1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2013 by Delphix. All rights reserved. 26 */ 27 28 #include <assert.h> 29 #include <stdio.h> 30 #include <stdlib.h> 31 #include <stddef.h> 32 #include <unistd.h> 33 #include <ctype.h> 34 #include <fcntl.h> 35 #include <string.h> 36 #include <strings.h> 37 #include <memory.h> 38 #include <errno.h> 39 #include <dirent.h> 40 #include <signal.h> 41 #include <limits.h> 42 #include <libgen.h> 43 #include <sys/types.h> 44 #include <sys/stat.h> 45 #include <sys/sysmacros.h> 46 47 #include "libproc.h" 48 #include "Pcontrol.h" 49 #include "Putil.h" 50 #include "Psymtab_machelf.h" 51 52 static file_info_t *build_map_symtab(struct ps_prochandle *, map_info_t *); 53 static map_info_t *exec_map(struct ps_prochandle *); 54 static map_info_t *object_to_map(struct ps_prochandle *, Lmid_t, const char *); 55 static map_info_t *object_name_to_map(struct ps_prochandle *, 56 Lmid_t, const char *); 57 static GElf_Sym *sym_by_name(sym_tbl_t *, const char *, GElf_Sym *, uint_t *); 58 static int read_ehdr32(struct ps_prochandle *, Elf32_Ehdr *, uint_t *, 59 uintptr_t); 60 #ifdef _LP64 61 static int read_ehdr64(struct ps_prochandle *, Elf64_Ehdr *, uint_t *, 62 uintptr_t); 63 #endif 64 65 #define DATA_TYPES \ 66 ((1 << STT_OBJECT) | (1 << STT_FUNC) | \ 67 (1 << STT_COMMON) | (1 << STT_TLS)) 68 #define IS_DATA_TYPE(tp) (((1 << (tp)) & DATA_TYPES) != 0) 69 70 #define MA_RWX (MA_READ | MA_WRITE | MA_EXEC) 71 72 typedef enum { 73 PRO_NATURAL, 74 PRO_BYADDR, 75 PRO_BYNAME 76 } pr_order_t; 77 78 static int 79 addr_cmp(const void *aa, const void *bb) 80 { 81 uintptr_t a = *((uintptr_t *)aa); 82 uintptr_t b = *((uintptr_t *)bb); 83 84 if (a > b) 85 return (1); 86 if (a < b) 87 return (-1); 88 return (0); 89 } 90 91 /* 92 * This function creates a list of addresses for a load object's sections. 93 * The list is in ascending address order and alternates start address 94 * then end address for each section we're interested in. The function 95 * returns a pointer to the list, which must be freed by the caller. 96 */ 97 static uintptr_t * 98 get_saddrs(struct ps_prochandle *P, uintptr_t ehdr_start, uint_t *n) 99 { 100 uintptr_t a, addr, *addrs, last = 0; 101 uint_t i, naddrs = 0, unordered = 0; 102 103 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 104 Elf32_Ehdr ehdr; 105 Elf32_Phdr phdr; 106 uint_t phnum; 107 108 if (read_ehdr32(P, &ehdr, &phnum, ehdr_start) != 0) 109 return (NULL); 110 111 addrs = malloc(sizeof (uintptr_t) * phnum * 2); 112 a = ehdr_start + ehdr.e_phoff; 113 for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) { 114 if (Pread(P, &phdr, sizeof (phdr), a) != 115 sizeof (phdr)) { 116 free(addrs); 117 return (NULL); 118 } 119 if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0) 120 continue; 121 122 addr = phdr.p_vaddr; 123 if (ehdr.e_type == ET_DYN) 124 addr += ehdr_start; 125 if (last > addr) 126 unordered = 1; 127 addrs[naddrs++] = addr; 128 addrs[naddrs++] = last = addr + phdr.p_memsz - 1; 129 } 130 #ifdef _LP64 131 } else { 132 Elf64_Ehdr ehdr; 133 Elf64_Phdr phdr; 134 uint_t phnum; 135 136 if (read_ehdr64(P, &ehdr, &phnum, ehdr_start) != 0) 137 return (NULL); 138 139 addrs = malloc(sizeof (uintptr_t) * phnum * 2); 140 a = ehdr_start + ehdr.e_phoff; 141 for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) { 142 if (Pread(P, &phdr, sizeof (phdr), a) != 143 sizeof (phdr)) { 144 free(addrs); 145 return (NULL); 146 } 147 if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0) 148 continue; 149 150 addr = phdr.p_vaddr; 151 if (ehdr.e_type == ET_DYN) 152 addr += ehdr_start; 153 if (last > addr) 154 unordered = 1; 155 addrs[naddrs++] = addr; 156 addrs[naddrs++] = last = addr + phdr.p_memsz - 1; 157 } 158 #endif 159 } 160 161 if (unordered) 162 qsort(addrs, naddrs, sizeof (uintptr_t), addr_cmp); 163 164 *n = naddrs; 165 return (addrs); 166 } 167 168 /* 169 * Allocation function for a new file_info_t 170 */ 171 file_info_t * 172 file_info_new(struct ps_prochandle *P, map_info_t *mptr) 173 { 174 file_info_t *fptr; 175 map_info_t *mp; 176 uintptr_t mstart, mend, sstart, send; 177 uint_t i; 178 179 if ((fptr = calloc(1, sizeof (file_info_t))) == NULL) 180 return (NULL); 181 182 list_link(fptr, &P->file_head); 183 (void) strcpy(fptr->file_pname, mptr->map_pmap.pr_mapname); 184 mptr->map_file = fptr; 185 fptr->file_ref = 1; 186 fptr->file_fd = -1; 187 P->num_files++; 188 189 /* 190 * To figure out which map_info_t instances correspond to the mappings 191 * for this load object we try to obtain the start and end address 192 * for each section of our in-memory ELF image. If successful, we 193 * walk down the list of addresses and the list of map_info_t 194 * instances in lock step to correctly find the mappings that 195 * correspond to this load object. 