1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <assert.h> 30 #include <stdio.h> 31 #include <stdlib.h> 32 #include <stddef.h> 33 #include <unistd.h> 34 #include <ctype.h> 35 #include <fcntl.h> 36 #include <string.h> 37 #include <strings.h> 38 #include <memory.h> 39 #include <errno.h> 40 #include <dirent.h> 41 #include <signal.h> 42 #include <limits.h> 43 #include <libgen.h> 44 #include <zone.h> 45 #include <sys/types.h> 46 #include <sys/stat.h> 47 #include <sys/systeminfo.h> 48 #include <sys/sysmacros.h> 49 50 #include "libproc.h" 51 #include "Pcontrol.h" 52 #include "Putil.h" 53 #include "Psymtab_machelf.h" 54 55 static file_info_t *build_map_symtab(struct ps_prochandle *, map_info_t *); 56 static map_info_t *exec_map(struct ps_prochandle *); 57 static map_info_t *object_to_map(struct ps_prochandle *, Lmid_t, const char *); 58 static map_info_t *object_name_to_map(struct ps_prochandle *, 59 Lmid_t, const char *); 60 static GElf_Sym *sym_by_name(sym_tbl_t *, const char *, GElf_Sym *, uint_t *); 61 static int read_ehdr32(struct ps_prochandle *, Elf32_Ehdr *, uint_t *, 62 uintptr_t); 63 #ifdef _LP64 64 static int read_ehdr64(struct ps_prochandle *, Elf64_Ehdr *, uint_t *, 65 uintptr_t); 66 #endif 67 68 #define DATA_TYPES \ 69 ((1 << STT_OBJECT) | (1 << STT_FUNC) | \ 70 (1 << STT_COMMON) | (1 << STT_TLS)) 71 #define IS_DATA_TYPE(tp) (((1 << (tp)) & DATA_TYPES) != 0) 72 73 #define MA_RWX (MA_READ | MA_WRITE | MA_EXEC) 74 75 typedef enum { 76 PRO_NATURAL, 77 PRO_BYADDR, 78 PRO_BYNAME 79 } pr_order_t; 80 81 static int 82 addr_cmp(const void *aa, const void *bb) 83 { 84 uintptr_t a = *((uintptr_t *)aa); 85 uintptr_t b = *((uintptr_t *)bb); 86 87 if (a > b) 88 return (1); 89 if (a < b) 90 return (-1); 91 return (0); 92 } 93 94 /* 95 * This function creates a list of addresses for a load object's sections. 96 * The list is in ascending address order and alternates start address 97 * then end address for each section we're interested in. The function 98 * returns a pointer to the list, which must be freed by the caller. 99 */ 100 static uintptr_t * 101 get_saddrs(struct ps_prochandle *P, uintptr_t ehdr_start, uint_t *n) 102 { 103 uintptr_t a, addr, *addrs, last = 0; 104 uint_t i, naddrs = 0, unordered = 0; 105 106 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 107 Elf32_Ehdr ehdr; 108 Elf32_Phdr phdr; 109 uint_t phnum; 110 111 if (read_ehdr32(P, &ehdr, &phnum, ehdr_start) != 0) 112 return (NULL); 113 114 addrs = malloc(sizeof (uintptr_t) * phnum * 2); 115 a = ehdr_start + ehdr.e_phoff; 116 for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) { 117 if (Pread(P, &phdr, sizeof (phdr), a) != 118 sizeof (phdr)) { 119 free(addrs); 120 return (NULL); 121 } 122 if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0) 123 continue; 124 125 addr = phdr.p_vaddr; 126 if (ehdr.e_type == ET_DYN) 127 addr += ehdr_start; 128 if (last > addr) 129 unordered = 1; 130 addrs[naddrs++] = addr; 131 addrs[naddrs++] = last = addr + phdr.p_memsz - 1; 132 } 133 #ifdef _LP64 134 } else { 135 Elf64_Ehdr ehdr; 136 Elf64_Phdr phdr; 137 uint_t phnum; 138 139 if (read_ehdr64(P, &ehdr, &phnum, ehdr_start) != 0) 140 return (NULL); 141 142 addrs = malloc(sizeof (uintptr_t) * phnum * 2); 143 a = ehdr_start + ehdr.e_phoff; 144 for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) { 145 if (Pread(P, &phdr, sizeof (phdr), a) != 146 sizeof (phdr)) { 147 free(addrs); 148 return (NULL); 149 } 150 if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0) 151 continue; 152 153 addr = phdr.p_vaddr; 154 if (ehdr.e_type == ET_DYN) 155 addr += ehdr_start; 156 if (last > addr) 157 unordered = 1; 158 addrs[naddrs++] = addr; 159 addrs[naddrs++] = last = addr + phdr.p_memsz - 1; 160 } 161 #endif 162 } 163 164 if (unordered) 165 qsort(addrs, naddrs, sizeof (uintptr_t), addr_cmp); 166 167 *n = naddrs; 168 return (addrs); 169 } 170 171 /* 172 * Allocation function for a new file_info_t 173 */ 174 file_info_t * 175 file_info_new(struct ps_prochandle *P, map_info_t *mptr) 176 { 177 file_info_t *fptr; 178 map_info_t *mp; 179 uintptr_t mstart, mend, sstart, send; 180 uint_t i; 181 182 if ((fptr = calloc(1, sizeof (file_info_t))) == NULL) 183 return (NULL); 184 185 list_link(fptr, &P->file_head); 186 (void) strcpy(fptr->file_pname, mptr->map_pmap.pr_mapname); 187 mptr->map_file = fptr; 188 fptr->file_ref = 1; 189 fptr->file_fd = -1; 190 P->num_files++; 191 192 /* 193 * To figure out which map_info_t instances correspond to the mappings 194 * for this load object we try to obtain the start and end address 195 * for each section of our in-memory ELF image. If successful, we 196 * walk down the list of addresses and the list of map_info_t 197 * instances in lock step to correctly find the mappings that 198 * correspond to this load object. 199 */ 200 if ((fptr->file_saddrs = get_saddrs(P, mptr->map_pmap.pr_vaddr, 201 &fptr->file_nsaddrs)) == NULL) 202 return (fptr); 203 204 mp = P->mappings; 205 i = 0; 206 while (mp < P->mappings + P->map_count && i < fptr->file_nsaddrs) { 207 208 /* Calculate the start and end of the mapping and section */ 209 mstart = mp->map_pmap.pr_vaddr; 210 mend = mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size; 211 sstart = fptr->file_saddrs[i]; 212 send = fptr->file_saddrs[i + 1]; 213 214 if (mend <= sstart) { 215 /* This mapping is below the current section */ 216 mp++; 217 } else if (mstart >= send) { 218 /* This mapping is above the current section */ 219 i += 2; 220 } else { 221 /* This mapping overlaps the current section */ 222 if (mp->map_file == NULL) { 223 dprintf("file_info_new: associating " 224 "segment at %p\n", 225 (void *)mp->map_pmap.pr_vaddr); 226 mp->map_file = fptr; 227 fptr->file_ref++; 228 } else { 229 dprintf("file_info_new: segment at %p " 230 "already associated with %s\n", 231 (void *)mp->map_pmap.pr_vaddr, 232 (mp == mptr ? "this file" : 233 mp->map_file->file_pname)); 234 } 235 mp++; 236 } 237 } 238 239 return (fptr); 240 } 241 242 /* 243 * Deallocation function for a file_info_t 244 */ 245 static void 246 file_info_free(struct ps_prochandle *P, file_info_t *fptr) 247 { 248 if (--fptr->file_ref == 0) { 249 list_unlink(fptr); 250 if (fptr->file_symtab.sym_elf) { 251 (void) elf_end(fptr->file_symtab.sym_elf); 252 free(fptr->file_symtab.sym_elfmem); 253 } 254 if (fptr->file_symtab.sym_byname) 255 free(fptr->file_symtab.sym_byname); 256 if (fptr->file_symtab.sym_byaddr) 257 free(fptr->file_symtab.sym_byaddr); 258 259 if (fptr->file_dynsym.sym_elf) { 260 (void) elf_end(fptr->file_dynsym.sym_elf); 261 free(fptr->file_dynsym.sym_elfmem); 262 } 263 if (fptr->file_dynsym.sym_byname) 264 free(fptr->file_dynsym.sym_byname); 265 if (fptr->file_dynsym.sym_byaddr) 266 free(fptr->file_dynsym.sym_byaddr); 267 268 if (fptr->file_lo) 269 free(fptr->file_lo); 270 if (fptr->file_lname) 271 free(fptr->file_lname); 272 if (fptr->file_elf) 273 (void) elf_end(fptr->file_elf); 274 if (fptr->file_elfmem != NULL) 275 free(fptr->file_elfmem); 276 if (fptr->file_fd >= 0) 277 (void) close(fptr->file_fd); 278 if (fptr->file_ctfp) { 279 ctf_close(fptr->file_ctfp); 280 free(fptr->file_ctf_buf); 281 } 282 if (fptr->file_saddrs) 283 free(fptr->file_saddrs); 284 free(fptr); 285 P->num_files--; 286 } 287 } 288 289 /* 290 * Deallocation function for a map_info_t 291 */ 292 static void 293 map_info_free(struct ps_prochandle *P, map_info_t *mptr) 294 { 295 file_info_t *fptr; 296 297 if ((fptr = mptr->map_file) != NULL) { 298 if (fptr->file_map == mptr) 299 fptr->file_map = NULL; 300 file_info_free(P, fptr); 301 } 302 if (P->execname && mptr == P->map_exec) { 303 free(P->execname); 304 P->execname = NULL; 305 } 306 if (P->auxv && (mptr == P->map_exec || mptr == P->map_ldso)) { 307 free(P->auxv); 308 P->auxv = NULL; 309 P->nauxv = 0; 310 } 311 if (mptr == P->map_exec) 312 P->map_exec = NULL; 313 if (mptr == P->map_ldso) 314 P->map_ldso = NULL; 315 } 316 317 /* 318 * Call-back function for librtld_db to iterate through all of its shared 319 * libraries. We use this to get the load object names for the mappings. 320 */ 321 static int 322 map_iter(const rd_loadobj_t *lop, void *cd) 323 { 324 char buf[PATH_MAX]; 325 struct ps_prochandle *P = cd; 326 map_info_t *mptr; 327 file_info_t *fptr; 328 329 dprintf("encountered rd object at %p\n", (void *)lop->rl_base); 330 331 if ((mptr = Paddr2mptr(P, lop->rl_base)) == NULL) { 332 dprintf("map_iter: base address doesn't match any mapping\n"); 333 return (1); /* Base address does not match any mapping */ 334 } 335 336 if ((fptr = mptr->map_file) == NULL && 337 (fptr = file_info_new(P, mptr)) == NULL) { 338 dprintf("map_iter: failed to allocate a new file_info_t\n"); 339 return (1); /* Failed to allocate a new file_info_t */ 340 } 341 342 if ((fptr->file_lo == NULL) && 343 (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) { 344 dprintf("map_iter: failed to allocate rd_loadobj_t\n"); 345 file_info_free(P, fptr); 346 return (1); /* Failed to allocate rd_loadobj_t */ 347 } 348 349 fptr->file_map = mptr; 350 *fptr->file_lo = *lop; 351 352 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 353 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 354 355 if (fptr->file_lname) { 356 free(fptr->file_lname); 357 fptr->file_lname = NULL; 358 } 359 360 if (Pread_string(P, buf, sizeof (buf), lop->rl_nameaddr) > 0) { 361 if ((fptr->file_lname = strdup(buf)) != NULL) 362 fptr->file_lbase = basename(fptr->file_lname); 363 } else { 364 dprintf("map_iter: failed to read string at %p\n", 365 (void *)lop->rl_nameaddr); 366 } 367 368 dprintf("loaded rd object %s lmid %lx\n", 369 fptr->file_lname ? fptr->file_lname : "<NULL>", lop->rl_lmident); 370 return (1); 371 } 372 373 static void 374 map_set(struct ps_prochandle *P, map_info_t *mptr, const char *lname) 375 { 376 file_info_t *fptr; 377 378 if ((fptr = mptr->map_file) == NULL && 379 (fptr = file_info_new(P, mptr)) == NULL) 380 return; /* Failed to allocate a new file_info_t */ 381 382 fptr->file_map = mptr; 383 384 if ((fptr->file_lo == NULL) && 385 (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) { 386 file_info_free(P, fptr); 387 return; /* Failed to allocate rd_loadobj_t */ 388 } 389 390 (void) memset(fptr->file_lo, 0, sizeof (rd_loadobj_t)); 391 fptr->file_lo->rl_base = mptr->map_pmap.pr_vaddr; 392 fptr->file_lo->rl_bend = 393 mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size; 394 395 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 396 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 397 398 if (fptr->file_lname == NULL && 399 (fptr->file_lname = strdup(lname)) != NULL) 400 fptr->file_lbase = basename(fptr->file_lname); 401 } 402 403 static void 404 load_static_maps(struct ps_prochandle *P) 405 { 406 map_info_t *mptr; 407 408 /* 409 * Construct the map for the a.out. 410 */ 411 if ((mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_EXEC)) != NULL) 412 map_set(P, mptr, "a.out"); 413 414 /* 415 * If the dynamic linker exists for this process, 416 * construct the map for it. 417 */ 418 if (Pgetauxval(P, AT_BASE) != -1L && 419 (mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_LDSO)) != NULL) 420 map_set(P, mptr, "ld.so.1"); 421 } 422 423 /* 424 * Go through all the address space mappings, validating or updating 425 * the information already gathered, or gathering new information. 