum -- 64,
80  * just in case folks do something odd. The string length is three times the max
81  * length. This accounts for the fact that each byte is two characters, a null
82  * terminator, and the directory '/' character.
83  */
84 #define	MINBUILDID	2
85 #define	MAXBUILDID	64
86 #define	BUILDID_STRLEN	(3*MAXBUILDID)
87 #define	BUILDID_NAME	".note.gnu.build-id"
88 #define	DBGLINK_NAME	".gnu_debuglink"
89 
90 typedef enum {
91 	PRO_NATURAL,
92 	PRO_BYADDR,
93 	PRO_BYNAME
94 } pr_order_t;
95 
96 static int
97 addr_cmp(const void *aa, const void *bb)
98 {
99 	uintptr_t a = *((uintptr_t *)aa);
100 	uintptr_t b = *((uintptr_t *)bb);
101 
102 	if (a > b)
103 		return (1);
104 	if (a < b)
105 		return (-1);
106 	return (0);
107 }
108 
109 /*
110  * This function creates a list of addresses for a load object's sections.
111  * The list is in ascending address order and alternates start address
112  * then end address for each section we're interested in. The function
113  * returns a pointer to the list, which must be freed by the caller.
114  */
115 static uintptr_t *
116 get_saddrs(struct ps_prochandle *P, uintptr_t ehdr_start, uint_t *n)
117 {
118 	uintptr_t a, addr, *addrs, last = 0;
119 	uint_t i, naddrs = 0, unordered = 0;
120 
121 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
122 		Elf32_Ehdr ehdr;
123 		Elf32_Phdr phdr;
124 		uint_t phnum;
125 
126 		if (read_ehdr32(P, &ehdr, &phnum, ehdr_start) != 0)
127 			return (NULL);
128 
129 		addrs = malloc(sizeof (uintptr_t) * phnum * 2);
130 		a = ehdr_start + ehdr.e_phoff;
131 		for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
132 			if (Pread(P, &phdr, sizeof (phdr), a) !=
133 			    sizeof (phdr)) {
134 				free(addrs);
135 				return (NULL);
136 			}
137 			if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
138 				continue;
139 
140 			addr = phdr.p_vaddr;
141 			if (ehdr.e_type == ET_DYN)
142 				addr += ehdr_start;
143 			if (last > addr)
144 				unordered = 1;
145 			addrs[naddrs++] = addr;
146 			addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
147 		}
148 #ifdef _LP64
149 	} else {
150 		Elf64_Ehdr ehdr;
151 		Elf64_Phdr phdr;
152 		uint_t phnum;
153 
154 		if (read_ehdr64(P, &ehdr, &phnum, ehdr_start) != 0)
155 			return (NULL);
156 
157 		addrs = malloc(sizeof (uintptr_t) * phnum * 2);
158 		a = ehdr_start + ehdr.e_phoff;
159 		for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
160 			if (Pread(P, &phdr, sizeof (phdr), a) !=
161 			    sizeof (phdr)) {
162 				free(addrs);
163 				return (NULL);
164 			}
165 			if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
166 				continue;
167 
168 			addr = phdr.p_vaddr;
169 			if (ehdr.e_type == ET_DYN)
170 				addr += ehdr_start;
171 			if (last > addr)
172 				unordered = 1;
173 			addrs[naddrs++] = addr;
174 			addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
175 		}
176 #endif
177 	}
178 
179 	if (unordered)
180 		qsort(addrs, naddrs, sizeof (uintptr_t), addr_cmp);
181 
182 	*n = naddrs;
183 	return (addrs);
184 }
185 
186 /*
187  * Allocation function for a new file_info_t
188  */
189 file_info_t *
190 file_info_new(struct ps_prochandle *P, map_info_t *mptr)
191 {
192 	file_info_t *fptr;
193 	map_info_t *mp;
194 	uintptr_t mstart, mend, sstart, send;
195 	uint_t i;
196 
197 	if ((fptr = calloc(1, sizeof (file_info_t))) == NULL)
198 		return (NULL);
199 
200 	list_link(fptr, &P->file_head);
201 	(void) strcpy(fptr->file_pname, mptr->map_pmap.pr_mapname);
202 	mptr->map_file = fptr;
203 	fptr->file_ref = 1;
204 	fptr->file_fd = -1;
205 	fptr->file_dbgfile = -1;
206 	P->num_files++;
207 
208 	/*
209 	 * To figure out which map_info_t instances correspond to the mappings
210 	 * for this load object we try to obtain the start and end address
211 	 * for each section of our in-memory ELF image. If successful, we
212 	 * walk down the list of addresses and the list of map_info_t
213 	 * instances in lock step to correctly find the mappings that
214 	 * correspond to this load object.
215 	 */
216 	if ((fptr->file_saddrs = get_saddrs(P, mptr->map_pmap.pr_vaddr,
217 	    &fptr->file_nsaddrs)) == NULL)
218 		return (fptr);
219 
220 	mp = P->mappings;
221 	i = 0;
222 	while (mp < P->mappings + P->map_count && i < fptr->file_nsaddrs) {
223 
224 		/* Calculate the start and end of the mapping and section */
225 		mstart = mp->map_pmap.pr_vaddr;
226 		mend = mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size;
227 		sstart = fptr->file_saddrs[i];
228 		send = fptr->file_saddrs[i + 1];
229 
230 		if (mend <= sstart) {
231 			/* This mapping is below the current section */
232 			mp++;
233 		} else if (mstart >= send) {
234 			/* This mapping is above the current section */
235 			i += 2;
236 		} else {
237 			/* This mapping overlaps the current section */
238 			if (mp->map_file == NULL) {
239 				dprintf("file_info_new: associating "
240 				    "segment at %p\n",
241 				    (void *)mp->map_pmap.pr_vaddr);
242 				mp->map_file = fptr;
243 				fptr->file_ref++;
244 			} else {
245 				dprintf("file_info_new: segment at %p "
246 				    "already associated with %s\n",
247 				    (void *)mp->map_pmap.pr_vaddr,
248 				    (mp == mptr ? "this file" :
249 				    mp->map_file->file_pname));
250 			}
251 			mp++;
252 		}
253 	}
254 
255 	return (fptr);
256 }
257 
258 /*
259  * Deallocation function for a file_info_t
260  */
261 static void
262 file_info_free(struct ps_prochandle *P, file_info_t *fptr)
263 {
264 	if (--fptr->file_ref == 0) {
265 		list_unlink(fptr);
266 		if (fptr->file_symtab.sym_elf) {
267 			(void) elf_end(fptr->file_symtab.sym_elf);
268 			free(fptr->file_symtab.sym_elfmem);
269 		}
270 		if (fptr->file_symtab.sym_byname)
271 			free(fptr->file_symtab.sym_byname);
272 		if (fptr->file_symtab.sym_byaddr)
273 			free(fptr->file_symtab.sym_byaddr);
274 
275 		if (fptr->file_dynsym.sym_elf) {
276 			(void) elf_end(fptr->file_dynsym.sym_elf);
277 			free(fptr->file_dynsym.sym_elfmem);
278 		}
279 		if (fptr->file_dynsym.sym_byname)
280 			free(fptr->file_dynsym.sym_byname);
281 		if (fptr->file_dynsym.sym_byaddr)
282 			free(fptr->file_dynsym.sym_byaddr);
283 
284 		if (fptr->file_lo)
285 			free(fptr->file_lo);
286 		if (fptr->file_lname)
287 			free(fptr->file_lname);
288 		if (fptr->file_rname)
289 			free(fptr->file_rname);
290 		if (fptr->file_elf)
291 			(void) elf_end(fptr->file_elf);
292 		if (fptr->file_elfmem != NULL)
293 			free(fptr->file_elfmem);
294 		if (fptr->file_fd >= 0)
295 			(void) close(fptr->file_fd);
296 		if (fptr->file_dbgelf)
297 			(void) elf_end(fptr->file_dbgelf);
298 		if (fptr->file_dbgfile >= 0)
299 			(void) close(fptr->file_dbgfile);
300 		if (fptr->file_ctfp) {
301 			ctf_close(fptr->file_ctfp);
302 			free(fptr->file_ctf_buf);
303 		}
304 		if (fptr->file_saddrs)
305 			free(fptr->file_saddrs);
306 		free(fptr);
307 		P->num_files--;
308 	}
309 }
310 
311 /*
312  * Deallocation function for a map_info_t
313  */
314 static void
315 map_info_free(struct ps_prochandle *P, map_info_t *mptr)
316 {
317 	file_info_t *fptr;
318 
319 	if ((fptr = mptr->map_file) != NULL) {
320 		if (fptr->file_map == mptr)
321 			fptr->file_map = NULL;
322 		file_info_free(P, fptr);
323 	}
324 	if (P->execname && mptr == P->map_exec) {
325 		free(P->execname);
326 		P->execname = NULL;
327 	}
328 	if (P->auxv && (mptr == P->map_exec || mptr == P->map_ldso)) {
329 		free(P->auxv);
330 		P->auxv = NULL;
331 		P->nauxv = 0;
332 	}
333 	if (mptr == P->map_exec)
334 		P->map_exec = NULL;
335 	if (mptr == P->map_ldso)
336 		P->map_ldso = NULL;
337 }
338 
339 /*
340  * Call-back function for librtld_db to iterate through all of its shared
341  * libraries.  We use this to get the load object names for the mappings.
342  */
343 static int
344 map_iter(const rd_loadobj_t *lop, void *cd)
345 {
346 	char buf[PATH_MAX];
347 	struct ps_prochandle *P = cd;
348 	map_info_t *mptr;
349 	file_info_t *fptr;
350 
351 	dprintf("encountered rd object at %p\n", (void *)lop->rl_base);
352 
353 	if ((mptr = Paddr2mptr(P, lop->rl_base)) == NULL) {
354 		dprintf("map_iter: base address doesn't match any mapping\n");
355 		return (1); /* Base address does not match any mapping */
356 	}
357 
358 	if ((fptr = mptr->map_file) == NULL &&
359 	    (fptr = file_info_new(P, mptr)) == NULL) {
360 		dprintf("map_iter: failed to allocate a new file_info_t\n");
361 		return (1); /* Failed to allocate a new file_info_t */
362 	}
363 
364 	if ((fptr->file_lo == NULL) &&
365 	    (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
366 		dprintf("map_iter: failed to allocate rd_loadobj_t\n");
367 		file_info_free(P, fptr);
368 		return (1); /* Failed to allocate rd_loadobj_t */
369 	}
370 
371 	fptr->file_map = mptr;
372 	*fptr->file_lo = *lop;
373 
374 	fptr->file_lo->rl_plt_base = fptr->file_plt_base;
375 	fptr->file_lo->rl_plt_size = fptr->file_plt_size;
376 
377 	if (fptr->file_lname) {
378 		free(fptr->file_lname);
379 		fptr->file_lname = NULL;
380 		fptr->file_lbase = NULL;
381 	}
382 	if (fptr->file_rname) {
383 		free(fptr->file_rname);
384 		fptr->file_rname = NULL;
385 		fptr->file_rbase = NULL;
386 	}
387 
388 	if (Pread_string(P, buf, sizeof (buf), lop->rl_nameaddr) > 0) {
389 		if ((fptr->file_lname = strdup(buf)) != NULL)
390 			fptr->file_lbase = basename(fptr->file_lname);
391 	} else {
392 		dprintf("map_iter: failed to read string at %p\n",
393 		    (void *)lop->rl_nameaddr);
394 	}
395 
396 	if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) &&
397 	    ((fptr->file_rname = strdup(buf)) != NULL))
398 		fptr->file_rbase = basename(fptr->file_rname);
399 
400 	dprintf("loaded rd object %s lmid %lx\n",
401 	    fptr->file_lname ? buf : "<NULL>", lop->rl_lmident);
402 	return (1);
403 }
404 
405 static void
406 map_set(struct ps_prochandle *P, map_info_t *mptr, const char *lname)
407 {
408 	file_info_t *fptr;
409 	char buf[PATH_MAX];
410 
411 	if ((fptr = mptr->map_file) == NULL &&
412 	    (fptr = file_info_new(P, mptr)) == NULL)
413 		return; /* Failed to allocate a new file_info_t */
414 
415 	fptr->file_map = mptr;
416 
417 	if ((fptr->file_lo == NULL) &&
418 	    (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
419 		file_info_free(P, fptr);
420 		return; /* Failed to allocate rd_loadobj_t */
421 	}
422 
423 	(void) memset(fptr->file_lo, 0, sizeof (rd_loadobj_t));
424 	fptr->file_lo->rl_base = mptr->map_pmap.pr_vaddr;
425 	fptr->file_lo->rl_bend =
426 	    mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
427 
428 	fptr->file_lo->rl_plt_base = fptr->file_plt_base;
429 	fptr->file_lo->rl_plt_size = fptr->file_plt_size;
430 
431 	if ((fptr->file_lname == NULL) &&
432 	    (fptr->file_lname = strdup(lname)) != NULL)
433 		fptr->file_lbase = basename(fptr->file_lname);
434 
435 	if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) &&
436 	    ((fptr->file_rname = strdup(buf)) != NULL))
437 		fptr->file_rbase = basename(fptr->file_rname);
438 }
439 
440 static void
441 load_static_maps(struct ps_prochandle *P)
442 {
443 	map_info_t *mptr;
444 
445 	/*
446 	 * Construct the map for the a.out.
447 	 */
448 	if ((mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_EXEC)) != NULL)
449 		map_set(P, mptr, "a.out");
450 
451 	/*
452 	 * If the dynamic linker exists for this process,
453 	 * construct the map for it.
454 	 */
455 	if (Pgetauxval(P, AT_BASE) != -1L &&
456 	    (mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_LDSO)) != NULL)
457 		map_set(P, mptr, "ld.so.1");
458 }
459 
460 int
461 Preadmaps(struct ps_prochandle *P, prmap_t **Pmapp, ssize_t *nmapp)
462 {
463 	return (P->ops.pop_read_maps(P, Pmapp, nmapp, P->data));
464 }
465 
466 /*
467  * Go through all the address space mappings, validating or updating
468  * the information already gathered, or gathering new information.
469  *
470  * This function is only called when we suspect that the mappings have changed
471  * because this is the first time we're calling it or because of rtld activity.
472  */
473 void
474 Pupdate_maps(struct ps_prochandle *P)
475 {
476 	prmap_t *Pmap = NULL;
477 	prmap_t *pmap;
478 	ssize_t nmap;
479 	int i;
480 	uint_t oldmapcount;
481 	map_info_t *newmap, *newp;
482 	map_info_t *mptr;
483 
484 	if (P->info_valid || P->state == PS_UNDEAD)
485 		return;
486 
487 	Preadauxvec(P);
488 
489 	if (Preadmaps(P, &Pmap, &nmap) != 0)
490 		return;
491 
492 	if ((newmap = calloc(1, nmap * sizeof (map_info_t))) == NULL)
493 		return;
494 
495 	/*
496 	 * We try to merge any file information we may have for existing
497 	 * mappings, to avoid having to rebuild the file info.
498 	 */
499 	mptr = P->mappings;
500 	pmap = Pmap;
501 	newp = newmap;
502 	oldmapcount = P->map_count;
503 	for (i = 0; i < nmap; i++, pmap++, newp++) {
504 
505 		if (oldmapcount == 0) {
506 			/*
507 			 * We've exhausted all the old mappings.  Every new
508 			 * mapping should be added.
509 			 */
510 			newp->map_pmap = *pmap;
511 
512 		} else if (pmap->pr_vaddr == mptr->map_pmap.pr_vaddr &&
513 		    pmap->pr_size == mptr->map_pmap.pr_size &&
514 		    pmap->pr_offset == mptr->map_pmap.pr_offset &&
515 		    (pmap->pr_mflags & ~(MA_BREAK | MA_STACK)) ==
516 		    (mptr->map_pmap.pr_mflags & ~(MA_BREAK | MA_STACK)) &&
517 		    pmap->pr_pagesize == mptr->map_pmap.pr_pagesize &&
518 		    pmap->pr_shmid == mptr->map_pmap.pr_shmid &&
519 		    strcmp(pmap->pr_mapname, mptr->map_pmap.pr_mapname) == 0) {
520 
521 			/*
522 			 * This mapping matches exactly.  Copy over the old
523 			 * mapping, taking care to get the latest flags.