196 */ 197 if ((fptr->file_saddrs = get_saddrs(P, mptr->map_pmap.pr_vaddr, 198 &fptr->file_nsaddrs)) == NULL) 199 return (fptr); 200 201 mp = P->mappings; 202 i = 0; 203 while (mp < P->mappings + P->map_count && i < fptr->file_nsaddrs) { 204 205 /* Calculate the start and end of the mapping and section */ 206 mstart = mp->map_pmap.pr_vaddr; 207 mend = mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size; 208 sstart = fptr->file_saddrs[i]; 209 send = fptr->file_saddrs[i + 1]; 210 211 if (mend <= sstart) { 212 /* This mapping is below the current section */ 213 mp++; 214 } else if (mstart >= send) { 215 /* This mapping is above the current section */ 216 i += 2; 217 } else { 218 /* This mapping overlaps the current section */ 219 if (mp->map_file == NULL) { 220 dprintf("file_info_new: associating " 221 "segment at %p\n", 222 (void *)mp->map_pmap.pr_vaddr); 223 mp->map_file = fptr; 224 fptr->file_ref++; 225 } else { 226 dprintf("file_info_new: segment at %p " 227 "already associated with %s\n", 228 (void *)mp->map_pmap.pr_vaddr, 229 (mp == mptr ? "this file" : 230 mp->map_file->file_pname)); 231 } 232 mp++; 233 } 234 } 235 236 return (fptr); 237 } 238 239 /* 240 * Deallocation function for a file_info_t 241 */ 242 static void 243 file_info_free(struct ps_prochandle *P, file_info_t *fptr) 244 { 245 if (--fptr->file_ref == 0) { 246 list_unlink(fptr); 247 if (fptr->file_symtab.sym_elf) { 248 (void) elf_end(fptr->file_symtab.sym_elf); 249 free(fptr->file_symtab.sym_elfmem); 250 } 251 if (fptr->file_symtab.sym_byname) 252 free(fptr->file_symtab.sym_byname); 253 if (fptr->file_symtab.sym_byaddr) 254 free(fptr->file_symtab.sym_byaddr); 255 256 if (fptr->file_dynsym.sym_elf) { 257 (void) elf_end(fptr->file_dynsym.sym_elf); 258 free(fptr->file_dynsym.sym_elfmem); 259 } 260 if (fptr->file_dynsym.sym_byname) 261 free(fptr->file_dynsym.sym_byname); 262 if (fptr->file_dynsym.sym_byaddr) 263 free(fptr->file_dynsym.sym_byaddr); 264 265 if (fptr->file_lo) 266 free(fptr->file_lo); 267 if (fptr->file_lname) 268 free(fptr->file_lname); 269 if (fptr->file_rname) 270 free(fptr->file_rname); 271 if (fptr->file_elf) 272 (void) elf_end(fptr->file_elf); 273 if (fptr->file_elfmem != NULL) 274 free(fptr->file_elfmem); 275 if (fptr->file_fd >= 0) 276 (void) close(fptr->file_fd); 277 if (fptr->file_ctfp) { 278 ctf_close(fptr->file_ctfp); 279 free(fptr->file_ctf_buf); 280 } 281 if (fptr->file_saddrs) 282 free(fptr->file_saddrs); 283 free(fptr); 284 P->num_files--; 285 } 286 } 287 288 /* 289 * Deallocation function for a map_info_t 290 */ 291 static void 292 map_info_free(struct ps_prochandle *P, map_info_t *mptr) 293 { 294 file_info_t *fptr; 295 296 if ((fptr = mptr->map_file) != NULL) { 297 if (fptr->file_map == mptr) 298 fptr->file_map = NULL; 299 file_info_free(P, fptr); 300 } 301 if (P->execname && mptr == P->map_exec) { 302 free(P->execname); 303 P->execname = NULL; 304 } 305 if (P->auxv && (mptr == P->map_exec || mptr == P->map_ldso)) { 306 free(P->auxv); 307 P->auxv = NULL; 308 P->nauxv = 0; 309 } 310 if (mptr == P->map_exec) 311 P->map_exec = NULL; 312 if (mptr == P->map_ldso) 313 P->map_ldso = NULL; 314 } 315 316 /* 317 * Call-back function for librtld_db to iterate through all of its shared 318 * libraries. We use this to get the load object names for the mappings. 319 */ 320 static int 321 map_iter(const rd_loadobj_t *lop, void *cd) 322 { 323 char buf[PATH_MAX]; 324 struct ps_prochandle *P = cd; 325 map_info_t *mptr; 326 file_info_t *fptr; 327 328 dprintf("encountered rd object at %p\n", (void *)lop->rl_base); 329 330 if ((mptr = Paddr2mptr(P, lop->rl_base)) == NULL) { 331 dprintf("map_iter: base address doesn't match any mapping\n"); 332 return (1); /* Base address does not match any mapping */ 333 } 334 335 if ((fptr = mptr->map_file) == NULL && 336 (fptr = file_info_new(P, mptr)) == NULL) { 337 dprintf("map_iter: failed to allocate a new file_info_t\n"); 338 return (1); /* Failed to allocate a new file_info_t */ 339 } 340 341 if ((fptr->file_lo == NULL) && 342 (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) { 343 dprintf("map_iter: failed to allocate rd_loadobj_t\n"); 344 file_info_free(P, fptr); 345 return (1); /* Failed to allocate rd_loadobj_t */ 346 } 347 348 fptr->file_map = mptr; 349 *fptr->file_lo = *lop; 350 351 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 352 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 353 354 if (fptr->file_lname) { 355 free(fptr->file_lname); 356 fptr->file_lname = NULL; 357 fptr->file_lbase = NULL; 358 } 359 if (fptr->file_rname) { 360 free(fptr->file_rname); 361 fptr->file_rname = NULL; 362 fptr->file_rbase = NULL; 363 } 364 365 if (Pread_string(P, buf, sizeof (buf), lop->rl_nameaddr) > 0) { 366 if ((fptr->file_lname = strdup(buf)) != NULL) 367 fptr->file_lbase = basename(fptr->file_lname); 368 } else { 369 dprintf("map_iter: failed to read string at %p\n", 370 (void *)lop->rl_nameaddr); 371 } 372 373 if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) && 374 ((fptr->file_rname = strdup(buf)) != NULL)) 375 fptr->file_rbase = basename(fptr->file_rname); 376 377 dprintf("loaded rd object %s lmid %lx\n", 378 fptr->file_lname ? buf : "<NULL>", lop->rl_lmident); 379 return (1); 380 } 381 382 static void 383 map_set(struct ps_prochandle *P, map_info_t *mptr, const char *lname) 384 { 385 file_info_t *fptr; 386 char buf[PATH_MAX]; 387 388 if ((fptr = mptr->map_file) == NULL && 389 (fptr = file_info_new(P, mptr)) == NULL) 390 return; /* Failed to allocate a new file_info_t */ 391 392 fptr->file_map = mptr; 393 394 if ((fptr->file_lo == NULL) && 395 (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) { 396 file_info_free(P, fptr); 397 return; /* Failed to allocate rd_loadobj_t */ 398 } 399 400 (void) memset(fptr->file_lo, 0, sizeof (rd_loadobj_t)); 401 fptr->file_lo->rl_base = mptr->map_pmap.pr_vaddr; 402 fptr->file_lo->rl_bend = 403 mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size; 404 405 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 406 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 407 408 if ((fptr->file_lname == NULL) && 409 (fptr->file_lname = strdup(lname)) != NULL) 410 fptr->file_lbase = basename(fptr->file_lname); 411 412 if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) && 413 ((fptr->file_rname = strdup(buf)) != NULL)) 414 fptr->file_rbase = basename(fptr->file_rname); 415 } 416 417 static void 418 load_static_maps(struct ps_prochandle *P) 419 { 420 map_info_t *mptr; 421 422 /* 423 * Construct the map for the a.out. 424 */ 425 if ((mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_EXEC)) != NULL) 426 map_set(P, mptr, "a.out"); 427 428 /* 429 * If the dynamic linker exists for this process, 430 * construct the map for it. 431 */ 432 if (Pgetauxval(P, AT_BASE) != -1L && 433 (mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_LDSO)) != NULL) 434 map_set(P, mptr, "ld.so.1"); 435 } 436 437 int 438 Preadmaps(struct ps_prochandle *P, prmap_t **Pmapp, ssize_t *nmapp) 439 { 440 return (P->ops.pop_read_maps(P, Pmapp, nmapp, P->data)); 441 } 442 443 /* 444 * Go through all the address space mappings, validating or updating 445 * the information already gathered, or gathering new information. 446 * 447 * This function is only called when we suspect that the mappings have changed 448 * because this is the first time we're calling it or because of rtld activity. 449 */ 450 void 451 Pupdate_maps(struct ps_prochandle *P) 452 { 453 prmap_t *Pmap = NULL; 454 prmap_t *pmap; 455 ssize_t nmap; 456 int i; 457 uint_t oldmapcount; 458 map_info_t *newmap, *newp; 459 map_info_t *mptr; 460 461 if (P->info_valid || P->state == PS_UNDEAD) 462 return; 463 464 Preadauxvec(P); 465 466 if (Preadmaps(P, &Pmap, &nmap) != 0) 467 return; 468 469 if ((newmap = calloc(1, nmap * sizeof (map_info_t))) == NULL) 470 return; 471 472 /* 473 * We try to merge any file information we may have for existing 474 * mappings, to avoid having to rebuild the file info. 475 */ 476 mptr = P->mappings; 477 pmap = Pmap; 478 newp = newmap; 479 oldmapcount = P->map_count; 480 for (i = 0; i < nmap; i++, pmap++, newp++) { 481 482 if (oldmapcount == 0) { 483 /* 484 * We've exhausted all the old mappings. Every new 485 * mapping should be added. 486 */ 487 newp->map_pmap = *pmap; 488 489 } else if (pmap->pr_vaddr == mptr->map_pmap.pr_vaddr && 490 pmap->pr_size == mptr->map_pmap.pr_size && 491 pmap->pr_offset == mptr->map_pmap.pr_offset && 492 (pmap->pr_mflags & ~(MA_BREAK | MA_STACK)) == 493 (mptr->map_pmap.pr_mflags & ~(MA_BREAK | MA_STACK)) && 494 pmap->pr_pagesize == mptr->map_pmap.pr_pagesize && 495 pmap->pr_shmid == mptr->map_pmap.pr_shmid && 496 strcmp(pmap->pr_mapname, mptr->map_pmap.pr_mapname) == 0) { 497 498 /* 499 * This mapping matches exactly. Copy over the old 500 * mapping, taking care to get the latest flags. 501 * Make sure the associated file_info_t is updated 502 * appropriately. 503 */ 504 *newp = *mptr; 505 if (P->map_exec == mptr) 506 P->map_exec = newp; 507 if (P->map_ldso == mptr) 508 P->map_ldso = newp; 509 newp->map_pmap.pr_mflags = pmap->pr_mflags; 510 if (mptr->map_file != NULL && 511 mptr->map_file->file_map == mptr) 512 mptr->map_file->file_map = newp; 513 oldmapcount--; 514 mptr++; 515 516 } else if (pmap->pr_vaddr + pmap->pr_size > 517 mptr->map_pmap.pr_vaddr) { 518 519 /* 520 * The old mapping doesn't exist any more, remove it 521 * from the list. 522 */ 523 map_info_free(P, mptr); 524 oldmapcount--; 525 i--; 526 newp--; 527 pmap--; 528 mptr++; 529 530 } else { 531 532 /* 533 * This is a new mapping, add it directly. 534 */ 535 newp->map_pmap = *pmap; 536 } 537 } 538 539 /* 540 * Free any old maps 541 */ 542 while (oldmapcount) { 543 map_info_free(P, mptr); 544 oldmapcount--; 545 mptr++; 546 } 547 548 free(Pmap); 549 if (P->mappings != NULL) 550 free(P->mappings); 551 P->mappings = newmap; 552 P->map_count = P->map_alloc = nmap; 553 P->info_valid = 1; 554 555 /* 556 * Consult librtld_db to get the load object 557 * names for all of the shared libraries. 