426 * 427 * This function is only called when we suspect that the mappings have changed 428 * because this is the first time we're calling it or because of rtld activity. 429 */ 430 void 431 Pupdate_maps(struct ps_prochandle *P) 432 { 433 char mapfile[PATH_MAX]; 434 int mapfd; 435 struct stat statb; 436 prmap_t *Pmap = NULL; 437 prmap_t *pmap; 438 ssize_t nmap; 439 int i; 440 uint_t oldmapcount; 441 map_info_t *newmap, *newp; 442 map_info_t *mptr; 443 444 if (P->info_valid || P->state == PS_UNDEAD) 445 return; 446 447 Preadauxvec(P); 448 449 (void) snprintf(mapfile, sizeof (mapfile), "%s/%d/map", 450 procfs_path, (int)P->pid); 451 if ((mapfd = open(mapfile, O_RDONLY)) < 0 || 452 fstat(mapfd, &statb) != 0 || 453 statb.st_size < sizeof (prmap_t) || 454 (Pmap = malloc(statb.st_size)) == NULL || 455 (nmap = pread(mapfd, Pmap, statb.st_size, 0L)) <= 0 || 456 (nmap /= sizeof (prmap_t)) == 0) { 457 if (Pmap != NULL) 458 free(Pmap); 459 if (mapfd >= 0) 460 (void) close(mapfd); 461 Preset_maps(P); /* utter failure; destroy tables */ 462 return; 463 } 464 (void) close(mapfd); 465 466 if ((newmap = calloc(1, nmap * sizeof (map_info_t))) == NULL) 467 return; 468 469 /* 470 * We try to merge any file information we may have for existing 471 * mappings, to avoid having to rebuild the file info. 472 */ 473 mptr = P->mappings; 474 pmap = Pmap; 475 newp = newmap; 476 oldmapcount = P->map_count; 477 for (i = 0; i < nmap; i++, pmap++, newp++) { 478 479 if (oldmapcount == 0) { 480 /* 481 * We've exhausted all the old mappings. Every new 482 * mapping should be added. 483 */ 484 newp->map_pmap = *pmap; 485 486 } else if (pmap->pr_vaddr == mptr->map_pmap.pr_vaddr && 487 pmap->pr_size == mptr->map_pmap.pr_size && 488 pmap->pr_offset == mptr->map_pmap.pr_offset && 489 (pmap->pr_mflags & ~(MA_BREAK | MA_STACK)) == 490 (mptr->map_pmap.pr_mflags & ~(MA_BREAK | MA_STACK)) && 491 pmap->pr_pagesize == mptr->map_pmap.pr_pagesize && 492 pmap->pr_shmid == mptr->map_pmap.pr_shmid && 493 strcmp(pmap->pr_mapname, mptr->map_pmap.pr_mapname) == 0) { 494 495 /* 496 * This mapping matches exactly. Copy over the old 497 * mapping, taking care to get the latest flags. 498 * Make sure the associated file_info_t is updated 499 * appropriately. 500 */ 501 *newp = *mptr; 502 if (P->map_exec == mptr) 503 P->map_exec = newp; 504 if (P->map_ldso == mptr) 505 P->map_ldso = newp; 506 newp->map_pmap.pr_mflags = pmap->pr_mflags; 507 if (mptr->map_file != NULL && 508 mptr->map_file->file_map == mptr) 509 mptr->map_file->file_map = newp; 510 oldmapcount--; 511 mptr++; 512 513 } else if (pmap->pr_vaddr + pmap->pr_size > 514 mptr->map_pmap.pr_vaddr) { 515 516 /* 517 * The old mapping doesn't exist any more, remove it 518 * from the list. 519 */ 520 map_info_free(P, mptr); 521 oldmapcount--; 522 i--; 523 newp--; 524 pmap--; 525 mptr++; 526 527 } else { 528 529 /* 530 * This is a new mapping, add it directly. 531 */ 532 newp->map_pmap = *pmap; 533 } 534 } 535 536 /* 537 * Free any old maps 538 */ 539 while (oldmapcount) { 540 map_info_free(P, mptr); 541 oldmapcount--; 542 mptr++; 543 } 544 545 free(Pmap); 546 if (P->mappings != NULL) 547 free(P->mappings); 548 P->mappings = newmap; 549 P->map_count = P->map_alloc = nmap; 550 P->info_valid = 1; 551 552 /* 553 * Consult librtld_db to get the load object 554 * names for all of the shared libraries. 555 */ 556 if (P->rap != NULL) 557 (void) rd_loadobj_iter(P->rap, map_iter, P); 558 } 559 560 /* 561 * Update all of the mappings and rtld_db as if by Pupdate_maps(), and then 562 * forcibly cache all of the symbol tables associated with all object files. 563 */ 564 void 565 Pupdate_syms(struct ps_prochandle *P) 566 { 567 file_info_t *fptr = list_next(&P->file_head); 568 int i; 569 570 Pupdate_maps(P); 571 572 for (i = 0; i < P->num_files; i++, fptr = list_next(fptr)) { 573 Pbuild_file_symtab(P, fptr); 574 (void) Pbuild_file_ctf(P, fptr); 575 } 576 } 577 578 /* 579 * Return the librtld_db agent handle for the victim process. 580 * The handle will become invalid at the next successful exec() and the 581 * client (caller of proc_rd_agent()) must not use it beyond that point. 582 * If the process is already dead, we've already tried our best to 583 * create the agent during core file initialization. 584 */ 585 rd_agent_t * 586 Prd_agent(struct ps_prochandle *P) 587 { 588 if (P->rap == NULL && P->state != PS_DEAD && P->state != PS_IDLE) { 589 Pupdate_maps(P); 590 if (P->num_files == 0) 591 load_static_maps(P); 592 rd_log(_libproc_debug); 593 if ((P->rap = rd_new(P)) != NULL) 594 (void) rd_loadobj_iter(P->rap, map_iter, P); 595 } 596 return (P->rap); 597 } 598 599 /* 600 * Return the prmap_t structure containing 'addr', but only if it 601 * is in the dynamic linker's link map and is the text section. 602 */ 603 const prmap_t * 604 Paddr_to_text_map(struct ps_prochandle *P, uintptr_t addr) 605 { 606 map_info_t *mptr; 607 608 if (!P->info_valid) 609 Pupdate_maps(P); 610 611 if ((mptr = Paddr2mptr(P, addr)) != NULL) { 612 file_info_t *fptr = build_map_symtab(P, mptr); 613 const prmap_t *pmp = &mptr->map_pmap; 614 615 /* 616 * Assume that if rl_data_base is NULL, it means that no 617 * data section was found for this load object, and that 618 * a section must be text. Otherwise, a section will be 619 * text unless it ends above the start of the data 620 * section. 621 */ 622 if (fptr != NULL && fptr->file_lo != NULL && 623 (fptr->file_lo->rl_data_base == NULL || 624 pmp->pr_vaddr + pmp->pr_size < 625 fptr->file_lo->rl_data_base)) 626 return (pmp); 627 } 628 629 return (NULL); 630 } 631 632 /* 633 * Return the prmap_t structure containing 'addr' (no restrictions on 634 * the type of mapping). 635 */ 636 const prmap_t * 637 Paddr_to_map(struct ps_prochandle *P, uintptr_t addr) 638 { 639 map_info_t *mptr; 640 641 if (!P->info_valid) 642 Pupdate_maps(P); 643 644 if ((mptr = Paddr2mptr(P, addr)) != NULL) 645 return (&mptr->map_pmap); 646 647 return (NULL); 648 } 649 650 /* 651 * Convert a full or partial load object name to the prmap_t for its 652 * corresponding primary text mapping. 653 */ 654 const prmap_t * 655 Plmid_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name) 656 { 657 map_info_t *mptr; 658 659 if (name == PR_OBJ_EVERY) 660 return (NULL); /* A reasonable mistake */ 661 662 if ((mptr = object_name_to_map(P, lmid, name)) != NULL) 663 return (&mptr->map_pmap); 664 665 return (NULL); 666 } 667 668 const prmap_t * 669 Pname_to_map(struct ps_prochandle *P, const char *name) 670 { 671 return (Plmid_to_map(P, PR_LMID_EVERY, name)); 672 } 673 674 const rd_loadobj_t * 675 Paddr_to_loadobj(struct ps_prochandle *P, uintptr_t addr) 676 { 677 map_info_t *mptr; 678 679 if (!P->info_valid) 680 Pupdate_maps(P); 681 682 if ((mptr = Paddr2mptr(P, addr)) == NULL) 683 return (NULL); 684 685 /* 686 * By building the symbol table, we implicitly bring the PLT 687 * information up to date in the load object. 688 */ 689 (void) build_map_symtab(P, mptr); 690 691 return (mptr->map_file->file_lo); 692 } 693 694 const rd_loadobj_t * 695 Plmid_to_loadobj(struct ps_prochandle *P, Lmid_t lmid, const char *name) 696 { 697 map_info_t *mptr; 698 699 if (name == PR_OBJ_EVERY) 700 return (NULL); 701 702 if ((mptr = object_name_to_map(P, lmid, name)) == NULL) 703 return (NULL); 704 705 /* 706 * By building the symbol table, we implicitly bring the PLT 707 * information up to date in the load object. 708 */ 709 (void) build_map_symtab(P, mptr); 710 711 return (mptr->map_file->file_lo); 712 } 713 714 const rd_loadobj_t * 715 Pname_to_loadobj(struct ps_prochandle *P, const char *name) 716 { 717 return (Plmid_to_loadobj(P, PR_LMID_EVERY, name)); 718 } 719 720 ctf_file_t * 721 Pbuild_file_ctf(struct ps_prochandle *P, file_info_t *fptr) 722 { 723 ctf_sect_t ctdata, symtab, strtab; 724 sym_tbl_t *symp; 725 int err; 726 727 if (fptr->file_ctfp != NULL) 728 return (fptr->file_ctfp); 729 730 Pbuild_file_symtab(P, fptr); 731 732 if (fptr->file_ctf_size == 0) 733 return (NULL); 734 735 symp = fptr->file_ctf_dyn ? &fptr->file_dynsym : &fptr->file_symtab; 736 if (symp->sym_data_pri == NULL) 737 return (NULL); 738 739 /* 740 * The buffer may alread be allocated if this is a core file that 741 * contained CTF data for this file. 742 */ 743 if (fptr->file_ctf_buf == NULL) { 744 fptr->file_ctf_buf = malloc(fptr->file_ctf_size); 745 if (fptr->file_ctf_buf == NULL) { 746 dprintf("failed to allocate ctf buffer\n"); 747 return (NULL); 748 } 749 750 if (pread(fptr->file_fd, fptr->file_ctf_buf, 751 fptr->file_ctf_size, fptr->file_ctf_off) != 752 fptr->file_ctf_size) { 753 free(fptr->file_ctf_buf); 754 fptr->file_ctf_buf = NULL; 755 dprintf("failed to read ctf data\n"); 756 return (NULL); 757 } 758 } 759 760 ctdata.cts_name = ".SUNW_ctf"; 761 ctdata.cts_type = SHT_PROGBITS; 762 ctdata.cts_flags = 0; 763 ctdata.cts_data = fptr->file_ctf_buf; 764 ctdata.cts_size = fptr->file_ctf_size; 765 ctdata.cts_entsize = 1; 766 ctdata.cts_offset = 0; 767 768 symtab.cts_name = fptr->file_ctf_dyn ? ".dynsym" : ".symtab"; 769 symtab.cts_type = symp->sym_hdr_pri.sh_type; 770 symtab.cts_flags = symp->sym_hdr_pri.sh_flags; 771 symtab.cts_data = symp->sym_data_pri->d_buf; 772 symtab.cts_size = symp->sym_hdr_pri.sh_size; 773 symtab.cts_entsize = symp->sym_hdr_pri.sh_entsize; 774 symtab.cts_offset = symp->sym_hdr_pri.sh_offset; 775 776 strtab.cts_name = fptr->file_ctf_dyn ? ".dynstr" : ".strtab"; 777 strtab.cts_type = symp->sym_strhdr.sh_type; 778 strtab.cts_flags = symp->sym_strhdr.sh_flags; 779 strtab.cts_data = symp->sym_strs; 780 strtab.cts_size = symp->sym_strhdr.sh_size; 781 strtab.cts_entsize = symp->sym_strhdr.sh_entsize; 782 strtab.cts_offset = symp->sym_strhdr.sh_offset; 783 784 fptr->file_ctfp = ctf_bufopen(&ctdata, &symtab, &strtab, &err); 785 if (fptr->file_ctfp == NULL) { 786 free(fptr->file_ctf_buf); 787 fptr->file_ctf_buf = NULL; 788 return (NULL); 789 } 790 791 dprintf("loaded %lu bytes of CTF data for %s\n", 792 (ulong_t)fptr->file_ctf_size, fptr->file_pname); 793 794 return (fptr->file_ctfp); 795 } 796 797 ctf_file_t * 798 Paddr_to_ctf(struct ps_prochandle *P, uintptr_t addr) 799 { 800 map_info_t *mptr; 801 file_info_t *fptr; 802 803 if (!P->info_valid) 804 Pupdate_maps(P); 805 806 if ((mptr = Paddr2mptr(P, addr)) == NULL || 807 (fptr = mptr->map_file) == NULL) 808 return (NULL); 809 810 return (Pbuild_file_ctf(P, fptr)); 811 } 812 813 ctf_file_t * 814 Plmid_to_ctf(struct ps_prochandle *P, Lmid_t lmid, const char *name) 815 { 816 map_info_t *mptr; 817 file_info_t *fptr; 818 819 if (name == PR_OBJ_EVERY) 820 return (NULL); 821 822 if ((mptr = object_name_to_map(P, lmid, name)) == NULL || 823 (fptr = mptr->map_file) == NULL) 824 return (NULL); 825 826 return (Pbuild_file_ctf(P, fptr)); 827 } 828 829 ctf_file_t * 830 Pname_to_ctf(struct ps_prochandle *P, const char *name) 831 { 832 return (Plmid_to_ctf(P, PR_LMID_EVERY, name)); 833 } 834 835 /* 836 * If we're not a core file, re-read the /proc/<pid>/auxv file and store 837 * its contents in P->auxv. In the case of a core file, we either 838 * initialized P->auxv in Pcore() from the NT_AUXV, or we don't have an 839 * auxv because the note was missing. 