524 			 * Make sure the associated file_info_t is updated
525 			 * appropriately.
526 			 */
527 			*newp = *mptr;
528 			if (P->map_exec == mptr)
529 				P->map_exec = newp;
530 			if (P->map_ldso == mptr)
531 				P->map_ldso = newp;
532 			newp->map_pmap.pr_mflags = pmap->pr_mflags;
533 			if (mptr->map_file != NULL &&
534 			    mptr->map_file->file_map == mptr)
535 				mptr->map_file->file_map = newp;
536 			oldmapcount--;
537 			mptr++;
538 
539 		} else if (pmap->pr_vaddr + pmap->pr_size >
540 		    mptr->map_pmap.pr_vaddr) {
541 
542 			/*
543 			 * The old mapping doesn't exist any more, remove it
544 			 * from the list.
545 			 */
546 			map_info_free(P, mptr);
547 			oldmapcount--;
548 			i--;
549 			newp--;
550 			pmap--;
551 			mptr++;
552 
553 		} else {
554 
555 			/*
556 			 * This is a new mapping, add it directly.
557 			 */
558 			newp->map_pmap = *pmap;
559 		}
560 	}
561 
562 	/*
563 	 * Free any old maps
564 	 */
565 	while (oldmapcount) {
566 		map_info_free(P, mptr);
567 		oldmapcount--;
568 		mptr++;
569 	}
570 
571 	free(Pmap);
572 	if (P->mappings != NULL)
573 		free(P->mappings);
574 	P->mappings = newmap;
575 	P->map_count = P->map_alloc = nmap;
576 	P->info_valid = 1;
577 
578 	/*
579 	 * Consult librtld_db to get the load object
580 	 * names for all of the shared libraries.
581 	 */
582 	if (P->rap != NULL)
583 		(void) rd_loadobj_iter(P->rap, map_iter, P);
584 }
585 
586 /*
587  * Update all of the mappings and rtld_db as if by Pupdate_maps(), and then
588  * forcibly cache all of the symbol tables associated with all object files.
589  */
590 void
591 Pupdate_syms(struct ps_prochandle *P)
592 {
593 	file_info_t *fptr;
594 	int i;
595 
596 	Pupdate_maps(P);
597 
598 	for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
599 	    i++, fptr = list_next(fptr)) {
600 		Pbuild_file_symtab(P, fptr);
601 		(void) Pbuild_file_ctf(P, fptr);
602 	}
603 }
604 
605 /*
606  * Return the librtld_db agent handle for the victim process.
607  * The handle will become invalid at the next successful exec() and the
608  * client (caller of proc_rd_agent()) must not use it beyond that point.
609  * If the process is already dead, we've already tried our best to
610  * create the agent during core file initialization.
611  */
612 rd_agent_t *
613 Prd_agent(struct ps_prochandle *P)
614 {
615 	if (P->rap == NULL && P->state != PS_DEAD && P->state != PS_IDLE) {
616 		Pupdate_maps(P);
617 		if (P->num_files == 0)
618 			load_static_maps(P);
619 		rd_log(_libproc_debug);
620 		if ((P->rap = rd_new(P)) != NULL)
621 			(void) rd_loadobj_iter(P->rap, map_iter, P);
622 	}
623 	return (P->rap);
624 }
625 
626 /*
627  * Return the prmap_t structure containing 'addr', but only if it
628  * is in the dynamic linker's link map and is the text section.
629  */
630 const prmap_t *
631 Paddr_to_text_map(struct ps_prochandle *P, uintptr_t addr)
632 {
633 	map_info_t *mptr;
634 
635 	if (!P->info_valid)
636 		Pupdate_maps(P);
637 
638 	if ((mptr = Paddr2mptr(P, addr)) != NULL) {
639 		file_info_t *fptr = build_map_symtab(P, mptr);
640 		const prmap_t *pmp = &mptr->map_pmap;
641 
642 		/*
643 		 * Assume that if rl_data_base is NULL, it means that no
644 		 * data section was found for this load object, and that
645 		 * a section must be text. Otherwise, a section will be
646 		 * text unless it ends above the start of the data
647 		 * section.
648 		 */
649 		if (fptr != NULL && fptr->file_lo != NULL &&
650 		    (fptr->file_lo->rl_data_base == (uintptr_t)NULL ||
651 		    pmp->pr_vaddr + pmp->pr_size <=
652 		    fptr->file_lo->rl_data_base))
653 			return (pmp);
654 	}
655 
656 	return (NULL);
657 }
658 
659 /*
660  * Return the prmap_t structure containing 'addr' (no restrictions on
661  * the type of mapping).
662  */
663 const prmap_t *
664 Paddr_to_map(struct ps_prochandle *P, uintptr_t addr)
665 {
666 	map_info_t *mptr;
667 
668 	if (!P->info_valid)
669 		Pupdate_maps(P);
670 
671 	if ((mptr = Paddr2mptr(P, addr)) != NULL)
672 		return (&mptr->map_pmap);
673 
674 	return (NULL);
675 }
676 
677 /*
678  * Convert a full or partial load object name to the prmap_t for its
679  * corresponding primary text mapping.
680  */
681 const prmap_t *
682 Plmid_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
683 {
684 	map_info_t *mptr;
685 
686 	if (name == PR_OBJ_EVERY)
687 		return (NULL); /* A reasonable mistake */
688 
689 	if ((mptr = object_name_to_map(P, lmid, name)) != NULL)
690 		return (&mptr->map_pmap);
691 
692 	return (NULL);
693 }
694 
695 const prmap_t *
696 Pname_to_map(struct ps_prochandle *P, const char *name)
697 {
698 	return (Plmid_to_map(P, PR_LMID_EVERY, name));
699 }
700 
701 const rd_loadobj_t *
702 Paddr_to_loadobj(struct ps_prochandle *P, uintptr_t addr)
703 {
704 	map_info_t *mptr;
705 
706 	if (!P->info_valid)
707 		Pupdate_maps(P);
708 
709 	if ((mptr = Paddr2mptr(P, addr)) == NULL)
710 		return (NULL);
711 
712 	/*
713 	 * By building the symbol table, we implicitly bring the PLT
714 	 * information up to date in the load object.
715 	 */
716 	(void) build_map_symtab(P, mptr);
717 
718 	return (mptr->map_file->file_lo);
719 }
720 
721 const rd_loadobj_t *
722 Plmid_to_loadobj(struct ps_prochandle *P, Lmid_t lmid, const char *name)
723 {
724 	map_info_t *mptr;
725 
726 	if (name == PR_OBJ_EVERY)
727 		return (NULL);
728 
729 	if ((mptr = object_name_to_map(P, lmid, name)) == NULL)
730 		return (NULL);
731 
732 	/*
733 	 * By building the symbol table, we implicitly bring the PLT
734 	 * information up to date in the load object.
735 	 */
736 	(void) build_map_symtab(P, mptr);
737 
738 	return (mptr->map_file->file_lo);
739 }
740 
741 const rd_loadobj_t *
742 Pname_to_loadobj(struct ps_prochandle *P, const char *name)
743 {
744 	return (Plmid_to_loadobj(P, PR_LMID_EVERY, name));
745 }
746 
747 ctf_file_t *
748 Pbuild_file_ctf(struct ps_prochandle *P, file_info_t *fptr)
749 {
750 	ctf_sect_t ctdata, symtab, strtab;
751 	sym_tbl_t *symp;
752 	int err;
753 
754 	if (fptr->file_ctfp != NULL)
755 		return (fptr->file_ctfp);
756 
757 	Pbuild_file_symtab(P, fptr);
758 
759 	if (fptr->file_ctf_size == 0)
760 		return (NULL);
761 
762 	symp = fptr->file_ctf_dyn ? &fptr->file_dynsym : &fptr->file_symtab;
763 	if (symp->sym_data_pri == NULL)
764 		return (NULL);
765 
766 	/*
767 	 * The buffer may alread be allocated if this is a core file that
768 	 * contained CTF data for this file.
769 	 */
770 	if (fptr->file_ctf_buf == NULL) {
771 		fptr->file_ctf_buf = malloc(fptr->file_ctf_size);
772 		if (fptr->file_ctf_buf == NULL) {
773 			dprintf("failed to allocate ctf buffer\n");
774 			return (NULL);
775 		}
776 
777 		if (pread(fptr->file_fd, fptr->file_ctf_buf,
778 		    fptr->file_ctf_size, fptr->file_ctf_off) !=
779 		    fptr->file_ctf_size) {
780 			free(fptr->file_ctf_buf);
781 			fptr->file_ctf_buf = NULL;
782 			dprintf("failed to read ctf data\n");
783 			return (NULL);
784 		}
785 	}
786 
787 	ctdata.cts_name = ".SUNW_ctf";
788 	ctdata.cts_type = SHT_PROGBITS;
789 	ctdata.cts_flags = 0;
790 	ctdata.cts_data = fptr->file_ctf_buf;
791 	ctdata.cts_size = fptr->file_ctf_size;
792 	ctdata.cts_entsize = 1;
793 	ctdata.cts_offset = 0;
794 
795 	symtab.cts_name = fptr->file_ctf_dyn ? ".dynsym" : ".symtab";
796 	symtab.cts_type = symp->sym_hdr_pri.sh_type;
797 	symtab.cts_flags = symp->sym_hdr_pri.sh_flags;
798 	symtab.cts_data = symp->sym_data_pri->d_buf;
799 	symtab.cts_size = symp->sym_hdr_pri.sh_size;
800 	symtab.cts_entsize = symp->sym_hdr_pri.sh_entsize;
801 	symtab.cts_offset = symp->sym_hdr_pri.sh_offset;
802 
803 	strtab.cts_name = fptr->file_ctf_dyn ? ".dynstr" : ".strtab";
804 	strtab.cts_type = symp->sym_strhdr.sh_type;
805 	strtab.cts_flags = symp->sym_strhdr.sh_flags;
806 	strtab.cts_data = symp->sym_strs;
807 	strtab.cts_size = symp->sym_strhdr.sh_size;
808 	strtab.cts_entsize = symp->sym_strhdr.sh_entsize;
809 	strtab.cts_offset = symp->sym_strhdr.sh_offset;
810 
811 	fptr->file_ctfp = ctf_bufopen(&ctdata, &symtab, &strtab, &err);
812 	if (fptr->file_ctfp == NULL) {
813 		dprintf("ctf_bufopen() failed, error code %d\n", err);
814 		free(fptr->file_ctf_buf);
815 		fptr->file_ctf_buf = NULL;
816 		return (NULL);
817 	}
818 
819 	dprintf("loaded %lu bytes of CTF data for %s\n",
820 	    (ulong_t)fptr->file_ctf_size, fptr->file_pname);
821 
822 	return (fptr->file_ctfp);
823 }
824 
825 ctf_file_t *
826 Paddr_to_ctf(struct ps_prochandle *P, uintptr_t addr)
827 {
828 	map_info_t *mptr;
829 	file_info_t *fptr;
830 
831 	if (!P->info_valid)
832 		Pupdate_maps(P);
833 
834 	if ((mptr = Paddr2mptr(P, addr)) == NULL ||
835 	    (fptr = mptr->map_file) == NULL)
836 		return (NULL);
837 
838 	return (Pbuild_file_ctf(P, fptr));
839 }
840 
841 ctf_file_t *
842 Plmid_to_ctf(struct ps_prochandle *P, Lmid_t lmid, const char *name)
843 {
844 	map_info_t *mptr;
845 	file_info_t *fptr = NULL;
846 
847 	if (name == PR_OBJ_EVERY)
848 		return (NULL);
849 
850 	/*
851 	 * While most idle files are all ELF objects, not all of them have
852 	 * mapping information available. There's nothing which would make
853 	 * sense to fake up for ET_REL. Instead, if we're being asked for their
854 	 * executable object and we know that the information is valid and they
855 	 * only have a single file, we jump straight to that file pointer.
856 	 */
857 	if (P->state == PS_IDLE && name == PR_OBJ_EXEC && P->info_valid == 1 &&
858 	    P->num_files == 1 && P->mappings == NULL) {
859 		fptr = list_next(&P->file_head);
860 	}
861 
862 	if (fptr == NULL) {
863 		if ((mptr = object_name_to_map(P, lmid, name)) == NULL ||
864 		    (fptr = mptr->map_file) == NULL)
865 			return (NULL);
866 	}
867 
868 	return (Pbuild_file_ctf(P, fptr));
869 }
870 
871 ctf_file_t *
872 Pname_to_ctf(struct ps_prochandle *P, const char *name)
873 {
874 	return (Plmid_to_ctf(P, PR_LMID_EVERY, name));
875 }
876 
877 void
878 Preadauxvec(struct ps_prochandle *P)
879 {
880 	if (P->auxv != NULL) {
881 		free(P->auxv);
882 		P->auxv = NULL;
883 		P->nauxv = 0;
884 	}
885 
886 	P->ops.pop_read_aux(P, &P->auxv, &P->nauxv, P->data);
887 }
888 
889 /*
890  * Return a requested element from the process's aux vector.
891  * Return -1 on failure (this is adequate for our purposes).
892  */
893 long
894 Pgetauxval(struct ps_prochandle *P, int type)
895 {
896 	auxv_t *auxv;
897 
898 	if (P->auxv == NULL)
899 		Preadauxvec(P);
900 
901 	if (P->auxv == NULL)
902 		return (-1);
903 
904 	for (auxv = P->auxv; auxv->a_type != AT_NULL; auxv++) {
905 		if (auxv->a_type == type)
906 			return (auxv->a_un.a_val);
907 	}
908 
909 	return (-1);
910 }
911 
912 /*
913  * Return a pointer to our internal copy of the process's aux vector.
914  * The caller should not hold on to this pointer across any libproc calls.
915  */
916 const auxv_t *
917 Pgetauxvec(struct ps_prochandle *P)
918 {
919 	static const auxv_t empty = { AT_NULL, 0L };
920 
921 	if (P->auxv == NULL)
922 		Preadauxvec(P);
923 
924 	if (P->auxv == NULL)
925 		return (&empty);
926 
927 	return (P->auxv);
928 }
929 
930 /*
931  * Return 1 if the given mapping corresponds to the given file_info_t's
932  * load object; return 0 otherwise.
933  */
934 static int
935 is_mapping_in_file(struct ps_prochandle *P, map_info_t *mptr, file_info_t *fptr)
936 {
937 	prmap_t *pmap = &mptr->map_pmap;
938 	rd_loadobj_t *lop = fptr->file_lo;
939 	uint_t i;
940 	uintptr_t mstart, mend, sstart, send;
941 
942 	/*
943 	 * We can get for free the start address of the text and data
944 	 * sections of the load object. Start by seeing if the mapping
945 	 * encloses either of these.
946 	 */
947 	if ((pmap->pr_vaddr <= lop->rl_base &&
948 	    lop->rl_base < pmap->pr_vaddr + pmap->pr_size) ||
949 	    (pmap->pr_vaddr <= lop->rl_data_base &&
950 	    lop->rl_data_base < pmap->pr_vaddr + pmap->pr_size))
951 		return (1);
952 
953 	/*
954 	 * It's still possible that this mapping correponds to the load
955 	 * object. Consider the example of a mapping whose start and end
956 	 * addresses correspond to those of the load object's text section.
957 	 * If the mapping splits, e.g. as a result of a segment demotion,
958 	 * then although both mappings are still backed by the same section,
959 	 * only one will be seen to enclose that section's start address.
960 	 * Thus, to be rigorous, we ask not whether this mapping encloses
961 	 * the start of a section, but whether there exists a section that
962 	 * overlaps this mapping.
963 	 *
964 	 * If we don't already have the section addresses, and we successfully
965 	 * get them, then we cache them in case we come here again.