558 */ 559 if (P->rap != NULL) 560 (void) rd_loadobj_iter(P->rap, map_iter, P); 561 } 562 563 /* 564 * Update all of the mappings and rtld_db as if by Pupdate_maps(), and then 565 * forcibly cache all of the symbol tables associated with all object files. 566 */ 567 void 568 Pupdate_syms(struct ps_prochandle *P) 569 { 570 file_info_t *fptr; 571 int i; 572 573 Pupdate_maps(P); 574 575 for (i = 0, fptr = list_next(&P->file_head); i < P->num_files; 576 i++, fptr = list_next(fptr)) { 577 Pbuild_file_symtab(P, fptr); 578 (void) Pbuild_file_ctf(P, fptr); 579 } 580 } 581 582 /* 583 * Return the librtld_db agent handle for the victim process. 584 * The handle will become invalid at the next successful exec() and the 585 * client (caller of proc_rd_agent()) must not use it beyond that point. 586 * If the process is already dead, we've already tried our best to 587 * create the agent during core file initialization. 588 */ 589 rd_agent_t * 590 Prd_agent(struct ps_prochandle *P) 591 { 592 if (P->rap == NULL && P->state != PS_DEAD && P->state != PS_IDLE) { 593 Pupdate_maps(P); 594 if (P->num_files == 0) 595 load_static_maps(P); 596 rd_log(_libproc_debug); 597 if ((P->rap = rd_new(P)) != NULL) 598 (void) rd_loadobj_iter(P->rap, map_iter, P); 599 } 600 return (P->rap); 601 } 602 603 /* 604 * Return the prmap_t structure containing 'addr', but only if it 605 * is in the dynamic linker's link map and is the text section. 606 */ 607 const prmap_t * 608 Paddr_to_text_map(struct ps_prochandle *P, uintptr_t addr) 609 { 610 map_info_t *mptr; 611 612 if (!P->info_valid) 613 Pupdate_maps(P); 614 615 if ((mptr = Paddr2mptr(P, addr)) != NULL) { 616 file_info_t *fptr = build_map_symtab(P, mptr); 617 const prmap_t *pmp = &mptr->map_pmap; 618 619 /* 620 * Assume that if rl_data_base is NULL, it means that no 621 * data section was found for this load object, and that 622 * a section must be text. Otherwise, a section will be 623 * text unless it ends above the start of the data 624 * section. 625 */ 626 if (fptr != NULL && fptr->file_lo != NULL && 627 (fptr->file_lo->rl_data_base == NULL || 628 pmp->pr_vaddr + pmp->pr_size <= 629 fptr->file_lo->rl_data_base)) 630 return (pmp); 631 } 632 633 return (NULL); 634 } 635 636 /* 637 * Return the prmap_t structure containing 'addr' (no restrictions on 638 * the type of mapping). 639 */ 640 const prmap_t * 641 Paddr_to_map(struct ps_prochandle *P, uintptr_t addr) 642 { 643 map_info_t *mptr; 644 645 if (!P->info_valid) 646 Pupdate_maps(P); 647 648 if ((mptr = Paddr2mptr(P, addr)) != NULL) 649 return (&mptr->map_pmap); 650 651 return (NULL); 652 } 653 654 /* 655 * Convert a full or partial load object name to the prmap_t for its 656 * corresponding primary text mapping. 657 */ 658 const prmap_t * 659 Plmid_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name) 660 { 661 map_info_t *mptr; 662 663 if (name == PR_OBJ_EVERY) 664 return (NULL); /* A reasonable mistake */ 665 666 if ((mptr = object_name_to_map(P, lmid, name)) != NULL) 667 return (&mptr->map_pmap); 668 669 return (NULL); 670 } 671 672 const prmap_t * 673 Pname_to_map(struct ps_prochandle *P, const char *name) 674 { 675 return (Plmid_to_map(P, PR_LMID_EVERY, name)); 676 } 677 678 const rd_loadobj_t * 679 Paddr_to_loadobj(struct ps_prochandle *P, uintptr_t addr) 680 { 681 map_info_t *mptr; 682 683 if (!P->info_valid) 684 Pupdate_maps(P); 685 686 if ((mptr = Paddr2mptr(P, addr)) == NULL) 687 return (NULL); 688 689 /* 690 * By building the symbol table, we implicitly bring the PLT 691 * information up to date in the load object. 692 */ 693 (void) build_map_symtab(P, mptr); 694 695 return (mptr->map_file->file_lo); 696 } 697 698 const rd_loadobj_t * 699 Plmid_to_loadobj(struct ps_prochandle *P, Lmid_t lmid, const char *name) 700 { 701 map_info_t *mptr; 702 703 if (name == PR_OBJ_EVERY) 704 return (NULL); 705 706 if ((mptr = object_name_to_map(P, lmid, name)) == NULL) 707 return (NULL); 708 709 /* 710 * By building the symbol table, we implicitly bring the PLT 711 * information up to date in the load object. 712 */ 713 (void) build_map_symtab(P, mptr); 714 715 return (mptr->map_file->file_lo); 716 } 717 718 const rd_loadobj_t * 719 Pname_to_loadobj(struct ps_prochandle *P, const char *name) 720 { 721 return (Plmid_to_loadobj(P, PR_LMID_EVERY, name)); 722 } 723 724 ctf_file_t * 725 Pbuild_file_ctf(struct ps_prochandle *P, file_info_t *fptr) 726 { 727 ctf_sect_t ctdata, symtab, strtab; 728 sym_tbl_t *symp; 729 int err; 730 731 if (fptr->file_ctfp != NULL) 732 return (fptr->file_ctfp); 733 734 Pbuild_file_symtab(P, fptr); 735 736 if (fptr->file_ctf_size == 0) 737 return (NULL); 738 739 symp = fptr->file_ctf_dyn ? &fptr->file_dynsym : &fptr->file_symtab; 740 if (symp->sym_data_pri == NULL) 741 return (NULL); 742 743 /* 744 * The buffer may alread be allocated if this is a core file that 745 * contained CTF data for this file. 746 */ 747 if (fptr->file_ctf_buf == NULL) { 748 