xref: /illumos-gate/usr/src/lib/libproc/common/Psymtab.c (revision 8629b981ede6d47b0583ca2d3e62baeaa4f26e93)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25  * Copyright (c) 2013 by Delphix. All rights reserved.
26  */
27 
28 #include <assert.h>
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <stddef.h>
32 #include <unistd.h>
33 #include <ctype.h>
34 #include <fcntl.h>
35 #include <string.h>
36 #include <strings.h>
37 #include <memory.h>
38 #include <errno.h>
39 #include <dirent.h>
40 #include <signal.h>
41 #include <limits.h>
42 #include <libgen.h>
43 #include <sys/types.h>
44 #include <sys/stat.h>
45 #include <sys/sysmacros.h>
46 
47 #include "libproc.h"
48 #include "Pcontrol.h"
49 #include "Putil.h"
50 #include "Psymtab_machelf.h"
51 
52 static file_info_t *build_map_symtab(struct ps_prochandle *, map_info_t *);
53 static map_info_t *exec_map(struct ps_prochandle *);
54 static map_info_t *object_to_map(struct ps_prochandle *, Lmid_t, const char *);
55 static map_info_t *object_name_to_map(struct ps_prochandle *,
56 	Lmid_t, const char *);
57 static GElf_Sym *sym_by_name(sym_tbl_t *, const char *, GElf_Sym *, uint_t *);
58 static int read_ehdr32(struct ps_prochandle *, Elf32_Ehdr *, uint_t *,
59     uintptr_t);
60 #ifdef _LP64
61 static int read_ehdr64(struct ps_prochandle *, Elf64_Ehdr *, uint_t *,
62     uintptr_t);
63 #endif
64 
65 #define	DATA_TYPES	\
66 	((1 << STT_OBJECT) | (1 << STT_FUNC) | \
67 	(1 << STT_COMMON) | (1 << STT_TLS))
68 #define	IS_DATA_TYPE(tp)	(((1 << (tp)) & DATA_TYPES) != 0)
69 
70 #define	MA_RWX	(MA_READ | MA_WRITE | MA_EXEC)
71 
72 typedef enum {
73 	PRO_NATURAL,
74 	PRO_BYADDR,
75 	PRO_BYNAME
76 } pr_order_t;
77 
78 static int
79 addr_cmp(const void *aa, const void *bb)
80 {
81 	uintptr_t a = *((uintptr_t *)aa);
82 	uintptr_t b = *((uintptr_t *)bb);
83 
84 	if (a > b)
85 		return (1);
86 	if (a < b)
87 		return (-1);
88 	return (0);
89 }
90 
91 /*
92  * This function creates a list of addresses for a load object's sections.
93  * The list is in ascending address order and alternates start address
94  * then end address for each section we're interested in. The function
95  * returns a pointer to the list, which must be freed by the caller.
96  */
97 static uintptr_t *
98 get_saddrs(struct ps_prochandle *P, uintptr_t ehdr_start, uint_t *n)
99 {
100 	uintptr_t a, addr, *addrs, last = 0;
101 	uint_t i, naddrs = 0, unordered = 0;
102 
103 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
104 		Elf32_Ehdr ehdr;
105 		Elf32_Phdr phdr;
106 		uint_t phnum;
107 
108 		if (read_ehdr32(P, &ehdr, &phnum, ehdr_start) != 0)
109 			return (NULL);
110 
111 		addrs = malloc(sizeof (uintptr_t) * phnum * 2);
112 		a = ehdr_start + ehdr.e_phoff;
113 		for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
114 			if (Pread(P, &phdr, sizeof (phdr), a) !=
115 			    sizeof (phdr)) {
116 				free(addrs);
117 				return (NULL);
118 			}
119 			if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
120 				continue;
121 
122 			addr = phdr.p_vaddr;
123 			if (ehdr.e_type == ET_DYN)
124 				addr += ehdr_start;
125 			if (last > addr)
126 				unordered = 1;
127 			addrs[naddrs++] = addr;
128 			addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
129 		}
130 #ifdef _LP64
131 	} else {
132 		Elf64_Ehdr ehdr;
133 		Elf64_Phdr phdr;
134 		uint_t phnum;
135 
136 		if (read_ehdr64(P, &ehdr, &phnum, ehdr_start) != 0)
137 			return (NULL);
138 
139 		addrs = malloc(sizeof (uintptr_t) * phnum * 2);
140 		a = ehdr_start + ehdr.e_phoff;
141 		for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
142 			if (Pread(P, &phdr, sizeof (phdr), a) !=
143 			    sizeof (phdr)) {
144 				free(addrs);
145 				return (NULL);
146 			}
147 			if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
148 				continue;
149 
150 			addr = phdr.p_vaddr;
151 			if (ehdr.e_type == ET_DYN)
152 				addr += ehdr_start;
153 			if (last > addr)
154 				unordered = 1;
155 			addrs[naddrs++] = addr;
156 			addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
157 		}
158 #endif
159 	}
160 
161 	if (unordered)
162 		qsort(addrs, naddrs, sizeof (uintptr_t), addr_cmp);
163 
164 	*n = naddrs;
165 	return (addrs);
166 }
167 
168 /*
169  * Allocation function for a new file_info_t
170  */
171 file_info_t *
172 file_info_new(struct ps_prochandle *P, map_info_t *mptr)
173 {
174 	file_info_t *fptr;
175 	map_info_t *mp;
176 	uintptr_t mstart, mend, sstart, send;
177 	uint_t i;
178 
179 	if ((fptr = calloc(1, sizeof (file_info_t))) == NULL)
180 		return (NULL);
181 
182 	list_link(fptr, &P->file_head);
183 	(void) strcpy(fptr->file_pname, mptr->map_pmap.pr_mapname);
184 	mptr->map_file = fptr;
185 	fptr->file_ref = 1;
186 	fptr->file_fd = -1;
187 	P->num_files++;
188 
189 	/*
190 	 * To figure out which map_info_t instances correspond to the mappings
191 	 * for this load object we try to obtain the start and end address
192 	 * for each section of our in-memory ELF image. If successful, we
193 	 * walk down the list of addresses and the list of map_info_t
194 	 * instances in lock step to correctly find the mappings that
195 	 * correspond to this load object.
196 	 */
197 	if ((fptr->file_saddrs = get_saddrs(P, mptr->map_pmap.pr_vaddr,
198 	    &fptr->file_nsaddrs)) == NULL)
199 		return (fptr);
200 
201 	mp = P->mappings;
202 	i = 0;
203 	while (mp < P->mappings + P->map_count && i < fptr->file_nsaddrs) {
204 
205 		/* Calculate the start and end of the mapping and section */
206 		mstart = mp->map_pmap.pr_vaddr;
207 		mend = mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size;
208 		sstart = fptr->file_saddrs[i];
209 		send = fptr->file_saddrs[i + 1];
210 
211 		if (mend <= sstart) {
212 			/* This mapping is below the current section */
213 			mp++;
214 		} else if (mstart >= send) {
215 			/* This mapping is above the current section */
216 			i += 2;
217 		} else {
218 			/* This mapping overlaps the current section */
219 			if (mp->map_file == NULL) {
220 				dprintf("file_info_new: associating "
221 				    "segment at %p\n",
222 				    (void *)mp->map_pmap.pr_vaddr);
223 				mp->map_file = fptr;
224 				fptr->file_ref++;
225 			} else {
226 				dprintf("file_info_new: segment at %p "
227 				    "already associated with %s\n",
228 				    (void *)mp->map_pmap.pr_vaddr,
229 				    (mp == mptr ? "this file" :
230 				    mp->map_file->file_pname));
231 			}
232 			mp++;
233 		}
234 	}
235 
236 	return (fptr);
237 }
238 
239 /*
240  * Deallocation function for a file_info_t
241  */
242 static void
243 file_info_free(struct ps_prochandle *P, file_info_t *fptr)
244 {
245 	if (--fptr->file_ref == 0) {
246 		list_unlink(fptr);
247 		if (fptr->file_symtab.sym_elf) {
248 			(void) elf_end(fptr->file_symtab.sym_elf);
249 			free(fptr->file_symtab.sym_elfmem);
250 		}
251 		if (fptr->file_symtab.sym_byname)
252 			free(fptr->file_symtab.sym_byname);
253 		if (fptr->file_symtab.sym_byaddr)
254 			free(fptr->file_symtab.sym_byaddr);
255 
256 		if (fptr->file_dynsym.sym_elf) {
257 			(void) elf_end(fptr->file_dynsym.sym_elf);
258 			free(fptr->file_dynsym.sym_elfmem);
259 		}
260 		if (fptr->file_dynsym.sym_byname)
261 			free(fptr->file_dynsym.sym_byname);
262 		if (fptr->file_dynsym.sym_byaddr)
263 			free(fptr->file_dynsym.sym_byaddr);
264 
265 		if (fptr->file_lo)
266 			free(fptr->file_lo);
267 		if (fptr->file_lname)
268 			free(fptr->file_lname);
269 		if (fptr->file_rname)
270 			free(fptr->file_rname);
271 		if (fptr->file_elf)
272 			(void) elf_end(fptr->file_elf);
273 		if (fptr->file_elfmem != NULL)
274 			free(fptr->file_elfmem);
275 		if (fptr->file_fd >= 0)
276 			(void) close(fptr->file_fd);
277 		if (fptr->file_ctfp) {
278 			ctf_close(fptr->file_ctfp);
279 			free(fptr->file_ctf_buf);
280 		}
281 		if (fptr->file_saddrs)
282 			free(fptr->file_saddrs);
283 		free(fptr);
284 		P->num_files--;
285 	}
286 }
287 
288 /*
289  * Deallocation function for a map_info_t
290  */
291 static void
292 map_info_free(struct ps_prochandle *P, map_info_t *mptr)
293 {
294 	file_info_t *fptr;
295 
296 	if ((fptr = mptr->map_file) != NULL) {
297 		if (fptr->file_map == mptr)
298 			fptr->file_map = NULL;
299 		file_info_free(P, fptr);
300 	}
301 	if (P->execname && mptr == P->map_exec) {
302 		free(P->execname);
303 		P->execname = NULL;
304 	}
305 	if (P->auxv && (mptr == P->map_exec || mptr == P->map_ldso)) {
306 		free(P->auxv);
307 		P->auxv = NULL;
308 		P->nauxv = 0;
309 	}
310 	if (mptr == P->map_exec)
311 		P->map_exec = NULL;
312 	if (mptr == P->map_ldso)
313 		P->map_ldso = NULL;
314 }
315 
316 /*
317  * Call-back function for librtld_db to iterate through all of its shared
318  * libraries.  We use this to get the load object names for the mappings.
319  */
320 static int
321 map_iter(const rd_loadobj_t *lop, void *cd)
322 {
323 	char buf[PATH_MAX];
324 	struct ps_prochandle *P = cd;
325 	map_info_t *mptr;
326 	file_info_t *fptr;
327 
328 	dprintf("encountered rd object at %p\n", (void *)lop->rl_base);
329 
330 	if ((mptr = Paddr2mptr(P, lop->rl_base)) == NULL) {
331 		dprintf("map_iter: base address doesn't match any mapping\n");
332 		return (1); /* Base address does not match any mapping */
333 	}
334 
335 	if ((fptr = mptr->map_file) == NULL &&
336 	    (fptr = file_info_new(P, mptr)) == NULL) {
337 		dprintf("map_iter: failed to allocate a new file_info_t\n");
338 		return (1); /* Failed to allocate a new file_info_t */
339 	}
340 
341 	if ((fptr->file_lo == NULL) &&
342 	    (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
343 		dprintf("map_iter: failed to allocate rd_loadobj_t\n");
344 		file_info_free(P, fptr);
345 		return (1); /* Failed to allocate rd_loadobj_t */
346 	}
347 
348 	fptr->file_map = mptr;
349 	*fptr->file_lo = *lop;
350 
351 	fptr->file_lo->rl_plt_base = fptr->file_plt_base;
352 	fptr->file_lo->rl_plt_size = fptr->file_plt_size;
353 
354 	if (fptr->file_lname) {
355 		free(fptr->file_lname);
356 		fptr->file_lname = NULL;
357 		fptr->file_lbase = NULL;
358 	}
359 	if (fptr->file_rname) {
360 		free(fptr->file_rname);
361 		fptr->file_rname = NULL;
362 		fptr->file_rbase = NULL;
363 	}
364 
365 	if (Pread_string(P, buf, sizeof (buf), lop->rl_nameaddr) > 0) {
366 		if ((fptr->file_lname = strdup(buf)) != NULL)
367 			fptr->file_lbase = basename(fptr->file_lname);
368 	} else {
369 		dprintf("map_iter: failed to read string at %p\n",
370 		    (void *)lop->rl_nameaddr);
371 	}
372 
373 	if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) &&
374 	    ((fptr->file_rname = strdup(buf)) != NULL))
375 		fptr->file_rbase = basename(fptr->file_rname);
376 
377 	dprintf("loaded rd object %s lmid %lx\n",
378 	    fptr->file_lname ? buf : "<NULL>", lop->rl_lmident);
379 	return (1);
380 }
381 
382 static void
383 map_set(struct ps_prochandle *P, map_info_t *mptr, const char *lname)
384 {
385 	file_info_t *fptr;
386 	char buf[PATH_MAX];
387 
388 	if ((fptr = mptr->map_file) == NULL &&
389 	    (fptr = file_info_new(P, mptr)) == NULL)
390 		return; /* Failed to allocate a new file_info_t */
391 
392 	fptr->file_map = mptr;
393 
394 	if ((fptr->file_lo == NULL) &&
395 	    (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
396 		file_info_free(P, fptr);
397 		return; /* Failed to allocate rd_loadobj_t */
398 	}
399 
400 	(void) memset(fptr->file_lo, 0, sizeof (rd_loadobj_t));
401 	fptr->file_lo->rl_base = mptr->map_pmap.pr_vaddr;
402 	fptr->file_lo->rl_bend =
403 	    mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
404 
405 	fptr->file_lo->rl_plt_base = fptr->file_plt_base;
406 	fptr->file_lo->rl_plt_size = fptr->file_plt_size;
407 
408 	if ((fptr->file_lname == NULL) &&
409 	    (fptr->file_lname = strdup(lname)) != NULL)
410 		fptr->file_lbase = basename(fptr->file_lname);
411 
412 	if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) &&
413 	    ((fptr->file_rname = strdup(buf)) != NULL))
414 		fptr->file_rbase = basename(fptr->file_rname);
415 }
416 
417 static void
418 load_static_maps(struct ps_prochandle *P)
419 {
420 	map_info_t *mptr;
421 
422 	/*
423 	 * Construct the map for the a.out.