966 	 */
967 	if (fptr->file_saddrs == NULL &&
968 	    (fptr->file_saddrs = get_saddrs(P,
969 	    fptr->file_map->map_pmap.pr_vaddr, &fptr->file_nsaddrs)) == NULL)
970 		return (0);
971 
972 	mstart = mptr->map_pmap.pr_vaddr;
973 	mend = mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
974 	for (i = 0; i < fptr->file_nsaddrs; i += 2) {
975 		/* Does this section overlap the mapping? */
976 		sstart = fptr->file_saddrs[i];
977 		send = fptr->file_saddrs[i + 1];
978 		if (!(mend <= sstart || mstart >= send))
979 			return (1);
980 	}
981 
982 	return (0);
983 }
984 
985 /*
986  * Find or build the symbol table for the given mapping.
987  */
988 static file_info_t *
989 build_map_symtab(struct ps_prochandle *P, map_info_t *mptr)
990 {
991 	prmap_t *pmap = &mptr->map_pmap;
992 	file_info_t *fptr;
993 	uint_t i;
994 
995 	if ((fptr = mptr->map_file) != NULL) {
996 		Pbuild_file_symtab(P, fptr);
997 		return (fptr);
998 	}
999 
1000 	if (pmap->pr_mapname[0] == '\0')
1001 		return (NULL);
1002 
1003 	/*
1004 	 * Attempt to find a matching file.
1005 	 * (A file can be mapped at several different addresses.)
1006 	 */
1007 	for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
1008 	    i++, fptr = list_next(fptr)) {
1009 		if (strcmp(fptr->file_pname, pmap->pr_mapname) == 0 &&
1010 		    fptr->file_lo && is_mapping_in_file(P, mptr, fptr)) {
1011 			mptr->map_file = fptr;
1012 			fptr->file_ref++;
1013 			Pbuild_file_symtab(P, fptr);
1014 			return (fptr);
1015 		}
1016 	}
1017 
1018 	/*
1019 	 * If we need to create a new file_info structure, iterate
1020 	 * through the load objects in order to attempt to connect
1021 	 * this new file with its primary text mapping.  We again
1022 	 * need to handle ld.so as a special case because we need
1023 	 * to be able to bootstrap librtld_db.
1024 	 */
1025 	if ((fptr = file_info_new(P, mptr)) == NULL)
1026 		return (NULL);
1027 
1028 	if (P->map_ldso != mptr) {
1029 		if (P->rap != NULL)
1030 			(void) rd_loadobj_iter(P->rap, map_iter, P);
1031 		else
1032 			(void) Prd_agent(P);
1033 	} else {
1034 		fptr->file_map = mptr;
1035 	}
1036 
1037 	/*
1038 	 * If librtld_db wasn't able to help us connect the file to a primary
1039 	 * text mapping, set file_map to the current mapping because we require
1040 	 * fptr->file_map to be set in Pbuild_file_symtab.  librtld_db may be
1041 	 * unaware of what's going on in the rare case that a legitimate ELF
1042 	 * file has been mmap(2)ed into the process address space *without*
1043 	 * the use of dlopen(3x).
1044 	 */
1045 	if (fptr->file_map == NULL)
1046 		fptr->file_map = mptr;
1047 
1048 	Pbuild_file_symtab(P, fptr);
1049 
1050 	return (fptr);
1051 }
1052 
1053 static int
1054 read_ehdr32(struct ps_prochandle *P, Elf32_Ehdr *ehdr, uint_t *phnum,
1055     uintptr_t addr)
1056 {
1057 	if (Pread(P, ehdr, sizeof (*ehdr), addr) != sizeof (*ehdr))
1058 		return (-1);
1059 
1060 	if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1061 	    ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1062 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1063 	    ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1064 	    ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
1065 #ifdef _BIG_ENDIAN
1066 	    ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1067 #else
1068 	    ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1069 #endif
1070 	    ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1071 		return (-1);
1072 
1073 	if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1074 		Elf32_Shdr shdr0;
1075 
1076 		if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1077 		    Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1078 		    sizeof (shdr0))
1079 			return (-1);
1080 
1081 		if (shdr0.sh_info != 0)
1082 			*phnum = shdr0.sh_info;
1083 	}
1084 
1085 	return (0);
1086 }
1087 
1088 static int
1089 read_dynamic_phdr32(struct ps_prochandle *P, const Elf32_Ehdr *ehdr,
1090     uint_t phnum, Elf32_Phdr *phdr, uintptr_t addr)
1091 {
1092 	uint_t i;
1093 
1094 	for (i = 0; i < phnum; i++) {
1095 		uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1096 		if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1097 			return (-1);
1098 
1099 		if (phdr->p_type == PT_DYNAMIC)
1100 			return (0);
1101 	}
1102 
1103 	return (-1);
1104 }
1105 
1106 #ifdef _LP64
1107 static int
1108 read_ehdr64(struct ps_prochandle *P, Elf64_Ehdr *ehdr, uint_t *phnum,
1109     uintptr_t addr)
1110 {
1111 	if (Pread(P, ehdr, sizeof (Elf64_Ehdr), addr) != sizeof (Elf64_Ehdr))
1112 		return (-1);
1113 
1114 	if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1115 	    ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1116 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1117 	    ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1118 	    ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
1119 #ifdef _BIG_ENDIAN
1120 	    ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1121 #else
1122 	    ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1123 #endif
1124 	    ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1125 		return (-1);
1126 
1127 	if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1128 		Elf64_Shdr shdr0;
1129 
1130 		if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1131 		    Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1132 		    sizeof (shdr0))
1133 			return (-1);
1134 
1135 		if (shdr0.sh_info != 0)
1136 			*phnum = shdr0.sh_info;
1137 	}
1138 
1139 	return (0);
1140 }
1141 
1142 static int
1143 read_dynamic_phdr64(struct ps_prochandle *P, const Elf64_Ehdr *ehdr,
1144     uint_t phnum, Elf64_Phdr *phdr, uintptr_t addr)
1145 {
1146 	uint_t i;
1147 
1148 	for (i = 0; i < phnum; i++) {
1149 		uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1150 		if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1151 			return (-1);
1152 
1153 		if (phdr->p_type == PT_DYNAMIC)
1154 			return (0);
1155 	}
1156 
1157 	return (-1);
1158 }
1159 #endif	/* _LP64 */
1160 
1161 /*
1162  * The text segment for each load object contains the elf header and
1163  * program headers. We can use this information to determine if the
1164  * file that corresponds to the load object is the same file that
1165  * was loaded into the process's address space. There can be a discrepency
1166  * if a file is recompiled after the process is started or if the target
1167  * represents a core file from a differently configured system -- two
1168  * common examples. The DT_CHECKSUM entry in the dynamic section
1169  * provides an easy method of comparison. It is important to note that
1170  * the dynamic section usually lives in the data segment, but the meta
1171  * data we use to find the dynamic section lives in the text segment so
1172  * if either of those segments is absent we can't proceed.
1173  *
1174  * We're looking through the elf file for several items: the symbol tables
1175  * (both dynsym and symtab), the procedure linkage table (PLT) base,
1176  * size, and relocation base, and the CTF information. Most of this can
1177  * be recovered from the loaded image of the file itself, the exceptions
1178  * being the symtab and CTF data.
1179  *
1180  * First we try to open the file that we think corresponds to the load
1181  * object, if the DT_CHECKSUM values match, we're all set, and can simply
1182  * recover all the information we need from the file. If the values of
1183  * DT_CHECKSUM don't match, or if we can't access the file for whatever
1184  * reasaon, we fake up a elf file to use in its stead. If we can't read
1185  * the elf data in the process's address space, we fall back to using
1186  * the file even though it may give inaccurate information.
1187  *
1188  * The elf file that we fake up has to consist of sections for the
1189  * dynsym, the PLT and the dynamic section. Note that in the case of a
1190  * core file, we'll get the CTF data in the file_info_t later on from
1191  * a section embedded the core file (if it's present).
1192  *
1193  * file_differs() conservatively looks for mismatched files, identifying
1194  * a match when there is any ambiguity (since that's the legacy behavior).
1195  */
1196 static int
1197 file_differs(struct ps_prochandle *P, Elf *elf, file_info_t *fptr)
1198 {
1199 	Elf_Scn *scn;
1200 	GElf_Shdr shdr;
1201 	GElf_Dyn dyn;
1202 	Elf_Data *data;
1203 	uint_t i, ndyn;
1204 	GElf_Xword cksum;
1205 	uintptr_t addr;
1206 
1207 	if (fptr->file_map == NULL)
1208 		return (0);
1209 
1210 	if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1211 	    (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1212 		return (0);
1213 
1214 	/*
1215 	 * First, we find the checksum value in the elf file.
1216 	 */
1217 	scn = NULL;
1218 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1219 		if (gelf_getshdr(scn, &shdr) != NULL &&
1220 		    shdr.sh_type == SHT_DYNAMIC)
1221 			goto found_shdr;
1222 	}
1223 	return (0);
1224 
1225 found_shdr:
1226 	if ((data = elf_getdata(scn, NULL)) == NULL)
1227 		return (0);
1228 
1229 	if (P->status.pr_dmodel == PR_MODEL_ILP32)
1230 		ndyn = shdr.sh_size / sizeof (Elf32_Dyn);
1231 #ifdef _LP64
1232 	else if (P->status.pr_dmodel == PR_MODEL_LP64)
1233 		ndyn = shdr.sh_size / sizeof (Elf64_Dyn);
1234 #endif
1235 	else
1236 		return (0);
1237 
1238 	for (i = 0; i < ndyn; i++) {
1239 		if (gelf_getdyn(data, i, &dyn) != NULL &&
1240 		    dyn.d_tag == DT_CHECKSUM)
1241 			goto found_cksum;
1242 	}
1243 
1244 	/*
1245 	 * The in-memory ELF has no DT_CHECKSUM section, but we will report it
1246 	 * as matching the file anyhow.
1247 	 */
1248 	return (0);
1249 
1250 found_cksum:
1251 	cksum = dyn.d_un.d_val;
1252 	dprintf("elf cksum value is %llx\n", (u_longlong_t)cksum);
1253 
1254 	/*
1255 	 * Get the base of the text mapping that corresponds to this file.
1256 	 */
1257 	addr = fptr->file_map->map_pmap.pr_vaddr;
1258 
1259 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1260 		Elf32_Ehdr ehdr;
1261 		Elf32_Phdr phdr;
1262 		Elf32_Dyn dync, *dynp;
1263 		uint_t phnum, i;
1264 
1265 		if (read_ehdr32(P, &ehdr, &phnum, addr) != 0 ||
1266 		    read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1267 			return (0);
1268 
1269 		if (ehdr.e_type == ET_DYN)
1270 			phdr.p_vaddr += addr;
1271 		if ((dynp = malloc(phdr.p_filesz)) == NULL)
1272 			return (0);
1273 		dync.d_tag = DT_NULL;
1274 		if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1275 		    phdr.p_filesz) {
1276 			free(dynp);
1277 			return (0);
1278 		}
1279 
1280 		for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) {
1281 			if (dynp[i].d_tag == DT_CHECKSUM)
1282 				dync = dynp[i];
1283 		}
1284 
1285 		free(dynp);
1286 
1287 		if (dync.d_tag != DT_CHECKSUM)
1288 			return (0);
1289 
1290 		dprintf("image cksum value is %llx\n",
1291 		    (u_longlong_t)dync.d_un.d_val);
1292 		return (dync.d_un.d_val != cksum);
1293 #ifdef _LP64
1294 	} else if (P->status.pr_dmodel == PR_MODEL_LP64) {
1295 		Elf64_Ehdr ehdr;
1296 		Elf64_Phdr phdr;
1297 		Elf64_Dyn dync, *dynp;
1298 		uint_t phnum, i;
1299 
1300 		if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1301 		    read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1302 			return (0);
1303 
1304 		if (ehdr.e_type == ET_DYN)
1305 			phdr.p_vaddr += addr;
1306 		if ((dynp = malloc(phdr.p_filesz)) == NULL)
1307 			return (0);
1308 		dync.d_tag = DT_NULL;
1309 		if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1310 		    phdr.p_filesz) {
1311 			free(dynp);
1312 			return (0);
1313 		}
1314 
1315 		for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) {
1316 			if (dynp[i].d_tag == DT_CHECKSUM)
1317 				dync = dynp[i];
1318 		}
1319 
1320 		free(dynp);
1321 
1322 		if (dync.d_tag != DT_CHECKSUM)
1323 			return (0);
1324 
1325 		dprintf("image cksum value is %llx\n",
1326 		    (u_longlong_t)dync.d_un.d_val);
1327 		return (dync.d_un.d_val != cksum);
1328 #endif	/* _LP64 */
1329 	}
1330 
1331 	return (0);
1332 }
1333 
1334 /*
1335  * Read data from the specified process and construct an in memory
1336  * image of an ELF file that represents it well enough to let
1337  * us probe it for information.
1338  */
1339 static Elf *
1340 fake_elf(struct ps_prochandle *P, file_info_t *fptr)
1341 {
1342 	Elf *elf;
1343 	uintptr_t addr;
1344 	uint_t phnum;
1345 
1346 	if (fptr->file_map == NULL)
1347 		return (NULL);
1348 
1349 	if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1350 	    (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1351 		return (NULL);
1352 
1353 	addr = fptr->file_map->map_pmap.pr_vaddr;
1354 
1355 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1356 		Elf32_Ehdr ehdr;
1357 		Elf32_Phdr phdr;
1358 
1359 		if ((read_ehdr32(P, &ehdr, &phnum, addr) != 0) ||
1360 		    read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1361 			return (NULL);
1362 
1363 		elf = fake_elf32(P, fptr, addr, &ehdr, phnum, &phdr);
1364 #ifdef _LP64
1365 	} else {
1366 		Elf64_Ehdr ehdr;
1367 		Elf64_Phdr phdr;
1368 
1369 		if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1370 		    read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1371 			return (NULL);
1372 
1373 		elf = fake_elf64(P, fptr, addr, &ehdr, phnum, &phdr);
1374 #endif
1375 	}
1376 
1377 	return (elf);
1378 }
1379 
1380 /*
1381  * We wouldn't need these if qsort(3C) took an argument for the callback...
1382  */
1383 static mutex_t sort_mtx = DEFAULTMUTEX;
1384 static char *sort_strs;
1385 static GElf_Sym *sort_syms;
1386 
1387 int
1388 byaddr_cmp_common(GElf_Sym *a, char *aname, GElf_Sym *b, char *bname)
1389 {
1390 	if (a->st_value < b->st_value)
1391 		return (-1);
1392 	if (a->st_value > b->st_value)
1393 		return (1);
1394 
1395 	/*
1396 	 * Prefer the function to the non-function.
1397 	 */
1398 	if (GELF_ST_TYPE(a->st_info) != GELF_ST_TYPE(b->st_info)) {
1399 		if (GELF_ST_TYPE(a->st_info) == STT_FUNC)
1400 			return (-1);
1401 		if (GELF_ST_TYPE(b->st_info) == STT_FUNC)
1402 			return (1);
1403 	}
1404 
1405 	/*
1406 	 * Prefer the weak or strong global symbol to the local symbol.
1407 	 */
1408 	if (GELF_ST_BIND(a->st_info) != GELF_ST_BIND(b->st_info)) {
1409 		if (GELF_ST_BIND(b->st_info) == STB_LOCAL)
1410 			return (-1);
1411 		if (GELF_ST_BIND(a->st_info) == STB_LOCAL)
1412 			return (1);
1413 	}
1414 
1415 	/*
1416 	 * Prefer the symbol that doesn't begin with a '$' since compilers and
1417 	 * other symbol generators often use it as a prefix.
1418 	 */
1419 	if (*bname == '$')
1420 		return (-1);
1421 	if (*aname == '$')
1422 		return (1);
1423 
1424 	/*
1425 	 * Prefer the name with fewer leading underscores in the name.
1426 	 */
1427 	while (*aname == '_' && *bname == '_') {
1428 		aname++;
1429 		bname++;
1430 	}
1431 
1432 	if (*bname == '_')
1433 		return (-1);
1434 	if (*aname == '_')
1435 		return (1);
1436 
1437 	/*
1438 	 * Prefer the symbol with the smaller size.
1439 	 */
1440 	if (a->st_size < b->st_size)
1441 		return (-1);
1442 	if (a->st_size > b->st_size)
1443 		return (1);
1444 
1445 	/*
1446 	 * All other factors being equal, fall back to lexicographic order.