fptr->file_ctf_buf = malloc(fptr->file_ctf_size); 749 if (fptr->file_ctf_buf == NULL) { 750 dprintf("failed to allocate ctf buffer\n"); 751 return (NULL); 752 } 753 754 if (pread(fptr->file_fd, fptr->file_ctf_buf, 755 fptr->file_ctf_size, fptr->file_ctf_off) != 756 fptr->file_ctf_size) { 757 free(fptr->file_ctf_buf); 758 fptr->file_ctf_buf = NULL; 759 dprintf("failed to read ctf data\n"); 760 return (NULL); 761 } 762 } 763 764 ctdata.cts_name = ".SUNW_ctf"; 765 ctdata.cts_type = SHT_PROGBITS; 766 ctdata.cts_flags = 0; 767 ctdata.cts_data = fptr->file_ctf_buf; 768 ctdata.cts_size = fptr->file_ctf_size; 769 ctdata.cts_entsize = 1; 770 ctdata.cts_offset = 0; 771 772 symtab.cts_name = fptr->file_ctf_dyn ? ".dynsym" : ".symtab"; 773 symtab.cts_type = symp->sym_hdr_pri.sh_type; 774 symtab.cts_flags = symp->sym_hdr_pri.sh_flags; 775 symtab.cts_data = symp->sym_data_pri->d_buf; 776 symtab.cts_size = symp->sym_hdr_pri.sh_size; 777 symtab.cts_entsize = symp->sym_hdr_pri.sh_entsize; 778 symtab.cts_offset = symp->sym_hdr_pri.sh_offset; 779 780 strtab.cts_name = fptr->file_ctf_dyn ? ".dynstr" : ".strtab"; 781 strtab.cts_type = symp->sym_strhdr.sh_type; 782 strtab.cts_flags = symp->sym_strhdr.sh_flags; 783 strtab.cts_data = symp->sym_strs; 784 strtab.cts_size = symp->sym_strhdr.sh_size; 785 strtab.cts_entsize = symp->sym_strhdr.sh_entsize; 786 strtab.cts_offset = symp->sym_strhdr.sh_offset; 787 788 fptr->file_ctfp = ctf_bufopen(&ctdata, &symtab, &strtab, &err); 789 if (fptr->file_ctfp == NULL) { 790 dprintf("ctf_bufopen() failed, error code %d\n", err); 791 free(fptr->file_ctf_buf); 792 fptr->file_ctf_buf = NULL; 793 return (NULL); 794 } 795 796 dprintf("loaded %lu bytes of CTF data for %s\n", 797 (ulong_t)fptr->file_ctf_size, fptr->file_pname); 798 799 return (fptr->file_ctfp); 800 } 801 802 ctf_file_t * 803 Paddr_to_ctf(struct ps_prochandle *P, uintptr_t addr) 804 { 805 map_info_t *mptr; 806 file_info_t *fptr; 807 808 if (!P->info_valid) 809 Pupdate_maps(P); 810 811 if ((mptr = Paddr2mptr(P, addr)) == NULL || 812 (fptr = mptr->map_file) == NULL) 813 return (NULL); 814 815 return (Pbuild_file_ctf(P, fptr)); 816 } 817 818 ctf_file_t * 819 Plmid_to_ctf(struct ps_prochandle *P, Lmid_t lmid, const char *name) 820 { 821 map_info_t *mptr; 822 file_info_t *fptr; 823 824 if (name == PR_OBJ_EVERY) 825 return (NULL); 826 827 if ((mptr = object_name_to_map(P, lmid, name)) == NULL || 828 (fptr = mptr->map_file) == NULL) 829 return (NULL); 830 831 return (Pbuild_file_ctf(P, fptr)); 832 } 833 834 ctf_file_t * 835 Pname_to_ctf(struct ps_prochandle *P, const char *name) 836 { 837 return (Plmid_to_ctf(P, PR_LMID_EVERY, name)); 838 } 839 840 void 841 Preadauxvec(struct ps_prochandle *P) 842 { 843 if (P->auxv != NULL) { 844 free(P->auxv); 845 P->auxv = NULL; 846 P->nauxv = 0; 847 } 848 849 P->ops.pop_read_aux(P, &P->auxv, &P->nauxv, P->data); 850 } 851 852 /* 853 * Return a requested element from the process's aux vector. 854 * Return -1 on failure (this is adequate for our purposes). 855 */ 856 long 857 Pgetauxval(struct ps_prochandle *P, int type) 858 { 859 auxv_t *auxv; 860 861 if (P->auxv == NULL) 862 Preadauxvec(P); 863 864 if (P->auxv == NULL) 865 return (-1); 866 867 for (auxv = P->auxv; auxv->a_type != AT_NULL; auxv++) { 868 if (auxv->a_type == type) 869 return (auxv->a_un.a_val); 870 } 871 872 return (-1); 873 } 874 875 /* 876 * Return a pointer to our internal copy of the process's aux vector. 877 * The caller should not hold on to this pointer across any libproc calls. 878 */ 879 const auxv_t * 880 Pgetauxvec(struct ps_prochandle *P) 881 { 882 static const auxv_t empty = { AT_NULL, 0L }; 883 884 if (P->auxv == NULL) 885 Preadauxvec(P); 886 887 if (P->auxv == NULL) 888 return (&empty); 889 890 return (P->auxv); 891 } 892 893 /* 894 * Return 1 if the given mapping corresponds to the given file_info_t's 895 * load object; return 0 otherwise. 896 */ 897 static int 898 is_mapping_in_file(struct ps_prochandle *P, map_info_t *mptr, file_info_t *fptr) 899 { 900 prmap_t *pmap = &mptr->map_pmap; 901 rd_loadobj_t *lop = fptr->file_lo; 902 uint_t i; 903 uintptr_t mstart, mend, sstart, send; 904 905 /* 906 * We can get for free the start address of the text and data 907 * sections of the load object. Start by seeing if the mapping 908 * encloses either of these. 909 */ 910 if ((pmap->pr_vaddr <= lop->rl_base && 911 lop->rl_base < pmap->pr_vaddr + pmap->pr_size) || 912 (pmap->pr_vaddr <= lop->rl_data_base && 913 lop->rl_data_base < pmap->pr_vaddr + pmap->pr_size)) 914 return (1); 915 916 /* 917 * It's still possible that this mapping correponds to the load 918 * object. Consider the example of a mapping whose start and end 919 * addresses correspond to those of the load object's text section. 920 * If the mapping splits, e.g. as a result of a segment demotion, 921 * then although both mappings are still backed by the same section, 922 * only one will be seen to enclose that section's start address. 