840 */ 841 void 842 Preadauxvec(struct ps_prochandle *P) 843 { 844 char auxfile[64]; 845 struct stat statb; 846 ssize_t naux; 847 int fd; 848 849 if (P->state == PS_DEAD) 850 return; /* Already read during Pgrab_core() */ 851 if (P->state == PS_IDLE) 852 return; /* No aux vec for Pgrab_file() */ 853 854 if (P->auxv != NULL) { 855 free(P->auxv); 856 P->auxv = NULL; 857 P->nauxv = 0; 858 } 859 860 (void) snprintf(auxfile, sizeof (auxfile), "%s/%d/auxv", 861 procfs_path, (int)P->pid); 862 if ((fd = open(auxfile, O_RDONLY)) < 0) 863 return; 864 865 if (fstat(fd, &statb) == 0 && 866 statb.st_size >= sizeof (auxv_t) && 867 (P->auxv = malloc(statb.st_size + sizeof (auxv_t))) != NULL) { 868 if ((naux = read(fd, P->auxv, statb.st_size)) < 0 || 869 (naux /= sizeof (auxv_t)) < 1) { 870 free(P->auxv); 871 P->auxv = NULL; 872 } else { 873 P->auxv[naux].a_type = AT_NULL; 874 P->auxv[naux].a_un.a_val = 0L; 875 P->nauxv = (int)naux; 876 } 877 } 878 879 (void) close(fd); 880 } 881 882 /* 883 * Return a requested element from the process's aux vector. 884 * Return -1 on failure (this is adequate for our purposes). 885 */ 886 long 887 Pgetauxval(struct ps_prochandle *P, int type) 888 { 889 auxv_t *auxv; 890 891 if (P->auxv == NULL) 892 Preadauxvec(P); 893 894 if (P->auxv == NULL) 895 return (-1); 896 897 for (auxv = P->auxv; auxv->a_type != AT_NULL; auxv++) { 898 if (auxv->a_type == type) 899 return (auxv->a_un.a_val); 900 } 901 902 return (-1); 903 } 904 905 /* 906 * Return a pointer to our internal copy of the process's aux vector. 907 * The caller should not hold on to this pointer across any libproc calls. 908 */ 909 const auxv_t * 910 Pgetauxvec(struct ps_prochandle *P) 911 { 912 static const auxv_t empty = { AT_NULL, 0L }; 913 914 if (P->auxv == NULL) 915 Preadauxvec(P); 916 917 if (P->auxv == NULL) 918 return (&empty); 919 920 return (P->auxv); 921 } 922 923 /* 924 * Return 1 if the given mapping corresponds to the given file_info_t's 925 * load object; return 0 otherwise. 926 */ 927 static int 928 is_mapping_in_file(struct ps_prochandle *P, map_info_t *mptr, file_info_t *fptr) 929 { 930 prmap_t *pmap = &mptr->map_pmap; 931 rd_loadobj_t *lop = fptr->file_lo; 932 uint_t i; 933 uintptr_t mstart, mend, sstart, send; 934 935 /* 936 * We can get for free the start address of the text and data 937 * sections of the load object. Start by seeing if the mapping 938 * encloses either of these. 939 */ 940 if ((pmap->pr_vaddr <= lop->rl_base && 941 lop->rl_base < pmap->pr_vaddr + pmap->pr_size) || 942 (pmap->pr_vaddr <= lop->rl_data_base && 943 lop->rl_data_base < pmap->pr_vaddr + pmap->pr_size)) 944 return (1); 945 946 /* 947 * It's still possible that this mapping correponds to the load 948 * object. Consider the example of a mapping whose start and end 949 * addresses correspond to those of the load object's text section. 950 * If the mapping splits, e.g. as a result of a segment demotion, 951 * then although both mappings are still backed by the same section, 952 * only one will be seen to enclose that section's start address. 953 * Thus, to be rigorous, we ask not whether this mapping encloses 954 * the start of a section, but whether there exists a section that 955 * overlaps this mapping. 956 * 957 * If we don't already have the section addresses, and we successfully 958 * get them, then we cache them in case we come here again. 959 */ 960 if (fptr->file_saddrs == NULL && 961 (fptr->file_saddrs = get_saddrs(P, 962 fptr->file_map->map_pmap.pr_vaddr, &fptr->file_nsaddrs)) == NULL) 963 return (0); 964 965 mstart = mptr->map_pmap.pr_vaddr; 966 mend = mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size; 967 for (i = 0; i < fptr->file_nsaddrs; i += 2) { 968 /* Does this section overlap the mapping? */ 969 sstart = fptr->file_saddrs[i]; 970 send = fptr->file_saddrs[i + 1]; 971 if (!(mend <= sstart || mstart >= send)) 972 return (1); 973 } 974 975 return (0); 976 } 977 978 /* 979 * Find or build the symbol table for the given mapping. 980 */ 981 static file_info_t * 982 build_map_symtab(struct ps_prochandle *P, map_info_t *mptr) 983 { 984 prmap_t *pmap = &mptr->map_pmap; 985 file_info_t *fptr; 986 uint_t i; 987 988 if ((fptr = mptr->map_file) != NULL) { 989 Pbuild_file_symtab(P, fptr); 990 return (fptr); 991 } 992 993 if (pmap->pr_mapname[0] == '\0') 994 return (NULL); 995 996 /* 997 * Attempt to find a matching file. 998 * (A file can be mapped at several different addresses.) 999 */ 1000 for (i = 0, fptr = list_next(&P->file_head); i < P->num_files; 1001 i++, fptr = list_next(fptr)) { 1002 if (strcmp(fptr->file_pname, pmap->pr_mapname) == 0 && 1003 fptr->file_lo && is_mapping_in_file(P, mptr, fptr)) { 1004 mptr->map_file = fptr; 1005 fptr->file_ref++; 1006 Pbuild_file_symtab(P, fptr); 1007 return (fptr); 1008 } 1009 } 1010 1011 /* 1012 * If we need to create a new file_info structure, iterate 1013 * through the load objects in order to attempt to connect 1014 * this new file with its primary text mapping. We again 1015 * need to handle ld.so as a special case because we need 1016 * to be able to bootstrap librtld_db. 1017 */ 1018 if ((fptr = file_info_new(P, mptr)) == NULL) 1019 return (NULL); 1020 1021 if (P->map_ldso != mptr) { 1022 if (P->rap != NULL) 1023 (void) rd_loadobj_iter(P->rap, map_iter, P); 1024 else 1025 (void) Prd_agent(P); 1026 } else { 1027 fptr->file_map = mptr; 1028 } 1029 1030 /* 1031 * If librtld_db wasn't able to help us connect the file to a primary 1032 * text mapping, set file_map to the current mapping because we require 1033 * fptr->file_map to be set in Pbuild_file_symtab. librtld_db may be 1034 * unaware of what's going on in the rare case that a legitimate ELF 1035 * file has been mmap(2)ed into the process address space *without* 1036 * the use of dlopen(3x). 1037 */ 1038 if (fptr->file_map == NULL) 1039 fptr->file_map = mptr; 1040 1041 Pbuild_file_symtab(P, fptr); 1042 1043 return (fptr); 1044 } 1045 1046 static int 1047 read_ehdr32(struct ps_prochandle *P, Elf32_Ehdr *ehdr, uint_t *phnum, 1048 uintptr_t addr) 1049 { 1050 if (Pread(P, ehdr, sizeof (*ehdr), addr) != sizeof (*ehdr)) 1051 return (-1); 1052 1053 if (ehdr->e_ident[EI_MAG0] != ELFMAG0 || 1054 ehdr->e_ident[EI_MAG1] != ELFMAG1 || 1055 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 1056 ehdr->e_ident[EI_MAG3] != ELFMAG3 || 1057 ehdr->e_ident[EI_CLASS] != ELFCLASS32 || 1058 #ifdef _BIG_ENDIAN 1059 ehdr->e_ident[EI_DATA] != ELFDATA2MSB || 1060 #else 1061 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 1062 #endif 1063 ehdr->e_ident[EI_VERSION] != EV_CURRENT) 1064 return (-1); 1065 1066 if ((*phnum = ehdr->e_phnum) == PN_XNUM) { 1067 Elf32_Shdr shdr0; 1068 1069 if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) || 1070 Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) != 1071 sizeof (shdr0)) 1072 return (-1); 1073 1074 if (shdr0.sh_info != 0) 1075 *phnum = shdr0.sh_info; 1076 } 1077 1078 return (0); 1079 } 1080 1081 static int 1082 read_dynamic_phdr32(struct ps_prochandle *P, const Elf32_Ehdr *ehdr, 1083 uint_t phnum, Elf32_Phdr *phdr, uintptr_t addr) 1084 { 1085 uint_t i; 1086 1087 for (i = 0; i < phnum; i++) { 1088 uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize; 1089 if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr)) 1090 return (-1); 1091 1092 if (phdr->p_type == PT_DYNAMIC) 1093 return (0); 1094 } 1095 1096 return (-1); 1097 } 1098 1099 #ifdef _LP64 1100 static int 1101 read_ehdr64(struct ps_prochandle *P, Elf64_Ehdr *ehdr, uint_t *phnum, 1102 uintptr_t addr) 1103 { 1104 if (Pread(P, ehdr, sizeof (Elf64_Ehdr), addr) != sizeof (Elf64_Ehdr)) 1105 return (-1); 1106 1107 if (ehdr->e_ident[EI_MAG0] != ELFMAG0 || 1108 ehdr->e_ident[EI_MAG1] != ELFMAG1 || 1109 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 1110 ehdr->e_ident[EI_MAG3] != ELFMAG3 || 1111 ehdr->e_ident[EI_CLASS] != ELFCLASS64 || 1112 #ifdef _BIG_ENDIAN 1113 ehdr->e_ident[EI_DATA] != ELFDATA2MSB || 1114 #else 1115 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 1116 #endif 1117 ehdr->e_ident[EI_VERSION] != EV_CURRENT) 1118 return (-1); 1119 1120 if ((*phnum = ehdr->e_phnum) == PN_XNUM) { 1121 Elf64_Shdr shdr0; 1122 1123 if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) || 1124 Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) != 1125 sizeof (shdr0)) 1126 return (-1); 1127 1128 if (shdr0.sh_info != 0) 1129 *phnum = shdr0.sh_info; 1130 } 1131 1132 return (0); 1133 } 1134 1135 static int 1136 read_dynamic_phdr64(struct ps_prochandle *P, const Elf64_Ehdr *ehdr, 1137 uint_t phnum, Elf64_Phdr *phdr, uintptr_t addr) 1138 { 1139 uint_t i; 1140 1141 for (i = 0; i < phnum; i++) { 1142 uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize; 1143 if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr)) 1144 return (-1); 1145 1146 if (phdr->p_type == PT_DYNAMIC) 1147 return (0); 1148 } 1149 1150 return (-1); 1151 } 1152 #endif /* _LP64 */ 1153 1154 /* 1155 * The text segment for each load object contains the elf header and 1156 * program headers. We can use this information to determine if the 1157 * file that corresponds to the load object is the same file that 1158 * was loaded into the process's address space. There can be a discrepency 1159 * if a file is recompiled after the process is started or if the target 1160 * represents a core file from a differently configured system -- two 1161 * common examples. The DT_CHECKSUM entry in the dynamic section 1162 * provides an easy method of comparison. It is important to note that 1163 * the dynamic section usually lives in the data segment, but the meta 1164 * data we use to find the dynamic section lives in the text segment so 1165 * if either of those segments is absent we can't proceed. 1166 * 1167 * We're looking through the elf file for several items: the symbol tables 1168 * (both dynsym and symtab), the procedure linkage table (PLT) base, 1169 * size, and relocation base, and the CTF information. Most of this can 1170 * be recovered from the loaded image of the file itself, the exceptions 1171 * being the symtab and CTF data. 1172 * 1173 * First we try to open the file that we think corresponds to the load 1174 * object, if the DT_CHECKSUM values match, we're all set, and can simply 1175 * recover all the information we need from the file. If the values of 1176 * DT_CHECKSUM don't match, or if we can't access the file for whatever 1177 * reasaon, we fake up a elf file to use in its stead. If we can't read 1178 * the elf data in the process's address space, we fall back to using 1179 * the file even though it may give inaccurate information. 