1447 	 */
1448 	return (strcmp(aname, bname));
1449 }
1450 
1451 static int
1452 byaddr_cmp(const void *aa, const void *bb)
1453 {
1454 	GElf_Sym *a = &sort_syms[*(uint_t *)aa];
1455 	GElf_Sym *b = &sort_syms[*(uint_t *)bb];
1456 	char *aname = sort_strs + a->st_name;
1457 	char *bname = sort_strs + b->st_name;
1458 
1459 	return (byaddr_cmp_common(a, aname, b, bname));
1460 }
1461 
1462 static int
1463 byname_cmp(const void *aa, const void *bb)
1464 {
1465 	GElf_Sym *a = &sort_syms[*(uint_t *)aa];
1466 	GElf_Sym *b = &sort_syms[*(uint_t *)bb];
1467 	char *aname = sort_strs + a->st_name;
1468 	char *bname = sort_strs + b->st_name;
1469 
1470 	return (strcmp(aname, bname));
1471 }
1472 
1473 /*
1474  * Given a symbol index, look up the corresponding symbol from the
1475  * given symbol table.
1476  *
1477  * This function allows the caller to treat the symbol table as a single
1478  * logical entity even though there may be 2 actual ELF symbol tables
1479  * involved. See the comments in Pcontrol.h for details.
1480  */
1481 static GElf_Sym *
1482 symtab_getsym(sym_tbl_t *symtab, int ndx, GElf_Sym *dst)
1483 {
1484 	/* If index is in range of primary symtab, look it up there */
1485 	if (ndx >= symtab->sym_symn_aux) {
1486 		return (gelf_getsym(symtab->sym_data_pri,
1487 		    ndx - symtab->sym_symn_aux, dst));
1488 	}
1489 
1490 	/* Not in primary: Look it up in the auxiliary symtab */
1491 	return (gelf_getsym(symtab->sym_data_aux, ndx, dst));
1492 }
1493 
1494 void
1495 optimize_symtab(sym_tbl_t *symtab)
1496 {
1497 	GElf_Sym *symp, *syms;
1498 	uint_t i, *indexa, *indexb;
1499 	size_t symn, strsz, count;
1500 
1501 	if (symtab == NULL || symtab->sym_data_pri == NULL ||
1502 	    symtab->sym_byaddr != NULL)
1503 		return;
1504 
1505 	symn = symtab->sym_symn;
1506 	strsz = symtab->sym_strsz;
1507 
1508 	symp = syms = malloc(sizeof (GElf_Sym) * symn);
1509 	if (symp == NULL) {
1510 		dprintf("optimize_symtab: failed to malloc symbol array");
1511 		return;
1512 	}
1513 
1514 	/*
1515 	 * First record all the symbols into a table and count up the ones
1516 	 * that we're interested in. We mark symbols as invalid by setting
1517 	 * the st_name to an illegal value.
1518 	 */
1519 	for (i = 0, count = 0; i < symn; i++, symp++) {
1520 		if (symtab_getsym(symtab, i, symp) != NULL &&
1521 		    symp->st_name < strsz &&
1522 		    IS_DATA_TYPE(GELF_ST_TYPE(symp->st_info)))
1523 			count++;
1524 		else
1525 			symp->st_name = strsz;
1526 	}
1527 
1528 	/*
1529 	 * Allocate sufficient space for both tables and populate them
1530 	 * with the same symbols we just counted.
1531 	 */
1532 	symtab->sym_count = count;
1533 	indexa = symtab->sym_byaddr = calloc(sizeof (uint_t), count);
1534 	indexb = symtab->sym_byname = calloc(sizeof (uint_t), count);
1535 	if (indexa == NULL || indexb == NULL) {
1536 		dprintf(
1537 		    "optimize_symtab: failed to malloc symbol index arrays");
1538 		symtab->sym_count = 0;
1539 		if (indexa != NULL) {	/* First alloc succeeded. Free it */
1540 			free(indexa);
1541 			symtab->sym_byaddr = NULL;
1542 		}
1543 		free(syms);
1544 		return;
1545 	}
1546 	for (i = 0, symp = syms; i < symn; i++, symp++) {
1547 		if (symp->st_name < strsz)
1548 			*indexa++ = *indexb++ = i;
1549 	}
1550 
1551 	/*
1552 	 * Sort the two tables according to the appropriate criteria,
1553 	 * unless the user has overridden this behaviour.
1554 	 *
1555 	 * An example where we might not sort the tables is the relatively
1556 	 * unusual case of a process with very large symbol tables in which
1557 	 * we perform few lookups. In such a case the total time would be
1558 	 * dominated by the sort. It is difficult to determine a priori
1559 	 * how many lookups an arbitrary client will perform, and
1560 	 * hence whether the symbol tables should be sorted. We therefore
1561 	 * sort the tables by default, but provide the user with a
1562 	 * "chicken switch" in the form of the LIBPROC_NO_QSORT
1563 	 * environment variable.
1564 	 */
1565 	if (!_libproc_no_qsort) {
1566 		(void) mutex_lock(&sort_mtx);
1567 		sort_strs = symtab->sym_strs;
1568 		sort_syms = syms;
1569 
1570 		qsort(symtab->sym_byaddr, count, sizeof (uint_t), byaddr_cmp);
1571 		qsort(symtab->sym_byname, count, sizeof (uint_t), byname_cmp);
1572 
1573 		sort_strs = NULL;
1574 		sort_syms = NULL;
1575 		(void) mutex_unlock(&sort_mtx);
1576 	}
1577 
1578 	free(syms);
1579 }
1580 
1581 
1582 static Elf *
1583 build_fake_elf(struct ps_prochandle *P, file_info_t *fptr, GElf_Ehdr *ehdr,
1584     size_t *nshdrs, Elf_Data **shdata)
1585 {
1586 	size_t shstrndx;
1587 	Elf_Scn *scn;
1588 	Elf *elf;
1589 
1590 	if ((elf = fake_elf(P, fptr)) == NULL ||
1591 	    elf_kind(elf) != ELF_K_ELF ||
1592 	    gelf_getehdr(elf, ehdr) == NULL ||
1593 	    elf_getshdrnum(elf, nshdrs) == -1 ||
1594 	    elf_getshdrstrndx(elf, &shstrndx) == -1 ||
1595 	    (scn = elf_getscn(elf, shstrndx)) == NULL ||
1596 	    (*shdata = elf_getdata(scn, NULL)) == NULL) {
1597 		if (elf != NULL)
1598 			(void) elf_end(elf);
1599 		dprintf("failed to fake up ELF file\n");
1600 		return (NULL);
1601 	}
1602 
1603 	return (elf);
1604 }
1605 
1606 /*
1607  * Try and find the file described by path in the file system and validate that
1608  * it matches our CRC before we try and process it for symbol information. If we
1609  * instead have an ELF data section, then that means we're checking a build-id
1610  * section instead. In that case we just need to find and bcmp the corresponding
1611  * section.
1612  *
1613  * Before we validate if it's a valid CRC or data section, we check to ensure
1614  * that it's a normal file and not anything else.
1615  */
1616 static boolean_t
1617 build_alt_debug(file_info_t *fptr, const char *path, uint32_t crc,
1618     Elf_Data *data)
1619 {
1620 	int fd;
1621 	struct stat st;
1622 	Elf *elf;
1623 	Elf_Scn *scn;
1624 	GElf_Shdr symshdr, strshdr;
1625 	Elf_Data *symdata, *strdata;
1626 	boolean_t valid;
1627 	uint32_t c = -1U;
1628 
1629 	if ((fd = open(path, O_RDONLY)) < 0)
1630 		return (B_FALSE);
1631 
1632 	if (fstat(fd, &st) != 0) {
1633 		(void) close(fd);
1634 		return (B_FALSE);
1635 	}
1636 
1637 	if (S_ISREG(st.st_mode) == 0) {
1638 		(void) close(fd);
1639 		return (B_FALSE);
1640 	}
1641 
1642 	/*
1643 	 * Only check the CRC if we've come here through a GNU debug link
1644 	 * section as opposed to the build id. This is indicated by having the
1645 	 * value of data be NULL.
1646 	 */
1647 	if (data == NULL) {
1648 		for (;;) {
1649 			char buf[4096];
1650 			ssize_t ret = read(fd, buf, sizeof (buf));
1651 			if (ret == -1) {
1652 				if (ret == EINTR)
1653 					continue;
1654 				(void) close(fd);
1655 				return (B_FALSE);
1656 			}
1657 			if (ret == 0) {
1658 				c = ~c;
1659 				if (c != crc) {
1660 					dprintf("crc mismatch, found: 0x%x "
1661 					    "expected 0x%x\n", c, crc);
1662 					(void) close(fd);
1663 					return (B_FALSE);
1664 				}
1665 				break;
1666 			}
1667 			CRC32(c, buf, ret, c, psym_crc32);
1668 		}
1669 	}
1670 
1671 	elf = elf_begin(fd, ELF_C_READ, NULL);
1672 	if (elf == NULL) {
1673 		(void) close(fd);
1674 		return (B_FALSE);
1675 	}
1676 
1677 	if (elf_kind(elf) != ELF_K_ELF) {
1678 		goto fail;
1679 	}
1680 
1681 	/*
1682 	 * If we have a data section, that indicates we have a build-id which
1683 	 * means we need to find the corresponding build-id section and compare
1684 	 * it.
1685 	 */
1686 	scn = NULL;
1687 	valid = B_FALSE;
1688 	for (scn = elf_nextscn(elf, scn); data != NULL && scn != NULL;
1689 	    scn = elf_nextscn(elf, scn)) {
1690 		GElf_Shdr hdr;
1691 		Elf_Data *ntdata;
1692 
1693 		if (gelf_getshdr(scn, &hdr) == NULL)
1694 			goto fail;
1695 
1696 		if (hdr.sh_type != SHT_NOTE)
1697 			continue;
1698 
1699 		if ((ntdata = elf_getdata(scn, NULL)) == NULL)
1700 			goto fail;
1701 
1702 		/*
1703 		 * First verify the data section sizes are equal, then the
1704 		 * section name. If that's all true, then we can just do a bcmp.
1705 		 */
1706 		if (data->d_size != ntdata->d_size)
1707 			continue;
1708 
1709 		dprintf("found corresponding section in alternate file\n");
1710 		if (bcmp(ntdata->d_buf, data->d_buf, data->d_size) != 0)
1711 			goto fail;
1712 
1713 		valid = B_TRUE;
1714 		break;
1715 	}
1716 	if (data != NULL && valid == B_FALSE) {
1717 		dprintf("failed to find a matching %s section in %s\n",
1718 		    BUILDID_NAME, path);
1719 		goto fail;
1720 	}
1721 
1722 
1723 	/*
1724 	 * Do two passes, first see if we have a symbol header, then see if we
1725 	 * can find the corresponding linked string table.
1726 	 */
1727 	scn = NULL;
1728 	for (scn = elf_nextscn(elf, scn); scn != NULL;
1729 	    scn = elf_nextscn(elf, scn)) {
1730 
1731 		if (gelf_getshdr(scn, &symshdr) == NULL)
1732 			goto fail;
1733 
1734 		if (symshdr.sh_type != SHT_SYMTAB)
1735 			continue;
1736 
1737 		if ((symdata = elf_getdata(scn, NULL)) == NULL)
1738 			goto fail;
1739 
1740 		break;
1741 	}
1742 	if (scn == NULL)
1743 		goto fail;
1744 
1745 	if ((scn = elf_getscn(elf, symshdr.sh_link)) == NULL)
1746 		goto fail;
1747 
1748 	if (gelf_getshdr(scn, &strshdr) == NULL)
1749 		goto fail;
1750 
1751 	if ((strdata = elf_getdata(scn, NULL)) == NULL)
1752 		goto fail;
1753 
1754 	fptr->file_symtab.sym_data_pri = symdata;
1755 	fptr->file_symtab.sym_symn += symshdr.sh_size / symshdr.sh_entsize;
1756 	fptr->file_symtab.sym_strs = strdata->d_buf;
1757 	fptr->file_symtab.sym_strsz = strdata->d_size;
1758 	fptr->file_symtab.sym_hdr_pri = symshdr;
1759 	fptr->file_symtab.sym_strhdr = strshdr;
1760 
1761 	dprintf("successfully loaded additional debug symbols for %s from %s\n",
1762 	    fptr->file_rname, path);
1763 
1764 	fptr->file_dbgfile = fd;
1765 	fptr->file_dbgelf = elf;
1766 	return (B_TRUE);
1767 fail:
1768 	(void) elf_end(elf);
1769 	(void) close(fd);
1770 	return (B_FALSE);
1771 }
1772 
1773 /*
1774  * We're here because the object in question has no symbol information, that's a
1775  * bit unfortunate. However, we've found that there's a .gnu_debuglink sitting
1776  * around. By convention that means that given the current location of the
1777  * object on disk, and the debug name that we found in the binary we need to
1778  * search the following locations for a matching file.
1779  *
1780  * <dirname>/.debug/<debug-name>
1781  * /usr/lib/debug/<dirname>/<debug-name>
1782  *
1783  * In the future, we should consider supporting looking in the prefix's
1784  * lib/debug directory for a matching object or supporting an arbitrary user
1785  * defined set of places to look.
1786  */
1787 static void
1788 find_alt_debuglink(file_info_t *fptr, const char *name, uint32_t crc)
1789 {
1790 	boolean_t r;
1791 	char *dup = NULL, *path = NULL, *dname;
1792 
1793 	dprintf("find_alt_debug: looking for %s, crc 0x%x\n", name, crc);
1794 	if (fptr->file_rname == NULL) {
1795 		dprintf("find_alt_debug: encountered null file_rname\n");
1796 		return;
1797 	}
1798 
1799 	dup = strdup(fptr->file_rname);
1800 	if (dup == NULL)
1801 		return;
1802 
1803 	dname = dirname(dup);
1804 	if (asprintf(&path, "%s/.debug/%s", dname, name) != -1) {
1805 		dprintf("attempting to load alternate debug information "
1806 		    "from %s\n", path);
1807 		r = build_alt_debug(fptr, path, crc, NULL);
1808 		free(path);
1809 		if (r == B_TRUE)
1810 			goto out;
1811 	}
1812 
1813 	if (asprintf(&path, "/usr/lib/debug/%s/%s", dname, name) != -1) {
1814 		dprintf("attempting to load alternate debug information "
1815 		    "from %s\n", path);
1816 		r = build_alt_debug(fptr, path, crc, NULL);
1817 		free(path);
1818 		if (r == B_TRUE)
1819 			goto out;
1820 	}
1821 out:
1822 	free(dup);
1823 }
1824 
1825 /*
1826  * Build the symbol table for the given mapped file.
1827  */
1828 void
1829 Pbuild_file_symtab(struct ps_prochandle *P, file_info_t *fptr)
1830 {
1831 	char objectfile[PATH_MAX];
1832 	uint_t i;
1833 
1834 	GElf_Ehdr ehdr;
1835 	GElf_Sym s;
1836 
1837 	Elf_Data *shdata;
1838 	Elf_Scn *scn;
1839 	Elf *elf;
1840 	size_t nshdrs, shstrndx;
1841 
1842 	struct {
1843 		GElf_Shdr c_shdr;
1844 		Elf_Data *c_data;
1845 		const char *c_name;
1846 	} *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL,
1847 	*dbglink = NULL, *buildid = NULL;
1848 
1849 	if (fptr->file_init)
1850 		return;	/* We've already processed this file */
1851 
1852 	/*
1853 	 * Mark the file_info struct as having the symbol table initialized
1854 	 * even if we fail below.  We tried once; we don't try again.
1855 	 */
1856 	fptr->file_init = 1;
1857 
1858 	if (elf_version(EV_CURRENT) == EV_NONE) {
1859 		dprintf("libproc ELF version is more recent than libelf\n");
1860 		return;
1861 	}
1862 
1863 	if (P->state == PS_DEAD || P->state == PS_IDLE) {
1864 		char *name;
1865 		/*
1866 		 * If we're a not live, we can't open files from the /proc
1867 		 * object directory; we have only the mapping and file names
1868 		 * to guide us.  We prefer the file_lname, but need to handle
1869 		 * the case of it being NULL in order to bootstrap: we first
1870 		 * come here during rd_new() when the only information we have
1871 		 * is interpreter name associated with the AT_BASE mapping.