923 * Thus, to be rigorous, we ask not whether this mapping encloses 924 * the start of a section, but whether there exists a section that 925 * overlaps this mapping. 926 * 927 * If we don't already have the section addresses, and we successfully 928 * get them, then we cache them in case we come here again. 929 */ 930 if (fptr->file_saddrs == NULL && 931 (fptr->file_saddrs = get_saddrs(P, 932 fptr->file_map->map_pmap.pr_vaddr, &fptr->file_nsaddrs)) == NULL) 933 return (0); 934 935 mstart = mptr->map_pmap.pr_vaddr; 936 mend = mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size; 937 for (i = 0; i < fptr->file_nsaddrs; i += 2) { 938 /* Does this section overlap the mapping? */ 939 sstart = fptr->file_saddrs[i]; 940 send = fptr->file_saddrs[i + 1]; 941 if (!(mend <= sstart || mstart >= send)) 942 return (1); 943 } 944 945 return (0); 946 } 947 948 /* 949 * Find or build the symbol table for the given mapping. 950 */ 951 static file_info_t * 952 build_map_symtab(struct ps_prochandle *P, map_info_t *mptr) 953 { 954 prmap_t *pmap = &mptr->map_pmap; 955 file_info_t *fptr; 956 uint_t i; 957 958 if ((fptr = mptr->map_file) != NULL) { 959 Pbuild_file_symtab(P, fptr); 960 return (fptr); 961 } 962 963 if (pmap->pr_mapname[0] == '\0') 964 return (NULL); 965 966 /* 967 * Attempt to find a matching file. 968 * (A file can be mapped at several different addresses.) 969 */ 970 for (i = 0, fptr = list_next(&P->file_head); i < P->num_files; 971 i++, fptr = list_next(fptr)) { 972 if (strcmp(fptr->file_pname, pmap->pr_mapname) == 0 && 973 fptr->file_lo && is_mapping_in_file(P, mptr, fptr)) { 974 mptr->map_file = fptr; 975 fptr->file_ref++; 976 Pbuild_file_symtab(P, fptr); 977 return (fptr); 978 } 979 } 980 981 /* 982 * If we need to create a new file_info structure, iterate 983 * through the load objects in order to attempt to connect 984 * this new file with its primary text mapping. We again 985 * need to handle ld.so as a special case because we need 986 * to be able to bootstrap librtld_db. 987 */ 988 if ((fptr = file_info_new(P, mptr)) == NULL) 989 return (NULL); 990 991 if (P->map_ldso != mptr) { 992 if (P->rap != NULL) 993 (void) rd_loadobj_iter(P->rap, map_iter, P); 994 else 995 (void) Prd_agent(P); 996 } else { 997 fptr->file_map = mptr; 998 } 999 1000 /* 1001 * If librtld_db wasn't able to help us connect the file to a primary 1002 * text mapping, set file_map to the current mapping because we require 1003 * fptr->file_map to be set in Pbuild_file_symtab. librtld_db may be 1004 * unaware of what's going on in the rare case that a legitimate ELF 1005 * file has been mmap(2)ed into the process address space *without* 1006 * the use of dlopen(3x). 1007 */ 1008 if (fptr->file_map == NULL) 1009 fptr->file_map = mptr; 1010 1011 Pbuild_file_symtab(P, fptr); 1012 1013 return (fptr); 1014 } 1015 1016 static int 1017 read_ehdr32(struct ps_prochandle *P, Elf32_Ehdr *ehdr, uint_t *phnum, 1018 uintptr_t addr) 1019 { 1020 if (Pread(P, ehdr, sizeof (*ehdr), addr) != sizeof (*ehdr)) 1021 return (-1); 1022 1023 if (ehdr->e_ident[EI_MAG0] != ELFMAG0 || 1024 ehdr->e_ident[EI_MAG1] != ELFMAG1 || 1025 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 1026 ehdr->e_ident[EI_MAG3] != ELFMAG3 || 1027 ehdr->e_ident[EI_CLASS] != ELFCLASS32 || 1028 #ifdef _BIG_ENDIAN 1029 ehdr->e_ident[EI_DATA] != ELFDATA2MSB || 1030 #else 1031 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 1032 #endif 1033 ehdr->e_ident[EI_VERSION] != EV_CURRENT) 1034 return (-1); 1035 1036 if ((*phnum = ehdr->e_phnum) == PN_XNUM) { 1037 Elf32_Shdr shdr0; 1038 1039 if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) || 1040 Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) != 1041 sizeof (shdr0)) 1042 return (-1); 1043 1044 if (shdr0.sh_info != 0) 1045 *phnum = shdr0.sh_info; 1046 } 1047 1048 return (0); 1049 } 1050 1051 static int 1052 read_dynamic_phdr32(struct ps_prochandle *P, const Elf32_Ehdr *ehdr, 1053 uint_t phnum, Elf32_Phdr *phdr, uintptr_t addr) 1054 { 1055 uint_t i; 1056 1057 for (i = 0; i < phnum; i++) { 1058 uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize; 1059 if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr)) 1060 return (-1); 1061 1062 if (phdr->p_type == PT_DYNAMIC) 1063 return (0); 1064 } 1065 1066 return (-1); 1067 } 1068 1069 #ifdef _LP64 1070 static int 1071 read_ehdr64(struct ps_prochandle *P, Elf64_Ehdr *ehdr, uint_t *phnum, 1072 uintptr_t addr) 1073 { 1074 if (Pread(P, ehdr, sizeof (Elf64_Ehdr), addr) != sizeof (Elf64_Ehdr)) 1075 return (-1); 1076 1077 if (ehdr->e_ident[EI_MAG0] != ELFMAG0 || 1078 ehdr->e_ident[EI_MAG1] != ELFMAG1 || 1079 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 1080 ehdr->e_ident[EI_MAG3] != ELFMAG3 || 1081 ehdr->e_ident[EI_CLASS] != ELFCLASS64 || 1082 #ifdef _BIG_ENDIAN 1083 ehdr->e_ident[EI_DATA] != ELFDATA2MSB || 1084 #else 1085 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 