1180 * 1181 * The elf file that we fake up has to consist of sections for the 1182 * dynsym, the PLT and the dynamic section. Note that in the case of a 1183 * core file, we'll get the CTF data in the file_info_t later on from 1184 * a section embedded the core file (if it's present). 1185 * 1186 * file_differs() conservatively looks for mismatched files, identifying 1187 * a match when there is any ambiguity (since that's the legacy behavior). 1188 */ 1189 static int 1190 file_differs(struct ps_prochandle *P, Elf *elf, file_info_t *fptr) 1191 { 1192 Elf_Scn *scn; 1193 GElf_Shdr shdr; 1194 GElf_Dyn dyn; 1195 Elf_Data *data; 1196 uint_t i, ndyn; 1197 GElf_Xword cksum; 1198 uintptr_t addr; 1199 1200 if (fptr->file_map == NULL) 1201 return (0); 1202 1203 if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) != 1204 (CC_CONTENT_TEXT | CC_CONTENT_DATA)) 1205 return (0); 1206 1207 /* 1208 * First, we find the checksum value in the elf file. 1209 */ 1210 scn = NULL; 1211 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1212 if (gelf_getshdr(scn, &shdr) != NULL && 1213 shdr.sh_type == SHT_DYNAMIC) 1214 goto found_shdr; 1215 } 1216 return (0); 1217 1218 found_shdr: 1219 if ((data = elf_getdata(scn, NULL)) == NULL) 1220 return (0); 1221 1222 if (P->status.pr_dmodel == PR_MODEL_ILP32) 1223 ndyn = shdr.sh_size / sizeof (Elf32_Dyn); 1224 #ifdef _LP64 1225 else if (P->status.pr_dmodel == PR_MODEL_LP64) 1226 ndyn = shdr.sh_size / sizeof (Elf64_Dyn); 1227 #endif 1228 else 1229 return (0); 1230 1231 for (i = 0; i < ndyn; i++) { 1232 if (gelf_getdyn(data, i, &dyn) != NULL && 1233 dyn.d_tag == DT_CHECKSUM) 1234 goto found_cksum; 1235 } 1236 1237 /* 1238 * The in-memory ELF has no DT_CHECKSUM section, but we will report it 1239 * as matching the file anyhow. 1240 */ 1241 return (0); 1242 1243 found_cksum: 1244 cksum = dyn.d_un.d_val; 1245 dprintf("elf cksum value is %llx\n", (u_longlong_t)cksum); 1246 1247 /* 1248 * Get the base of the text mapping that corresponds to this file. 1249 */ 1250 addr = fptr->file_map->map_pmap.pr_vaddr; 1251 1252 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 1253 Elf32_Ehdr ehdr; 1254 Elf32_Phdr phdr; 1255 Elf32_Dyn dync, *dynp; 1256 uint_t phnum, i; 1257 1258 if (read_ehdr32(P, &ehdr, &phnum, addr) != 0 || 1259 read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0) 1260 return (0); 1261 1262 if (ehdr.e_type == ET_DYN) 1263 phdr.p_vaddr += addr; 1264 if ((dynp = malloc(phdr.p_filesz)) == NULL) 1265 return (0); 1266 dync.d_tag = DT_NULL; 1267 if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) != 1268 phdr.p_filesz) { 1269 free(dynp); 1270 return (0); 1271 } 1272 1273 for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) { 1274 if (dynp[i].d_tag == DT_CHECKSUM) 1275 dync = dynp[i]; 1276 } 1277 1278 free(dynp); 1279 1280 if (dync.d_tag != DT_CHECKSUM) 1281 return (0); 1282 1283 dprintf("image cksum value is %llx\n", 1284 (u_longlong_t)dync.d_un.d_val); 1285 return (dync.d_un.d_val != cksum); 1286 #ifdef _LP64 1287 } else if (P->status.pr_dmodel == PR_MODEL_LP64) { 1288 Elf64_Ehdr ehdr; 1289 Elf64_Phdr phdr; 1290 Elf64_Dyn dync, *dynp; 1291 uint_t phnum, i; 1292 1293 if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 || 1294 read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0) 1295 return (0); 1296 1297 if (ehdr.e_type == ET_DYN) 1298 phdr.p_vaddr += addr; 1299 if ((dynp = malloc(phdr.p_filesz)) == NULL) 1300 return (0); 1301 dync.d_tag = DT_NULL; 1302 if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) != 1303 phdr.p_filesz) { 1304 free(dynp); 1305 return (0); 1306 } 1307 1308 for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) { 1309 if (dynp[i].d_tag == DT_CHECKSUM) 1310 dync = dynp[i]; 1311 } 1312 1313 free(dynp); 1314 1315 if (dync.d_tag != DT_CHECKSUM) 1316 return (0); 1317 1318 dprintf("image cksum value is %llx\n", 1319 (u_longlong_t)dync.d_un.d_val); 1320 return (dync.d_un.d_val != cksum); 1321 #endif /* _LP64 */ 1322 } 1323 1324 return (0); 1325 } 1326 1327 /* 1328 * Read data from the specified process and construct an in memory 1329 * image of an ELF file that represents it well enough to let 1330 * us probe it for information. 1331 */ 1332 static Elf * 1333 fake_elf(struct ps_prochandle *P, file_info_t *fptr) 1334 { 1335 Elf *elf; 1336 uintptr_t addr; 1337 uint_t phnum; 1338 1339 if (fptr->file_map == NULL) 1340 return (NULL); 1341 1342 if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) != 1343 (CC_CONTENT_TEXT | CC_CONTENT_DATA)) 1344 return (NULL); 1345 1346 addr = fptr->file_map->map_pmap.pr_vaddr; 1347 1348 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 1349 Elf32_Ehdr ehdr; 1350 Elf32_Phdr phdr; 1351 1352 if ((read_ehdr32(P, &ehdr, &phnum, addr) != 0) || 1353 read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0) 1354 return (NULL); 1355 1356 elf = fake_elf32(P, fptr, addr, &ehdr, phnum, &phdr); 1357 #ifdef _LP64 1358 } else { 1359 Elf64_Ehdr ehdr; 1360 Elf64_Phdr phdr; 1361 1362 if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 || 1363 read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0) 1364 return (NULL); 1365 1366 elf = fake_elf64(P, fptr, addr, &ehdr, phnum, &phdr); 1367 #endif 1368 } 1369 1370 return (elf); 1371 } 1372 1373 /* 1374 * We wouldn't need these if qsort(3C) took an argument for the callback... 1375 */ 1376 static mutex_t sort_mtx = DEFAULTMUTEX; 1377 static char *sort_strs; 1378 static GElf_Sym *sort_syms; 1379 1380 int 1381 byaddr_cmp_common(GElf_Sym *a, char *aname, GElf_Sym *b, char *bname) 1382 { 1383 if (a->st_value < b->st_value) 1384 return (-1); 1385 if (a->st_value > b->st_value) 1386 return (1); 1387 1388 /* 1389 * Prefer the function to the non-function. 1390 */ 1391 if (GELF_ST_TYPE(a->st_info) != GELF_ST_TYPE(b->st_info)) { 1392 if (GELF_ST_TYPE(a->st_info) == STT_FUNC) 1393 return (-1); 1394 if (GELF_ST_TYPE(b->st_info) == STT_FUNC) 1395 return (1); 1396 } 1397 1398 /* 1399 * Prefer the weak or strong global symbol to the local symbol. 1400 */ 1401 if (GELF_ST_BIND(a->st_info) != GELF_ST_BIND(b->st_info)) { 1402 if (GELF_ST_BIND(b->st_info) == STB_LOCAL) 1403 return (-1); 1404 if (GELF_ST_BIND(a->st_info) == STB_LOCAL) 1405 return (1); 1406 } 1407 1408 /* 1409 * Prefer the symbol that doesn't begin with a '$' since compilers and 1410 * other symbol generators often use it as a prefix. 1411 */ 1412 if (*bname == '$') 1413 return (-1); 1414 if (*aname == '$') 1415 return (1); 1416 1417 /* 1418 * Prefer the name with fewer leading underscores in the name. 1419 */ 1420 while (*aname == '_' && *bname == '_') { 1421 aname++; 1422 bname++; 1423 } 1424 1425 if (*bname == '_') 1426 return (-1); 1427 if (*aname == '_') 1428 return (1); 1429 1430 /* 1431 * Prefer the symbol with the smaller size. 1432 */ 1433 if (a->st_size < b->st_size) 1434 return (-1); 1435 if (a->st_size > b->st_size) 1436 return (1); 1437 1438 /* 1439 * All other factors being equal, fall back to lexicographic order. 1440 */ 1441 return (strcmp(aname, bname)); 1442 } 1443 1444 static int 1445 byaddr_cmp(const void *aa, const void *bb) 1446 { 1447 GElf_Sym *a = &sort_syms[*(uint_t *)aa]; 1448 GElf_Sym *b = &sort_syms[*(uint_t *)bb]; 1449 char *aname = sort_strs + a->st_name; 1450 char *bname = sort_strs + b->st_name; 1451 1452 return (byaddr_cmp_common(a, aname, b, bname)); 1453 } 1454 1455 static int 1456 byname_cmp(const void *aa, const void *bb) 1457 { 1458 GElf_Sym *a = &sort_syms[*(uint_t *)aa]; 1459 GElf_Sym *b = &sort_syms[*(uint_t *)bb]; 1460 char *aname = sort_strs + a->st_name; 1461 char *bname = sort_strs + b->st_name; 1462 1463 return (strcmp(aname, bname)); 1464 } 1465 1466 /* 1467 * Given a symbol index, look up the corresponding symbol from the 1468 * given symbol table. 1469 * 1470 * This function allows the caller to treat the symbol table as a single 1471 * logical entity even though there may be 2 actual ELF symbol tables 1472 * involved. See the comments in Pcontrol.h for details. 1473 */ 1474 static GElf_Sym * 1475 symtab_getsym(sym_tbl_t *symtab, int ndx, GElf_Sym *dst) 1476 { 1477 /* If index is in range of primary symtab, look it up there */ 1478 if (ndx >= symtab->sym_symn_aux) { 1479 return (gelf_getsym(symtab->sym_data_pri, 1480 ndx - symtab->sym_symn_aux, dst)); 1481 } 1482 1483 /* Not in primary: Look it up in the auxiliary symtab */ 1484 return (gelf_getsym(symtab->sym_data_aux, ndx, dst)); 1485 } 1486 1487 void 1488 optimize_symtab(sym_tbl_t *symtab) 1489 { 1490 GElf_Sym *symp, *syms; 1491 uint_t i, *indexa, *indexb; 1492 size_t symn, strsz, count; 1493 1494 if (symtab == NULL || symtab->sym_data_pri == NULL || 1495 symtab->sym_byaddr != NULL) 1496 return; 1497 1498 symn = symtab->sym_symn; 1499 strsz = symtab->sym_strsz; 1500 1501 symp = syms = malloc(sizeof (GElf_Sym) * symn); 1502 if (symp == NULL) { 1503 dprintf("optimize_symtab: failed to malloc symbol array"); 1504 return; 1505 } 1506 1507 /* 1508 * First record all the symbols into a table and count up the ones 1509 * that we're interested in. We mark symbols as invalid by setting 1510 * the st_name to an illegal value. 1511 */ 1512 for (i = 0, count = 0; i < symn; i++, symp++) { 1513 if (symtab_getsym(symtab, i, symp) != NULL && 1514 symp->st_name < strsz && 1515 IS_DATA_TYPE(GELF_ST_TYPE(symp->st_info))) 1516 count++; 1517 else 1518 symp->st_name = strsz; 1519 } 1520 1521 /* 1522 * Allocate sufficient space for both tables and populate them 1523 * with the same symbols we just counted. 1524 */ 1525 symtab->sym_count = count; 1526 indexa = symtab->sym_byaddr = calloc(sizeof (uint_t), count); 1527 indexb = symtab->sym_byname = calloc(sizeof (uint_t), count); 1528 if (indexa == NULL || indexb == NULL) { 1529 dprintf( 1530 "optimize_symtab: failed to malloc symbol index arrays"); 1531 symtab->sym_count = 0; 1532 if (indexa != NULL) { /* First alloc succeeded. Free it */ 1533 free(indexa); 1534 symtab->sym_byaddr = NULL; 1535 } 1536 free(syms); 1537 return; 1538 } 1539 for (i = 0, symp = syms; i < symn; i++, symp++) { 1540 if (symp->st_name < strsz) 1541 *indexa++ = *indexb++ = i; 1542 } 1543 1544 /* 1545 * Sort the two tables according to the appropriate criteria, 1546 * unless the user has overridden this behaviour. 