1872 		 *
1873 		 * Also, if the zone associated with the core file seems
1874 		 * to exists on this machine we'll try to open the object
1875 		 * file within the zone.
1876 		 */
1877 		if (fptr->file_rname != NULL)
1878 			name = fptr->file_rname;
1879 		else if (fptr->file_lname != NULL)
1880 			name = fptr->file_lname;
1881 		else
1882 			name = fptr->file_pname;
1883 		(void) strlcpy(objectfile, name, sizeof (objectfile));
1884 	} else {
1885 		(void) snprintf(objectfile, sizeof (objectfile),
1886 		    "%s/%d/object/%s",
1887 		    procfs_path, (int)P->pid, fptr->file_pname);
1888 	}
1889 
1890 	/*
1891 	 * Open the object file, create the elf file, and then get the elf
1892 	 * header and .shstrtab data buffer so we can process sections by
1893 	 * name. If anything goes wrong try to fake up an elf file from
1894 	 * the in-core elf image.
1895 	 */
1896 
1897 	if (_libproc_incore_elf || (P->flags & INCORE)) {
1898 		dprintf("Pbuild_file_symtab: using in-core data for: %s\n",
1899 		    fptr->file_pname);
1900 
1901 		if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1902 		    NULL)
1903 			return;
1904 
1905 	} else if ((fptr->file_fd = open(objectfile, O_RDONLY)) < 0) {
1906 		dprintf("Pbuild_file_symtab: failed to open %s: %s\n",
1907 		    objectfile, strerror(errno));
1908 
1909 		if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1910 		    NULL)
1911 			return;
1912 
1913 	} else if ((elf = elf_begin(fptr->file_fd, ELF_C_READ, NULL)) == NULL ||
1914 	    elf_kind(elf) != ELF_K_ELF ||
1915 	    gelf_getehdr(elf, &ehdr) == NULL ||
1916 	    elf_getshdrnum(elf, &nshdrs) == -1 ||
1917 	    elf_getshdrstrndx(elf, &shstrndx) == -1 ||
1918 	    (scn = elf_getscn(elf, shstrndx)) == NULL ||
1919 	    (shdata = elf_getdata(scn, NULL)) == NULL) {
1920 		int err = elf_errno();
1921 
1922 		dprintf("failed to process ELF file %s: %s\n",
1923 		    objectfile, (err == 0) ? "<null>" : elf_errmsg(err));
1924 		(void) elf_end(elf);
1925 
1926 		if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1927 		    NULL)
1928 			return;
1929 
1930 	} else if (file_differs(P, elf, fptr)) {
1931 		Elf *newelf;
1932 
1933 		/*
1934 		 * Before we get too excited about this elf file, we'll check
1935 		 * its checksum value against the value we have in memory. If
1936 		 * they don't agree, we try to fake up a new elf file and
1937 		 * proceed with that instead.
1938 		 */
1939 		dprintf("ELF file %s (%lx) doesn't match in-core image\n",
1940 		    fptr->file_pname,
1941 		    (ulong_t)fptr->file_map->map_pmap.pr_vaddr);
1942 
1943 		if ((newelf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata))
1944 		    != NULL) {
1945 			(void) elf_end(elf);
1946 			elf = newelf;
1947 			dprintf("switched to faked up ELF file\n");
1948 
1949 			/*
1950 			 * Check to see if the file that we just discovered
1951 			 * to be an imposter matches the execname that was
1952 			 * determined by Pfindexec().  If it does, we (clearly)
1953 			 * don't have the right binary, and we zero out
1954 			 * execname before anyone gets hurt.
1955 			 */
1956 			if (fptr->file_rname != NULL && P->execname != NULL &&
1957 			    strcmp(fptr->file_rname, P->execname) == 0) {
1958 				dprintf("file/in-core image mismatch was "
1959 				    "on P->execname; discarding\n");
1960 				free(P->execname);
1961 				P->execname = NULL;
1962 			}
1963 		}
1964 	}
1965 
1966 	if ((cache = malloc(nshdrs * sizeof (*cache))) == NULL) {
1967 		dprintf("failed to malloc section cache for %s\n", objectfile);
1968 		goto bad;
1969 	}
1970 
1971 	dprintf("processing ELF file %s\n", objectfile);
1972 	fptr->file_class = ehdr.e_ident[EI_CLASS];
1973 	fptr->file_etype = ehdr.e_type;
1974 	fptr->file_elf = elf;
1975 	fptr->file_shstrs = shdata->d_buf;
1976 	fptr->file_shstrsz = shdata->d_size;
1977 
1978 	/*
1979 	 * Iterate through each section, caching its section header, data
1980 	 * pointer, and name.  We use this for handling sh_link values below.
1981 	 */
1982 	for (cp = cache + 1, scn = NULL; scn = elf_nextscn(elf, scn); cp++) {
1983 		if (gelf_getshdr(scn, &cp->c_shdr) == NULL) {
1984 			dprintf("Pbuild_file_symtab: Failed to get section "
1985 			    "header\n");
1986 			goto bad; /* Failed to get section header */
1987 		}
1988 
1989 		if ((cp->c_data = elf_getdata(scn, NULL)) == NULL) {
1990 			dprintf("Pbuild_file_symtab: Failed to get section "
1991 			    "data\n");
1992 			goto bad; /* Failed to get section data */
1993 		}
1994 
1995 		if (cp->c_shdr.sh_name >= shdata->d_size) {
1996 			dprintf("Pbuild_file_symtab: corrupt section name");
1997 			goto bad; /* Corrupt section name */
1998 		}
1999 
2000 		cp->c_name = (const char *)shdata->d_buf + cp->c_shdr.sh_name;
2001 	}
2002 
2003 	/*
2004 	 * Now iterate through the section cache in order to locate info
2005 	 * for the .symtab, .dynsym, .SUNW_ldynsym, .dynamic, .plt,
2006 	 * and .SUNW_ctf sections:
2007 	 */
2008 	for (i = 1, cp = cache + 1; i < nshdrs; i++, cp++) {
2009 		GElf_Shdr *shp = &cp->c_shdr;
2010 
2011 		if (shp->sh_type == SHT_SYMTAB || shp->sh_type == SHT_DYNSYM) {
2012 			sym_tbl_t *symp = shp->sh_type == SHT_SYMTAB ?
2013 			    &fptr->file_symtab : &fptr->file_dynsym;
2014 			/*
2015 			 * It's possible that the we already got the symbol
2016 			 * table from the core file itself. Either the file
2017 			 * differs in which case our faked up elf file will
2018 			 * only contain the dynsym (not the symtab) or the
2019 			 * file matches in which case we'll just be replacing
2020 			 * the symbol table we pulled out of the core file
2021 			 * with an equivalent one. In either case, this
2022 			 * check isn't essential, but it's a good idea.
2023 			 */
2024 			if (symp->sym_data_pri == NULL) {
2025 				dprintf("Symbol table found for %s\n",
2026 				    objectfile);
2027 				symp->sym_data_pri = cp->c_data;
2028 				symp->sym_symn +=
2029 				    shp->sh_size / shp->sh_entsize;
2030 				symp->sym_strs =
2031 				    cache[shp->sh_link].c_data->d_buf;
2032 				symp->sym_strsz =
2033 				    cache[shp->sh_link].c_data->d_size;
2034 				symp->sym_hdr_pri = cp->c_shdr;
2035 				symp->sym_strhdr = cache[shp->sh_link].c_shdr;
2036 			} else {
2037 				dprintf("Symbol table already there for %s\n",
2038 				    objectfile);
2039 			}
2040 		} else if (shp->sh_type == SHT_SUNW_LDYNSYM) {
2041 			/* .SUNW_ldynsym section is auxiliary to .dynsym */
2042 			if (fptr->file_dynsym.sym_data_aux == NULL) {
2043 				dprintf(".SUNW_ldynsym symbol table"
2044 				    " found for %s\n", objectfile);
2045 				fptr->file_dynsym.sym_data_aux = cp->c_data;
2046 				fptr->file_dynsym.sym_symn_aux =
2047 				    shp->sh_size / shp->sh_entsize;
2048 				fptr->file_dynsym.sym_symn +=
2049 				    fptr->file_dynsym.sym_symn_aux;
2050 				fptr->file_dynsym.sym_hdr_aux = cp->c_shdr;
2051 			} else {
2052 				dprintf(".SUNW_ldynsym symbol table already"
2053 				    " there for %s\n", objectfile);
2054 			}
2055 		} else if (shp->sh_type == SHT_DYNAMIC) {
2056 			dyn = cp;
2057 		} else if (strcmp(cp->c_name, ".plt") == 0) {
2058 			plt = cp;
2059 		} else if (strcmp(cp->c_name, ".SUNW_ctf") == 0) {
2060 			/*
2061 			 * Skip over bogus CTF sections so they don't come back
2062 			 * to haunt us later.
2063 			 */
2064 			if (shp->sh_link == 0 ||
2065 			    shp->sh_link >= nshdrs ||
2066 			    (cache[shp->sh_link].c_shdr.sh_type != SHT_DYNSYM &&
2067 			    cache[shp->sh_link].c_shdr.sh_type != SHT_SYMTAB)) {
2068 				dprintf("Bad sh_link %d for "
2069 				    "CTF\n", shp->sh_link);
2070 				continue;
2071 			}
2072 			ctf = cp;
2073 		} else if (strcmp(cp->c_name, BUILDID_NAME) == 0) {
2074 			dprintf("Found a %s section for %s\n", BUILDID_NAME,
2075 			    fptr->file_rname);
2076 			/* The ElfXX_Nhdr is 32/64-bit neutral */
2077 			if (cp->c_shdr.sh_type == SHT_NOTE &&
2078 			    cp->c_data->d_buf != NULL &&
2079 			    cp->c_data->d_size >= sizeof (Elf32_Nhdr)) {
2080 				Elf32_Nhdr *hdr = cp->c_data->d_buf;
2081 				if (hdr->n_type != 3)
2082 					continue;
2083 				if (hdr->n_namesz != 4)
2084 					continue;
2085 				if (hdr->n_descsz < MINBUILDID)
2086 					continue;
2087 				/* Set a reasonable upper bound */
2088 				if (hdr->n_descsz > MAXBUILDID) {
2089 					dprintf("Skipped %s as too large "
2090 					    "(%ld)\n", BUILDID_NAME,
2091 					    (unsigned long)hdr->n_descsz);
2092 					continue;
2093 				}
2094 
2095 				if (cp->c_data->d_size < sizeof (hdr) +
2096 				    hdr->n_namesz + hdr->n_descsz)
2097 					continue;
2098 				buildid = cp;
2099 			}
2100 		} else if (strcmp(cp->c_name, DBGLINK_NAME) == 0) {
2101 			dprintf("found %s section for %s\n", DBGLINK_NAME,
2102 			    fptr->file_rname);
2103 			/*
2104 			 * Let's make sure of a few things before we do this.
2105 			 */
2106 			if (cp->c_shdr.sh_type == SHT_PROGBITS &&
2107 			    cp->c_data->d_buf != NULL &&
2108 			    cp->c_data->d_size) {
2109 				dbglink = cp;
2110 			}
2111 		}
2112 	}
2113 
2114 	/*
2115 	 * If we haven't found any symbol table information and we have found
2116 	 * either a .note.gnu.build-id or a .gnu_debuglink, it's time to try and
2117 	 * figure out where we might find this. Originally, GNU used the
2118 	 * .gnu_debuglink solely, but then they added a .note.gnu.build-id. The
2119 	 * build-id is some size, usually 16 or 20 bytes, often a SHA1 sum of
2120 	 * parts of the original file. This is maintained across all versions of
2121 	 * the subsequent file.
2122 	 *
2123 	 * For the .note.gnu.build-id, we're going to check a few things before
2124 	 * using it, first that the name is 4 bytes, and is GNU and that the
2125 	 * type is 3, which they say is the build-id identifier.
2126 	 *
2127 	 * To verify that the elf data for the .gnu_debuglink seems somewhat
2128 	 * sane, eg. the elf data should be a string, so we want to verify we
2129 	 * have a null-terminator.
2130 	 */
2131 	if (fptr->file_symtab.sym_data_pri == NULL && buildid != NULL) {
2132 		int i, bo;
2133 		uint8_t *dp;
2134 		char buf[BUILDID_STRLEN], *path;
2135 		Elf32_Nhdr *hdr = buildid->c_data->d_buf;
2136 
2137 		/*
2138 		 * This was checked for validity when assigning the buildid
2139 		 * variable.
2140 		 */
2141 		bzero(buf, sizeof (buf));
2142 		dp = (uint8_t *)((uintptr_t)hdr + sizeof (*hdr) +
2143 		    hdr->n_namesz);
2144 		for (i = 0, bo = 0; i < hdr->n_descsz; i++, bo += 2, dp++) {
2145 			assert(sizeof (buf) - bo > 0);
2146 
2147 			/*
2148 			 * Recall that the build-id is structured as a series of
2149 			 * bytes. However, the first two characters are supposed
2150 			 * to represent a directory. Hence, once we reach offset
2151 			 * two, we insert a '/' character.
2152 			 */
2153 			if (bo == 2) {
2154 				buf[bo] = '/';
2155 				bo++;
2156 			}
2157 			(void) snprintf(buf + bo, sizeof (buf) - bo, "%2x",
2158 			    *dp);
2159 		}
2160 
2161 		if (asprintf(&path, "/usr/lib/debug/.build-id/%s.debug",
2162 		    buf) != -1) {
2163 			boolean_t r;
2164 			dprintf("attempting to find build id alternate debug "
2165 			    "file at %s\n", path);
2166 			r = build_alt_debug(fptr, path, 0, buildid->c_data);
2167 			dprintf("attempt %s\n", r == B_TRUE ?
2168 			    "succeeded" : "failed");
2169 			free(path);
2170 		} else {
2171 			dprintf("failed to construct build id path: %s\n",
2172 			    strerror(errno));
2173 		}
2174 	}
2175 
2176 	if (fptr->file_symtab.sym_data_pri == NULL && dbglink != NULL) {
2177 		char *c = dbglink->c_data->d_buf;
2178 		size_t i;
2179 		boolean_t found = B_FALSE;
2180 		Elf_Data *ed = dbglink->c_data;
2181 		uint32_t crc;
2182 
2183 		for (i = 0; i < ed->d_size; i++) {
2184 			if (c[i] == '\0') {
2185 				uintptr_t off;
2186 				dprintf("got .gnu_debuglink terminator at "
2187 				    "offset %lu\n", (unsigned long)i);
2188 				/*
2189 				 * After the null terminator, there should be
2190 				 * padding, followed by a 4 byte CRC of the
2191 				 * file. If we don't see this, we're going to
2192 				 * assume this is bogus.
2193 				 */
2194 				if ((i % sizeof (uint32_t)) == 0) {
2195 					i += 4;
2196 				} else {
2197 					i += sizeof (uint32_t) -
2198 					    (i % sizeof (uint32_t));
2199 				}
2200 				if (i + sizeof (uint32_t) ==
2201 				    dbglink->c_data->d_size) {
2202 					found = B_TRUE;
2203 					off = (uintptr_t)ed->d_buf + i;
2204 					crc = *(uint32_t *)off;
2205 				} else {
2206 					dprintf(".gnu_debuglink size mismatch, "
2207 					    "expected: %lu, found: %lu\n",
2208 					    (unsigned long)i,
2209 					    (unsigned long)ed->d_size);
2210 				}
2211 				break;
2212 			}
2213 		}
2214 
2215 		if (found == B_TRUE)
2216 			find_alt_debuglink(fptr, dbglink->c_data->d_buf, crc);
2217 	}
2218 
2219 	/*
2220 	 * At this point, we've found all the symbol tables we're ever going
2221 	 * to find: the ones in the loop above and possibly the symtab that
2222 	 * was included in the core file. Before we perform any lookups, we
2223 	 * create sorted versions to optimize for lookups.
2224 	 */
2225 	optimize_symtab(&fptr->file_symtab);
2226 	optimize_symtab(&fptr->file_dynsym);
2227 
2228 	/*
2229 	 * Fill in the base address of the text mapping for shared libraries.