424 	 */
425 	if ((mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_EXEC)) != NULL)
426 		map_set(P, mptr, "a.out");
427 
428 	/*
429 	 * If the dynamic linker exists for this process,
430 	 * construct the map for it.
431 	 */
432 	if (Pgetauxval(P, AT_BASE) != -1L &&
433 	    (mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_LDSO)) != NULL)
434 		map_set(P, mptr, "ld.so.1");
435 }
436 
437 int
438 Preadmaps(struct ps_prochandle *P, prmap_t **Pmapp, ssize_t *nmapp)
439 {
440 	return (P->ops.pop_read_maps(P, Pmapp, nmapp, P->data));
441 }
442 
443 /*
444  * Go through all the address space mappings, validating or updating
445  * the information already gathered, or gathering new information.
446  *
447  * This function is only called when we suspect that the mappings have changed
448  * because this is the first time we're calling it or because of rtld activity.
449  */
450 void
451 Pupdate_maps(struct ps_prochandle *P)
452 {
453 	prmap_t *Pmap = NULL;
454 	prmap_t *pmap;
455 	ssize_t nmap;
456 	int i;
457 	uint_t oldmapcount;
458 	map_info_t *newmap, *newp;
459 	map_info_t *mptr;
460 
461 	if (P->info_valid || P->state == PS_UNDEAD)
462 		return;
463 
464 	Preadauxvec(P);
465 
466 	if (Preadmaps(P, &Pmap, &nmap) != 0)
467 		return;
468 
469 	if ((newmap = calloc(1, nmap * sizeof (map_info_t))) == NULL)
470 		return;
471 
472 	/*
473 	 * We try to merge any file information we may have for existing
474 	 * mappings, to avoid having to rebuild the file info.
475 	 */
476 	mptr = P->mappings;
477 	pmap = Pmap;
478 	newp = newmap;
479 	oldmapcount = P->map_count;
480 	for (i = 0; i < nmap; i++, pmap++, newp++) {
481 
482 		if (oldmapcount == 0) {
483 			/*
484 			 * We've exhausted all the old mappings.  Every new
485 			 * mapping should be added.
486 			 */
487 			newp->map_pmap = *pmap;
488 
489 		} else if (pmap->pr_vaddr == mptr->map_pmap.pr_vaddr &&
490 		    pmap->pr_size == mptr->map_pmap.pr_size &&
491 		    pmap->pr_offset == mptr->map_pmap.pr_offset &&
492 		    (pmap->pr_mflags & ~(MA_BREAK | MA_STACK)) ==
493 		    (mptr->map_pmap.pr_mflags & ~(MA_BREAK | MA_STACK)) &&
494 		    pmap->pr_pagesize == mptr->map_pmap.pr_pagesize &&
495 		    pmap->pr_shmid == mptr->map_pmap.pr_shmid &&
496 		    strcmp(pmap->pr_mapname, mptr->map_pmap.pr_mapname) == 0) {
497 
498 			/*
499 			 * This mapping matches exactly.  Copy over the old
500 			 * mapping, taking care to get the latest flags.
501 			 * Make sure the associated file_info_t is updated
502 			 * appropriately.
503 			 */
504 			*newp = *mptr;
505 			if (P->map_exec == mptr)
506 				P->map_exec = newp;
507 			if (P->map_ldso == mptr)
508 				P->map_ldso = newp;
509 			newp->map_pmap.pr_mflags = pmap->pr_mflags;
510 			if (mptr->map_file != NULL &&
511 			    mptr->map_file->file_map == mptr)
512 				mptr->map_file->file_map = newp;
513 			oldmapcount--;
514 			mptr++;
515 
516 		} else if (pmap->pr_vaddr + pmap->pr_size >
517 		    mptr->map_pmap.pr_vaddr) {
518 
519 			/*
520 			 * The old mapping doesn't exist any more, remove it
521 			 * from the list.
522 			 */
523 			map_info_free(P, mptr);
524 			oldmapcount--;
525 			i--;
526 			newp--;
527 			pmap--;
528 			mptr++;
529 
530 		} else {
531 
532 			/*
533 			 * This is a new mapping, add it directly.
534 			 */
535 			newp->map_pmap = *pmap;
536 		}
537 	}
538 
539 	/*
540 	 * Free any old maps
541 	 */
542 	while (oldmapcount) {
543 		map_info_free(P, mptr);
544 		oldmapcount--;
545 		mptr++;
546 	}
547 
548 	free(Pmap);
549 	if (P->mappings != NULL)
550 		free(P->mappings);
551 	P->mappings = newmap;
552 	P->map_count = P->map_alloc = nmap;
553 	P->info_valid = 1;
554 
555 	/*
556 	 * Consult librtld_db to get the load object
557 	 * names for all of the shared libraries.
558 	 */
559 	if (P->rap != NULL)
560 		(void) rd_loadobj_iter(P->rap, map_iter, P);
561 }
562 
563 /*
564  * Update all of the mappings and rtld_db as if by Pupdate_maps(), and then
565  * forcibly cache all of the symbol tables associated with all object files.
566  */
567 void
568 Pupdate_syms(struct ps_prochandle *P)
569 {
570 	file_info_t *fptr;
571 	int i;
572 
573 	Pupdate_maps(P);
574 
575 	for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
576 	    i++, fptr = list_next(fptr)) {
577 		Pbuild_file_symtab(P, fptr);
578 		(void) Pbuild_file_ctf(P, fptr);
579 	}
580 }
581 
582 /*
583  * Return the librtld_db agent handle for the victim process.
584  * The handle will become invalid at the next successful exec() and the
585  * client (caller of proc_rd_agent()) must not use it beyond that point.
586  * If the process is already dead, we've already tried our best to
587  * create the agent during core file initialization.
588  */
589 rd_agent_t *
590 Prd_agent(struct ps_prochandle *P)
591 {
592 	if (P->rap == NULL && P->state != PS_DEAD && P->state != PS_IDLE) {
593 		Pupdate_maps(P);
594 		if (P->num_files == 0)
595 			load_static_maps(P);
596 		rd_log(_libproc_debug);
597 		if ((P->rap = rd_new(P)) != NULL)
598 			(void) rd_loadobj_iter(P->rap, map_iter, P);
599 	}
600 	return (P->rap);
601 }
602 
603 /*
604  * Return the prmap_t structure containing 'addr', but only if it
605  * is in the dynamic linker's link map and is the text section.
606  */
607 const prmap_t *
608 Paddr_to_text_map(struct ps_prochandle *P, uintptr_t addr)
609 {
610 	map_info_t *mptr;
611 
612 	if (!P->info_valid)
613 		Pupdate_maps(P);
614 
615 	if ((mptr = Paddr2mptr(P, addr)) != NULL) {
616 		file_info_t *fptr = build_map_symtab(P, mptr);
617 		const prmap_t *pmp = &mptr->map_pmap;
618 
619 		/*
620 		 * Assume that if rl_data_base is NULL, it means that no
621 		 * data section was found for this load object, and that
622 		 * a section must be text. Otherwise, a section will be
623 		 * text unless it ends above the start of the data
624 		 * section.
625 		 */
626 		if (fptr != NULL && fptr->file_lo != NULL &&
627 		    (fptr->file_lo->rl_data_base == NULL ||
628 		    pmp->pr_vaddr + pmp->pr_size <=
629 		    fptr->file_lo->rl_data_base))
630 			return (pmp);
631 	}
632 
633 	return (NULL);
634 }
635 
636 /*
637  * Return the prmap_t structure containing 'addr' (no restrictions on
638  * the type of mapping).
639  */
640 const prmap_t *
641 Paddr_to_map(struct ps_prochandle *P, uintptr_t addr)
642 {
643 	map_info_t *mptr;
644 
645 	if (!P->info_valid)
646 		Pupdate_maps(P);
647 
648 	if ((mptr = Paddr2mptr(P, addr)) != NULL)
649 		return (&mptr->map_pmap);
650 
651 	return (NULL);
652 }
653 
654 /*
655  * Convert a full or partial load object name to the prmap_t for its
656  * corresponding primary text mapping.
657  */
658 const prmap_t *
659 Plmid_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
660 {
661 	map_info_t *mptr;
662 
663 	if (name == PR_OBJ_EVERY)
664 		return (NULL); /* A reasonable mistake */
665 
666 	if ((mptr = object_name_to_map(P, lmid, name)) != NULL)
667 		return (&mptr->map_pmap);
668 
669 	return (NULL);
670 }
671 
672 const prmap_t *
673 Pname_to_map(struct ps_prochandle *P, const char *name)
674 {
675 	return (Plmid_to_map(P, PR_LMID_EVERY, name));
676 }
677 
678 const rd_loadobj_t *
679 Paddr_to_loadobj(struct ps_prochandle *P, uintptr_t addr)
680 {
681 	map_info_t *mptr;
682 
683 	if (!P->info_valid)
684 		Pupdate_maps(P);
685 
686 	if ((mptr = Paddr2mptr(P, addr)) == NULL)
687 		return (NULL);
688 
689 	/*
690 	 * By building the symbol table, we implicitly bring the PLT
691 	 * information up to date in the load object.
692 	 */
693 	(void) build_map_symtab(P, mptr);
694 
695 	return (mptr->map_file->file_lo);
696 }
697 
698 const rd_loadobj_t *
699 Plmid_to_loadobj(struct ps_prochandle *P, Lmid_t lmid, const char *name)
700 {
701 	map_info_t *mptr;
702 
703 	if (name == PR_OBJ_EVERY)
704 		return (NULL);
705 
706 	if ((mptr = object_name_to_map(P, lmid, name)) == NULL)
707 		return (NULL);
708 
709 	/*
710 	 * By building the symbol table, we implicitly bring the PLT
711 	 * information up to date in the load object.
712 	 */
713 	(void) build_map_symtab(P, mptr);
714 
715 	return (mptr->map_file->file_lo);
716 }
717 
718 const rd_loadobj_t *
719 Pname_to_loadobj(struct ps_prochandle *P, const char *name)
720 {
721 	return (Plmid_to_loadobj(P, PR_LMID_EVERY, name));
722 }
723 
724 ctf_file_t *
725 Pbuild_file_ctf(struct ps_prochandle *P, file_info_t *fptr)
726 {
727 	ctf_sect_t ctdata, symtab, strtab;
728 	sym_tbl_t *symp;
729 	int err;
730 
731 	if (fptr->file_ctfp != NULL)
732 		return (fptr->file_ctfp);
733 
734 	Pbuild_file_symtab(P, fptr);
735 
736 	if (fptr->file_ctf_size == 0)
737 		return (NULL);
738 
739 	symp = fptr->file_ctf_dyn ? &fptr->file_dynsym : &fptr->file_symtab;
740 	if (symp->sym_data_pri == NULL)
741 		return (NULL);
742 
743 	/*
744 	 * The buffer may alread be allocated if this is a core file that
745 	 * contained CTF data for this file.
746 	 */
747 	if (fptr->file_ctf_buf == NULL) {
748 		fptr->file_ctf_buf = malloc(fptr->file_ctf_size);
749 		if (fptr->file_ctf_buf == NULL) {
750 			dprintf("failed to allocate ctf buffer\n");
751 			return (NULL);
752 		}
753 
754 		if (pread(fptr->file_fd, fptr->file_ctf_buf,
755 		    fptr->file_ctf_size, fptr->file_ctf_off) !=
756 		    fptr->file_ctf_size) {
757 			free(fptr->file_ctf_buf);
758 			fptr->file_ctf_buf = NULL;
759 			dprintf("failed to read ctf data\n");
760 			return (NULL);
761 		}
762 	}
763 
764 	ctdata.cts_name = ".SUNW_ctf";
765 	ctdata.cts_type = SHT_PROGBITS;
766 	ctdata.cts_flags = 0;
767 	ctdata.cts_data = fptr->file_ctf_buf;
768 	ctdata.cts_size = fptr->file_ctf_size;
769 	ctdata.cts_entsize = 1;
770 	ctdata.cts_offset = 0;
771 
772 	symtab.cts_name = fptr->file_ctf_dyn ? ".dynsym" : ".symtab";
773 	symtab.cts_type = symp->sym_hdr_pri.sh_type;
774 	symtab.cts_flags = symp->sym_hdr_pri.sh_flags;
775 	symtab.cts_data = symp->sym_data_pri->d_buf;
776 	symtab.cts_size = symp->sym_hdr_pri.sh_size;
777 	symtab.cts_entsize = symp->sym_hdr_pri.sh_entsize;
778 	symtab.cts_offset = symp->sym_hdr_pri.sh_offset;
779 
780 	strtab.cts_name = fptr->file_ctf_dyn ? ".dynstr" : ".strtab";
781 	strtab.cts_type = symp->sym_strhdr.sh_type;
782 	strtab.cts_flags = symp->sym_strhdr.sh_flags;
783 	strtab.cts_data = symp->sym_strs;
784 	strtab.cts_size = symp->sym_strhdr.sh_size;
785 	strtab.cts_entsize = symp->sym_strhdr.sh_entsize;
786 	strtab.cts_offset = symp->sym_strhdr.sh_offset;
787 
788 	fptr->file_ctfp = ctf_bufopen(&ctdata, &symtab, &strtab, &err);
789 	if (fptr->file_ctfp == NULL) {
790 		dprintf("ctf_bufopen() failed, error code %d\n", err);
791 		free(fptr->file_ctf_buf);
792 		fptr->file_ctf_buf = NULL;
793 		return (NULL);
794 	}
795 
796 	dprintf("loaded %lu bytes of CTF data for %s\n",
797 	    (ulong_t)fptr->file_ctf_size, fptr->file_pname);
798 
799 	return (fptr->file_ctfp);
800 }
801 
802 ctf_file_t *
803 Paddr_to_ctf(struct ps_prochandle *P, uintptr_t addr)
804 {
805 	map_info_t *mptr;
806 	file_info_t *fptr;
807 
808 	if (!P->info_valid)
809 		Pupdate_maps(P);
810 
811 	if ((mptr = Paddr2mptr(P, addr)) == NULL ||
812 	    (fptr = mptr->map_file) == NULL)
813 		return (NULL);
814 
815 	return (Pbuild_file_ctf(P, fptr));
816 }
817 
818 ctf_file_t *
819 Plmid_to_ctf(struct ps_prochandle *P, Lmid_t lmid, const char *name)
820 {
821 	map_info_t *mptr;
822 	file_info_t *fptr;
823 
824 	if (name == PR_OBJ_EVERY)
825 		return (NULL);
826 
827 	if ((mptr = object_name_to_map(P, lmid, name)) == NULL ||
828 	    (fptr = mptr->map_file) == NULL)
829 		return (NULL);
830 
831 	return (Pbuild_file_ctf(P, fptr));
832 }
833 
834 ctf_file_t *
835 Pname_to_ctf(struct ps_prochandle *P, const char *name)
836 {
837 	return (Plmid_to_ctf(P, PR_LMID_EVERY, name));
838 }
839 
840 void
841 Preadauxvec(struct ps_prochandle *P)
842 {
843 	if (P->auxv != NULL) {
844 		free(P->auxv);
845 		P->auxv = NULL;
846 		P->nauxv = 0;
847 	}
848 
849 	P->ops.pop_read_aux(P, &P->auxv, &P->nauxv, P->data);
850 }
851 
852 /*
853  * Return a requested element from the process's aux vector.