1547 * 1548 * An example where we might not sort the tables is the relatively 1549 * unusual case of a process with very large symbol tables in which 1550 * we perform few lookups. In such a case the total time would be 1551 * dominated by the sort. It is difficult to determine a priori 1552 * how many lookups an arbitrary client will perform, and 1553 * hence whether the symbol tables should be sorted. We therefore 1554 * sort the tables by default, but provide the user with a 1555 * "chicken switch" in the form of the LIBPROC_NO_QSORT 1556 * environment variable. 1557 */ 1558 if (!_libproc_no_qsort) { 1559 (void) mutex_lock(&sort_mtx); 1560 sort_strs = symtab->sym_strs; 1561 sort_syms = syms; 1562 1563 qsort(symtab->sym_byaddr, count, sizeof (uint_t), byaddr_cmp); 1564 qsort(symtab->sym_byname, count, sizeof (uint_t), byname_cmp); 1565 1566 sort_strs = NULL; 1567 sort_syms = NULL; 1568 (void) mutex_unlock(&sort_mtx); 1569 } 1570 1571 free(syms); 1572 } 1573 1574 /* 1575 * Build the symbol table for the given mapped file. 1576 */ 1577 void 1578 Pbuild_file_symtab(struct ps_prochandle *P, file_info_t *fptr) 1579 { 1580 char objectfile[PATH_MAX]; 1581 uint_t i; 1582 1583 GElf_Ehdr ehdr; 1584 GElf_Sym s; 1585 1586 Elf_Data *shdata; 1587 Elf_Scn *scn; 1588 Elf *elf; 1589 size_t nshdrs, shstrndx; 1590 1591 struct { 1592 GElf_Shdr c_shdr; 1593 Elf_Data *c_data; 1594 const char *c_name; 1595 } *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL; 1596 1597 if (fptr->file_init) 1598 return; /* We've already processed this file */ 1599 1600 /* 1601 * Mark the file_info struct as having the symbol table initialized 1602 * even if we fail below. We tried once; we don't try again. 1603 */ 1604 fptr->file_init = 1; 1605 1606 if (elf_version(EV_CURRENT) == EV_NONE) { 1607 dprintf("libproc ELF version is more recent than libelf\n"); 1608 return; 1609 } 1610 1611 if (P->state == PS_DEAD || P->state == PS_IDLE) { 1612 /* 1613 * If we're a not live, we can't open files from the /proc 1614 * object directory; we have only the mapping and file names 1615 * to guide us. We prefer the file_lname, but need to handle 1616 * the case of it being NULL in order to bootstrap: we first 1617 * come here during rd_new() when the only information we have 1618 * is interpreter name associated with the AT_BASE mapping. 1619 */ 1620 (void) snprintf(objectfile, sizeof (objectfile), "%s", 1621 fptr->file_lname ? fptr->file_lname : fptr->file_pname); 1622 } else { 1623 (void) snprintf(objectfile, sizeof (objectfile), 1624 "%s/%d/object/%s", 1625 procfs_path, (int)P->pid, fptr->file_pname); 1626 } 1627 1628 /* 1629 * Open the object file, create the elf file, and then get the elf 1630 * header and .shstrtab data buffer so we can process sections by 1631 * name. If anything goes wrong try to fake up an elf file from 1632 * the in-core elf image. 1633 */ 1634 if ((fptr->file_fd = open(objectfile, O_RDONLY)) < 0) { 1635 dprintf("Pbuild_file_symtab: failed to open %s: %s\n", 1636 objectfile, strerror(errno)); 1637 1638 if ((elf = fake_elf(P, fptr)) == NULL || 1639 elf_kind(elf) != ELF_K_ELF || 1640 gelf_getehdr(elf, &ehdr) == NULL || 1641 elf_getshnum(elf, &nshdrs) == 0 || 1642 elf_getshstrndx(elf, &shstrndx) == 0 || 1643 (scn = elf_getscn(elf, shstrndx)) == NULL || 1644 (shdata = elf_getdata(scn, NULL)) == NULL) { 1645 dprintf("failed to fake up ELF file\n"); 1646 return; 1647 } 1648 1649 } else if ((elf = elf_begin(fptr->file_fd, ELF_C_READ, NULL)) == NULL || 1650 elf_kind(elf) != ELF_K_ELF || 1651 gelf_getehdr(elf, &ehdr) == NULL || 1652 elf_getshnum(elf, &nshdrs) == 0 || 1653 elf_getshstrndx(elf, &shstrndx) == 0 || 1654 (scn = elf_getscn(elf, shstrndx)) == NULL || 1655 (shdata = elf_getdata(scn, NULL)) == NULL) { 1656 int err = elf_errno(); 1657 1658 dprintf("failed to process ELF file %s: %s\n", 1659 objectfile, (err == 0) ? "<null>" : elf_errmsg(err)); 1660 1661 if ((elf = fake_elf(P, fptr)) == NULL || 1662 elf_kind(elf) != ELF_K_ELF || 1663 gelf_getehdr(elf, &ehdr) == NULL || 1664 elf_getshnum(elf, &nshdrs) == 0 || 1665 elf_getshstrndx(elf, &shstrndx) == 0 || 1666 (scn = elf_getscn(elf, shstrndx)) == NULL || 1667 (shdata = elf_getdata(scn, NULL)) == NULL) { 1668 dprintf("failed to fake up ELF file\n"); 1669 goto bad; 1670 } 1671 1672 } else if (file_differs(P, elf, fptr)) { 1673 Elf *newelf; 1674 1675 /* 1676 * Before we get too excited about this elf file, we'll check 1677 * its checksum value against the value we have in memory. If 1678 * they don't agree, we try to fake up a new elf file and 1679 * proceed with that instead. 1680 */ 1681 1682 dprintf("ELF file %s (%lx) doesn't match in-core image\n", 1683 fptr->file_pname, 1684 (ulong_t)fptr->file_map->map_pmap.pr_vaddr); 1685 1686 if ((newelf = fake_elf(P, fptr)) == NULL || 1687 elf_kind(newelf) != ELF_K_ELF || 1688 gelf_getehdr(newelf, &ehdr) == NULL || 1689 elf_getshnum(newelf, &nshdrs) == 0 || 1690 elf_getshstrndx(newelf, &shstrndx) == 0 || 1691 (scn = elf_getscn(newelf, shstrndx)) == NULL || 1692 (shdata = elf_getdata(scn, NULL)) == NULL) { 1693 dprintf("failed to fake up ELF file\n"); 1694 } else { 1695 (void) elf_end(elf); 1696 elf = newelf; 1697 1698 dprintf("switched to faked up ELF file\n"); 1699 } 1700 } 1701 1702 if ((cache = malloc(nshdrs * sizeof (*cache))) == NULL) { 1703 dprintf("failed to malloc section cache for %s\n", objectfile); 1704 goto bad; 1705 } 1706 1707 dprintf("processing ELF file %s\n", objectfile); 1708 fptr->file_class = ehdr.e_ident[EI_CLASS]; 1709 fptr->file_etype = ehdr.e_type; 1710 fptr->file_elf = elf; 1711 fptr->file_shstrs = shdata->d_buf; 1712 fptr->file_shstrsz = shdata->d_size; 1713 1714 /* 1715 * Iterate through each section, caching its section header, data 1716 * pointer, and name. We use this for handling sh_link values below. 1717 */ 1718 for (cp = cache + 1, scn = NULL; scn = elf_nextscn(elf, scn); cp++) { 1719 if (gelf_getshdr(scn, &cp->c_shdr) == NULL) { 1720 dprintf("Pbuild_file_symtab: Failed to get section " 1721 "header\n"); 1722 goto bad; /* Failed to get section header */ 1723 } 1724 1725 if ((cp->c_data = elf_getdata(scn, NULL)) == NULL) { 1726 dprintf("Pbuild_file_symtab: Failed to get section " 1727 "data\n"); 1728 goto bad; /* Failed to get section data */ 1729 } 1730 1731 if (cp->c_shdr.sh_name >= shdata->d_size) { 1732 dprintf("Pbuild_file_symtab: corrupt section name"); 1733 goto bad; /* Corrupt section name */ 1734 } 1735 1736 cp->c_name = (const char *)shdata->d_buf + cp->c_shdr.sh_name; 1737 } 1738 1739 /* 1740 * Now iterate through the section cache in order to locate info 1741 * for the .symtab, .dynsym, .SUNW_ldynsym, .dynamic, .plt, 1742 * and .SUNW_ctf sections: 1743 */ 1744 for (i = 1, cp = cache + 1; i < nshdrs; i++, cp++) { 1745 GElf_Shdr *shp = &cp->c_shdr; 1746 1747 if (shp->sh_type == SHT_SYMTAB || shp->sh_type == SHT_DYNSYM) { 1748 sym_tbl_t *symp = shp->sh_type == SHT_SYMTAB ? 1749 &fptr->file_symtab : &fptr->file_dynsym; 1750 /* 1751 * It's possible that the we already got the symbol 1752 * table from the core file itself. Either the file 1753 * differs in which case our faked up elf file will 1754 * only contain the dynsym (not the symtab) or the 1755 * file matches in which case we'll just be replacing 1756 * the symbol table we pulled out of the core file 1757 * with an equivalent one. In either case, this 1758 * check isn't essential, but it's a good idea. 1759 */ 1760 if (symp->sym_data_pri == NULL) { 1761 dprintf("Symbol table found for %s\n", 1762 objectfile); 1763 symp->sym_data_pri = cp->c_data; 1764 symp->sym_symn += 1765 shp->sh_size / shp->sh_entsize; 1766 symp->sym_strs = 1767 cache[shp->sh_link].c_data->d_buf; 1768 symp->sym_strsz = 1769 cache[shp->sh_link].c_data->d_size; 1770 symp->sym_hdr_pri = cp->c_shdr; 1771 symp->sym_strhdr = cache[shp->sh_link].c_shdr; 1772 } else { 1773 dprintf("Symbol table already there for %s\n", 1774 objectfile); 1775 } 1776 } else if (shp->sh_type == SHT_SUNW_LDYNSYM) { 1777 /* .SUNW_ldynsym section is auxiliary to .dynsym */ 1778 if (fptr->file_dynsym.sym_data_aux == NULL) { 1779 dprintf(".SUNW_ldynsym symbol table" 1780 " found for %s\n", objectfile); 1781 fptr->file_dynsym.sym_data_aux = cp->c_data; 1782 fptr->file_dynsym.sym_symn_aux = 1783 shp->sh_size / shp->sh_entsize; 1784 fptr->file_dynsym.sym_symn += 1785 fptr->file_dynsym.sym_symn_aux; 1786 fptr->file_dynsym.sym_hdr_aux = cp->c_shdr; 1787 } else { 1788 dprintf(".SUNW_ldynsym symbol table already" 1789 " there for %s\n", objectfile); 1790 } 1791 } else if (shp->sh_type == SHT_DYNAMIC) { 1792 dyn = cp; 1793 } else if (strcmp(cp->c_name, ".plt") == 0) { 1794 plt = cp; 1795 } else if (strcmp(cp->c_name, ".SUNW_ctf") == 0) { 1796 /* 1797 * Skip over bogus CTF sections so they don't come back 1798 * to haunt us later. 1799 */ 1800 if (shp->sh_link == 0 || 1801 shp->sh_link >= nshdrs || 1802 (cache[shp->sh_link].c_shdr.sh_type != SHT_DYNSYM && 1803 cache[shp->sh_link].c_shdr.sh_type != SHT_SYMTAB)) { 1804 dprintf("Bad sh_link %d for " 1805 "CTF\n", shp->sh_link); 1806 continue; 1807 } 1808 ctf = cp; 1809 } 1810 } 1811 1812 /* 1813 * At this point, we've found all the symbol tables we're ever going 1814 * to find: the ones in the loop above and possibly the symtab that 1815 * was included in the core file. Before we perform any lookups, we 1816 * create sorted versions to optimize for lookups. 1817 */ 1818 optimize_symtab(&fptr->file_symtab); 1819 optimize_symtab(&fptr->file_dynsym); 1820 1821 /* 1822 * Fill in the base address of the text mapping for shared libraries. 1823 * This allows us to translate symbols before librtld_db is ready. 1824 */ 1825 if (fptr->file_etype == ET_DYN) { 1826 fptr->file_dyn_base = fptr->file_map->map_pmap.pr_vaddr - 1827 fptr->file_map->map_pmap.pr_offset; 1828 dprintf("setting file_dyn_base for %s to %lx\n", 1829 objectfile, (long)fptr->file_dyn_base); 1830 } 1831 1832 /* 1833 * Record the CTF section information in the file info structure. 1834 */ 1835 if (ctf != NULL) { 1836 fptr->file_ctf_off = ctf->c_shdr.sh_offset; 1837 fptr->file_ctf_size = ctf->c_shdr.sh_size; 1838 if (ctf->c_shdr.sh_link != 0 && 1839 cache[ctf->c_shdr.sh_link].c_shdr.sh_type == SHT_DYNSYM) 1840 fptr->file_ctf_dyn = 1; 1841 } 1842 1843 if (fptr->file_lo == NULL) 1844 goto done; /* Nothing else to do if no load object info */ 1845 1846 /* 1847 * If the object is a shared library and we have a different rl_base 1848 * value, reset file_dyn_base according to librtld_db's information. 1849 */ 1850 if (fptr->file_etype == ET_DYN && 1851 fptr->file_lo->rl_base != fptr->file_dyn_base) { 1852 dprintf("resetting file_dyn_base for %s to %lx\n", 1853 objectfile, (long)fptr->file_lo->rl_base); 1854 fptr->file_dyn_base = fptr->file_lo->rl_base; 1855 } 1856 1857 /* 1858 * Fill in the PLT information for this file if a PLT symbol is found. 