2230 	 * This allows us to translate symbols before librtld_db is ready.
2231 	 */
2232 	if (fptr->file_etype == ET_DYN) {
2233 		fptr->file_dyn_base = fptr->file_map->map_pmap.pr_vaddr -
2234 		    fptr->file_map->map_pmap.pr_offset;
2235 		dprintf("setting file_dyn_base for %s to %lx\n",
2236 		    objectfile, (long)fptr->file_dyn_base);
2237 	}
2238 
2239 	/*
2240 	 * Record the CTF section information in the file info structure.
2241 	 */
2242 	if (ctf != NULL) {
2243 		fptr->file_ctf_off = ctf->c_shdr.sh_offset;
2244 		fptr->file_ctf_size = ctf->c_shdr.sh_size;
2245 		if (ctf->c_shdr.sh_link != 0 &&
2246 		    cache[ctf->c_shdr.sh_link].c_shdr.sh_type == SHT_DYNSYM)
2247 			fptr->file_ctf_dyn = 1;
2248 	}
2249 
2250 	if (fptr->file_lo == NULL)
2251 		goto done; /* Nothing else to do if no load object info */
2252 
2253 	/*
2254 	 * If the object is a shared library and we have a different rl_base
2255 	 * value, reset file_dyn_base according to librtld_db's information.
2256 	 */
2257 	if (fptr->file_etype == ET_DYN &&
2258 	    fptr->file_lo->rl_base != fptr->file_dyn_base) {
2259 		dprintf("resetting file_dyn_base for %s to %lx\n",
2260 		    objectfile, (long)fptr->file_lo->rl_base);
2261 		fptr->file_dyn_base = fptr->file_lo->rl_base;
2262 	}
2263 
2264 	/*
2265 	 * Fill in the PLT information for this file if a PLT symbol is found.
2266 	 */
2267 	if (sym_by_name(&fptr->file_dynsym, "_PROCEDURE_LINKAGE_TABLE_", &s,
2268 	    NULL) != NULL) {
2269 		fptr->file_plt_base = s.st_value + fptr->file_dyn_base;
2270 		fptr->file_plt_size = (plt != NULL) ? plt->c_shdr.sh_size : 0;
2271 
2272 		/*
2273 		 * Bring the load object up to date; it is the only way the
2274 		 * user has to access the PLT data. The PLT information in the
2275 		 * rd_loadobj_t is not set in the call to map_iter() (the
2276 		 * callback for rd_loadobj_iter) where we set file_lo.
2277 		 */
2278 		fptr->file_lo->rl_plt_base = fptr->file_plt_base;
2279 		fptr->file_lo->rl_plt_size = fptr->file_plt_size;
2280 
2281 		dprintf("PLT found at %p, size = %lu\n",
2282 		    (void *)fptr->file_plt_base, (ulong_t)fptr->file_plt_size);
2283 	}
2284 
2285 	/*
2286 	 * Fill in the PLT information.
2287 	 */
2288 	if (dyn != NULL) {
2289 		uintptr_t dynaddr = dyn->c_shdr.sh_addr + fptr->file_dyn_base;
2290 		size_t ndyn = dyn->c_shdr.sh_size / dyn->c_shdr.sh_entsize;
2291 		GElf_Dyn d;
2292 
2293 		for (i = 0; i < ndyn; i++) {
2294 			if (gelf_getdyn(dyn->c_data, i, &d) == NULL)
2295 				continue;
2296 
2297 			switch (d.d_tag) {
2298 			case DT_JMPREL:
2299 				dprintf("DT_JMPREL is %p\n",
2300 				    (void *)(uintptr_t)d.d_un.d_ptr);
2301 				fptr->file_jmp_rel =
2302 				    d.d_un.d_ptr + fptr->file_dyn_base;
2303 				break;
2304 			case DT_STRTAB:
2305 				dprintf("DT_STRTAB is %p\n",
2306 				    (void *)(uintptr_t)d.d_un.d_ptr);
2307 				break;
2308 			case DT_PLTGOT:
2309 				dprintf("DT_PLTGOT is %p\n",
2310 				    (void *)(uintptr_t)d.d_un.d_ptr);
2311 				break;
2312 			case DT_SUNW_SYMTAB:
2313 				dprintf("DT_SUNW_SYMTAB is %p\n",
2314 				    (void *)(uintptr_t)d.d_un.d_ptr);
2315 				break;
2316 			case DT_SYMTAB:
2317 				dprintf("DT_SYMTAB is %p\n",
2318 				    (void *)(uintptr_t)d.d_un.d_ptr);
2319 				break;
2320 			case DT_HASH:
2321 				dprintf("DT_HASH is %p\n",
2322 				    (void *)(uintptr_t)d.d_un.d_ptr);
2323 				break;
2324 			}
2325 		}
2326 
2327 		dprintf("_DYNAMIC found at %p, %lu entries, DT_JMPREL = %p\n",
2328 		    (void *)dynaddr, (ulong_t)ndyn, (void *)fptr->file_jmp_rel);
2329 	}
2330 
2331 done:
2332 	free(cache);
2333 	return;
2334 
2335 bad:
2336 	if (cache != NULL)
2337 		free(cache);
2338 
2339 	(void) elf_end(elf);
2340 	fptr->file_elf = NULL;
2341 	if (fptr->file_elfmem != NULL) {
2342 		free(fptr->file_elfmem);
2343 		fptr->file_elfmem = NULL;
2344 	}
2345 	(void) close(fptr->file_fd);
2346 	if (fptr->file_dbgelf != NULL)
2347 		(void) elf_end(fptr->file_dbgelf);
2348 	fptr->file_dbgelf = NULL;
2349 	if (fptr->file_dbgfile >= 0)
2350 		(void) close(fptr->file_dbgfile);
2351 	fptr->file_fd = -1;
2352 	fptr->file_dbgfile = -1;
2353 }
2354 
2355 /*
2356  * Given a process virtual address, return the map_info_t containing it.
2357  * If none found, return NULL.
2358  */
2359 map_info_t *
2360 Paddr2mptr(struct ps_prochandle *P, uintptr_t addr)
2361 {
2362 	int lo = 0;
2363 	int hi = P->map_count - 1;
2364 	int mid;
2365 	map_info_t *mp;
2366 
2367 	while (lo <= hi) {
2368 
2369 		mid = (lo + hi) / 2;
2370 		mp = &P->mappings[mid];
2371 
2372 		/* check that addr is in [vaddr, vaddr + size) */
2373 		if ((addr - mp->map_pmap.pr_vaddr) < mp->map_pmap.pr_size)
2374 			return (mp);
2375 
2376 		if (addr < mp->map_pmap.pr_vaddr)
2377 			hi = mid - 1;
2378 		else
2379 			lo = mid + 1;
2380 	}
2381 
2382 	return (NULL);
2383 }
2384 
2385 /*
2386  * Return the map_info_t for the executable file.
2387  * If not found, return NULL.
2388  */
2389 static map_info_t *
2390 exec_map(struct ps_prochandle *P)
2391 {
2392 	uint_t i;
2393 	map_info_t *mptr;
2394 	map_info_t *mold = NULL;
2395 	file_info_t *fptr;
2396 	uintptr_t base;
2397 
2398 	for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
2399 		if (mptr->map_pmap.pr_mapname[0] == '\0')
2400 			continue;
2401 		if (strcmp(mptr->map_pmap.pr_mapname, "a.out") == 0) {
2402 			if ((fptr = mptr->map_file) != NULL &&
2403 			    fptr->file_lo != NULL) {
2404 				base = fptr->file_lo->rl_base;
2405 				if (base >= mptr->map_pmap.pr_vaddr &&
2406 				    base < mptr->map_pmap.pr_vaddr +
2407 				    mptr->map_pmap.pr_size)	/* text space */
2408 					return (mptr);
2409 				mold = mptr;	/* must be the data */
2410 				continue;
2411 			}
2412 			/* This is a poor way to test for text space */
2413 			if (!(mptr->map_pmap.pr_mflags & MA_EXEC) ||
2414 			    (mptr->map_pmap.pr_mflags & MA_WRITE)) {
2415 				mold = mptr;
2416 				continue;
2417 			}
2418 			return (mptr);
2419 		}
2420 	}
2421 
2422 	return (mold);
2423 }
2424 
2425 /*
2426  * Given a shared object name, return the map_info_t for it.  If no matching
2427  * object is found, return NULL.  Normally, the link maps contain the full
2428  * object pathname, e.g. /usr/lib/libc.so.1.  We allow the object name to
2429  * take one of the following forms:
2430  *
2431  * 1. An exact match (i.e. a full pathname): "/usr/lib/libc.so.1"
2432  * 2. An exact basename match: "libc.so.1"
2433  * 3. An initial basename match up to a '.' suffix: "libc.so" or "libc"
2434  * 4. The literal string "a.out" is an alias for the executable mapping
2435  *
2436  * The third case is a convenience for callers and may not be necessary.
2437  *
2438  * As the exact same object name may be loaded on different link maps (see
2439  * dlmopen(3DL)), we also allow the caller to resolve the object name by
2440  * specifying a particular link map id.  If lmid is PR_LMID_EVERY, the
2441  * first matching name will be returned, regardless of the link map id.
2442  */
2443 static map_info_t *
2444 object_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *objname)
2445 {
2446 	map_info_t *mp;
2447 	file_info_t *fp;
2448 	size_t objlen;
2449 	uint_t i;
2450 
2451 	/*
2452 	 * If we have no rtld_db, then always treat a request as one for all
2453 	 * link maps.
2454 	 */
2455 	if (P->rap == NULL)
2456 		lmid = PR_LMID_EVERY;
2457 
2458 	/*
2459 	 * First pass: look for exact matches of the entire pathname or
2460 	 * basename (cases 1 and 2 above):
2461 	 */
2462 	for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2463 
2464 		if (mp->map_pmap.pr_mapname[0] == '\0' ||
2465 		    (fp = mp->map_file) == NULL ||
2466 		    ((fp->file_lname == NULL) && (fp->file_rname == NULL)))
2467 			continue;
2468 
2469 		if (lmid != PR_LMID_EVERY &&
2470 		    (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2471 			continue;
2472 
2473 		/*
2474 		 * If we match, return the primary text mapping; otherwise
2475 		 * just return the mapping we matched.
2476 		 */
2477 		if ((fp->file_lbase && strcmp(fp->file_lbase, objname) == 0) ||
2478 		    (fp->file_rbase && strcmp(fp->file_rbase, objname) == 0) ||
2479 		    (fp->file_lname && strcmp(fp->file_lname, objname) == 0) ||
2480 		    (fp->file_rname && strcmp(fp->file_rname, objname) == 0))
2481 			return (fp->file_map ? fp->file_map : mp);
2482 	}
2483 
2484 	objlen = strlen(objname);
2485 
2486 	/*
2487 	 * Second pass: look for partial matches (case 3 above):
2488 	 */
2489 	for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2490 
2491 		if (mp->map_pmap.pr_mapname[0] == '\0' ||
2492 		    (fp = mp->map_file) == NULL ||
2493 		    ((fp->file_lname == NULL) && (fp->file_rname == NULL)))
2494 			continue;
2495 
2496 		if (lmid != PR_LMID_EVERY &&
2497 		    (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2498 			continue;
2499 
2500 		/*
2501 		 * If we match, return the primary text mapping; otherwise
2502 		 * just return the mapping we matched.
2503 		 */
2504 		if ((fp->file_lbase != NULL) &&
2505 		    (strncmp(fp->file_lbase, objname, objlen) == 0) &&
2506 		    (fp->file_lbase[objlen] == '.'))
2507 			return (fp->file_map ? fp->file_map : mp);
2508 		if ((fp->file_rbase != NULL) &&
2509 		    (strncmp(fp->file_rbase, objname, objlen) == 0) &&
2510 		    (fp->file_rbase[objlen] == '.'))
2511 			return (fp->file_map ? fp->file_map : mp);
2512 	}
2513 
2514 	/*
2515 	 * One last check: we allow "a.out" to always alias the executable,
2516 	 * assuming this name was not in use for something else.
2517 	 */
2518 	if ((lmid == PR_LMID_EVERY || lmid == LM_ID_BASE) &&
2519 	    (strcmp(objname, "a.out") == 0))
2520 		return (P->map_exec);
2521 
2522 	return (NULL);
2523 }
2524 
2525 static map_info_t *
2526 object_name_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
2527 {
2528 	map_info_t *mptr;
2529 
2530 	if (!P->info_valid)
2531 		Pupdate_maps(P);
2532 
2533 	if (P->map_exec == NULL && ((mptr = Paddr2mptr(P,
2534 	    Pgetauxval(P, AT_ENTRY))) != NULL || (mptr = exec_map(P)) != NULL))
2535 		P->map_exec = mptr;
2536 
2537 	if (P->map_ldso == NULL && (mptr = Paddr2mptr(P,
2538 	    Pgetauxval(P, AT_BASE))) != NULL)
2539 		P->map_ldso = mptr;
2540 
2541 	if (name == PR_OBJ_EXEC)
2542 		mptr = P->map_exec;
2543 	else if (name == PR_OBJ_LDSO)
2544 		mptr = P->map_ldso;
2545 	else if (Prd_agent(P) != NULL || P->state == PS_IDLE)
2546 		mptr = object_to_map(P, lmid, name);
2547 	else
2548 		mptr = NULL;
2549 
2550 	return (mptr);
2551 }
2552 
2553 /*
2554  * When two symbols are found by address, decide which one is to be preferred.
2555  */
2556 static GElf_Sym *
2557 sym_prefer(GElf_Sym *sym1, char *name1, GElf_Sym *sym2, char *name2)
2558 {
2559 	/*
2560 	 * Prefer the non-NULL symbol.
2561 	 */
2562 	if (sym1 == NULL)
2563 		return (sym2);
2564 	if (sym2 == NULL)
2565 		return (sym1);
2566 
2567 	/*
2568 	 * Defer to the sort ordering...
2569 	 */
2570 	return (byaddr_cmp_common(sym1, name1, sym2, name2) <= 0 ? sym1 : sym2);
2571 }
2572 
2573 /*
2574  * Use a binary search to do the work of sym_by_addr().
2575  */
2576 static GElf_Sym *
2577 sym_by_addr_binary(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp,
2578     uint_t *idp)
2579 {
2580 	GElf_Sym sym, osym;
2581 	uint_t i, oid, *byaddr = symtab->sym_byaddr;
2582 	int min, max, mid, omid, found = 0;
2583 
2584 	if (symtab->sym_data_pri == NULL || symtab->sym_count == 0)
2585 		return (NULL);
2586 
2587 	min = 0;
2588 	max = symtab->sym_count - 1;
2589 	osym.st_value = 0;
2590 
2591 	/*
2592 	 * We can't return when we've found a match, we have to continue
2593 	 * searching for the closest matching symbol.
2594 	 */
2595 	while (min <= max) {
2596 		mid = (max + min) / 2;
2597 
2598 		i = byaddr[mid];
2599 		(void) symtab_getsym(symtab, i, &sym);
2600 
2601 		if (addr >= sym.st_value &&
2602 		    addr < sym.st_value + sym.st_size &&
2603 		    (!found || sym.st_value > osym.st_value)) {
2604 			osym = sym;
2605 			omid = mid;
2606 			oid = i;
2607 			found = 1;
2608 		}
2609 
2610 		if (addr < sym.st_value)
2611 			max = mid - 1;
2612 		else
2613 			min = mid + 1;
2614 	}
2615 
2616 	if (!found)
2617 		return (NULL);
2618 
2619 	/*
2620 	 * There may be many symbols with identical values so we walk
2621 	 * backward in the byaddr table to find the best match.
2622 	 */
2623 	do {
2624 		sym = osym;
2625 		i = oid;
2626 
2627 		if (omid == 0)
2628 			break;
2629 
2630 		oid = byaddr[--omid];
2631 		(void) symtab_getsym(symtab, oid, &osym);
2632 	} while (addr >= osym.st_value &&
2633 	    addr < sym.st_value + osym.st_size &&
2634 	    osym.st_value == sym.st_value);
2635 
2636 	*symp = sym;
2637 	if (idp != NULL)
2638 		*idp = i;
2639 	return (symp);
2640 }
2641 
2642 /*
2643  * Use a linear search to do the work of sym_by_addr().