854  * Return -1 on failure (this is adequate for our purposes).
855  */
856 long
857 Pgetauxval(struct ps_prochandle *P, int type)
858 {
859 	auxv_t *auxv;
860 
861 	if (P->auxv == NULL)
862 		Preadauxvec(P);
863 
864 	if (P->auxv == NULL)
865 		return (-1);
866 
867 	for (auxv = P->auxv; auxv->a_type != AT_NULL; auxv++) {
868 		if (auxv->a_type == type)
869 			return (auxv->a_un.a_val);
870 	}
871 
872 	return (-1);
873 }
874 
875 /*
876  * Return a pointer to our internal copy of the process's aux vector.
877  * The caller should not hold on to this pointer across any libproc calls.
878  */
879 const auxv_t *
880 Pgetauxvec(struct ps_prochandle *P)
881 {
882 	static const auxv_t empty = { AT_NULL, 0L };
883 
884 	if (P->auxv == NULL)
885 		Preadauxvec(P);
886 
887 	if (P->auxv == NULL)
888 		return (&empty);
889 
890 	return (P->auxv);
891 }
892 
893 /*
894  * Return 1 if the given mapping corresponds to the given file_info_t's
895  * load object; return 0 otherwise.
896  */
897 static int
898 is_mapping_in_file(struct ps_prochandle *P, map_info_t *mptr, file_info_t *fptr)
899 {
900 	prmap_t *pmap = &mptr->map_pmap;
901 	rd_loadobj_t *lop = fptr->file_lo;
902 	uint_t i;
903 	uintptr_t mstart, mend, sstart, send;
904 
905 	/*
906 	 * We can get for free the start address of the text and data
907 	 * sections of the load object. Start by seeing if the mapping
908 	 * encloses either of these.
909 	 */
910 	if ((pmap->pr_vaddr <= lop->rl_base &&
911 	    lop->rl_base < pmap->pr_vaddr + pmap->pr_size) ||
912 	    (pmap->pr_vaddr <= lop->rl_data_base &&
913 	    lop->rl_data_base < pmap->pr_vaddr + pmap->pr_size))
914 		return (1);
915 
916 	/*
917 	 * It's still possible that this mapping correponds to the load
918 	 * object. Consider the example of a mapping whose start and end
919 	 * addresses correspond to those of the load object's text section.
920 	 * If the mapping splits, e.g. as a result of a segment demotion,
921 	 * then although both mappings are still backed by the same section,
922 	 * only one will be seen to enclose that section's start address.
923 	 * Thus, to be rigorous, we ask not whether this mapping encloses
924 	 * the start of a section, but whether there exists a section that
925 	 * overlaps this mapping.
926 	 *
927 	 * If we don't already have the section addresses, and we successfully
928 	 * get them, then we cache them in case we come here again.
929 	 */
930 	if (fptr->file_saddrs == NULL &&
931 	    (fptr->file_saddrs = get_saddrs(P,
932 	    fptr->file_map->map_pmap.pr_vaddr, &fptr->file_nsaddrs)) == NULL)
933 		return (0);
934 
935 	mstart = mptr->map_pmap.pr_vaddr;
936 	mend = mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
937 	for (i = 0; i < fptr->file_nsaddrs; i += 2) {
938 		/* Does this section overlap the mapping? */
939 		sstart = fptr->file_saddrs[i];
940 		send = fptr->file_saddrs[i + 1];
941 		if (!(mend <= sstart || mstart >= send))
942 			return (1);
943 	}
944 
945 	return (0);
946 }
947 
948 /*
949  * Find or build the symbol table for the given mapping.
950  */
951 static file_info_t *
952 build_map_symtab(struct ps_prochandle *P, map_info_t *mptr)
953 {
954 	prmap_t *pmap = &mptr->map_pmap;
955 	file_info_t *fptr;
956 	uint_t i;
957 
958 	if ((fptr = mptr->map_file) != NULL) {
959 		Pbuild_file_symtab(P, fptr);
960 		return (fptr);
961 	}
962 
963 	if (pmap->pr_mapname[0] == '\0')
964 		return (NULL);
965 
966 	/*
967 	 * Attempt to find a matching file.
968 	 * (A file can be mapped at several different addresses.)
969 	 */
970 	for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
971 	    i++, fptr = list_next(fptr)) {
972 		if (strcmp(fptr->file_pname, pmap->pr_mapname) == 0 &&
973 		    fptr->file_lo && is_mapping_in_file(P, mptr, fptr)) {
974 			mptr->map_file = fptr;
975 			fptr->file_ref++;
976 			Pbuild_file_symtab(P, fptr);
977 			return (fptr);
978 		}
979 	}
980 
981 	/*
982 	 * If we need to create a new file_info structure, iterate
983 	 * through the load objects in order to attempt to connect
984 	 * this new file with its primary text mapping.  We again
985 	 * need to handle ld.so as a special case because we need
986 	 * to be able to bootstrap librtld_db.
987 	 */
988 	if ((fptr = file_info_new(P, mptr)) == NULL)
989 		return (NULL);
990 
991 	if (P->map_ldso != mptr) {
992 		if (P->rap != NULL)
993 			(void) rd_loadobj_iter(P->rap, map_iter, P);
994 		else
995 			(void) Prd_agent(P);
996 	} else {
997 		fptr->file_map = mptr;
998 	}
999 
1000 	/*
1001 	 * If librtld_db wasn't able to help us connect the file to a primary
1002 	 * text mapping, set file_map to the current mapping because we require
1003 	 * fptr->file_map to be set in Pbuild_file_symtab.  librtld_db may be
1004 	 * unaware of what's going on in the rare case that a legitimate ELF
1005 	 * file has been mmap(2)ed into the process address space *without*
1006 	 * the use of dlopen(3x).
1007 	 */
1008 	if (fptr->file_map == NULL)
1009 		fptr->file_map = mptr;
1010 
1011 	Pbuild_file_symtab(P, fptr);
1012 
1013 	return (fptr);
1014 }
1015 
1016 static int
1017 read_ehdr32(struct ps_prochandle *P, Elf32_Ehdr *ehdr, uint_t *phnum,
1018     uintptr_t addr)
1019 {
1020 	if (Pread(P, ehdr, sizeof (*ehdr), addr) != sizeof (*ehdr))
1021 		return (-1);
1022 
1023 	if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1024 	    ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1025 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1026 	    ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1027 	    ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
1028 #ifdef _BIG_ENDIAN
1029 	    ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1030 #else
1031 	    ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1032 #endif
1033 	    ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1034 		return (-1);
1035 
1036 	if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1037 		Elf32_Shdr shdr0;
1038 
1039 		if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1040 		    Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1041 		    sizeof (shdr0))
1042 			return (-1);
1043 
1044 		if (shdr0.sh_info != 0)
1045 			*phnum = shdr0.sh_info;
1046 	}
1047 
1048 	return (0);
1049 }
1050 
1051 static int
1052 read_dynamic_phdr32(struct ps_prochandle *P, const Elf32_Ehdr *ehdr,
1053     uint_t phnum, Elf32_Phdr *phdr, uintptr_t addr)
1054 {
1055 	uint_t i;
1056 
1057 	for (i = 0; i < phnum; i++) {
1058 		uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1059 		if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1060 			return (-1);
1061 
1062 		if (phdr->p_type == PT_DYNAMIC)
1063 			return (0);
1064 	}
1065 
1066 	return (-1);
1067 }
1068 
1069 #ifdef _LP64
1070 static int
1071 read_ehdr64(struct ps_prochandle *P, Elf64_Ehdr *ehdr, uint_t *phnum,
1072     uintptr_t addr)
1073 {
1074 	if (Pread(P, ehdr, sizeof (Elf64_Ehdr), addr) != sizeof (Elf64_Ehdr))
1075 		return (-1);
1076 
1077 	if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1078 	    ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1079 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1080 	    ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1081 	    ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
1082 #ifdef _BIG_ENDIAN
1083 	    ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1084 #else
1085 	    ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1086 #endif
1087 	    ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1088 		return (-1);
1089 
1090 	if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1091 		Elf64_Shdr shdr0;
1092 
1093 		if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1094 		    Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1095 		    sizeof (shdr0))
1096 			return (-1);
1097 
1098 		if (shdr0.sh_info != 0)
1099 			*phnum = shdr0.sh_info;
1100 	}
1101 
1102 	return (0);
1103 }
1104 
1105 static int
1106 read_dynamic_phdr64(struct ps_prochandle *P, const Elf64_Ehdr *ehdr,
1107     uint_t phnum, Elf64_Phdr *phdr, uintptr_t addr)
1108 {
1109 	uint_t i;
1110 
1111 	for (i = 0; i < phnum; i++) {
1112 		uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1113 		if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1114 			return (-1);
1115 
1116 		if (phdr->p_type == PT_DYNAMIC)
1117 			return (0);
1118 	}
1119 
1120 	return (-1);
1121 }
1122 #endif	/* _LP64 */
1123 
1124 /*
1125  * The text segment for each load object contains the elf header and
1126  * program headers. We can use this information to determine if the
1127  * file that corresponds to the load object is the same file that
1128  * was loaded into the process's address space. There can be a discrepency
1129  * if a file is recompiled after the process is started or if the target
1130  * represents a core file from a differently configured system -- two
1131  * common examples. The DT_CHECKSUM entry in the dynamic section
1132  * provides an easy method of comparison. It is important to note that
1133  * the dynamic section usually lives in the data segment, but the meta
1134  * data we use to find the dynamic section lives in the text segment so
1135  * if either of those segments is absent we can't proceed.
1136  *
1137  * We're looking through the elf file for several items: the symbol tables
1138  * (both dynsym and symtab), the procedure linkage table (PLT) base,
1139  * size, and relocation base, and the CTF information. Most of this can
1140  * be recovered from the loaded image of the file itself, the exceptions
1141  * being the symtab and CTF data.
1142  *
1143  * First we try to open the file that we think corresponds to the load
1144  * object, if the DT_CHECKSUM values match, we're all set, and can simply
1145  * recover all the information we need from the file. If the values of
1146  * DT_CHECKSUM don't match, or if we can't access the file for whatever
1147  * reasaon, we fake up a elf file to use in its stead. If we can't read
1148  * the elf data in the process's address space, we fall back to using
1149  * the file even though it may give inaccurate information.
1150  *
1151  * The elf file that we fake up has to consist of sections for the
1152  * dynsym, the PLT and the dynamic section. Note that in the case of a
1153  * core file, we'll get the CTF data in the file_info_t later on from
1154  * a section embedded the core file (if it's present).
1155  *
1156  * file_differs() conservatively looks for mismatched files, identifying
1157  * a match when there is any ambiguity (since that's the legacy behavior).
1158  */
1159 static int
1160 file_differs(struct ps_prochandle *P, Elf *elf, file_info_t *fptr)
1161 {
1162 	Elf_Scn *scn;
1163 	GElf_Shdr shdr;
1164 	GElf_Dyn dyn;
1165 	Elf_Data *data;
1166 	uint_t i, ndyn;
1167 	GElf_Xword cksum;
1168 	uintptr_t addr;
1169 
1170 	if (fptr->file_map == NULL)
1171 		return (0);
1172 
1173 	if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1174 	    (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1175 		return (0);
1176 
1177 	/*
1178 	 * First, we find the checksum value in the elf file.
1179 	 */
1180 	scn = NULL;
1181 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1182 		if (gelf_getshdr(scn, &shdr) != NULL &&
1183 		    shdr.sh_type == SHT_DYNAMIC)
1184 			goto found_shdr;
1185 	}
1186 	return (0);
1187 
1188 found_shdr:
1189 	if ((data = elf_getdata(scn, NULL)) == NULL)
1190 		return (0);
1191 
1192 	if (P->status.pr_dmodel == PR_MODEL_ILP32)
1193 		ndyn = shdr.sh_size / sizeof (Elf32_Dyn);
1194 #ifdef _LP64
1195 	else if (P->status.pr_dmodel == PR_MODEL_LP64)
1196 		ndyn = shdr.sh_size / sizeof (Elf64_Dyn);
1197 #endif
1198 	else
1199 		return (0);
1200 
1201 	for (i = 0; i < ndyn; i++) {
1202 		if (gelf_getdyn(data, i, &dyn) != NULL &&
1203 		    dyn.d_tag == DT_CHECKSUM)
1204 			goto found_cksum;
1205 	}
1206 
1207 	/*
1208 	 * The in-memory ELF has no DT_CHECKSUM section, but we will report it
1209 	 * as matching the file anyhow.
1210 	 */
1211 	return (0);
1212 
1213 found_cksum:
1214 	cksum = dyn.d_un.d_val;
1215 	dprintf("elf cksum value is %llx\n", (u_longlong_t)cksum);
1216 
1217 	/*
1218 	 * Get the base of the text mapping that corresponds to this file.