1859 */ 1860 if (sym_by_name(&fptr->file_dynsym, "_PROCEDURE_LINKAGE_TABLE_", &s, 1861 NULL) != NULL) { 1862 fptr->file_plt_base = s.st_value + fptr->file_dyn_base; 1863 fptr->file_plt_size = (plt != NULL) ? plt->c_shdr.sh_size : 0; 1864 1865 /* 1866 * Bring the load object up to date; it is the only way the 1867 * user has to access the PLT data. The PLT information in the 1868 * rd_loadobj_t is not set in the call to map_iter() (the 1869 * callback for rd_loadobj_iter) where we set file_lo. 1870 */ 1871 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 1872 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 1873 1874 dprintf("PLT found at %p, size = %lu\n", 1875 (void *)fptr->file_plt_base, (ulong_t)fptr->file_plt_size); 1876 } 1877 1878 /* 1879 * Fill in the PLT information. 1880 */ 1881 if (dyn != NULL) { 1882 uintptr_t dynaddr = dyn->c_shdr.sh_addr + fptr->file_dyn_base; 1883 size_t ndyn = dyn->c_shdr.sh_size / dyn->c_shdr.sh_entsize; 1884 GElf_Dyn d; 1885 1886 for (i = 0; i < ndyn; i++) { 1887 if (gelf_getdyn(dyn->c_data, i, &d) != NULL && 1888 d.d_tag == DT_JMPREL) { 1889 dprintf("DT_JMPREL is %p\n", 1890 (void *)(uintptr_t)d.d_un.d_ptr); 1891 fptr->file_jmp_rel = 1892 d.d_un.d_ptr + fptr->file_dyn_base; 1893 break; 1894 } 1895 } 1896 1897 dprintf("_DYNAMIC found at %p, %lu entries, DT_JMPREL = %p\n", 1898 (void *)dynaddr, (ulong_t)ndyn, (void *)fptr->file_jmp_rel); 1899 } 1900 1901 done: 1902 free(cache); 1903 return; 1904 1905 bad: 1906 if (cache != NULL) 1907 free(cache); 1908 1909 (void) elf_end(elf); 1910 fptr->file_elf = NULL; 1911 if (fptr->file_elfmem != NULL) { 1912 free(fptr->file_elfmem); 1913 fptr->file_elfmem = NULL; 1914 } 1915 (void) close(fptr->file_fd); 1916 fptr->file_fd = -1; 1917 } 1918 1919 /* 1920 * Given a process virtual address, return the map_info_t containing it. 1921 * If none found, return NULL. 1922 */ 1923 map_info_t * 1924 Paddr2mptr(struct ps_prochandle *P, uintptr_t addr) 1925 { 1926 int lo = 0; 1927 int hi = P->map_count - 1; 1928 int mid; 1929 map_info_t *mp; 1930 1931 while (lo <= hi) { 1932 1933 mid = (lo + hi) / 2; 1934 mp = &P->mappings[mid]; 1935 1936 /* check that addr is in [vaddr, vaddr + size) */ 1937 if ((addr - mp->map_pmap.pr_vaddr) < mp->map_pmap.pr_size) 1938 return (mp); 1939 1940 if (addr < mp->map_pmap.pr_vaddr) 1941 hi = mid - 1; 1942 else 1943 lo = mid + 1; 1944 } 1945 1946 return (NULL); 1947 } 1948 1949 /* 1950 * Return the map_info_t for the executable file. 1951 * If not found, return NULL. 1952 */ 1953 static map_info_t * 1954 exec_map(struct ps_prochandle *P) 1955 { 1956 uint_t i; 1957 map_info_t *mptr; 1958 map_info_t *mold = NULL; 1959 file_info_t *fptr; 1960 uintptr_t base; 1961 1962 for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) { 1963 if (mptr->map_pmap.pr_mapname[0] == '\0') 1964 continue; 1965 if (strcmp(mptr->map_pmap.pr_mapname, "a.out") == 0) { 1966 if ((fptr = mptr->map_file) != NULL && 1967 fptr->file_lo != NULL) { 1968 base = fptr->file_lo->rl_base; 1969 if (base >= mptr->map_pmap.pr_vaddr && 1970 base < mptr->map_pmap.pr_vaddr + 1971 mptr->map_pmap.pr_size) /* text space */ 1972 return (mptr); 1973 mold = mptr; /* must be the data */ 1974 continue; 1975 } 1976 /* This is a poor way to test for text space */ 1977 if (!(mptr->map_pmap.pr_mflags & MA_EXEC) || 1978 (mptr->map_pmap.pr_mflags & MA_WRITE)) { 1979 mold = mptr; 1980 continue; 1981 } 1982 return (mptr); 1983 } 1984 } 1985 1986 return (mold); 1987 } 1988 1989 /* 1990 * Given a shared object name, return the map_info_t for it. If no matching 1991 * object is found, return NULL. Normally, the link maps contain the full 1992 * object pathname, e.g. /usr/lib/libc.so.1. We allow the object name to 1993 * take one of the following forms: 1994 * 1995 * 1. An exact match (i.e. a full pathname): "/usr/lib/libc.so.1" 1996 * 2. An exact basename match: "libc.so.1" 1997 * 3. An initial basename match up to a '.' suffix: "libc.so" or "libc" 1998 * 4. The literal string "a.out" is an alias for the executable mapping 1999 * 2000 * The third case is a convenience for callers and may not be necessary. 2001 * 2002 * As the exact same object name may be loaded on different link maps (see 2003 * dlmopen(3DL)), we also allow the caller to resolve the object name by 2004 * specifying a particular link map id. If lmid is PR_LMID_EVERY, the 2005 * first matching name will be returned, regardless of the link map id. 2006 */ 2007 static map_info_t * 2008 object_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *objname) 2009 { 2010 map_info_t *mp; 2011 file_info_t *fp; 2012 size_t objlen; 2013 uint_t i; 2014 2015 /* 2016 * If we have no rtld_db, then always treat a request as one for all 2017 * link maps. 2018 */ 2019 if (P->rap == NULL) 2020 lmid = PR_LMID_EVERY; 2021 2022 /* 2023 * First pass: look for exact matches of the entire pathname or 2024 * basename (cases 1 and 2 above): 2025 */ 2026 for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) { 2027 2028 if (mp->map_pmap.pr_mapname[0] == '\0' || 2029 (fp = mp->map_file) == NULL || fp->file_lname == NULL) 2030 continue; 2031 2032 if (lmid != PR_LMID_EVERY && 2033 (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident)) 2034 continue; 2035 2036 /* 2037 * If we match, return the primary text mapping; otherwise 2038 * just return the mapping we matched. 2039 */ 2040 if (strcmp(fp->file_lname, objname) == 0 || 2041 strcmp(fp->file_lbase, objname) == 0) 2042 return (fp->file_map ? fp->file_map : mp); 2043 } 2044 2045 objlen = strlen(objname); 2046 2047 /* 2048 * Second pass: look for partial matches (case 3 above): 2049 */ 2050 for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) { 2051 2052 if (mp->map_pmap.pr_mapname[0] == '\0' || 2053 (fp = mp->map_file) == NULL || fp->file_lname == NULL) 2054 continue; 2055 2056 if (lmid != PR_LMID_EVERY && 2057 (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident)) 2058 continue; 2059 2060 /* 2061 * If we match, return the primary text mapping; otherwise 2062 * just return the mapping we matched. 2063 */ 2064 if (strncmp(fp->file_lbase, objname, objlen) == 0 && 2065 fp->file_lbase[objlen] == '.') 2066 return (fp->file_map ? fp->file_map : mp); 2067 } 2068 2069 /* 2070 * One last check: we allow "a.out" to always alias the executable, 2071 * assuming this name was not in use for something else. 2072 */ 2073 if ((lmid == PR_LMID_EVERY || lmid == LM_ID_BASE) && 2074 (strcmp(objname, "a.out") == 0)) 2075 return (P->map_exec); 2076 2077 return (NULL); 2078 } 2079 2080 static map_info_t * 2081 object_name_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name) 2082 { 2083 map_info_t *mptr; 2084 2085 if (!P->info_valid) 2086 Pupdate_maps(P); 2087 2088 if (P->map_exec == NULL && ((mptr = Paddr2mptr(P, 2089 Pgetauxval(P, AT_ENTRY))) != NULL || (mptr = exec_map(P)) != NULL)) 2090 P->map_exec = mptr; 2091 2092 if (P->map_ldso == NULL && (mptr = Paddr2mptr(P, 2093 Pgetauxval(P, AT_BASE))) != NULL) 2094 P->map_ldso = mptr; 2095 2096 if (name == PR_OBJ_EXEC) 2097 mptr = P->map_exec; 2098 else if (name == PR_OBJ_LDSO) 2099 mptr = P->map_ldso; 2100 else if (Prd_agent(P) != NULL || P->state == PS_IDLE) 2101 mptr = object_to_map(P, lmid, name); 2102 else 2103 mptr = NULL; 2104 2105 return (mptr); 2106 } 2107 2108 /* 2109 * When two symbols are found by address, decide which one is to be preferred. 2110 */ 2111 static GElf_Sym * 2112 sym_prefer(GElf_Sym *sym1, char *name1, GElf_Sym *sym2, char *name2) 2113 { 2114 /* 2115 * Prefer the non-NULL symbol. 2116 */ 2117 if (sym1 == NULL) 2118 return (sym2); 2119 if (sym2 == NULL) 2120 return (sym1); 2121 2122 /* 2123 * Defer to the sort ordering... 2124 */ 2125 return (byaddr_cmp_common(sym1, name1, sym2, name2) <= 0 ? sym1 : sym2); 2126 } 2127 2128 /* 2129 * Use a binary search to do the work of sym_by_addr(). 2130 */ 2131 static GElf_Sym * 2132 sym_by_addr_binary(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, 2133 uint_t *idp) 2134 { 2135 GElf_Sym sym, osym; 2136 uint_t i, oid, *byaddr = symtab->sym_byaddr; 2137 int min, max, mid, omid, found = 0; 2138 2139 if (symtab->sym_data_pri == NULL || symtab->sym_count == 0) 2140 return (NULL); 2141 2142 min = 0; 2143 max = symtab->sym_count - 1; 2144 osym.st_value = 0; 2145 2146 /* 2147 * We can't return when we've found a match, we have to continue 2148 * searching for the closest matching symbol. 2149 */ 2150 while (min <= max) { 2151 mid = (max + min) / 2; 2152 2153 i = byaddr[mid]; 2154 (void) symtab_getsym(symtab, i, &sym); 2155 2156 if (addr >= sym.st_value && 2157 addr < sym.st_value + sym.st_size && 2158 (!found || sym.st_value > osym.st_value)) { 2159 osym = sym; 2160 omid = mid; 2161 oid = i; 2162 found = 1; 2163 } 2164 2165 if (addr < sym.st_value) 2166 max = mid - 1; 2167 else 2168 min = mid + 1; 2169 } 2170 2171 if (!found) 2172 return (NULL); 2173 2174 /* 2175 * There may be many symbols with identical values so we walk 2176 * backward in the byaddr table to find the best match. 2177 */ 2178 do { 2179 sym = osym; 2180 i = oid; 2181 2182 if (omid == 0) 2183 break; 2184 2185 oid = byaddr[--omid]; 2186 (void) symtab_getsym(symtab, oid, &osym); 2187 } while (addr >= osym.st_value && 2188 addr < sym.st_value + osym.st_size && 2189 osym.st_value == sym.st_value); 2190 2191 *symp = sym; 2192 if (idp != NULL) 2193 *idp = i; 2194 return (symp); 2195 } 2196 2197 /* 2198 * Use a linear search to do the work of sym_by_addr(). 2199 */ 2200 static GElf_Sym * 2201 sym_by_addr_linear(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symbolp, 2202 uint_t *idp) 2203 { 2204 size_t symn = symtab->sym_symn; 2205 char *strs = symtab->sym_strs; 2206 GElf_Sym sym, *symp = NULL; 2207 GElf_Sym osym, *osymp = NULL; 2208 int i, id; 2209 2210 if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL) 2211 return (NULL); 2212 2213 for (i = 0; i < symn; i++) { 2214 if ((symp = symtab_getsym(symtab, i, &sym)) != NULL) { 2215 if (addr >= sym.st_value && 2216 addr < sym.st_value + sym.st_size) { 2217 if (osymp) 2218 symp = sym_prefer( 2219 symp, strs + symp->st_name, 2220 osymp, strs + osymp->st_name); 2221 if (symp != osymp) { 2222 osym = sym; 2223 osymp = &osym; 2224 id = i; 2225 } 2226 } 2227 } 2228 } 2229 if (osymp) { 2230 *symbolp = osym; 2231 if (idp) 2232 *idp = id; 2233 return (symbolp); 2234 } 2235 return (NULL); 2236 } 2237 2238 /* 2239 * Look up a symbol by address in the specified symbol table. 2240 * Adjustment to 'addr' must already have been made for the 2241 * offset of the symbol if this is a dynamic library symbol table. 2242 * 2243 * Use a linear or a binary search depending on whether or not we 2244 * chose to sort the table in optimize_symtab(). 2245 */ 2246 static GElf_Sym * 2247 sym_by_addr(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, uint_t *idp) 2248 { 2249 if (_libproc_no_qsort) { 2250 return (sym_by_addr_linear(symtab, addr, symp, idp)); 2251 } else { 2252 return (sym_by_addr_binary(symtab, addr, symp, idp)); 2253 } 2254 } 2255 2256 /* 2257 * Use a binary search to do the work of sym_by_name(). 