2644  */
2645 static GElf_Sym *
2646 sym_by_addr_linear(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symbolp,
2647     uint_t *idp)
2648 {
2649 	size_t symn = symtab->sym_symn;
2650 	char *strs = symtab->sym_strs;
2651 	GElf_Sym sym, *symp = NULL;
2652 	GElf_Sym osym, *osymp = NULL;
2653 	int i, id;
2654 
2655 	if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL)
2656 		return (NULL);
2657 
2658 	for (i = 0; i < symn; i++) {
2659 		if ((symp = symtab_getsym(symtab, i, &sym)) != NULL) {
2660 			if (addr >= sym.st_value &&
2661 			    addr < sym.st_value + sym.st_size) {
2662 				if (osymp)
2663 					symp = sym_prefer(
2664 					    symp, strs + symp->st_name,
2665 					    osymp, strs + osymp->st_name);
2666 				if (symp != osymp) {
2667 					osym = sym;
2668 					osymp = &osym;
2669 					id = i;
2670 				}
2671 			}
2672 		}
2673 	}
2674 	if (osymp) {
2675 		*symbolp = osym;
2676 		if (idp)
2677 			*idp = id;
2678 		return (symbolp);
2679 	}
2680 	return (NULL);
2681 }
2682 
2683 /*
2684  * Look up a symbol by address in the specified symbol table.
2685  * Adjustment to 'addr' must already have been made for the
2686  * offset of the symbol if this is a dynamic library symbol table.
2687  *
2688  * Use a linear or a binary search depending on whether or not we
2689  * chose to sort the table in optimize_symtab().
2690  */
2691 static GElf_Sym *
2692 sym_by_addr(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, uint_t *idp)
2693 {
2694 	if (_libproc_no_qsort) {
2695 		return (sym_by_addr_linear(symtab, addr, symp, idp));
2696 	} else {
2697 		return (sym_by_addr_binary(symtab, addr, symp, idp));
2698 	}
2699 }
2700 
2701 /*
2702  * Use a binary search to do the work of sym_by_name().
2703  */
2704 static GElf_Sym *
2705 sym_by_name_binary(sym_tbl_t *symtab, const char *name, GElf_Sym *symp,
2706     uint_t *idp)
2707 {
2708 	char *strs = symtab->sym_strs;
2709 	uint_t i, *byname = symtab->sym_byname;
2710 	int min, mid, max, cmp;
2711 
2712 	if (symtab->sym_data_pri == NULL || strs == NULL ||
2713 	    symtab->sym_count == 0)
2714 		return (NULL);
2715 
2716 	min = 0;
2717 	max = symtab->sym_count - 1;
2718 
2719 	while (min <= max) {
2720 		mid = (max + min) / 2;
2721 
2722 		i = byname[mid];
2723 		(void) symtab_getsym(symtab, i, symp);
2724 
2725 		if ((cmp = strcmp(name, strs + symp->st_name)) == 0) {
2726 			if (idp != NULL)
2727 				*idp = i;
2728 			return (symp);
2729 		}
2730 
2731 		if (cmp < 0)
2732 			max = mid - 1;
2733 		else
2734 			min = mid + 1;
2735 	}
2736 
2737 	return (NULL);
2738 }
2739 
2740 /*
2741  * Use a linear search to do the work of sym_by_name().
2742  */
2743 static GElf_Sym *
2744 sym_by_name_linear(sym_tbl_t *symtab, const char *name, GElf_Sym *symp,
2745     uint_t *idp)
2746 {
2747 	size_t symn = symtab->sym_symn;
2748 	char *strs = symtab->sym_strs;
2749 	int i;
2750 
2751 	if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL)
2752 		return (NULL);
2753 
2754 	for (i = 0; i < symn; i++) {
2755 		if (symtab_getsym(symtab, i, symp) &&
2756 		    strcmp(name, strs + symp->st_name) == 0) {
2757 			if (idp)
2758 				*idp = i;
2759 			return (symp);
2760 		}
2761 	}
2762 
2763 	return (NULL);
2764 }
2765 
2766 /*
2767  * Look up a symbol by name in the specified symbol table.
2768  *
2769  * Use a linear or a binary search depending on whether or not we
2770  * chose to sort the table in optimize_symtab().
2771  */
2772 static GElf_Sym *
2773 sym_by_name(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, uint_t *idp)
2774 {
2775 	if (_libproc_no_qsort) {
2776 		return (sym_by_name_linear(symtab, name, symp, idp));
2777 	} else {
2778 		return (sym_by_name_binary(symtab, name, symp, idp));
2779 	}
2780 }
2781 
2782 /*
2783  * Search the process symbol tables looking for a symbol whose
2784  * value to value+size contain the address specified by addr.
2785  * Return values are:
2786  *	sym_name_buffer containing the symbol name
2787  *	GElf_Sym symbol table entry
2788  *	prsyminfo_t ancillary symbol information
2789  * Returns 0 on success, -1 on failure.
2790  */
2791 static int
2792 i_Pxlookup_by_addr(
2793 	struct ps_prochandle *P,
2794 	int lmresolve,			/* use resolve linker object names */
2795 	uintptr_t addr,			/* process address being sought */
2796 	char *sym_name_buffer,		/* buffer for the symbol name */
2797 	size_t bufsize,			/* size of sym_name_buffer */
2798 	GElf_Sym *symbolp,		/* returned symbol table entry */
2799 	prsyminfo_t *sip)		/* returned symbol info */
2800 {
2801 	GElf_Sym	*symp;
2802 	char		*name;
2803 	GElf_Sym	sym1, *sym1p = NULL;
2804 	GElf_Sym	sym2, *sym2p = NULL;
2805 	char		*name1 = NULL;
2806 	char		*name2 = NULL;
2807 	uint_t		i1;
2808 	uint_t		i2;
2809 	map_info_t	*mptr;
2810 	file_info_t	*fptr;
2811 
2812 	(void) Prd_agent(P);
2813 
2814 	if ((mptr = Paddr2mptr(P, addr)) == NULL ||	/* no such address */
2815 	    (fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
2816 	    fptr->file_elf == NULL)			/* not an ELF file */
2817 		return (-1);
2818 
2819 	/*
2820 	 * Adjust the address by the load object base address in
2821 	 * case the address turns out to be in a shared library.
2822 	 */
2823 	addr -= fptr->file_dyn_base;
2824 
2825 	/*
2826 	 * Search both symbol tables, symtab first, then dynsym.
2827 	 */
2828 	if ((sym1p = sym_by_addr(&fptr->file_symtab, addr, &sym1, &i1)) != NULL)
2829 		name1 = fptr->file_symtab.sym_strs + sym1.st_name;
2830 	if ((sym2p = sym_by_addr(&fptr->file_dynsym, addr, &sym2, &i2)) != NULL)
2831 		name2 = fptr->file_dynsym.sym_strs + sym2.st_name;
2832 
2833 	if ((symp = sym_prefer(sym1p, name1, sym2p, name2)) == NULL)
2834 		return (-1);
2835 
2836 	name = (symp == sym1p) ? name1 : name2;
2837 	if (bufsize > 0) {
2838 		(void) strncpy(sym_name_buffer, name, bufsize);
2839 		sym_name_buffer[bufsize - 1] = '\0';
2840 	}
2841 
2842 	*symbolp = *symp;
2843 	if (sip != NULL) {
2844 		sip->prs_name = bufsize == 0 ? NULL : sym_name_buffer;
2845 		if (lmresolve && (fptr->file_rname != NULL))
2846 			sip->prs_object = fptr->file_rbase;
2847 		else
2848 			sip->prs_object = fptr->file_lbase;
2849 		sip->prs_id = (symp == sym1p) ? i1 : i2;
2850 		sip->prs_table = (symp == sym1p) ? PR_SYMTAB : PR_DYNSYM;
2851 		sip->prs_lmid = (fptr->file_lo == NULL) ? LM_ID_BASE :
2852 		    fptr->file_lo->rl_lmident;
2853 	}
2854 
2855 	if (GELF_ST_TYPE(symbolp->st_info) != STT_TLS)
2856 		symbolp->st_value += fptr->file_dyn_base;
2857 
2858 	return (0);
2859 }
2860 
2861 int
2862 Pxlookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf,
2863     size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip)
2864 {
2865 	return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, bufsize, symp, sip));
2866 }
2867 
2868 int
2869 Pxlookup_by_addr_resolved(struct ps_prochandle *P, uintptr_t addr, char *buf,
2870     size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip)
2871 {
2872 	return (i_Pxlookup_by_addr(P, B_TRUE, addr, buf, bufsize, symp, sip));
2873 }
2874 
2875 int
2876 Plookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf,
2877     size_t size, GElf_Sym *symp)
2878 {
2879 	return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, size, symp, NULL));
2880 }
2881 
2882 /*
2883  * Search the process symbol tables looking for a symbol whose name matches the
2884  * specified name and whose object and link map optionally match the specified
2885  * parameters.  On success, the function returns 0 and fills in the GElf_Sym
2886  * symbol table entry.  On failure, -1 is returned.
2887  */
2888 int
2889 Pxlookup_by_name(
2890 	struct ps_prochandle *P,
2891 	Lmid_t lmid,			/* link map to match, or -1 for any */
2892 	const char *oname,		/* load object name */
2893 	const char *sname,		/* symbol name */
2894 	GElf_Sym *symp,			/* returned symbol table entry */
2895 	prsyminfo_t *sip)		/* returned symbol info */
2896 {
2897 	map_info_t *mptr;
2898 	file_info_t *fptr;
2899 	int cnt;
2900 
2901 	GElf_Sym sym;
2902 	prsyminfo_t si;
2903 	int rv = -1;
2904 	uint_t id;
2905 
2906 	if (oname == PR_OBJ_EVERY) {
2907 		/* create all the file_info_t's for all the mappings */
2908 		(void) Prd_agent(P);
2909 		cnt = P->num_files;
2910 		fptr = list_next(&P->file_head);
2911 	} else {
2912 		cnt = 1;
2913 		if ((mptr = object_name_to_map(P, lmid, oname)) == NULL ||
2914 		    (fptr = build_map_symtab(P, mptr)) == NULL)
2915 			return (-1);
2916 	}
2917 
2918 	/*
2919 	 * Iterate through the loaded object files and look for the symbol
2920 	 * name in the .symtab and .dynsym of each.  If we encounter a match
2921 	 * with SHN_UNDEF, keep looking in hopes of finding a better match.
2922 	 * This means that a name such as "puts" will match the puts function
2923 	 * in libc instead of matching the puts PLT entry in the a.out file.
2924 	 */
2925 	for (; cnt > 0; cnt--, fptr = list_next(fptr)) {
2926 		Pbuild_file_symtab(P, fptr);
2927 
2928 		if (fptr->file_elf == NULL)
2929 			continue;
2930 
2931 		if (lmid != PR_LMID_EVERY && fptr->file_lo != NULL &&
2932 		    lmid != fptr->file_lo->rl_lmident)
2933 			continue;
2934 
2935 		if (fptr->file_symtab.sym_data_pri != NULL &&
2936 		    sym_by_name(&fptr->file_symtab, sname, symp, &id)) {
2937 			if (sip != NULL) {
2938 				sip->prs_id = id;
2939 				sip->prs_table = PR_SYMTAB;
2940 				sip->prs_object = oname;
2941 				sip->prs_name = sname;
2942 				sip->prs_lmid = fptr->file_lo == NULL ?
2943 				    LM_ID_BASE : fptr->file_lo->rl_lmident;
2944 			}
2945 		} else if (fptr->file_dynsym.sym_data_pri != NULL &&
2946 		    sym_by_name(&fptr->file_dynsym, sname, symp, &id)) {
2947 			if (sip != NULL) {
2948 				sip->prs_id = id;
2949 				sip->prs_table = PR_DYNSYM;
2950 				sip->prs_object = oname;
2951 				sip->prs_name = sname;
2952 				sip->prs_lmid = fptr->file_lo == NULL ?
2953 				    LM_ID_BASE : fptr->file_lo->rl_lmident;
2954 			}
2955 		} else {
2956 			continue;
2957 		}
2958 
2959 		if (GELF_ST_TYPE(symp->st_info) != STT_TLS)
2960 			symp->st_value += fptr->file_dyn_base;
2961 
2962 		if (symp->st_shndx != SHN_UNDEF)
2963 			return (0);
2964 
2965 		if (rv != 0) {
2966 			if (sip != NULL)
2967 				si = *sip;
2968 			sym = *symp;
2969 			rv = 0;
2970 		}
2971 	}
2972 
2973 	if (rv == 0) {
2974 		if (sip != NULL)
2975 			*sip = si;
2976 		*symp = sym;
2977 	}
2978 
2979 	return (rv);
2980 }
2981 
2982 /*
2983  * Search the process symbol tables looking for a symbol whose name matches the
2984  * specified name, but without any restriction on the link map id.
2985  */
2986 int
2987 Plookup_by_name(struct ps_prochandle *P, const char *object,
2988     const char *symbol, GElf_Sym *symp)
2989 {
2990 	return (Pxlookup_by_name(P, PR_LMID_EVERY, object, symbol, symp, NULL));
2991 }
2992 
2993 /*
2994  * Iterate over the process's address space mappings.
2995  */
2996 static int
2997 i_Pmapping_iter(struct ps_prochandle *P, boolean_t lmresolve,
2998     proc_map_f *func, void *cd)
2999 {
3000 	map_info_t *mptr;
3001 	file_info_t *fptr;
3002 	char *object_name;
3003 	int rc = 0;
3004 	int i;
3005 
3006 	/* create all the file_info_t's for all the mappings */
3007 	(void) Prd_agent(P);
3008 
3009 	for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
3010 		if ((fptr = mptr->map_file) == NULL)
3011 			object_name = NULL;
3012 		else if (lmresolve && (fptr->file_rname != NULL))
3013 			object_name = fptr->file_rname;
3014 		else
3015 			object_name = fptr->file_lname;
3016 		if ((rc = func(cd, &mptr->map_pmap, object_name)) != 0)
3017 			return (rc);
3018 	}
3019 	return (0);
3020 }
3021 
3022 int
3023 Pmapping_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
3024 {
3025 	return (i_Pmapping_iter(P, B_FALSE, func, cd));
3026 }
3027 
3028 int
3029 Pmapping_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd)
3030 {
3031 	return (i_Pmapping_iter(P, B_TRUE, func, cd));
3032 }
3033 
3034 /*
3035  * Iterate over the process's mapped objects.
3036  */
3037 static int
3038 i_Pobject_iter(struct ps_prochandle *P, boolean_t lmresolve,
3039     proc_map_f *func, void *cd)
3040 {
3041 	map_info_t *mptr;
3042 	file_info_t *fptr;
3043 	uint_t cnt;
3044 	int rc = 0;
3045 
3046 	(void) Prd_agent(P); /* create file_info_t's for all the mappings */
3047 	Pupdate_maps(P);
3048 
3049 	for (cnt = P->num_files, fptr = list_next(&P->file_head);
3050 	    cnt; cnt--, fptr = list_next(fptr)) {
3051 		const char *lname;
3052 
3053 		if (lmresolve && (fptr->file_rname != NULL))
3054 			lname = fptr->file_rname;
3055 		else if (fptr->file_lname != NULL)
3056 			lname = fptr->file_lname;
3057 		else
3058 			lname = "";
3059 
3060 		if ((mptr = fptr->file_map) == NULL)
3061 			continue;
3062 
3063 		if ((rc = func(cd, &mptr->map_pmap, lname)) != 0)
3064 			return (rc);
3065 
3066 		if (!P->info_valid)
3067 			Pupdate_maps(P);
3068 	}
3069 	return (0);
3070 }
3071 
3072 int
3073 Pobject_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
3074 {
3075 	return (i_Pobject_iter(P, B_FALSE, func, cd));
3076 }
3077 
3078 int
3079 Pobject_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd)
3080 {
3081 	return (i_Pobject_iter(P, B_TRUE, func, cd));
3082 }
3083 
3084 static char *
3085 i_Pobjname(struct ps_prochandle *P, boolean_t lmresolve, uintptr_t addr,
3086     char *buffer, size_t bufsize)
3087 {
3088 	map_info_t *mptr;
3089 	file_info_t *fptr;
3090 
3091 	/* create all the file_info_t's for all the mappings */
3092 	(void) Prd_agent(P);
3093 
3094 	if ((mptr = Paddr2mptr(P, addr)) == NULL)
3095 		return (NULL);
3096 
3097 	if (!lmresolve) {
3098 		if (((fptr = mptr->map_file) == NULL) ||
3099 		    (fptr->file_lname == NULL))
3100 			return (NULL);
3101 		(void) strlcpy(buffer, fptr->file_lname, bufsize);
3102 		return (buffer);
3103 	}
3104 
3105 	/* Check for a cached copy of the resolved path */
3106 	if (Pfindmap(P, mptr, buffer, bufsize) != NULL)
3107 		return (buffer);
3108 
3109 	return (NULL);
3110 }
3111 
3112 /*
3113  * Given a virtual address, return the name of the underlying
3114  * mapped object (file) as provided by the dynamic linker.