1219 	 */
1220 	addr = fptr->file_map->map_pmap.pr_vaddr;
1221 
1222 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1223 		Elf32_Ehdr ehdr;
1224 		Elf32_Phdr phdr;
1225 		Elf32_Dyn dync, *dynp;
1226 		uint_t phnum, i;
1227 
1228 		if (read_ehdr32(P, &ehdr, &phnum, addr) != 0 ||
1229 		    read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1230 			return (0);
1231 
1232 		if (ehdr.e_type == ET_DYN)
1233 			phdr.p_vaddr += addr;
1234 		if ((dynp = malloc(phdr.p_filesz)) == NULL)
1235 			return (0);
1236 		dync.d_tag = DT_NULL;
1237 		if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1238 		    phdr.p_filesz) {
1239 			free(dynp);
1240 			return (0);
1241 		}
1242 
1243 		for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) {
1244 			if (dynp[i].d_tag == DT_CHECKSUM)
1245 				dync = dynp[i];
1246 		}
1247 
1248 		free(dynp);
1249 
1250 		if (dync.d_tag != DT_CHECKSUM)
1251 			return (0);
1252 
1253 		dprintf("image cksum value is %llx\n",
1254 		    (u_longlong_t)dync.d_un.d_val);
1255 		return (dync.d_un.d_val != cksum);
1256 #ifdef _LP64
1257 	} else if (P->status.pr_dmodel == PR_MODEL_LP64) {
1258 		Elf64_Ehdr ehdr;
1259 		Elf64_Phdr phdr;
1260 		Elf64_Dyn dync, *dynp;
1261 		uint_t phnum, i;
1262 
1263 		if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1264 		    read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1265 			return (0);
1266 
1267 		if (ehdr.e_type == ET_DYN)
1268 			phdr.p_vaddr += addr;
1269 		if ((dynp = malloc(phdr.p_filesz)) == NULL)
1270 			return (0);
1271 		dync.d_tag = DT_NULL;
1272 		if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1273 		    phdr.p_filesz) {
1274 			free(dynp);
1275 			return (0);
1276 		}
1277 
1278 		for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) {
1279 			if (dynp[i].d_tag == DT_CHECKSUM)
1280 				dync = dynp[i];
1281 		}
1282 
1283 		free(dynp);
1284 
1285 		if (dync.d_tag != DT_CHECKSUM)
1286 			return (0);
1287 
1288 		dprintf("image cksum value is %llx\n",
1289 		    (u_longlong_t)dync.d_un.d_val);
1290 		return (dync.d_un.d_val != cksum);
1291 #endif	/* _LP64 */
1292 	}
1293 
1294 	return (0);
1295 }
1296 
1297 /*
1298  * Read data from the specified process and construct an in memory
1299  * image of an ELF file that represents it well enough to let
1300  * us probe it for information.
1301  */
1302 static Elf *
1303 fake_elf(struct ps_prochandle *P, file_info_t *fptr)
1304 {
1305 	Elf *elf;
1306 	uintptr_t addr;
1307 	uint_t phnum;
1308 
1309 	if (fptr->file_map == NULL)
1310 		return (NULL);
1311 
1312 	if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1313 	    (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1314 		return (NULL);
1315 
1316 	addr = fptr->file_map->map_pmap.pr_vaddr;
1317 
1318 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1319 		Elf32_Ehdr ehdr;
1320 		Elf32_Phdr phdr;
1321 
1322 		if ((read_ehdr32(P, &ehdr, &phnum, addr) != 0) ||
1323 		    read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1324 			return (NULL);
1325 
1326 		elf = fake_elf32(P, fptr, addr, &ehdr, phnum, &phdr);
1327 #ifdef _LP64
1328 	} else {
1329 		Elf64_Ehdr ehdr;
1330 		Elf64_Phdr phdr;
1331 
1332 		if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1333 		    read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1334 			return (NULL);
1335 
1336 		elf = fake_elf64(P, fptr, addr, &ehdr, phnum, &phdr);
1337 #endif
1338 	}
1339 
1340 	return (elf);
1341 }
1342 
1343 /*
1344  * We wouldn't need these if qsort(3C) took an argument for the callback...
1345  */
1346 static mutex_t sort_mtx = DEFAULTMUTEX;
1347 static char *sort_strs;
1348 static GElf_Sym *sort_syms;
1349 
1350 int
1351 byaddr_cmp_common(GElf_Sym *a, char *aname, GElf_Sym *b, char *bname)
1352 {
1353 	if (a->st_value < b->st_value)
1354 		return (-1);
1355 	if (a->st_value > b->st_value)
1356 		return (1);
1357 
1358 	/*
1359 	 * Prefer the function to the non-function.
1360 	 */
1361 	if (GELF_ST_TYPE(a->st_info) != GELF_ST_TYPE(b->st_info)) {
1362 		if (GELF_ST_TYPE(a->st_info) == STT_FUNC)
1363 			return (-1);
1364 		if (GELF_ST_TYPE(b->st_info) == STT_FUNC)
1365 			return (1);
1366 	}
1367 
1368 	/*
1369 	 * Prefer the weak or strong global symbol to the local symbol.
1370 	 */
1371 	if (GELF_ST_BIND(a->st_info) != GELF_ST_BIND(b->st_info)) {
1372 		if (GELF_ST_BIND(b->st_info) == STB_LOCAL)
1373 			return (-1);
1374 		if (GELF_ST_BIND(a->st_info) == STB_LOCAL)
1375 			return (1);
1376 	}
1377 
1378 	/*
1379 	 * Prefer the symbol that doesn't begin with a '$' since compilers and
1380 	 * other symbol generators often use it as a prefix.
1381 	 */
1382 	if (*bname == '$')
1383 		return (-1);
1384 	if (*aname == '$')
1385 		return (1);
1386 
1387 	/*
1388 	 * Prefer the name with fewer leading underscores in the name.
1389 	 */
1390 	while (*aname == '_' && *bname == '_') {
1391 		aname++;
1392 		bname++;
1393 	}
1394 
1395 	if (*bname == '_')
1396 		return (-1);
1397 	if (*aname == '_')
1398 		return (1);
1399 
1400 	/*
1401 	 * Prefer the symbol with the smaller size.
1402 	 */
1403 	if (a->st_size < b->st_size)
1404 		return (-1);
1405 	if (a->st_size > b->st_size)
1406 		return (1);
1407 
1408 	/*
1409 	 * All other factors being equal, fall back to lexicographic order.
1410 	 */
1411 	return (strcmp(aname, bname));
1412 }
1413 
1414 static int
1415 byaddr_cmp(const void *aa, const void *bb)
1416 {
1417 	GElf_Sym *a = &sort_syms[*(uint_t *)aa];
1418 	GElf_Sym *b = &sort_syms[*(uint_t *)bb];
1419 	char *aname = sort_strs + a->st_name;
1420 	char *bname = sort_strs + b->st_name;
1421 
1422 	return (byaddr_cmp_common(a, aname, b, bname));
1423 }
1424 
1425 static int
1426 byname_cmp(const void *aa, const void *bb)
1427 {
1428 	GElf_Sym *a = &sort_syms[*(uint_t *)aa];
1429 	GElf_Sym *b = &sort_syms[*(uint_t *)bb];
1430 	char *aname = sort_strs + a->st_name;
1431 	char *bname = sort_strs + b->st_name;
1432 
1433 	return (strcmp(aname, bname));
1434 }
1435 
1436 /*
1437  * Given a symbol index, look up the corresponding symbol from the
1438  * given symbol table.
1439  *
1440  * This function allows the caller to treat the symbol table as a single
1441  * logical entity even though there may be 2 actual ELF symbol tables
1442  * involved. See the comments in Pcontrol.h for details.
1443  */
1444 static GElf_Sym *
1445 symtab_getsym(sym_tbl_t *symtab, int ndx, GElf_Sym *dst)
1446 {
1447 	/* If index is in range of primary symtab, look it up there */
1448 	if (ndx >= symtab->sym_symn_aux) {
1449 		return (gelf_getsym(symtab->sym_data_pri,
1450 		    ndx - symtab->sym_symn_aux, dst));
1451 	}
1452 
1453 	/* Not in primary: Look it up in the auxiliary symtab */
1454 	return (gelf_getsym(symtab->sym_data_aux, ndx, dst));
1455 }
1456 
1457 void
1458 optimize_symtab(sym_tbl_t *symtab)
1459 {
1460 	GElf_Sym *symp, *syms;
1461 	uint_t i, *indexa, *indexb;
1462 	size_t symn, strsz, count;
1463 
1464 	if (symtab == NULL || symtab->sym_data_pri == NULL ||
1465 	    symtab->sym_byaddr != NULL)
1466 		return;
1467 
1468 	symn = symtab->sym_symn;
1469 	strsz = symtab->sym_strsz;
1470 
1471 	symp = syms = malloc(sizeof (GElf_Sym) * symn);
1472 	if (symp == NULL) {
1473 		dprintf("optimize_symtab: failed to malloc symbol array");
1474 		return;
1475 	}
1476 
1477 	/*
1478 	 * First record all the symbols into a table and count up the ones
1479 	 * that we're interested in. We mark symbols as invalid by setting
1480 	 * the st_name to an illegal value.
1481 	 */
1482 	for (i = 0, count = 0; i < symn; i++, symp++) {
1483 		if (symtab_getsym(symtab, i, symp) != NULL &&
1484 		    symp->st_name < strsz &&
1485 		    IS_DATA_TYPE(GELF_ST_TYPE(symp->st_info)))
1486 			count++;
1487 		else
1488 			symp->st_name = strsz;
1489 	}
1490 
1491 	/*
1492 	 * Allocate sufficient space for both tables and populate them
1493 	 * with the same symbols we just counted.
1494 	 */
1495 	symtab->sym_count = count;
1496 	indexa = symtab->sym_byaddr = calloc(sizeof (uint_t), count);
1497 	indexb = symtab->sym_byname = calloc(sizeof (uint_t), count);
1498 	if (indexa == NULL || indexb == NULL) {
1499 		dprintf(
1500 		    "optimize_symtab: failed to malloc symbol index arrays");
1501 		symtab->sym_count = 0;
1502 		if (indexa != NULL) {	/* First alloc succeeded. Free it */
1503 			free(indexa);
1504 			symtab->sym_byaddr = NULL;
1505 		}
1506 		free(syms);
1507 		return;
1508 	}
1509 	for (i = 0, symp = syms; i < symn; i++, symp++) {
1510 		if (symp->st_name < strsz)
1511 			*indexa++ = *indexb++ = i;
1512 	}
1513 
1514 	/*
1515 	 * Sort the two tables according to the appropriate criteria,
1516 	 * unless the user has overridden this behaviour.
1517 	 *
1518 	 * An example where we might not sort the tables is the relatively
1519 	 * unusual case of a process with very large symbol tables in which
1520 	 * we perform few lookups. In such a case the total time would be
1521 	 * dominated by the sort. It is difficult to determine a priori
1522 	 * how many lookups an arbitrary client will perform, and
1523 	 * hence whether the symbol tables should be sorted. We therefore
1524 	 * sort the tables by default, but provide the user with a
1525 	 * "chicken switch" in the form of the LIBPROC_NO_QSORT
1526 	 * environment variable.
1527 	 */
1528 	if (!_libproc_no_qsort) {
1529 		(void) mutex_lock(&sort_mtx);
1530 		sort_strs = symtab->sym_strs;
1531 		sort_syms = syms;
1532 
1533 		qsort(symtab->sym_byaddr, count, sizeof (uint_t), byaddr_cmp);
1534 		qsort(symtab->sym_byname, count, sizeof (uint_t), byname_cmp);
1535 
1536 		sort_strs = NULL;
1537 		sort_syms = NULL;
1538 		(void) mutex_unlock(&sort_mtx);
1539 	}
1540 
1541 	free(syms);
1542 }
1543 
1544 
1545 static Elf *
1546 build_fake_elf(struct ps_prochandle *P, file_info_t *fptr, GElf_Ehdr *ehdr,
1547 	size_t *nshdrs, Elf_Data **shdata)
1548 {
1549 	size_t shstrndx;
1550 	Elf_Scn *scn;
1551 	Elf *elf;
1552 
1553 	if ((elf = fake_elf(P, fptr)) == NULL ||
1554 	    elf_kind(elf) != ELF_K_ELF ||
1555 	    gelf_getehdr(elf, ehdr) == NULL ||
1556 	    elf_getshdrnum(elf, nshdrs) == -1 ||
1557 	    elf_getshdrstrndx(elf, &shstrndx) == -1 ||
1558 	    (scn = elf_getscn(elf, shstrndx)) == NULL ||
1559 	    (*shdata = elf_getdata(scn, NULL)) == NULL) {
1560 		if (elf != NULL)
1561 			(void) elf_end(elf);
1562 		dprintf("failed to fake up ELF file\n");
1563 		return (NULL);
1564 	}
1565 
1566 	return (elf);
1567 }
1568 
1569 /*
1570  * Build the symbol table for the given mapped file.
1571  */
1572 void
1573 Pbuild_file_symtab(struct ps_prochandle *P, file_info_t *fptr)
1574 {
1575 	char objectfile[PATH_MAX];
1576 	uint_t i;
1577 
1578 	GElf_Ehdr ehdr;
1579 	GElf_Sym s;
1580 
1581 	Elf_Data *shdata;
1582 	Elf_Scn *scn;
1583 	Elf *elf;
1584 	size_t nshdrs, shstrndx;
1585 
1586 	struct {
1587 		GElf_Shdr c_shdr;
1588 		Elf_Data *c_data;
1589 		const char *c_name;
1590 	} *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL;
1591 
1592 	if (fptr->file_init)
1593 		return;	/* We've already processed this file */
1594 
1595 	/*
1596 	 * Mark the file_info struct as having the symbol table initialized
1597 	 * even if we fail below.  We tried once; we don't try again.
1598 	 */
1599 	fptr->file_init = 1;
1600 
1601 	if (elf_version(EV_CURRENT) == EV_NONE) {
1602 		dprintf("libproc ELF version is more recent than libelf\n");
1603 		return;
1604 	}
1605 
1606 	if (P->state == PS_DEAD || P->state == PS_IDLE) {
1607 		char *name;
1608 		/*
1609 		 * If we're a not live, we can't open files from the /proc
1610 		 * object directory; we have only the mapping and file names
1611 		 * to guide us.  We prefer the file_lname, but need to handle
1612 		 * the case of it being NULL in order to bootstrap: we first
1613 		 * come here during rd_new() when the only information we have
1614 		 * is interpreter name associated with the AT_BASE mapping.
1615 		 *
1616 		 * Also, if the zone associated with the core file seems
1617 		 * to exists on this machine we'll try to open the object
1618 		 * file within the zone.