1086 #endif 1087 ehdr->e_ident[EI_VERSION] != EV_CURRENT) 1088 return (-1); 1089 1090 if ((*phnum = ehdr->e_phnum) == PN_XNUM) { 1091 Elf64_Shdr shdr0; 1092 1093 if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) || 1094 Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) != 1095 sizeof (shdr0)) 1096 return (-1); 1097 1098 if (shdr0.sh_info != 0) 1099 *phnum = shdr0.sh_info; 1100 } 1101 1102 return (0); 1103 } 1104 1105 static int 1106 read_dynamic_phdr64(struct ps_prochandle *P, const Elf64_Ehdr *ehdr, 1107 uint_t phnum, Elf64_Phdr *phdr, uintptr_t addr) 1108 { 1109 uint_t i; 1110 1111 for (i = 0; i < phnum; i++) { 1112 uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize; 1113 if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr)) 1114 return (-1); 1115 1116 if (phdr->p_type == PT_DYNAMIC) 1117 return (0); 1118 } 1119 1120 return (-1); 1121 } 1122 #endif /* _LP64 */ 1123 1124 /* 1125 * The text segment for each load object contains the elf header and 1126 * program headers. We can use this information to determine if the 1127 * file that corresponds to the load object is the same file that 1128 * was loaded into the process's address space. There can be a discrepency 1129 * if a file is recompiled after the process is started or if the target 1130 * represents a core file from a differently configured system -- two 1131 * common examples. The DT_CHECKSUM entry in the dynamic section 1132 * provides an easy method of comparison. It is important to note that 1133 * the dynamic section usually lives in the data segment, but the meta 1134 * data we use to find the dynamic section lives in the text segment so 1135 * if either of those segments is absent we can't proceed. 1136 * 1137 * We're looking through the elf file for several items: the symbol tables 1138 * (both dynsym and symtab), the procedure linkage table (PLT) base, 1139 * size, and relocation base, and the CTF information. Most of this can 1140 * be recovered from the loaded image of the file itself, the exceptions 1141 * being the symtab and CTF data. 1142 * 1143 * First we try to open the file that we think corresponds to the load 1144 * object, if the DT_CHECKSUM values match, we're all set, and can simply 1145 * recover all the information we need from the file. If the values of 1146 * DT_CHECKSUM don't match, or if we can't access the file for whatever 1147 * reasaon, we fake up a elf file to use in its stead. If we can't read 1148 * the elf data in the process's address space, we fall back to using 1149 * the file even though it may give inaccurate information. 1150 * 1151 * The elf file that we fake up has to consist of sections for the 1152 * dynsym, the PLT and the dynamic section. Note that in the case of a 1153 * core file, we'll get the CTF data in the file_info_t later on from 1154 * a section embedded the core file (if it's present). 1155 * 1156 * file_differs() conservatively looks for mismatched files, identifying 1157 * a match when there is any ambiguity (since that's the legacy behavior). 1158 */ 1159 static int 1160 file_differs(struct ps_prochandle *P, Elf *elf, file_info_t *fptr) 1161 { 1162 Elf_Scn *scn; 1163 GElf_Shdr shdr; 1164 GElf_Dyn dyn; 1165 Elf_Data *data; 1166 uint_t i, ndyn; 1167 GElf_Xword cksum; 1168 uintptr_t addr; 1169 1170 if (fptr->file_map == NULL) 1171 return (0); 1172 1173 if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) != 1174 (CC_CONTENT_TEXT | CC_CONTENT_DATA)) 1175 return (0); 1176 1177 /* 1178 * First, we find the checksum value in the elf file. 1179 */ 1180 scn = NULL; 1181 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1182 if (gelf_getshdr(scn, &shdr) != NULL && 1183 shdr.sh_type == SHT_DYNAMIC) 1184 goto found_shdr; 1185 } 1186 return (0); 1187 1188 found_shdr: 1189 if ((data = elf_getdata(scn, NULL)) == NULL) 1190 return (0); 1191 1192 if (P->status.pr_dmodel == PR_MODEL_ILP32) 1193 ndyn = shdr.sh_size / sizeof (Elf32_Dyn); 1194 #ifdef _LP64 1195 else if (P->status.pr_dmodel == PR_MODEL_LP64) 1196 ndyn = shdr.sh_size / sizeof (Elf64_Dyn); 1197 #endif 1198 else 1199 return (0); 1200 1201 for (i = 0; i < ndyn; i++) { 1202 if (gelf_getdyn(data, i, &dyn) != NULL && 1203 dyn.d_tag == DT_CHECKSUM) 1204 goto found_cksum; 1205 } 1206 1207 /* 1208 * The in-memory ELF has no DT_CHECKSUM section, but we will report it 1209 * as matching the file anyhow. 