3115  * Return NULL if we can't find any name information for the object.
3116  */
3117 char *
3118 Pobjname(struct ps_prochandle *P, uintptr_t addr,
3119     char *buffer, size_t bufsize)
3120 {
3121 	return (i_Pobjname(P, B_FALSE, addr, buffer, bufsize));
3122 }
3123 
3124 /*
3125  * Given a virtual address, try to return a filesystem path to the
3126  * underlying mapped object (file).  If we're in the global zone,
3127  * this path could resolve to an object in another zone.  If we're
3128  * unable return a valid filesystem path, we'll fall back to providing
3129  * the mapped object (file) name provided by the dynamic linker in
3130  * the target process (ie, the object reported by Pobjname()).
3131  */
3132 char *
3133 Pobjname_resolved(struct ps_prochandle *P, uintptr_t addr,
3134     char *buffer, size_t bufsize)
3135 {
3136 	return (i_Pobjname(P, B_TRUE, addr, buffer, bufsize));
3137 }
3138 
3139 /*
3140  * Given a virtual address, return the link map id of the underlying mapped
3141  * object (file), as provided by the dynamic linker.  Return -1 on failure.
3142  */
3143 int
3144 Plmid(struct ps_prochandle *P, uintptr_t addr, Lmid_t *lmidp)
3145 {
3146 	map_info_t *mptr;
3147 	file_info_t *fptr;
3148 
3149 	/* create all the file_info_t's for all the mappings */
3150 	(void) Prd_agent(P);
3151 
3152 	if ((mptr = Paddr2mptr(P, addr)) != NULL &&
3153 	    (fptr = mptr->map_file) != NULL && fptr->file_lo != NULL) {
3154 		*lmidp = fptr->file_lo->rl_lmident;
3155 		return (0);
3156 	}
3157 
3158 	return (-1);
3159 }
3160 
3161 /*
3162  * Given an object name and optional lmid, iterate over the object's symbols.
3163  * If which == PR_SYMTAB, search the normal symbol table.
3164  * If which == PR_DYNSYM, search the dynamic symbol table.
3165  */
3166 static int
3167 Psymbol_iter_com(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
3168     int which, int mask, pr_order_t order, proc_xsym_f *func, void *cd)
3169 {
3170 #if STT_NUM != (STT_TLS + 1)
3171 #error "STT_NUM has grown. update Psymbol_iter_com()"
3172 #endif
3173 
3174 	GElf_Sym sym;
3175 	GElf_Shdr shdr;
3176 	map_info_t *mptr;
3177 	file_info_t *fptr;
3178 	sym_tbl_t *symtab;
3179 	size_t symn;
3180 	const char *strs;
3181 	size_t strsz;
3182 	prsyminfo_t si;
3183 	int rv;
3184 	uint_t *map, i, count, ndx;
3185 
3186 	if ((mptr = object_name_to_map(P, lmid, object_name)) == NULL)
3187 		return (-1);
3188 
3189 	if ((fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
3190 	    fptr->file_elf == NULL)			/* not an ELF file */
3191 		return (-1);
3192 
3193 	/*
3194 	 * Search the specified symbol table.
3195 	 */
3196 	switch (which) {
3197 	case PR_SYMTAB:
3198 		symtab = &fptr->file_symtab;
3199 		si.prs_table = PR_SYMTAB;
3200 		break;
3201 	case PR_DYNSYM:
3202 		symtab = &fptr->file_dynsym;
3203 		si.prs_table = PR_DYNSYM;
3204 		break;
3205 	default:
3206 		return (-1);
3207 	}
3208 
3209 	si.prs_object = object_name;
3210 	si.prs_lmid = fptr->file_lo == NULL ?
3211 	    LM_ID_BASE : fptr->file_lo->rl_lmident;
3212 
3213 	symn = symtab->sym_symn;
3214 	strs = symtab->sym_strs;
3215 	strsz = symtab->sym_strsz;
3216 
3217 	switch (order) {
3218 	case PRO_NATURAL:
3219 		map = NULL;
3220 		count = symn;
3221 		break;
3222 	case PRO_BYNAME:
3223 		map = symtab->sym_byname;
3224 		count = symtab->sym_count;
3225 		break;
3226 	case PRO_BYADDR:
3227 		map = symtab->sym_byaddr;
3228 		count = symtab->sym_count;
3229 		break;
3230 	default:
3231 		return (-1);
3232 	}
3233 
3234 	if (symtab->sym_data_pri == NULL || strs == NULL || count == 0)
3235 		return (-1);
3236 
3237 	rv = 0;
3238 
3239 	for (i = 0; i < count; i++) {
3240 		ndx = map == NULL ? i : map[i];
3241 		if (symtab_getsym(symtab, ndx, &sym) != NULL) {
3242 			uint_t s_bind, s_type, type;
3243 
3244 			if (sym.st_name >= strsz)	/* invalid st_name */
3245 				continue;
3246 
3247 			s_bind = GELF_ST_BIND(sym.st_info);
3248 			s_type = GELF_ST_TYPE(sym.st_info);
3249 
3250 			/*
3251 			 * In case you haven't already guessed, this relies on
3252 			 * the bitmask used in <libproc.h> for encoding symbol
3253 			 * type and binding matching the order of STB and STT
3254 			 * constants in <sys/elf.h>.  Changes to ELF must
3255 			 * maintain binary compatibility, so I think this is
3256 			 * reasonably fair game.
3257 			 */
3258 			if (s_bind < STB_NUM && s_type < STT_NUM) {
3259 				type = (1 << (s_type + 8)) | (1 << s_bind);
3260 				if ((type & ~mask) != 0)
3261 					continue;
3262 			} else
3263 				continue; /* Invalid type or binding */
3264 
3265 			if (GELF_ST_TYPE(sym.st_info) != STT_TLS)
3266 				sym.st_value += fptr->file_dyn_base;
3267 
3268 			si.prs_name = strs + sym.st_name;
3269 
3270 			/*
3271 			 * If symbol's type is STT_SECTION, then try to lookup
3272 			 * the name of the corresponding section.
3273 			 */
3274 			if (GELF_ST_TYPE(sym.st_info) == STT_SECTION &&
3275 			    fptr->file_shstrs != NULL &&
3276 			    gelf_getshdr(elf_getscn(fptr->file_elf,
3277 			    sym.st_shndx), &shdr) != NULL &&
3278 			    shdr.sh_name != 0 &&
3279 			    shdr.sh_name < fptr->file_shstrsz)
3280 				si.prs_name = fptr->file_shstrs + shdr.sh_name;
3281 
3282 			si.prs_id = ndx;
3283 			if ((rv = func(cd, &sym, si.prs_name, &si)) != 0)
3284 				break;
3285 		}
3286 	}
3287 
3288 	return (rv);
3289 }
3290 
3291 int
3292 Pxsymbol_iter(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
3293     int which, int mask, proc_xsym_f *func, void *cd)
3294 {
3295 	return (Psymbol_iter_com(P, lmid, object_name, which, mask,
3296 	    PRO_NATURAL, func, cd));
3297 }
3298 
3299 int
3300 Psymbol_iter_by_lmid(struct ps_prochandle *P, Lmid_t lmid,
3301     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3302 {
3303 	return (Psymbol_iter_com(P, lmid, object_name, which, mask,
3304 	    PRO_NATURAL, (proc_xsym_f *)(uintptr_t)func, cd));
3305 }
3306 
3307 int
3308 Psymbol_iter(struct ps_prochandle *P,
3309     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3310 {
3311 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
3312 	    PRO_NATURAL, (proc_xsym_f *)(uintptr_t)func, cd));
3313 }
3314 
3315 int
3316 Psymbol_iter_by_addr(struct ps_prochandle *P,
3317     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3318 {
3319 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
3320 	    PRO_BYADDR, (proc_xsym_f *)(uintptr_t)func, cd));
3321 }
3322 
3323 int
3324 Psymbol_iter_by_name(struct ps_prochandle *P,
3325     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3326 {
3327 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
3328 	    PRO_BYNAME, (proc_xsym_f *)(uintptr_t)func, cd));
3329 }
3330 
3331 /*
3332  * Get the platform string.
3333  */
3334 char *
3335 Pplatform(struct ps_prochandle *P, char *s, size_t n)
3336 {
3337 	return (P->ops.pop_platform(P, s, n, P->data));
3338 }
3339 
3340 /*
3341  * Get the uname(2) information.
3342  */
3343 int
3344 Puname(struct ps_prochandle *P, struct utsname *u)
3345 {
3346 	return (P->ops.pop_uname(P, u, P->data));
3347 }
3348 
3349 /*
3350  * Called from Pcreate(), Pgrab(), and Pfgrab_core() to initialize
3351  * the symbol table heads in the new ps_prochandle.
3352  */
3353 void
3354 Pinitsym(struct ps_prochandle *P)
3355 {
3356 	P->num_files = 0;
3357 	list_link(&P->file_head, NULL);
3358 }
3359 
3360 /*
3361  * Called from Prelease() to destroy the symbol tables.
3362  * Must be called by the client after an exec() in the victim process.
3363  */
3364 void
3365 Preset_maps(struct ps_prochandle *P)
3366 {
3367 	int i;
3368 
3369 	if (P->rap != NULL) {
3370 		rd_delete(P->rap);
3371 		P->rap = NULL;
3372 	}
3373 
3374 	if (P->execname != NULL) {
3375 		free(P->execname);
3376 		P->execname = NULL;
3377 	}
3378 
3379 	if (P->auxv != NULL) {
3380 		free(P->auxv);
3381 		P->auxv = NULL;
3382 		P->nauxv = 0;
3383 	}
3384 
3385 	for (i = 0; i < P->map_count; i++)
3386 		map_info_free(P, &P->mappings[i]);
3387 
3388 	if (P->mappings != NULL) {
3389 		free(P->mappings);
3390 		P->mappings = NULL;
3391 	}
3392 	P->map_count = P->map_alloc = 0;
3393 
3394 	P->info_valid = 0;
3395 }
3396 
3397 typedef struct getenv_data {
3398 	char *buf;
3399 	size_t bufsize;
3400 	const char *search;
3401 	size_t searchlen;
3402 } getenv_data_t;
3403 
3404 /*ARGSUSED*/
3405 static int
3406 getenv_func(void *data, struct ps_prochandle *P, uintptr_t addr,
3407     const char *nameval)
3408 {
3409 	getenv_data_t *d = data;
3410 	size_t len;
3411 
3412 	if (nameval == NULL)
3413 		return (0);
3414 
3415 	if (d->searchlen < strlen(nameval) &&
3416 	    strncmp(nameval, d->search, d->searchlen) == 0 &&
3417 	    nameval[d->searchlen] == '=') {
3418 		len = MIN(strlen(nameval), d->bufsize - 1);
3419 		(void) strncpy(d->buf, nameval, len);
3420 		d->buf[len] = '\0';
3421 		return (1);
3422 	}
3423 
3424 	return (0);
3425 }
3426 
3427 char *
3428 Pgetenv(struct ps_prochandle *P, const char *name, char *buf, size_t buflen)
3429 {
3430 	getenv_data_t d;
3431 
3432 	d.buf = buf;
3433 	d.bufsize = buflen;
3434 	d.search = name;
3435 	d.searchlen = strlen(name);
3436 
3437 	if (Penv_iter(P, getenv_func, &d) == 1) {
3438 		char *equals = strchr(d.buf, '=');
3439 
3440 		if (equals != NULL) {
3441 			(void) memmove(d.buf, equals + 1,
3442 			    d.buf + buflen - equals - 1);
3443 			d.buf[d.buf + buflen - equals] = '\0';
3444 
3445 			return (buf);
3446 		}
3447 	}
3448 
3449 	return (NULL);
3450 }
3451 
3452 /* number of argument or environment pointers to read all at once */
3453 #define	NARG	100
3454 
3455 int
3456 Penv_iter(struct ps_prochandle *P, proc_env_f *func, void *data)
3457 {
3458 	const psinfo_t *psp;
3459 	uintptr_t envpoff;
3460 	GElf_Sym sym;
3461 	int ret;
3462 	char *buf, *nameval;
3463 	size_t buflen;
3464 
3465 	int nenv = NARG;
3466 	long envp[NARG];
3467 
3468 	/*
3469 	 * Attempt to find the "_environ" variable in the process.
3470 	 * Failing that, use the original value provided by Ppsinfo().
3471 	 */
3472 	if ((psp = Ppsinfo(P)) == NULL)
3473 		return (-1);
3474 
3475 	envpoff = psp->pr_envp; /* Default if no _environ found */
3476 
3477 	if (Plookup_by_name(P, PR_OBJ_EXEC, "_environ", &sym) == 0) {
3478 		if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3479 			if (Pread(P, &envpoff, sizeof (envpoff),
3480 			    sym.st_value) != sizeof (envpoff))
3481 				envpoff = psp->pr_envp;
3482 		} else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3483 			uint32_t envpoff32;
3484 
3485 			if (Pread(P, &envpoff32, sizeof (envpoff32),
3486 			    sym.st_value) != sizeof (envpoff32))
3487 				envpoff = psp->pr_envp;
3488 			else
3489 				envpoff = envpoff32;
3490 		}
3491 	}
3492 
3493 	buflen = 128;
3494 	buf = malloc(buflen);
3495 
3496 	ret = 0;
3497 	for (;;) {
3498 		uintptr_t envoff;
3499 
3500 		if (nenv == NARG) {
3501 			(void) memset(envp, 0, sizeof (envp));
3502 			if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3503 				if (Pread(P, envp,
3504 				    sizeof (envp), envpoff) <= 0) {
3505 					ret = -1;
3506 					break;
3507 				}
3508 			} else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3509 				uint32_t e32[NARG];
3510 				int i;
3511 
3512 				(void) memset(e32, 0, sizeof (e32));
3513 				if (Pread(P, e32, sizeof (e32), envpoff) <= 0) {
3514 					ret = -1;
3515 					break;
3516 				}
3517 				for (i = 0; i < NARG; i++)
3518 					envp[i] = e32[i];
3519 			}
3520 			nenv = 0;
3521 		}
3522 
3523 		if ((envoff = envp[nenv++]) == (uintptr_t)NULL)
3524 			break;
3525 
3526 		/*
3527 		 * Attempt to read the string from the process.
3528 		 */
3529 again:
3530 		ret = Pread_string(P, buf, buflen, envoff);
3531 
3532 		if (ret <= 0) {
3533 			nameval = NULL;
3534 		} else if (ret == buflen - 1) {
3535 			free(buf);
3536 			/*
3537 			 * Bail if we have a corrupted environment
3538 			 */
3539 			if (buflen >= ARG_MAX)
3540 				return (-1);
3541 			buflen *= 2;
3542 			buf = malloc(buflen);
3543 			goto again;
3544 		} else {
3545 			nameval = buf;
3546 		}
3547 
3548 		if ((ret = func(data, P, envoff, nameval)) != 0)
3549 			break;
3550 
3551 		envpoff += (P->status.pr_dmodel == PR_MODEL_LP64)? 8 : 4;
3552 	}
3553 
3554 	free(buf);
3555 
3556 	return (ret);
3557 }
3558