1619 		 */
1620 		if (fptr->file_rname != NULL)
1621 			name = fptr->file_rname;
1622 		else if (fptr->file_lname != NULL)
1623 			name = fptr->file_lname;
1624 		else
1625 			name = fptr->file_pname;
1626 		(void) strlcpy(objectfile, name, sizeof (objectfile));
1627 	} else {
1628 		(void) snprintf(objectfile, sizeof (objectfile),
1629 		    "%s/%d/object/%s",
1630 		    procfs_path, (int)P->pid, fptr->file_pname);
1631 	}
1632 
1633 	/*
1634 	 * Open the object file, create the elf file, and then get the elf
1635 	 * header and .shstrtab data buffer so we can process sections by
1636 	 * name. If anything goes wrong try to fake up an elf file from
1637 	 * the in-core elf image.
1638 	 */
1639 
1640 	if (_libproc_incore_elf || (P->flags & INCORE)) {
1641 		dprintf("Pbuild_file_symtab: using in-core data for: %s\n",
1642 		    fptr->file_pname);
1643 
1644 		if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1645 		    NULL)
1646 			return;
1647 
1648 	} else if ((fptr->file_fd = open(objectfile, O_RDONLY)) < 0) {
1649 		dprintf("Pbuild_file_symtab: failed to open %s: %s\n",
1650 		    objectfile, strerror(errno));
1651 
1652 		if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1653 		    NULL)
1654 			return;
1655 
1656 	} else if ((elf = elf_begin(fptr->file_fd, ELF_C_READ, NULL)) == NULL ||
1657 	    elf_kind(elf) != ELF_K_ELF ||
1658 	    gelf_getehdr(elf, &ehdr) == NULL ||
1659 	    elf_getshdrnum(elf, &nshdrs) == -1 ||
1660 	    elf_getshdrstrndx(elf, &shstrndx) == -1 ||
1661 	    (scn = elf_getscn(elf, shstrndx)) == NULL ||
1662 	    (shdata = elf_getdata(scn, NULL)) == NULL) {
1663 		int err = elf_errno();
1664 
1665 		dprintf("failed to process ELF file %s: %s\n",
1666 		    objectfile, (err == 0) ? "<null>" : elf_errmsg(err));
1667 		(void) elf_end(elf);
1668 
1669 		if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1670 		    NULL)
1671 			return;
1672 
1673 	} else if (file_differs(P, elf, fptr)) {
1674 		Elf *newelf;
1675 
1676 		/*
1677 		 * Before we get too excited about this elf file, we'll check
1678 		 * its checksum value against the value we have in memory. If
1679 		 * they don't agree, we try to fake up a new elf file and
1680 		 * proceed with that instead.
1681 		 */
1682 		dprintf("ELF file %s (%lx) doesn't match in-core image\n",
1683 		    fptr->file_pname,
1684 		    (ulong_t)fptr->file_map->map_pmap.pr_vaddr);
1685 
1686 		if ((newelf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata))
1687 		    != NULL) {
1688 			(void) elf_end(elf);
1689 			elf = newelf;
1690 			dprintf("switched to faked up ELF file\n");
1691 
1692 			/*
1693 			 * Check to see if the file that we just discovered
1694 			 * to be an imposter matches the execname that was
1695 			 * determined by Pfindexec().  If it does, we (clearly)
1696 			 * don't have the right binary, and we zero out
1697 			 * execname before anyone gets hurt.
1698 			 */
1699 			if (fptr->file_rname != NULL && P->execname != NULL &&
1700 			    strcmp(fptr->file_rname, P->execname) == 0) {
1701 				dprintf("file/in-core image mismatch was "
1702 				    "on P->execname; discarding\n");
1703 				free(P->execname);
1704 				P->execname = NULL;
1705 			}
1706 		}
1707 	}
1708 
1709 	if ((cache = malloc(nshdrs * sizeof (*cache))) == NULL) {
1710 		dprintf("failed to malloc section cache for %s\n", objectfile);
1711 		goto bad;
1712 	}
1713 
1714 	dprintf("processing ELF file %s\n", objectfile);
1715 	fptr->file_class = ehdr.e_ident[EI_CLASS];
1716 	fptr->file_etype = ehdr.e_type;
1717 	fptr->file_elf = elf;
1718 	fptr->file_shstrs = shdata->d_buf;
1719 	fptr->file_shstrsz = shdata->d_size;
1720 
1721 	/*
1722 	 * Iterate through each section, caching its section header, data
1723 	 * pointer, and name.  We use this for handling sh_link values below.
1724 	 */
1725 	for (cp = cache + 1, scn = NULL; scn = elf_nextscn(elf, scn); cp++) {
1726 		if (gelf_getshdr(scn, &cp->c_shdr) == NULL) {
1727 			dprintf("Pbuild_file_symtab: Failed to get section "
1728 			    "header\n");
1729 			goto bad; /* Failed to get section header */
1730 		}
1731 
1732 		if ((cp->c_data = elf_getdata(scn, NULL)) == NULL) {
1733 			dprintf("Pbuild_file_symtab: Failed to get section "
1734 			    "data\n");
1735 			goto bad; /* Failed to get section data */
1736 		}
1737 
1738 		if (cp->c_shdr.sh_name >= shdata->d_size) {
1739 			dprintf("Pbuild_file_symtab: corrupt section name");
1740 			goto bad; /* Corrupt section name */
1741 		}
1742 
1743 		cp->c_name = (const char *)shdata->d_buf + cp->c_shdr.sh_name;
1744 	}
1745 
1746 	/*
1747 	 * Now iterate through the section cache in order to locate info
1748 	 * for the .symtab, .dynsym, .SUNW_ldynsym, .dynamic, .plt,
1749 	 * and .SUNW_ctf sections:
1750 	 */
1751 	for (i = 1, cp = cache + 1; i < nshdrs; i++, cp++) {
1752 		GElf_Shdr *shp = &cp->c_shdr;
1753 
1754 		if (shp->sh_type == SHT_SYMTAB || shp->sh_type == SHT_DYNSYM) {
1755 			sym_tbl_t *symp = shp->sh_type == SHT_SYMTAB ?
1756 			    &fptr->file_symtab : &fptr->file_dynsym;
1757 			/*
1758 			 * It's possible that the we already got the symbol
1759 			 * table from the core file itself. Either the file
1760 			 * differs in which case our faked up elf file will
1761 			 * only contain the dynsym (not the symtab) or the
1762 			 * file matches in which case we'll just be replacing
1763 			 * the symbol table we pulled out of the core file
1764 			 * with an equivalent one. In either case, this
1765 			 * check isn't essential, but it's a good idea.
1766 			 */
1767 			if (symp->sym_data_pri == NULL) {
1768 				dprintf("Symbol table found for %s\n",
1769 				    objectfile);
1770 				symp->sym_data_pri = cp->c_data;
1771 				symp->sym_symn +=
1772 				    shp->sh_size / shp->sh_entsize;
1773 				symp->sym_strs =
1774 				    cache[shp->sh_link].c_data->d_buf;
1775 				symp->sym_strsz =
1776 				    cache[shp->sh_link].c_data->d_size;
1777 				symp->sym_hdr_pri = cp->c_shdr;
1778 				symp->sym_strhdr = cache[shp->sh_link].c_shdr;
1779 			} else {
1780 				dprintf("Symbol table already there for %s\n",
1781 				    objectfile);
1782 			}
1783 		} else if (shp->sh_type == SHT_SUNW_LDYNSYM) {
1784 			/* .SUNW_ldynsym section is auxiliary to .dynsym */
1785 			if (fptr->file_dynsym.sym_data_aux == NULL) {
1786 				dprintf(".SUNW_ldynsym symbol table"
1787 				    " found for %s\n", objectfile);
1788 				fptr->file_dynsym.sym_data_aux = cp->c_data;
1789 				fptr->file_dynsym.sym_symn_aux =
1790 				    shp->sh_size / shp->sh_entsize;
1791 				fptr->file_dynsym.sym_symn +=
1792 				    fptr->file_dynsym.sym_symn_aux;
1793 				fptr->file_dynsym.sym_hdr_aux = cp->c_shdr;
1794 			} else {
1795 				dprintf(".SUNW_ldynsym symbol table already"
1796 				    " there for %s\n", objectfile);
1797 			}
1798 		} else if (shp->sh_type == SHT_DYNAMIC) {
1799 			dyn = cp;
1800 		} else if (strcmp(cp->c_name, ".plt") == 0) {
1801 			plt = cp;
1802 		} else if (strcmp(cp->c_name, ".SUNW_ctf") == 0) {
1803 			/*
1804 			 * Skip over bogus CTF sections so they don't come back
1805 			 * to haunt us later.
1806 			 */
1807 			if (shp->sh_link == 0 ||
1808 			    shp->sh_link >= nshdrs ||
1809 			    (cache[shp->sh_link].c_shdr.sh_type != SHT_DYNSYM &&
1810 			    cache[shp->sh_link].c_shdr.sh_type != SHT_SYMTAB)) {
1811 				dprintf("Bad sh_link %d for "
1812 				    "CTF\n", shp->sh_link);
1813 				continue;
1814 			}
1815 			ctf = cp;
1816 		}
1817 	}
1818 
1819 	/*
1820 	 * At this point, we've found all the symbol tables we're ever going
1821 	 * to find: the ones in the loop above and possibly the symtab that
1822 	 * was included in the core file. Before we perform any lookups, we
1823 	 * create sorted versions to optimize for lookups.
1824 	 */
1825 	optimize_symtab(&fptr->file_symtab);
1826 	optimize_symtab(&fptr->file_dynsym);
1827 
1828 	/*
1829 	 * Fill in the base address of the text mapping for shared libraries.
1830 	 * This allows us to translate symbols before librtld_db is ready.
1831 	 */
1832 	if (fptr->file_etype == ET_DYN) {
1833 		fptr->file_dyn_base = fptr->file_map->map_pmap.pr_vaddr -
1834 		    fptr->file_map->map_pmap.pr_offset;
1835 		dprintf("setting file_dyn_base for %s to %lx\n",
1836 		    objectfile, (long)fptr->file_dyn_base);
1837 	}
1838 
1839 	/*
1840 	 * Record the CTF section information in the file info structure.
1841 	 */
1842 	if (ctf != NULL) {
1843 		fptr->file_ctf_off = ctf->c_shdr.sh_offset;
1844 		fptr->file_ctf_size = ctf->c_shdr.sh_size;
1845 		if (ctf->c_shdr.sh_link != 0 &&
1846 		    cache[ctf->c_shdr.sh_link].c_shdr.sh_type == SHT_DYNSYM)
1847 			fptr->file_ctf_dyn = 1;
1848 	}
1849 
1850 	if (fptr->file_lo == NULL)
1851 		goto done; /* Nothing else to do if no load object info */
1852 
1853 	/*
1854 	 * If the object is a shared library and we have a different rl_base
1855 	 * value, reset file_dyn_base according to librtld_db's information.
1856 	 */
1857 	if (fptr->file_etype == ET_DYN &&
1858 	    fptr->file_lo->rl_base != fptr->file_dyn_base) {
1859 		dprintf("resetting file_dyn_base for %s to %lx\n",
1860 		    objectfile, (long)fptr->file_lo->rl_base);
1861 		fptr->file_dyn_base = fptr->file_lo->rl_base;
1862 	}
1863 
1864 	/*
1865 	 * Fill in the PLT information for this file if a PLT symbol is found.
1866 	 */
1867 	if (sym_by_name(&fptr->file_dynsym, "_PROCEDURE_LINKAGE_TABLE_", &s,
1868 	    NULL) != NULL) {
1869 		fptr->file_plt_base = s.st_value + fptr->file_dyn_base;
1870 		fptr->file_plt_size = (plt != NULL) ? plt->c_shdr.sh_size : 0;
1871 
1872 		/*
1873 		 * Bring the load object up to date; it is the only way the
1874 		 * user has to access the PLT data. The PLT information in the
1875 		 * rd_loadobj_t is not set in the call to map_iter() (the
1876 		 * callback for rd_loadobj_iter) where we set file_lo.
1877 		 */
1878 		fptr->file_lo->rl_plt_base = fptr->file_plt_base;
1879 		fptr->file_lo->rl_plt_size = fptr->file_plt_size;
1880 
1881 		dprintf("PLT found at %p, size = %lu\n",
1882 		    (void *)fptr->file_plt_base, (ulong_t)fptr->file_plt_size);
1883 	}
1884 
1885 	/*
1886 	 * Fill in the PLT information.
1887 	 */
1888 	if (dyn != NULL) {
1889 		uintptr_t dynaddr = dyn->c_shdr.sh_addr + fptr->file_dyn_base;
1890 		size_t ndyn = dyn->c_shdr.sh_size / dyn->c_shdr.sh_entsize;
1891 		GElf_Dyn d;
1892 
1893 		for (i = 0; i < ndyn; i++) {
1894 			if (gelf_getdyn(dyn->c_data, i, &d) == NULL)
1895 				continue;
1896 
1897 			switch (d.d_tag) {
1898 			case DT_JMPREL:
1899 				dprintf("DT_JMPREL is %p\n",
1900 				    (void *)(uintptr_t)d.d_un.d_ptr);
1901 				fptr->file_jmp_rel =
1902 				    d.d_un.d_ptr + fptr->file_dyn_base;
1903 				break;
1904 			case DT_STRTAB:
1905 				dprintf("DT_STRTAB is %p\n",
1906 				    (void *)(uintptr_t)d.d_un.d_ptr);
1907 				break;
1908 			case DT_PLTGOT:
1909 				dprintf("DT_PLTGOT is %p\n",
1910 				    (void *)(uintptr_t)d.d_un.d_ptr);
1911 				break;
1912 			case DT_SUNW_SYMTAB:
1913 				dprintf("DT_SUNW_SYMTAB is %p\n",
1914 				    (void *)(uintptr_t)d.d_un.d_ptr);
1915 				break;
1916 			case DT_SYMTAB:
1917 				dprintf("DT_SYMTAB is %p\n",
1918 				    (void *)(uintptr_t)d.d_un.d_ptr);
1919 				break;
1920 			case DT_HASH:
1921 				dprintf("DT_HASH is %p\n",
1922 				    (void *)(uintptr_t)d.d_un.d_ptr);
1923 				break;
1924 			}
1925 		}
1926 
1927 		dprintf("_DYNAMIC found at %p, %lu entries, DT_JMPREL = %p\n",
1928 		    (void *)dynaddr, (ulong_t)ndyn, (void *)fptr->file_jmp_rel);
1929 	}
1930 
1931 done:
1932 	free(cache);
1933 	return;
1934 
1935 bad:
1936 	if (cache != NULL)
1937 		free(cache);
1938 
1939 	(void) elf_end(elf);
1940 	fptr->file_elf = NULL;
1941 	if (fptr->file_elfmem != NULL) {
1942 		free(fptr->file_elfmem);
1943 		fptr->file_elfmem = NULL;
1944 	}
1945 	(void) close(fptr->file_fd);
1946 	fptr->file_fd = -1;
1947 }
1948 
1949 /*
1950  * Given a process virtual address, return the map_info_t containing it.