2258 */ 2259 static GElf_Sym * 2260 sym_by_name_binary(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, 2261 uint_t *idp) 2262 { 2263 char *strs = symtab->sym_strs; 2264 uint_t i, *byname = symtab->sym_byname; 2265 int min, mid, max, cmp; 2266 2267 if (symtab->sym_data_pri == NULL || strs == NULL || 2268 symtab->sym_count == 0) 2269 return (NULL); 2270 2271 min = 0; 2272 max = symtab->sym_count - 1; 2273 2274 while (min <= max) { 2275 mid = (max + min) / 2; 2276 2277 i = byname[mid]; 2278 (void) symtab_getsym(symtab, i, symp); 2279 2280 if ((cmp = strcmp(name, strs + symp->st_name)) == 0) { 2281 if (idp != NULL) 2282 *idp = i; 2283 return (symp); 2284 } 2285 2286 if (cmp < 0) 2287 max = mid - 1; 2288 else 2289 min = mid + 1; 2290 } 2291 2292 return (NULL); 2293 } 2294 2295 /* 2296 * Use a linear search to do the work of sym_by_name(). 2297 */ 2298 static GElf_Sym * 2299 sym_by_name_linear(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, 2300 uint_t *idp) 2301 { 2302 size_t symn = symtab->sym_symn; 2303 char *strs = symtab->sym_strs; 2304 int i; 2305 2306 if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL) 2307 return (NULL); 2308 2309 for (i = 0; i < symn; i++) { 2310 if (symtab_getsym(symtab, i, symp) && 2311 strcmp(name, strs + symp->st_name) == 0) { 2312 if (idp) 2313 *idp = i; 2314 return (symp); 2315 } 2316 } 2317 2318 return (NULL); 2319 } 2320 2321 /* 2322 * Look up a symbol by name in the specified symbol table. 2323 * 2324 * Use a linear or a binary search depending on whether or not we 2325 * chose to sort the table in optimize_symtab(). 2326 */ 2327 static GElf_Sym * 2328 sym_by_name(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, uint_t *idp) 2329 { 2330 if (_libproc_no_qsort) { 2331 return (sym_by_name_linear(symtab, name, symp, idp)); 2332 } else { 2333 return (sym_by_name_binary(symtab, name, symp, idp)); 2334 } 2335 } 2336 2337 /* 2338 * Search the process symbol tables looking for a symbol whose 2339 * value to value+size contain the address specified by addr. 2340 * Return values are: 2341 * sym_name_buffer containing the symbol name 2342 * GElf_Sym symbol table entry 2343 * prsyminfo_t ancillary symbol information 2344 * Returns 0 on success, -1 on failure. 2345 */ 2346 int 2347 Pxlookup_by_addr( 2348 struct ps_prochandle *P, 2349 uintptr_t addr, /* process address being sought */ 2350 char *sym_name_buffer, /* buffer for the symbol name */ 2351 size_t bufsize, /* size of sym_name_buffer */ 2352 GElf_Sym *symbolp, /* returned symbol table entry */ 2353 prsyminfo_t *sip) /* returned symbol info */ 2354 { 2355 GElf_Sym *symp; 2356 char *name; 2357 GElf_Sym sym1, *sym1p = NULL; 2358 GElf_Sym sym2, *sym2p = NULL; 2359 char *name1 = NULL; 2360 char *name2 = NULL; 2361 uint_t i1; 2362 uint_t i2; 2363 map_info_t *mptr; 2364 file_info_t *fptr; 2365 2366 (void) Prd_agent(P); 2367 2368 if ((mptr = Paddr2mptr(P, addr)) == NULL || /* no such address */ 2369 (fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */ 2370 fptr->file_elf == NULL) /* not an ELF file */ 2371 return (-1); 2372 2373 /* 2374 * Adjust the address by the load object base address in 2375 * case the address turns out to be in a shared library. 2376 */ 2377 addr -= fptr->file_dyn_base; 2378 2379 /* 2380 * Search both symbol tables, symtab first, then dynsym. 2381 */ 2382 if ((sym1p = sym_by_addr(&fptr->file_symtab, addr, &sym1, &i1)) != NULL) 2383 name1 = fptr->file_symtab.sym_strs + sym1.st_name; 2384 if ((sym2p = sym_by_addr(&fptr->file_dynsym, addr, &sym2, &i2)) != NULL) 2385 name2 = fptr->file_dynsym.sym_strs + sym2.st_name; 2386 2387 if ((symp = sym_prefer(sym1p, name1, sym2p, name2)) == NULL) 2388 return (-1); 2389 2390 name = (symp == sym1p) ? name1 : name2; 2391 if (bufsize > 0) { 2392 (void) strncpy(sym_name_buffer, name, bufsize); 2393 sym_name_buffer[bufsize - 1] = '\0'; 2394 } 2395 2396 *symbolp = *symp; 2397 if (sip != NULL) { 2398 sip->prs_name = bufsize == 0 ? NULL : sym_name_buffer; 2399 sip->prs_object = fptr->file_lbase; 2400 sip->prs_id = (symp == sym1p) ? i1 : i2; 2401 sip->prs_table = (symp == sym1p) ? PR_SYMTAB : PR_DYNSYM; 2402 sip->prs_lmid = (fptr->file_lo == NULL) ? LM_ID_BASE : 2403 fptr->file_lo->rl_lmident; 2404 } 2405 2406 if (GELF_ST_TYPE(symbolp->st_info) != STT_TLS) 2407 symbolp->st_value += fptr->file_dyn_base; 2408 2409 return (0); 2410 } 2411 2412 int 2413 Plookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf, size_t size, 2414 GElf_Sym *symp) 2415 { 2416 return (Pxlookup_by_addr(P, addr, buf, size, symp, NULL)); 2417 } 2418 2419 /* 2420 * Search the process symbol tables looking for a symbol whose name matches the 2421 * specified name and whose object and link map optionally match the specified 2422 * parameters. On success, the function returns 0 and fills in the GElf_Sym 2423 * symbol table entry. On failure, -1 is returned. 2424 */ 2425 int 2426 Pxlookup_by_name( 2427 struct ps_prochandle *P, 2428 Lmid_t lmid, /* link map to match, or -1 for any */ 2429 const char *oname, /* load object name */ 2430 const char *sname, /* symbol name */ 2431 GElf_Sym *symp, /* returned symbol table entry */ 2432 prsyminfo_t *sip) /* returned symbol info */ 2433 { 2434 map_info_t *mptr; 2435 file_info_t *fptr; 2436 int cnt; 2437 2438 GElf_Sym sym; 2439 prsyminfo_t si; 2440 int rv = -1; 2441 uint_t id; 2442 2443 if (oname == PR_OBJ_EVERY) { 2444 /* create all the file_info_t's for all the mappings */ 2445 (void) Prd_agent(P); 2446 cnt = P->num_files; 2447 fptr = list_next(&P->file_head); 2448 } else { 2449 cnt = 1; 2450 if ((mptr = object_name_to_map(P, lmid, oname)) == NULL || 2451 (fptr = build_map_symtab(P, mptr)) == NULL) 2452 return (-1); 2453 } 2454 2455 /* 2456 * Iterate through the loaded object files and look for the symbol 2457 * name in the .symtab and .dynsym of each. If we encounter a match 2458 * with SHN_UNDEF, keep looking in hopes of finding a better match. 2459 * This means that a name such as "puts" will match the puts function 2460 * in libc instead of matching the puts PLT entry in the a.out file. 2461 */ 2462 for (; cnt > 0; cnt--, fptr = list_next(fptr)) { 2463 Pbuild_file_symtab(P, fptr); 2464 2465 if (fptr->file_elf == NULL) 2466 continue; 2467 2468 if (lmid != PR_LMID_EVERY && fptr->file_lo != NULL && 2469 lmid != fptr->file_lo->rl_lmident) 2470 continue; 2471 2472 if (fptr->file_symtab.sym_data_pri != NULL && 2473 sym_by_name(&fptr->file_symtab, sname, symp, &id)) { 2474 if (sip != NULL) { 2475 sip->prs_id = id; 2476 sip->prs_table = PR_SYMTAB; 2477 sip->prs_object = oname; 2478 sip->prs_name = sname; 2479 sip->prs_lmid = fptr->file_lo == NULL ? 2480 LM_ID_BASE : fptr->file_lo->rl_lmident; 2481 } 2482 } else if (fptr->file_dynsym.sym_data_pri != NULL && 2483 sym_by_name(&fptr->file_dynsym, sname, symp, &id)) { 2484 if (sip != NULL) { 2485 sip->prs_id = id; 2486 sip->prs_table = PR_DYNSYM; 2487 sip->prs_object = oname; 2488 sip->prs_name = sname; 2489 sip->prs_lmid = fptr->file_lo == NULL ? 2490 LM_ID_BASE : fptr->file_lo->rl_lmident; 2491 } 2492 } else { 2493 continue; 2494 } 2495 2496 if (GELF_ST_TYPE(symp->st_info) != STT_TLS) 2497 symp->st_value += fptr->file_dyn_base; 2498 2499 if (symp->st_shndx != SHN_UNDEF) 2500 return (0); 2501 2502 if (rv != 0) { 2503 if (sip != NULL) 2504 si = *sip; 2505 sym = *symp; 2506 rv = 0; 2507 } 2508 } 2509 2510 if (rv == 0) { 2511 if (sip != NULL) 2512 *sip = si; 2513 *symp = sym; 2514 } 2515 2516 return (rv); 2517 } 2518 2519 /* 2520 * Search the process symbol tables looking for a symbol whose name matches the 2521 * specified name, but without any restriction on the link map id. 2522 */ 2523 int 2524 Plookup_by_name(struct ps_prochandle *P, const char *object, 2525 const char *symbol, GElf_Sym *symp) 2526 { 2527 return (Pxlookup_by_name(P, PR_LMID_EVERY, object, symbol, symp, NULL)); 2528 } 2529 2530 /* 2531 * Iterate over the process's address space mappings. 2532 */ 2533 int 2534 Pmapping_iter(struct ps_prochandle *P, proc_map_f *func, void *cd) 2535 { 2536 map_info_t *mptr; 2537 file_info_t *fptr; 2538 char *object_name; 2539 int rc = 0; 2540 int i; 2541 2542 /* create all the file_info_t's for all the mappings */ 2543 (void) Prd_agent(P); 2544 2545 for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) { 2546 if ((fptr = mptr->map_file) == NULL) 2547 object_name = NULL; 2548 else 2549 object_name = fptr->file_lname; 2550 if ((rc = func(cd, &mptr->map_pmap, object_name)) != 0) 2551 return (rc); 2552 } 2553 return (0); 2554 } 2555 2556 /* 2557 * Iterate over the process's mapped objects. 2558 */ 2559 int 2560 Pobject_iter(struct ps_prochandle *P, proc_map_f *func, void *cd) 2561 { 2562 map_info_t *mptr; 2563 file_info_t *fptr; 2564 uint_t cnt; 2565 int rc = 0; 2566 2567 (void) Prd_agent(P); /* create file_info_t's for all the mappings */ 2568 Pupdate_maps(P); 2569 2570 for (cnt = P->num_files, fptr = list_next(&P->file_head); 2571 cnt; cnt--, fptr = list_next(fptr)) { 2572 2573 const char *lname = fptr->file_lname ? fptr->file_lname : ""; 2574 2575 if ((mptr = fptr->file_map) == NULL) 2576 continue; 2577 2578 if ((rc = func(cd, &mptr->map_pmap, lname)) != 0) 2579 return (rc); 2580 } 2581 return (0); 2582 } 2583 2584 /* 2585 * Given a virtual address, return the name of the underlying 2586 * mapped object (file), as provided by the dynamic linker. 2587 * Return NULL on failure (no underlying shared library). 2588 */ 2589 char * 2590 Pobjname(struct ps_prochandle *P, uintptr_t addr, 2591 char *buffer, size_t bufsize) 2592 { 2593 map_info_t *mptr; 2594 file_info_t *fptr; 2595 2596 /* create all the file_info_t's for all the mappings */ 2597 (void) Prd_agent(P); 2598 2599 if ((mptr = Paddr2mptr(P, addr)) != NULL && 2600 (fptr = mptr->map_file) != NULL && 2601 fptr->file_lname != NULL) { 2602 (void) strncpy(buffer, fptr->file_lname, bufsize); 2603 if (strlen(fptr->file_lname) >= bufsize) 2604 buffer[bufsize-1] = '\0'; 2605 return (buffer); 2606 } 2607 return (NULL); 2608 } 2609 2610 /* 2611 * Given a virtual address, return the link map id of the underlying mapped 2612 * object (file), as provided by the dynamic linker. Return -1 on failure. 2613 */ 2614 int 2615 Plmid(struct ps_prochandle *P, uintptr_t addr, Lmid_t *lmidp) 2616 { 2617 map_info_t *mptr; 2618 file_info_t *fptr; 2619 2620 /* create all the file_info_t's for all the mappings */ 2621 (void) Prd_agent(P); 2622 2623 if ((mptr = Paddr2mptr(P, addr)) != NULL && 2624 (fptr = mptr->map_file) != NULL && fptr->file_lo != NULL) { 2625 *lmidp = fptr->file_lo->rl_lmident; 2626 return (0); 2627 } 2628 2629 return (-1); 2630 } 2631 2632 /* 2633 * Given an object name and optional lmid, iterate over the object's symbols. 2634 * If which == PR_SYMTAB, search the normal symbol table. 2635 * If which == PR_DYNSYM, search the dynamic symbol table. 