1951  * If none found, return NULL.
1952  */
1953 map_info_t *
1954 Paddr2mptr(struct ps_prochandle *P, uintptr_t addr)
1955 {
1956 	int lo = 0;
1957 	int hi = P->map_count - 1;
1958 	int mid;
1959 	map_info_t *mp;
1960 
1961 	while (lo <= hi) {
1962 
1963 		mid = (lo + hi) / 2;
1964 		mp = &P->mappings[mid];
1965 
1966 		/* check that addr is in [vaddr, vaddr + size) */
1967 		if ((addr - mp->map_pmap.pr_vaddr) < mp->map_pmap.pr_size)
1968 			return (mp);
1969 
1970 		if (addr < mp->map_pmap.pr_vaddr)
1971 			hi = mid - 1;
1972 		else
1973 			lo = mid + 1;
1974 	}
1975 
1976 	return (NULL);
1977 }
1978 
1979 /*
1980  * Return the map_info_t for the executable file.
1981  * If not found, return NULL.
1982  */
1983 static map_info_t *
1984 exec_map(struct ps_prochandle *P)
1985 {
1986 	uint_t i;
1987 	map_info_t *mptr;
1988 	map_info_t *mold = NULL;
1989 	file_info_t *fptr;
1990 	uintptr_t base;
1991 
1992 	for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
1993 		if (mptr->map_pmap.pr_mapname[0] == '\0')
1994 			continue;
1995 		if (strcmp(mptr->map_pmap.pr_mapname, "a.out") == 0) {
1996 			if ((fptr = mptr->map_file) != NULL &&
1997 			    fptr->file_lo != NULL) {
1998 				base = fptr->file_lo->rl_base;
1999 				if (base >= mptr->map_pmap.pr_vaddr &&
2000 				    base < mptr->map_pmap.pr_vaddr +
2001 				    mptr->map_pmap.pr_size)	/* text space */
2002 					return (mptr);
2003 				mold = mptr;	/* must be the data */
2004 				continue;
2005 			}
2006 			/* This is a poor way to test for text space */
2007 			if (!(mptr->map_pmap.pr_mflags & MA_EXEC) ||
2008 			    (mptr->map_pmap.pr_mflags & MA_WRITE)) {
2009 				mold = mptr;
2010 				continue;
2011 			}
2012 			return (mptr);
2013 		}
2014 	}
2015 
2016 	return (mold);
2017 }
2018 
2019 /*
2020  * Given a shared object name, return the map_info_t for it.  If no matching
2021  * object is found, return NULL.  Normally, the link maps contain the full
2022  * object pathname, e.g. /usr/lib/libc.so.1.  We allow the object name to
2023  * take one of the following forms:
2024  *
2025  * 1. An exact match (i.e. a full pathname): "/usr/lib/libc.so.1"
2026  * 2. An exact basename match: "libc.so.1"
2027  * 3. An initial basename match up to a '.' suffix: "libc.so" or "libc"
2028  * 4. The literal string "a.out" is an alias for the executable mapping
2029  *
2030  * The third case is a convenience for callers and may not be necessary.
2031  *
2032  * As the exact same object name may be loaded on different link maps (see
2033  * dlmopen(3DL)), we also allow the caller to resolve the object name by
2034  * specifying a particular link map id.  If lmid is PR_LMID_EVERY, the
2035  * first matching name will be returned, regardless of the link map id.
2036  */
2037 static map_info_t *
2038 object_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *objname)
2039 {
2040 	map_info_t *mp;
2041 	file_info_t *fp;
2042 	size_t objlen;
2043 	uint_t i;
2044 
2045 	/*
2046 	 * If we have no rtld_db, then always treat a request as one for all
2047 	 * link maps.
2048 	 */
2049 	if (P->rap == NULL)
2050 		lmid = PR_LMID_EVERY;
2051 
2052 	/*
2053 	 * First pass: look for exact matches of the entire pathname or
2054 	 * basename (cases 1 and 2 above):
2055 	 */
2056 	for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2057 
2058 		if (mp->map_pmap.pr_mapname[0] == '\0' ||
2059 		    (fp = mp->map_file) == NULL ||
2060 		    ((fp->file_lname == NULL) && (fp->file_rname == NULL)))
2061 			continue;
2062 
2063 		if (lmid != PR_LMID_EVERY &&
2064 		    (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2065 			continue;
2066 
2067 		/*
2068 		 * If we match, return the primary text mapping; otherwise
2069 		 * just return the mapping we matched.
2070 		 */
2071 		if ((fp->file_lbase && strcmp(fp->file_lbase, objname) == 0) ||
2072 		    (fp->file_rbase && strcmp(fp->file_rbase, objname) == 0) ||
2073 		    (fp->file_lname && strcmp(fp->file_lname, objname) == 0) ||
2074 		    (fp->file_rname && strcmp(fp->file_rname, objname) == 0))
2075 			return (fp->file_map ? fp->file_map : mp);
2076 	}
2077 
2078 	objlen = strlen(objname);
2079 
2080 	/*
2081 	 * Second pass: look for partial matches (case 3 above):
2082 	 */
2083 	for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2084 
2085 		if (mp->map_pmap.pr_mapname[0] == '\0' ||
2086 		    (fp = mp->map_file) == NULL ||
2087 		    ((fp->file_lname == NULL) && (fp->file_rname == NULL)))
2088 			continue;
2089 
2090 		if (lmid != PR_LMID_EVERY &&
2091 		    (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2092 			continue;
2093 
2094 		/*
2095 		 * If we match, return the primary text mapping; otherwise
2096 		 * just return the mapping we matched.
2097 		 */
2098 		if ((fp->file_lbase != NULL) &&
2099 		    (strncmp(fp->file_lbase, objname, objlen) == 0) &&
2100 		    (fp->file_lbase[objlen] == '.'))
2101 			return (fp->file_map ? fp->file_map : mp);
2102 		if ((fp->file_rbase != NULL) &&
2103 		    (strncmp(fp->file_rbase, objname, objlen) == 0) &&
2104 		    (fp->file_rbase[objlen] == '.'))
2105 			return (fp->file_map ? fp->file_map : mp);
2106 	}
2107 
2108 	/*
2109 	 * One last check: we allow "a.out" to always alias the executable,
2110 	 * assuming this name was not in use for something else.
2111 	 */
2112 	if ((lmid == PR_LMID_EVERY || lmid == LM_ID_BASE) &&
2113 	    (strcmp(objname, "a.out") == 0))
2114 		return (P->map_exec);
2115 
2116 	return (NULL);
2117 }
2118 
2119 static map_info_t *
2120 object_name_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
2121 {
2122 	map_info_t *mptr;
2123 
2124 	if (!P->info_valid)
2125 		Pupdate_maps(P);
2126 
2127 	if (P->map_exec == NULL && ((mptr = Paddr2mptr(P,
2128 	    Pgetauxval(P, AT_ENTRY))) != NULL || (mptr = exec_map(P)) != NULL))
2129 		P->map_exec = mptr;
2130 
2131 	if (P->map_ldso == NULL && (mptr = Paddr2mptr(P,
2132 	    Pgetauxval(P, AT_BASE))) != NULL)
2133 		P->map_ldso = mptr;
2134 
2135 	if (name == PR_OBJ_EXEC)
2136 		mptr = P->map_exec;
2137 	else if (name == PR_OBJ_LDSO)
2138 		mptr = P->map_ldso;
2139 	else if (Prd_agent(P) != NULL || P->state == PS_IDLE)
2140 		mptr = object_to_map(P, lmid, name);
2141 	else
2142 		mptr = NULL;
2143 
2144 	return (mptr);
2145 }
2146 
2147 /*
2148  * When two symbols are found by address, decide which one is to be preferred.
2149  */
2150 static GElf_Sym *
2151 sym_prefer(GElf_Sym *sym1, char *name1, GElf_Sym *sym2, char *name2)
2152 {
2153 	/*
2154 	 * Prefer the non-NULL symbol.
2155 	 */
2156 	if (sym1 == NULL)
2157 		return (sym2);
2158 	if (sym2 == NULL)
2159 		return (sym1);
2160 
2161 	/*
2162 	 * Defer to the sort ordering...
2163 	 */
2164 	return (byaddr_cmp_common(sym1, name1, sym2, name2) <= 0 ? sym1 : sym2);
2165 }
2166 
2167 /*
2168  * Use a binary search to do the work of sym_by_addr().
2169  */
2170 static GElf_Sym *
2171 sym_by_addr_binary(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp,
2172     uint_t *idp)
2173 {
2174 	GElf_Sym sym, osym;
2175 	uint_t i, oid, *byaddr = symtab->sym_byaddr;
2176 	int min, max, mid, omid, found = 0;
2177 
2178 	if (symtab->sym_data_pri == NULL || symtab->sym_count == 0)
2179 		return (NULL);
2180 
2181 	min = 0;
2182 	max = symtab->sym_count - 1;
2183 	osym.st_value = 0;
2184 
2185 	/*
2186 	 * We can't return when we've found a match, we have to continue
2187 	 * searching for the closest matching symbol.
2188 	 */
2189 	while (min <= max) {
2190 		mid = (max + min) / 2;
2191 
2192 		i = byaddr[mid];
2193 		(void) symtab_getsym(symtab, i, &sym);
2194 
2195 		if (addr >= sym.st_value &&
2196 		    addr < sym.st_value + sym.st_size &&
2197 		    (!found || sym.st_value > osym.st_value)) {
2198 			osym = sym;
2199 			omid = mid;
2200 			oid = i;
2201 			found = 1;
2202 		}
2203 
2204 		if (addr < sym.st_value)
2205 			max = mid - 1;
2206 		else
2207 			min = mid + 1;
2208 	}
2209 
2210 	if (!found)
2211 		return (NULL);
2212 
2213 	/*
2214 	 * There may be many symbols with identical values so we walk
2215 	 * backward in the byaddr table to find the best match.
2216 	 */
2217 	do {
2218 		sym = osym;
2219 		i = oid;
2220 
2221 		if (omid == 0)
2222 			break;
2223 
2224 		oid = byaddr[--omid];
2225 		(void) symtab_getsym(symtab, oid, &osym);
2226 	} while (addr >= osym.st_value &&
2227 	    addr < sym.st_value + osym.st_size &&
2228 	    osym.st_value == sym.st_value);
2229 
2230 	*symp = sym;
2231 	if (idp != NULL)
2232 		*idp = i;
2233 	return (symp);
2234 }
2235 
2236 /*
2237  * Use a linear search to do the work of sym_by_addr().
2238  */
2239 static GElf_Sym *
2240 sym_by_addr_linear(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symbolp,
2241     uint_t *idp)
2242 {
2243 	size_t symn = symtab->sym_symn;
2244 	char *strs = symtab->sym_strs;
2245 	GElf_Sym sym, *symp = NULL;
2246 	GElf_Sym osym, *osymp = NULL;
2247 	int i, id;
2248 
2249 	if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL)
2250 		return (NULL);
2251 
2252 	for (i = 0; i < symn; i++) {
2253 		if ((symp = symtab_getsym(symtab, i, &sym)) != NULL) {
2254 			if (addr >= sym.st_value &&
2255 			    addr < sym.st_value + sym.st_size) {
2256 				if (osymp)
2257 					symp = sym_prefer(
2258 					    symp, strs + symp->st_name,
2259 					    osymp, strs + osymp->st_name);
2260 				if (symp != osymp) {
2261 					osym = sym;
2262 					osymp = &osym;
2263 					id = i;
2264 				}
2265 			}
2266 		}
2267 	}
2268 	if (osymp) {
2269 		*symbolp = osym;
2270 		if (idp)
2271 			*idp = id;
2272 		return (symbolp);
2273 	}
2274 	return (NULL);
2275 }
2276 
2277 /*
2278  * Look up a symbol by address in the specified symbol table.
2279  * Adjustment to 'addr' must already have been made for the
2280  * offset of the symbol if this is a dynamic library symbol table.
2281  *
2282  * Use a linear or a binary search depending on whether or not we
2283  * chose to sort the table in optimize_symtab().
2284  */
2285 static GElf_Sym *
2286 sym_by_addr(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, uint_t *idp)
2287 {
2288 	if (_libproc_no_qsort) {
2289 		return (sym_by_addr_linear(symtab, addr, symp, idp));
2290 	} else {
2291 		return (sym_by_addr_binary(symtab, addr, symp, idp));
2292 	}
2293 }
2294 
2295 /*
2296  * Use a binary search to do the work of sym_by_name().
2297  */
2298 static GElf_Sym *
2299 sym_by_name_binary(sym_tbl_t *symtab, const char *name, GElf_Sym *symp,
2300     uint_t *idp)
2301 {
2302 	char *strs = symtab->sym_strs;
2303 	uint_t i, *byname = symtab->sym_byname;
2304 	int min, mid, max, cmp;
2305 
2306 	if (symtab->sym_data_pri == NULL || strs == NULL ||
2307 	    symtab->sym_count == 0)
2308 		return (NULL);
2309 
2310 	min = 0;
2311 	max = symtab->sym_count - 1;
2312 
2313 	while (min <= max) {
2314 		mid = (max + min) / 2;
2315 
2316 		i = byname[mid];
2317 		(void) symtab_getsym(symtab, i, symp);
2318 
2319 		if ((cmp = strcmp(name, strs + symp->st_name)) == 0) {
2320 			if (idp != NULL)
2321 				*idp = i;
2322 			return (symp);
2323 		}
2324 
2325 		if (cmp < 0)
2326 			max = mid - 1;
2327 		else
2328 			min = mid + 1;
2329 	}
2330 
2331 	return (NULL);
2332 }
2333 
2334 /*
2335  * Use a linear search to do the work of sym_by_name().