2636 */ 2637 static int 2638 Psymbol_iter_com(struct ps_prochandle *P, Lmid_t lmid, const char *object_name, 2639 int which, int mask, pr_order_t order, proc_xsym_f *func, void *cd) 2640 { 2641 GElf_Sym sym; 2642 GElf_Shdr shdr; 2643 map_info_t *mptr; 2644 file_info_t *fptr; 2645 sym_tbl_t *symtab; 2646 size_t symn; 2647 const char *strs; 2648 size_t strsz; 2649 prsyminfo_t si; 2650 int rv; 2651 uint_t *map, i, count, ndx; 2652 2653 if ((mptr = object_name_to_map(P, lmid, object_name)) == NULL) 2654 return (-1); 2655 2656 if ((fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */ 2657 fptr->file_elf == NULL) /* not an ELF file */ 2658 return (-1); 2659 2660 /* 2661 * Search the specified symbol table. 2662 */ 2663 switch (which) { 2664 case PR_SYMTAB: 2665 symtab = &fptr->file_symtab; 2666 si.prs_table = PR_SYMTAB; 2667 break; 2668 case PR_DYNSYM: 2669 symtab = &fptr->file_dynsym; 2670 si.prs_table = PR_DYNSYM; 2671 break; 2672 default: 2673 return (-1); 2674 } 2675 2676 si.prs_object = object_name; 2677 si.prs_lmid = fptr->file_lo == NULL ? 2678 LM_ID_BASE : fptr->file_lo->rl_lmident; 2679 2680 symn = symtab->sym_symn; 2681 strs = symtab->sym_strs; 2682 strsz = symtab->sym_strsz; 2683 2684 switch (order) { 2685 case PRO_NATURAL: 2686 map = NULL; 2687 count = symn; 2688 break; 2689 case PRO_BYNAME: 2690 map = symtab->sym_byname; 2691 count = symtab->sym_count; 2692 break; 2693 case PRO_BYADDR: 2694 map = symtab->sym_byaddr; 2695 count = symtab->sym_count; 2696 break; 2697 default: 2698 return (-1); 2699 } 2700 2701 if (symtab->sym_data_pri == NULL || strs == NULL || count == 0) 2702 return (-1); 2703 2704 rv = 0; 2705 2706 for (i = 0; i < count; i++) { 2707 ndx = map == NULL ? i : map[i]; 2708 if (symtab_getsym(symtab, ndx, &sym) != NULL) { 2709 uint_t s_bind, s_type, type; 2710 2711 if (sym.st_name >= strsz) /* invalid st_name */ 2712 continue; 2713 2714 s_bind = GELF_ST_BIND(sym.st_info); 2715 s_type = GELF_ST_TYPE(sym.st_info); 2716 2717 /* 2718 * In case you haven't already guessed, this relies on 2719 * the bitmask used in <libproc.h> for encoding symbol 2720 * type and binding matching the order of STB and STT 2721 * constants in <sys/elf.h>. ELF can't change without 2722 * breaking binary compatibility, so I think this is 2723 * reasonably fair game. 2724 */ 2725 if (s_bind < STB_NUM && s_type < STT_NUM) { 2726 type = (1 << (s_type + 8)) | (1 << s_bind); 2727 if ((type & ~mask) != 0) 2728 continue; 2729 } else 2730 continue; /* Invalid type or binding */ 2731 2732 if (GELF_ST_TYPE(sym.st_info) != STT_TLS) 2733 sym.st_value += fptr->file_dyn_base; 2734 2735 si.prs_name = strs + sym.st_name; 2736 2737 /* 2738 * If symbol's type is STT_SECTION, then try to lookup 2739 * the name of the corresponding section. 2740 */ 2741 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && 2742 fptr->file_shstrs != NULL && 2743 gelf_getshdr(elf_getscn(fptr->file_elf, 2744 sym.st_shndx), &shdr) != NULL && 2745 shdr.sh_name != 0 && 2746 shdr.sh_name < fptr->file_shstrsz) 2747 si.prs_name = fptr->file_shstrs + shdr.sh_name; 2748 2749 si.prs_id = ndx; 2750 if ((rv = func(cd, &sym, si.prs_name, &si)) != 0) 2751 break; 2752 } 2753 } 2754 2755 return (rv); 2756 } 2757 2758 int 2759 Pxsymbol_iter(struct ps_prochandle *P, Lmid_t lmid, const char *object_name, 2760 int which, int mask, proc_xsym_f *func, void *cd) 2761 { 2762 return (Psymbol_iter_com(P, lmid, object_name, which, mask, 2763 PRO_NATURAL, func, cd)); 2764 } 2765 2766 int 2767 Psymbol_iter_by_lmid(struct ps_prochandle *P, Lmid_t lmid, 2768 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2769 { 2770 return (Psymbol_iter_com(P, lmid, object_name, which, mask, 2771 PRO_NATURAL, (proc_xsym_f *)func, cd)); 2772 } 2773 2774 int 2775 Psymbol_iter(struct ps_prochandle *P, 2776 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2777 { 2778 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 2779 PRO_NATURAL, (proc_xsym_f *)func, cd)); 2780 } 2781 2782 int 2783 Psymbol_iter_by_addr(struct ps_prochandle *P, 2784 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2785 { 2786 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 2787 PRO_BYADDR, (proc_xsym_f *)func, cd)); 2788 } 2789 2790 int 2791 Psymbol_iter_by_name(struct ps_prochandle *P, 2792 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2793 { 2794 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 2795 PRO_BYNAME, (proc_xsym_f *)func, cd)); 2796 } 2797 2798 /* 2799 * Get the platform string from the core file if we have it; 2800 * just perform the system call for the caller if this is a live process. 2801 */ 2802 char * 2803 Pplatform(struct ps_prochandle *P, char *s, size_t n) 2804 { 2805 if (P->state == PS_IDLE) { 2806 errno = ENODATA; 2807 return (NULL); 2808 } 2809 2810 if (P->state == PS_DEAD) { 2811 if (P->core->core_platform == NULL) { 2812 errno = ENODATA; 2813 return (NULL); 2814 } 2815 (void) strncpy(s, P->core->core_platform, n - 1); 2816 s[n - 1] = '\0'; 2817 2818 } else if (sysinfo(SI_PLATFORM, s, n) == -1) 2819 return (NULL); 2820 2821 return (s); 2822 } 2823 2824 /* 2825 * Get the uname(2) information from the core file if we have it; 2826 * just perform the system call for the caller if this is a live process. 2827 */ 2828 int 2829 Puname(struct ps_prochandle *P, struct utsname *u) 2830 { 2831 if (P->state == PS_IDLE) { 2832 errno = ENODATA; 2833 return (-1); 2834 } 2835 2836 if (P->state == PS_DEAD) { 2837 if (P->core->core_uts == NULL) { 2838 errno = ENODATA; 2839 return (-1); 2840 } 2841 (void) memcpy(u, P->core->core_uts, sizeof (struct utsname)); 2842 return (0); 2843 } 2844 return (uname(u)); 2845 } 2846 2847 /* 2848 * Get the zone name from the core file if we have it; look up the 2849 * name based on the zone id if this is a live process. 2850 */ 2851 char * 2852 Pzonename(struct ps_prochandle *P, char *s, size_t n) 2853 { 2854 if (P->state == PS_IDLE) { 2855 errno = ENODATA; 2856 return (NULL); 2857 } 2858 2859 if (P->state == PS_DEAD) { 2860 if (P->core->core_zonename == NULL) { 2861 errno = ENODATA; 2862 return (NULL); 2863 } 2864 (void) strlcpy(s, P->core->core_zonename, n); 2865 } else { 2866 if (getzonenamebyid(P->status.pr_zoneid, s, n) < 0) 2867 return (NULL); 2868 s[n - 1] = '\0'; 2869 } 2870 return (s); 2871 } 2872 2873 /* 2874 * Called from Pcreate(), Pgrab(), and Pfgrab_core() to initialize 2875 * the symbol table heads in the new ps_prochandle. 2876 */ 2877 void 2878 Pinitsym(struct ps_prochandle *P) 2879 { 2880 P->num_files = 0; 2881 list_link(&P->file_head, NULL); 2882 } 2883 2884 /* 2885 * Called from Prelease() to destroy the symbol tables. 2886 * Must be called by the client after an exec() in the victim process. 2887 */ 2888 void 2889 Preset_maps(struct ps_prochandle *P) 2890 { 2891 int i; 2892 2893 if (P->rap != NULL) { 2894 rd_delete(P->rap); 2895 P->rap = NULL; 2896 } 2897 2898 if (P->execname != NULL) { 2899 free(P->execname); 2900 P->execname = NULL; 2901 } 2902 2903 if (P->auxv != NULL) { 2904 free(P->auxv); 2905 P->auxv = NULL; 2906 P->nauxv = 0; 2907 } 2908 2909 for (i = 0; i < P->map_count; i++) 2910 map_info_free(P, &P->mappings[i]); 2911 2912 if (P->mappings != NULL) { 2913 free(P->mappings); 2914 P->mappings = NULL; 2915 } 2916 P->map_count = P->map_alloc = 0; 2917 2918 P->info_valid = 0; 2919 } 2920 2921 typedef struct getenv_data { 2922 char *buf; 2923 size_t bufsize; 2924 const char *search; 2925 size_t searchlen; 2926 } getenv_data_t; 2927 2928 /*ARGSUSED*/ 2929 static int 2930 getenv_func(void *data, struct ps_prochandle *P, uintptr_t addr, 2931 const char *nameval) 2932 { 2933 getenv_data_t *d = data; 2934 size_t len; 2935 2936 if (nameval == NULL) 2937 return (0); 2938 2939 if (d->searchlen < strlen(nameval) && 2940 strncmp(nameval, d->search, d->searchlen) == 0 && 2941 nameval[d->searchlen] == '=') { 2942 len = MIN(strlen(nameval), d->bufsize - 1); 2943 (void) strncpy(d->buf, nameval, len); 2944 d->buf[len] = '\0'; 2945 return (1); 2946 } 2947 2948 return (0); 2949 } 2950 2951 char * 2952 Pgetenv(struct ps_prochandle *P, const char *name, char *buf, size_t buflen) 2953 { 2954 getenv_data_t d; 2955 2956 d.buf = buf; 2957 d.bufsize = buflen; 2958 d.search = name; 2959 d.searchlen = strlen(name); 2960 2961 if (Penv_iter(P, getenv_func, &d) == 1) { 2962 char *equals = strchr(d.buf, '='); 2963 2964 if (equals != NULL) { 2965 (void) memmove(d.buf, equals + 1, 2966 d.buf + buflen - equals - 1); 2967 d.buf[d.buf + buflen - equals] = '\0'; 2968 2969 return (buf); 2970 } 2971 } 2972 2973 return (NULL); 2974 } 2975 2976 /* number of argument or environment pointers to read all at once */ 2977 #define NARG 100 2978 2979 int 2980 Penv_iter(struct ps_prochandle *P, proc_env_f *func, void *data) 2981 { 2982 const psinfo_t *psp; 2983 uintptr_t envpoff; 2984 GElf_Sym sym; 2985 int ret; 2986 char *buf, *nameval; 2987 size_t buflen; 2988 2989 int nenv = NARG; 2990 long envp[NARG]; 2991 2992 /* 2993 * Attempt to find the "_environ" variable in the process. 2994 * Failing that, use the original value provided by Ppsinfo(). 2995 */ 2996 if ((psp = Ppsinfo(P)) == NULL) 2997 return (-1); 2998 2999 envpoff = psp->pr_envp; /* Default if no _environ found */ 3000 3001 if (Plookup_by_name(P, PR_OBJ_EXEC, "_environ", &sym) == 0) { 3002 if (P->status.pr_dmodel == PR_MODEL_NATIVE) { 3003 if (Pread(P, &envpoff, sizeof (envpoff), 3004 sym.st_value) != sizeof (envpoff)) 3005 envpoff = psp->pr_envp; 3006 } else if (P->status.pr_dmodel == PR_MODEL_ILP32) { 3007 uint32_t envpoff32; 3008 3009 if (Pread(P, &envpoff32, sizeof (envpoff32), 3010 sym.st_value) != sizeof (envpoff32)) 3011 envpoff = psp->pr_envp; 3012 else 3013 envpoff = envpoff32; 3014 } 3015 } 3016 3017 buflen = 128; 3018 buf = malloc(buflen); 3019 3020 ret = 0; 3021 for (;;) { 3022 uintptr_t envoff; 3023 3024 if (nenv == NARG) { 3025 (void) memset(envp, 0, sizeof (envp)); 3026 if (P->status.pr_dmodel == PR_MODEL_NATIVE) { 3027 if (Pread(P, envp, 3028 sizeof (envp), envpoff) <= 0) { 3029 ret = -1; 3030 break; 3031 } 3032 } else if (P->status.pr_dmodel == PR_MODEL_ILP32) { 3033 uint32_t e32[NARG]; 3034 int i; 3035 3036 (void) memset(e32, 0, sizeof (e32)); 3037 if (Pread(P, e32, sizeof (e32), envpoff) <= 0) { 3038 ret = -1; 3039 break; 3040 } 3041 for (i = 0; i < NARG; i++) 3042 envp[i] = e32[i]; 3043 } 3044 nenv = 0; 3045 } 3046 3047 if ((envoff = envp[nenv++]) == NULL) 3048 break; 3049 3050 /* 3051 * Attempt to read the string from the process. 3052 */ 3053 again: 3054 ret = Pread_string(P, buf, buflen, envoff); 3055 3056 if (ret <= 0) { 3057 nameval = NULL; 3058 } else if (ret == buflen - 1) { 3059 free(buf); 3060 /* 3061 * Bail if we have a corrupted environment 3062 */ 3063 if (buflen >= ARG_MAX) 3064 return (-1); 3065 buflen *= 2; 3066 buf = malloc(buflen); 3067 goto again; 3068 } else { 3069 nameval = buf; 3070 } 3071 3072 if ((ret = func(data, P, envoff, nameval)) != 0) 3073 break; 3074 3075 envpoff += (P->status.pr_dmodel == PR_MODEL_LP64)? 8 : 4; 3076 } 3077 3078 free(buf); 3079 3080 return (ret); 3081 } 3082