2336  */
2337 static GElf_Sym *
2338 sym_by_name_linear(sym_tbl_t *symtab, const char *name, GElf_Sym *symp,
2339     uint_t *idp)
2340 {
2341 	size_t symn = symtab->sym_symn;
2342 	char *strs = symtab->sym_strs;
2343 	int i;
2344 
2345 	if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL)
2346 		return (NULL);
2347 
2348 	for (i = 0; i < symn; i++) {
2349 		if (symtab_getsym(symtab, i, symp) &&
2350 		    strcmp(name, strs + symp->st_name) == 0) {
2351 			if (idp)
2352 				*idp = i;
2353 			return (symp);
2354 		}
2355 	}
2356 
2357 	return (NULL);
2358 }
2359 
2360 /*
2361  * Look up a symbol by name in the specified symbol table.
2362  *
2363  * Use a linear or a binary search depending on whether or not we
2364  * chose to sort the table in optimize_symtab().
2365  */
2366 static GElf_Sym *
2367 sym_by_name(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, uint_t *idp)
2368 {
2369 	if (_libproc_no_qsort) {
2370 		return (sym_by_name_linear(symtab, name, symp, idp));
2371 	} else {
2372 		return (sym_by_name_binary(symtab, name, symp, idp));
2373 	}
2374 }
2375 
2376 /*
2377  * Search the process symbol tables looking for a symbol whose
2378  * value to value+size contain the address specified by addr.
2379  * Return values are:
2380  *	sym_name_buffer containing the symbol name
2381  *	GElf_Sym symbol table entry
2382  *	prsyminfo_t ancillary symbol information
2383  * Returns 0 on success, -1 on failure.
2384  */
2385 static int
2386 i_Pxlookup_by_addr(
2387 	struct ps_prochandle *P,
2388 	int lmresolve,			/* use resolve linker object names */
2389 	uintptr_t addr,			/* process address being sought */
2390 	char *sym_name_buffer,		/* buffer for the symbol name */
2391 	size_t bufsize,			/* size of sym_name_buffer */
2392 	GElf_Sym *symbolp,		/* returned symbol table entry */
2393 	prsyminfo_t *sip)		/* returned symbol info */
2394 {
2395 	GElf_Sym	*symp;
2396 	char		*name;
2397 	GElf_Sym	sym1, *sym1p = NULL;
2398 	GElf_Sym	sym2, *sym2p = NULL;
2399 	char		*name1 = NULL;
2400 	char		*name2 = NULL;
2401 	uint_t		i1;
2402 	uint_t		i2;
2403 	map_info_t	*mptr;
2404 	file_info_t	*fptr;
2405 
2406 	(void) Prd_agent(P);
2407 
2408 	if ((mptr = Paddr2mptr(P, addr)) == NULL ||	/* no such address */
2409 	    (fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
2410 	    fptr->file_elf == NULL)			/* not an ELF file */
2411 		return (-1);
2412 
2413 	/*
2414 	 * Adjust the address by the load object base address in
2415 	 * case the address turns out to be in a shared library.
2416 	 */
2417 	addr -= fptr->file_dyn_base;
2418 
2419 	/*
2420 	 * Search both symbol tables, symtab first, then dynsym.
2421 	 */
2422 	if ((sym1p = sym_by_addr(&fptr->file_symtab, addr, &sym1, &i1)) != NULL)
2423 		name1 = fptr->file_symtab.sym_strs + sym1.st_name;
2424 	if ((sym2p = sym_by_addr(&fptr->file_dynsym, addr, &sym2, &i2)) != NULL)
2425 		name2 = fptr->file_dynsym.sym_strs + sym2.st_name;
2426 
2427 	if ((symp = sym_prefer(sym1p, name1, sym2p, name2)) == NULL)
2428 		return (-1);
2429 
2430 	name = (symp == sym1p) ? name1 : name2;
2431 	if (bufsize > 0) {
2432 		(void) strncpy(sym_name_buffer, name, bufsize);
2433 		sym_name_buffer[bufsize - 1] = '\0';
2434 	}
2435 
2436 	*symbolp = *symp;
2437 	if (sip != NULL) {
2438 		sip->prs_name = bufsize == 0 ? NULL : sym_name_buffer;
2439 		if (lmresolve && (fptr->file_rname != NULL))
2440 			sip->prs_object = fptr->file_rbase;
2441 		else
2442 			sip->prs_object = fptr->file_lbase;
2443 		sip->prs_id = (symp == sym1p) ? i1 : i2;
2444 		sip->prs_table = (symp == sym1p) ? PR_SYMTAB : PR_DYNSYM;
2445 		sip->prs_lmid = (fptr->file_lo == NULL) ? LM_ID_BASE :
2446 		    fptr->file_lo->rl_lmident;
2447 	}
2448 
2449 	if (GELF_ST_TYPE(symbolp->st_info) != STT_TLS)
2450 		symbolp->st_value += fptr->file_dyn_base;
2451 
2452 	return (0);
2453 }
2454 
2455 int
2456 Pxlookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf,
2457     size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip)
2458 {
2459 	return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, bufsize, symp, sip));
2460 }
2461 
2462 int
2463 Pxlookup_by_addr_resolved(struct ps_prochandle *P, uintptr_t addr, char *buf,
2464     size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip)
2465 {
2466 	return (i_Pxlookup_by_addr(P, B_TRUE, addr, buf, bufsize, symp, sip));
2467 }
2468 
2469 int
2470 Plookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf,
2471     size_t size, GElf_Sym *symp)
2472 {
2473 	return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, size, symp, NULL));
2474 }
2475 
2476 /*
2477  * Search the process symbol tables looking for a symbol whose name matches the
2478  * specified name and whose object and link map optionally match the specified
2479  * parameters.  On success, the function returns 0 and fills in the GElf_Sym
2480  * symbol table entry.  On failure, -1 is returned.
2481  */
2482 int
2483 Pxlookup_by_name(
2484 	struct ps_prochandle *P,
2485 	Lmid_t lmid,			/* link map to match, or -1 for any */
2486 	const char *oname,		/* load object name */
2487 	const char *sname,		/* symbol name */
2488 	GElf_Sym *symp,			/* returned symbol table entry */
2489 	prsyminfo_t *sip)		/* returned symbol info */
2490 {
2491 	map_info_t *mptr;
2492 	file_info_t *fptr;
2493 	int cnt;
2494 
2495 	GElf_Sym sym;
2496 	prsyminfo_t si;
2497 	int rv = -1;
2498 	uint_t id;
2499 
2500 	if (oname == PR_OBJ_EVERY) {
2501 		/* create all the file_info_t's for all the mappings */
2502 		(void) Prd_agent(P);
2503 		cnt = P->num_files;
2504 		fptr = list_next(&P->file_head);
2505 	} else {
2506 		cnt = 1;
2507 		if ((mptr = object_name_to_map(P, lmid, oname)) == NULL ||
2508 		    (fptr = build_map_symtab(P, mptr)) == NULL)
2509 			return (-1);
2510 	}
2511 
2512 	/*
2513 	 * Iterate through the loaded object files and look for the symbol
2514 	 * name in the .symtab and .dynsym of each.  If we encounter a match
2515 	 * with SHN_UNDEF, keep looking in hopes of finding a better match.
2516 	 * This means that a name such as "puts" will match the puts function
2517 	 * in libc instead of matching the puts PLT entry in the a.out file.
2518 	 */
2519 	for (; cnt > 0; cnt--, fptr = list_next(fptr)) {
2520 		Pbuild_file_symtab(P, fptr);
2521 
2522 		if (fptr->file_elf == NULL)
2523 			continue;
2524 
2525 		if (lmid != PR_LMID_EVERY && fptr->file_lo != NULL &&
2526 		    lmid != fptr->file_lo->rl_lmident)
2527 			continue;
2528 
2529 		if (fptr->file_symtab.sym_data_pri != NULL &&
2530 		    sym_by_name(&fptr->file_symtab, sname, symp, &id)) {
2531 			if (sip != NULL) {
2532 				sip->prs_id = id;
2533 				sip->prs_table = PR_SYMTAB;
2534 				sip->prs_object = oname;
2535 				sip->prs_name = sname;
2536 				sip->prs_lmid = fptr->file_lo == NULL ?
2537 				    LM_ID_BASE : fptr->file_lo->rl_lmident;
2538 			}
2539 		} else if (fptr->file_dynsym.sym_data_pri != NULL &&
2540 		    sym_by_name(&fptr->file_dynsym, sname, symp, &id)) {
2541 			if (sip != NULL) {
2542 				sip->prs_id = id;
2543 				sip->prs_table = PR_DYNSYM;
2544 				sip->prs_object = oname;
2545 				sip->prs_name = sname;
2546 				sip->prs_lmid = fptr->file_lo == NULL ?
2547 				    LM_ID_BASE : fptr->file_lo->rl_lmident;
2548 			}
2549 		} else {
2550 			continue;
2551 		}
2552 
2553 		if (GELF_ST_TYPE(symp->st_info) != STT_TLS)
2554 			symp->st_value += fptr->file_dyn_base;
2555 
2556 		if (symp->st_shndx != SHN_UNDEF)
2557 			return (0);
2558 
2559 		if (rv != 0) {
2560 			if (sip != NULL)
2561 				si = *sip;
2562 			sym = *symp;
2563 			rv = 0;
2564 		}
2565 	}
2566 
2567 	if (rv == 0) {
2568 		if (sip != NULL)
2569 			*sip = si;
2570 		*symp = sym;
2571 	}
2572 
2573 	return (rv);
2574 }
2575 
2576 /*
2577  * Search the process symbol tables looking for a symbol whose name matches the
2578  * specified name, but without any restriction on the link map id.
2579  */
2580 int
2581 Plookup_by_name(struct ps_prochandle *P, const char *object,
2582 	const char *symbol, GElf_Sym *symp)
2583 {
2584 	return (Pxlookup_by_name(P, PR_LMID_EVERY, object, symbol, symp, NULL));
2585 }
2586 
2587 /*
2588  * Iterate over the process's address space mappings.
2589  */
2590 static int
2591 i_Pmapping_iter(struct ps_prochandle *P, boolean_t lmresolve,
2592     proc_map_f *func, void *cd)
2593 {
2594 	map_info_t *mptr;
2595 	file_info_t *fptr;
2596 	char *object_name;
2597 	int rc = 0;
2598 	int i;
2599 
2600 	/* create all the file_info_t's for all the mappings */
2601 	(void) Prd_agent(P);
2602 
2603 	for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
2604 		if ((fptr = mptr->map_file) == NULL)
2605 			object_name = NULL;
2606 		else if (lmresolve && (fptr->file_rname != NULL))
2607 			object_name = fptr->file_rname;
2608 		else
2609 			object_name = fptr->file_lname;
2610 		if ((rc = func(cd, &mptr->map_pmap, object_name)) != 0)
2611 			return (rc);
2612 	}
2613 	return (0);
2614 }
2615 
2616 int
2617 Pmapping_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
2618 {
2619 	return (i_Pmapping_iter(P, B_FALSE, func, cd));
2620 }
2621 
2622 int
2623 Pmapping_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd)
2624 {
2625 	return (i_Pmapping_iter(P, B_TRUE, func, cd));
2626 }
2627 
2628 /*
2629  * Iterate over the process's mapped objects.
2630  */
2631 static int
2632 i_Pobject_iter(struct ps_prochandle *P, boolean_t lmresolve,
2633     proc_map_f *func, void *cd)
2634 {
2635 	map_info_t *mptr;
2636 	file_info_t *fptr;
2637 	uint_t cnt;
2638 	int rc = 0;
2639 
2640 	(void) Prd_agent(P); /* create file_info_t's for all the mappings */
2641 	Pupdate_maps(P);
2642 
2643 	for (cnt = P->num_files, fptr = list_next(&P->file_head);
2644 	    cnt; cnt--, fptr = list_next(fptr)) {
2645 		const char *lname;
2646 
2647 		if (lmresolve && (fptr->file_rname != NULL))
2648 			lname = fptr->file_rname;
2649 		else if (fptr->file_lname != NULL)
2650 			lname = fptr->file_lname;
2651 		else
2652 			lname = "";
2653 
2654 		if ((mptr = fptr->file_map) == NULL)
2655 			continue;
2656 
2657 		if ((rc = func(cd, &mptr->map_pmap, lname)) != 0)
2658 			return (rc);
2659 
2660 		if (!P->info_valid)
2661 			Pupdate_maps(P);
2662 	}
2663 	return (0);
2664 }
2665 
2666 int
2667 Pobject_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
2668 {
2669 	return (i_Pobject_iter(P, B_FALSE, func, cd));
2670 }
2671 
2672 int
2673 Pobject_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd)
2674 {
2675 	return (i_Pobject_iter(P, B_TRUE, func, cd));
2676 }
2677 
2678 static char *
2679 i_Pobjname(struct ps_prochandle *P, boolean_t lmresolve, uintptr_t addr,
2680 	char *buffer, size_t bufsize)
2681 {
2682 	map_info_t *mptr;
2683 	file_info_t *fptr;
2684 
2685 	/* create all the file_info_t's for all the mappings */
2686 	(void) Prd_agent(P);
2687 
2688 	if ((mptr = Paddr2mptr(P, addr)) == NULL)
2689 		return (NULL);
2690 
2691 	if (!lmresolve) {
2692 		if (((fptr = mptr->map_file) == NULL) ||
2693 		    (fptr->file_lname == NULL))
2694 			return (NULL);
2695 		(void) strlcpy(buffer, fptr->file_lname, bufsize);
2696 		return (buffer);
2697 	}
2698 
2699 	/* Check for a cached copy of the resolved path */
2700 	if (Pfindmap(P, mptr, buffer, bufsize) != NULL)
2701 		return (buffer);
2702 
2703 	return (NULL);
2704 }
2705 
2706 /*
2707  * Given a virtual address, return the name of the underlying
2708  * mapped object (file) as provided by the dynamic linker.
2709  * Return NULL if we can't find any name information for the object.
2710  */
2711 char *
2712 Pobjname(struct ps_prochandle *P, uintptr_t addr,
2713 	char *buffer, size_t bufsize)
2714 {
2715 	return (i_Pobjname(P, B_FALSE, addr, buffer, bufsize));
2716 }
2717 
2718 /*
2719  * Given a virtual address, try to return a filesystem path to the
2720  * underlying mapped object (file).  If we're in the global zone,
2721  * this path could resolve to an object in another zone.  If we're
2722  * unable return a valid filesystem path, we'll fall back to providing
2723  * the mapped object (file) name provided by the dynamic linker in
2724  * the target process (ie, the object reported by Pobjname()).
2725  */
2726 char *
2727 Pobjname_resolved(struct ps_prochandle *P, uintptr_t addr,
2728 	char *buffer, size_t bufsize)
2729 {
2730 	return (i_Pobjname(P, B_TRUE, addr, buffer, bufsize));
2731 }
2732 
2733 /*
2734  * Given a virtual address, return the link map id of the underlying mapped
2735  * object (file), as provided by the dynamic linker.  Return -1 on failure.
2736  */
2737 int
2738 Plmid(struct ps_prochandle *P, uintptr_t addr, Lmid_t *lmidp)
2739 {
2740 	map_info_t *mptr;
2741 	file_info_t *fptr;
2742 
2743 	/* create all the file_info_t's for all the mappings */
2744 	(void) Prd_agent(P);
2745 
2746 	if ((mptr = Paddr2mptr(P, addr)) != NULL &&
2747 	    (fptr = mptr->map_file) != NULL && fptr->file_lo != NULL) {
2748 		*lmidp = fptr->file_lo->rl_lmident;
2749 		return (0);
2750 	}
2751 
2752 	return (-1);
2753 }
2754 
2755 /*
2756  * Given an object name and optional lmid, iterate over the object's symbols.
2757  * If which == PR_SYMTAB, search the normal symbol table.
2758  * If which == PR_DYNSYM, search the dynamic symbol table.
2759  */
2760 static int
2761 Psymbol_iter_com(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
2762     int which, int mask, pr_order_t order, proc_xsym_f *func, void *cd)
2763 {
2764 #if STT_NUM != (STT_TLS + 1)
2765 #error "STT_NUM has grown. update Psymbol_iter_com()"
2766 #endif
2767 
2768 	GElf_Sym sym;
2769 	GElf_Shdr shdr;
2770 	map_info_t *mptr;
2771 	file_info_t *fptr;
2772 	sym_tbl_t *symtab;
2773 	size_t symn;
2774 	const char *strs;
2775 	size_t strsz;
2776 	prsyminfo_t si;
2777 	int rv;
2778 	uint_t *map, i, count, ndx;
2779 
2780 	if ((mptr = object_name_to_map(P, lmid, object_name)) == NULL)
2781 		return (-1);
2782 
2783 	if ((fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
2784 	    fptr->file_elf == NULL)			/* not an ELF file */
2785 		return (-1);
2786 
2787 	/*
2788 	 * Search the specified symbol table.
2789 	 */
2790 	switch (which) {
2791 	case PR_SYMTAB:
2792 		symtab = &fptr->file_symtab;
2793 		si.prs_table = PR_SYMTAB;
2794 		break;
2795 	case PR_DYNSYM:
2796 		symtab = &fptr->file_dynsym;
2797 		si.prs_table = PR_DYNSYM;
2798 		break;
2799 	default:
2800 		return (-1);
2801 	}
2802 
2803 	si.prs_object = object_name;
2804 	si.prs_lmid = fptr->file_lo == NULL ?
2805 	    LM_ID_BASE : fptr->file_lo->rl_lmident;
2806 
2807 	symn = symtab->sym_symn;
2808 	strs = symtab->sym_strs;
2809 	strsz = symtab->sym_strsz;
2810 
2811 	switch (order) {
2812 	case PRO_NATURAL:
2813 		map = NULL;
2814 		count = symn;
2815 		break;
2816 	case PRO_BYNAME:
2817 		map = symtab->sym_byname;
2818 		count = symtab->sym_count;
2819 		break;
2820 	case PRO_BYADDR:
2821 		map = symtab->sym_byaddr;
2822 		count = symtab->sym_count;
2823 		break;
2824 	default:
2825 		return (-1);
2826 	}
2827 
2828 	if (symtab->sym_data_pri == NULL || strs == NULL || count == 0)
2829 		return (-1);
2830 
2831 	rv = 0;
2832 
2833 	for (i = 0; i < count; i++) {
2834 		ndx = map == NULL ? i : map[i];
2835 		if (symtab_getsym(symtab, ndx, &sym) != NULL) {
2836 			uint_t s_bind, s_type, type;
2837 
2838 			if (sym.st_name >= strsz)	/* invalid st_name */
2839 				continue;
2840 
2841 			s_bind = GELF_ST_BIND(sym.st_info);
2842 			s_type = GELF_ST_TYPE(sym.st_info);
2843 
2844 			/*
2845 			 * In case you haven't already guessed, this relies on
2846 			 * the bitmask used in <libproc.h> for encoding symbol
2847 			 * type and binding matching the order of STB and STT
2848 			 * constants in <sys/elf.h>.  Changes to ELF must
2849 			 * maintain binary compatibility, so I think this is
2850 			 * reasonably fair game.
2851 			 */
2852 			if (s_bind < STB_NUM && s_type < STT_NUM) {
2853 				type = (1 << (s_type + 8)) | (1 << s_bind);
2854 				if ((type & ~mask) != 0)
2855 					continue;
2856 			} else
2857 				continue; /* Invalid type or binding */
2858 
2859 			if (GELF_ST_TYPE(sym.st_info) != STT_TLS)
2860 				sym.st_value += fptr->file_dyn_base;
2861 
2862 			si.prs_name = strs + sym.st_name;
2863 
2864 			/*
2865 			 * If symbol's type is STT_SECTION, then try to lookup
2866 			 * the name of the corresponding section.
2867 			 */
2868 			if (GELF_ST_TYPE(sym.st_info) == STT_SECTION &&
2869 			    fptr->file_shstrs != NULL &&
2870 			    gelf_getshdr(elf_getscn(fptr->file_elf,
2871 			    sym.st_shndx), &shdr) != NULL &&
2872 			    shdr.sh_name != 0 &&
2873 			    shdr.sh_name < fptr->file_shstrsz)
2874 				si.prs_name = fptr->file_shstrs + shdr.sh_name;
2875 
2876 			si.prs_id = ndx;
2877 			if ((rv = func(cd, &sym, si.prs_name, &si)) != 0)
2878 				break;
2879 		}
2880 	}
2881 
2882 	return (rv);
2883 }
2884 
2885 int
2886 Pxsymbol_iter(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
2887     int which, int mask, proc_xsym_f *func, void *cd)
2888 {
2889 	return (Psymbol_iter_com(P, lmid, object_name, which, mask,
2890 	    PRO_NATURAL, func, cd));
2891 }
2892 
2893 int
2894 Psymbol_iter_by_lmid(struct ps_prochandle *P, Lmid_t lmid,
2895     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2896 {
2897 	return (Psymbol_iter_com(P, lmid, object_name, which, mask,
2898 	    PRO_NATURAL, (proc_xsym_f *)func, cd));
2899 }
2900 
2901 int
2902 Psymbol_iter(struct ps_prochandle *P,
2903     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2904 {
2905 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2906 	    PRO_NATURAL, (proc_xsym_f *)func, cd));
2907 }
2908 
2909 int
2910 Psymbol_iter_by_addr(struct ps_prochandle *P,
2911     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2912 {
2913 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2914 	    PRO_BYADDR, (proc_xsym_f *)func, cd));
2915 }
2916 
2917 int
2918 Psymbol_iter_by_name(struct ps_prochandle *P,
2919     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2920 {
2921 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2922 	    PRO_BYNAME, (proc_xsym_f *)func, cd));
2923 }
2924 
2925 /*
2926  * Get the platform string.
2927  */
2928 char *
2929 Pplatform(struct ps_prochandle *P, char *s, size_t n)
2930 {
2931 	return (P->ops.pop_platform(P, s, n, P->data));
2932 }
2933 
2934 /*
2935  * Get the uname(2) information.
2936  */
2937 int
2938 Puname(struct ps_prochandle *P, struct utsname *u)
2939 {
2940 	return (P->ops.pop_uname(P, u, P->data));
2941 }
2942 
2943 /*
2944  * Called from Pcreate(), Pgrab(), and Pfgrab_core() to initialize
2945  * the symbol table heads in the new ps_prochandle.
2946  */
2947 void
2948 Pinitsym(struct ps_prochandle *P)
2949 {
2950 	P->num_files = 0;
2951 	list_link(&P->file_head, NULL);
2952 }
2953 
2954 /*
2955  * Called from Prelease() to destroy the symbol tables.
2956  * Must be called by the client after an exec() in the victim process.
2957  */
2958 void
2959 Preset_maps(struct ps_prochandle *P)
2960 {
2961 	int i;
2962 
2963 	if (P->rap != NULL) {
2964 		rd_delete(P->rap);
2965 		P->rap = NULL;
2966 	}
2967 
2968 	if (P->execname != NULL) {
2969 		free(P->execname);
2970 		P->execname = NULL;
2971 	}
2972 
2973 	if (P->auxv != NULL) {
2974 		free(P->auxv);
2975 		P->auxv = NULL;
2976 		P->nauxv = 0;
2977 	}
2978 
2979 	for (i = 0; i < P->map_count; i++)
2980 		map_info_free(P, &P->mappings[i]);
2981 
2982 	if (P->mappings != NULL) {
2983 		free(P->mappings);
2984 		P->mappings = NULL;
2985 	}
2986 	P->map_count = P->map_alloc = 0;
2987 
2988 	P->info_valid = 0;
2989 }
2990 
2991 typedef struct getenv_data {
2992 	char *buf;
2993 	size_t bufsize;
2994 	const char *search;
2995 	size_t searchlen;
2996 } getenv_data_t;
2997 
2998 /*ARGSUSED*/
2999 static int
3000 getenv_func(void *data, struct ps_prochandle *P, uintptr_t addr,
3001     const char *nameval)
3002 {
3003 	getenv_data_t *d = data;
3004 	size_t len;
3005 
3006 	if (nameval == NULL)
3007 		return (0);
3008 
3009 	if (d->searchlen < strlen(nameval) &&
3010 	    strncmp(nameval, d->search, d->searchlen) == 0 &&
3011 	    nameval[d->searchlen] == '=') {
3012 		len = MIN(strlen(nameval), d->bufsize - 1);
3013 		(void) strncpy(d->buf, nameval, len);
3014 		d->buf[len] = '\0';
3015 		return (1);
3016 	}
3017 
3018 	return (0);
3019 }
3020 
3021 char *
3022 Pgetenv(struct ps_prochandle *P, const char *name, char *buf, size_t buflen)
3023 {
3024 	getenv_data_t d;
3025 
3026 	d.buf = buf;
3027 	d.bufsize = buflen;
3028 	d.search = name;
3029 	d.searchlen = strlen(name);
3030 
3031 	if (Penv_iter(P, getenv_func, &d) == 1) {
3032 		char *equals = strchr(d.buf, '=');
3033 
3034 		if (equals != NULL) {
3035 			(void) memmove(d.buf, equals + 1,
3036 			    d.buf + buflen - equals - 1);
3037 			d.buf[d.buf + buflen - equals] = '\0';
3038 
3039 			return (buf);
3040 		}
3041 	}
3042 
3043 	return (NULL);
3044 }
3045 
3046 /* number of argument or environment pointers to read all at once */
3047 #define	NARG	100
3048 
3049 int
3050 Penv_iter(struct ps_prochandle *P, proc_env_f *func, void *data)
3051 {
3052 	const psinfo_t *psp;
3053 	uintptr_t envpoff;
3054 	GElf_Sym sym;
3055 	int ret;
3056 	char *buf, *nameval;
3057 	size_t buflen;
3058 
3059 	int nenv = NARG;
3060 	long envp[NARG];
3061 
3062 	/*
3063 	 * Attempt to find the "_environ" variable in the process.
3064 	 * Failing that, use the original value provided by Ppsinfo().
3065 	 */
3066 	if ((psp = Ppsinfo(P)) == NULL)
3067 		return (-1);
3068 
3069 	envpoff = psp->pr_envp; /* Default if no _environ found */
3070 
3071 	if (Plookup_by_name(P, PR_OBJ_EXEC, "_environ", &sym) == 0) {
3072 		if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3073 			if (Pread(P, &envpoff, sizeof (envpoff),
3074 			    sym.st_value) != sizeof (envpoff))
3075 				envpoff = psp->pr_envp;
3076 		} else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3077 			uint32_t envpoff32;
3078 
3079 			if (Pread(P, &envpoff32, sizeof (envpoff32),
3080 			    sym.st_value) != sizeof (envpoff32))
3081 				envpoff = psp->pr_envp;
3082 			else
3083 				envpoff = envpoff32;
3084 		}
3085 	}
3086 
3087 	buflen = 128;
3088 	buf = malloc(buflen);
3089 
3090 	ret = 0;
3091 	for (;;) {
3092 		uintptr_t envoff;
3093 
3094 		if (nenv == NARG) {
3095 			(void) memset(envp, 0, sizeof (envp));
3096 			if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3097 				if (Pread(P, envp,
3098 				    sizeof (envp), envpoff) <= 0) {
3099 					ret = -1;
3100 					break;
3101 				}
3102 			} else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3103 				uint32_t e32[NARG];
3104 				int i;
3105 
3106 				(void) memset(e32, 0, sizeof (e32));
3107 				if (Pread(P, e32, sizeof (e32), envpoff) <= 0) {
3108 					ret = -1;
3109 					break;
3110 				}
3111 				for (i = 0; i < NARG; i++)
3112 					envp[i] = e32[i];
3113 			}
3114 			nenv = 0;
3115 		}
3116 
3117 		if ((envoff = envp[nenv++]) == NULL)
3118 			break;
3119 
3120 		/*
3121 		 * Attempt to read the string from the process.
3122 		 */
3123 again:
3124 		ret = Pread_string(P, buf, buflen, envoff);
3125 
3126 		if (ret <= 0) {
3127 			nameval = NULL;
3128 		} else if (ret == buflen - 1) {
3129 			free(buf);
3130 			/*
3131 			 * Bail if we have a corrupted environment
3132 			 */
3133 			if (buflen >= ARG_MAX)
3134 				return (-1);
3135 			buflen *= 2;
3136 			buf = malloc(buflen);
3137 			goto again;
3138 		} else {
3139 			nameval = buf;
3140 		}
3141 
3142 		if ((ret = func(data, P, envoff, nameval)) != 0)
3143 			break;
3144 
3145 		envpoff += (P->status.pr_dmodel == PR_MODEL_LP64)? 8 : 4;
3146 	}
3147 
3148 	free(buf);
3149 
3150 	return (ret);
3151 }
3152