1210 */ 1211 return (0); 1212 1213 found_cksum: 1214 cksum = dyn.d_un.d_val; 1215 dprintf("elf cksum value is %llx\n", (u_longlong_t)cksum); 1216 1217 /* 1218 * Get the base of the text mapping that corresponds to this file. 1219 */ 1220 addr = fptr->file_map->map_pmap.pr_vaddr; 1221 1222 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 1223 Elf32_Ehdr ehdr; 1224 Elf32_Phdr phdr; 1225 Elf32_Dyn dync, *dynp; 1226 uint_t phnum, i; 1227 1228 if (read_ehdr32(P, &ehdr, &phnum, addr) != 0 || 1229 read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0) 1230 return (0); 1231 1232 if (ehdr.e_type == ET_DYN) 1233 phdr.p_vaddr += addr; 1234 if ((dynp = malloc(phdr.p_filesz)) == NULL) 1235 return (0); 1236 dync.d_tag = DT_NULL; 1237 if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) != 1238 phdr.p_filesz) { 1239 free(dynp); 1240 return (0); 1241 } 1242 1243 for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) { 1244 if (dynp[i].d_tag == DT_CHECKSUM) 1245 dync = dynp[i]; 1246 } 1247 1248 free(dynp); 1249 1250 if (dync.d_tag != DT_CHECKSUM) 1251 return (0); 1252 1253 dprintf("image cksum value is %llx\n", 1254 (u_longlong_t)dync.d_un.d_val); 1255 return (dync.d_un.d_val != cksum); 1256 #ifdef _LP64 1257 } else if (P->status.pr_dmodel == PR_MODEL_LP64) { 1258 Elf64_Ehdr ehdr; 1259 Elf64_Phdr phdr; 1260 Elf64_Dyn dync, *dynp; 1261 uint_t phnum, i; 1262 1263 if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 || 1264 read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0) 1265 return (0); 1266 1267 if (ehdr.e_type == ET_DYN) 1268 phdr.p_vaddr += addr; 1269 if ((dynp = malloc(phdr.p_filesz)) == NULL) 1270 return (0); 1271 dync.d_tag = DT_NULL; 1272 if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) != 1273 phdr.p_filesz) { 1274 free(dynp); 1275 return (0); 1276 } 1277 1278 for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) { 1279 if (dynp[i].d_tag == DT_CHECKSUM) 1280 dync = dynp[i]; 1281 } 1282 1283 free(dynp); 1284 1285 if (dync.d_tag != DT_CHECKSUM) 1286 return (0); 1287 1288 dprintf("image cksum value is %llx\n", 1289 (u_longlong_t)dync.d_un.d_val); 1290 return (dync.d_un.d_val != cksum); 1291 #endif /* _LP64 */ 1292 } 1293 1294 return (0); 1295 } 1296 1297 /* 1298 * Read data from the specified process and construct an in memory 1299 * image of an ELF file that represents it well enough to let 1300 * us probe it for information. 1301 */ 1302 static Elf * 1303 fake_elf(struct ps_prochandle *P, file_info_t *fptr) 1304 { 1305 Elf *elf; 1306 uintptr_t addr; 1307 uint_t phnum; 1308 1309 if (fptr->file_map == NULL) 1310 return (NULL); 1311 1312 if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) != 1313 (CC_CONTENT_TEXT | CC_CONTENT_DATA)) 1314 return (NULL); 1315 1316 addr = fptr->file_map->map_pmap.pr_vaddr; 1317 1318 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 1319 Elf32_Ehdr ehdr; 1320 Elf32_Phdr phdr; 1321 1322 if ((read_ehdr32(P, &ehdr, &phnum, addr) != 0) || 1323 read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0) 1324 return (NULL); 1325 1326 elf = fake_elf32(P, fptr, addr, &ehdr, phnum, &phdr); 1327 #ifdef _LP64 1328 } else { 1329 Elf64_Ehdr ehdr; 1330 Elf64_Phdr phdr; 1331 1332 if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 || 1333 read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0) 1334 return (NULL); 1335 1336 elf = fake_elf64(P, fptr, addr, &ehdr, phnum, &phdr); 1337 #endif 1338 } 1339 1340 return (elf); 1341 } 1342 1343 /* 1344 * We wouldn't need these if qsort(3C) took an argument for the callback... 1345 */ 1346 static mutex_t sort_mtx = DEFAULTMUTEX; 1347 static char *sort_strs; 1348 static GElf_Sym *sort_syms; 1349 1350 int 1351 byaddr_cmp_common(GElf_Sym *a, char *aname, GElf_Sym *b, char *bname) 1352 { 1353 if (a->st_value < b->st_value) 1354 return (-1); 1355 if (a->st_value > b->st_value) 1356 return (1); 1357 1358 /* 1359 * Prefer the function to the non-function. 1360 */ 1361 if (GELF_ST_TYPE(a->st_info) != GELF_ST_TYPE(b->st_info)) { 1362 if (GELF_ST_TYPE(a->st_info) == STT_FUNC) 1363 return (-1); 1364 if (GELF_ST_TYPE(b->st_info) == STT_FUNC) 1365 return (1); 1366 } 1367 1368 /* 1369 * Prefer the weak or strong global symbol to the local symbol. 1370 */ 1371 if (GELF_ST_BIND(a->st_info) != GELF_ST_BIND(b->st_info)) { 1372 if (GELF_ST_BIND(b->st_info) == STB_LOCAL) 1373 return (-1); 1374 if (GELF_ST_BIND(a->st_info) == STB_LOCAL) 1375 return (1); 1376 } 1377 1378 /* 1379 * Prefer the symbol that doesn't begin with a '$' since compilers and 1380 * other symbol generators often use it as a prefix. 1381 */ 1382 if (*bname == '$') 1383 return (-1); 1384 if (*aname == '$') 1385 return (1); 1386 1387 /* 1388 * Prefer the name with fewer leading underscores in the name. 1389 */ 1390 while (*aname == '_' && *bname == '_') { 1391 aname++; 1392 bname++; 1393 } 1394 1395 if (*bname == '_') 1396 return (-1); 1397 if (*aname == '_') 1398 return (1); 1399 1400 /* 1401 * Prefer the symbol with the smaller size. 1402 */ 1403 if (a->st_size < b->st_size) 1404 return (-1); 1405 if (a->st_size > b->st_size) 1406 return (1); 1407 1408 /* 1409 * All other factors being equal, fall back to lexicographic order. 1410 */ 1411 return (strcmp(aname, bname)); 1412 } 1413 1414 static int 1415 byaddr_cmp(const void *aa, const void *bb) 1416 { 1417 GElf_Sym *a = &sort_syms[*(uint_t *)aa]; 1418 GElf_Sym *b = &sort_syms[*(uint_t *)bb]; 1419 char *aname = sort_strs + a->st_name; 1420 char *bname = sort_strs + b->st_name; 1421 1422 return (byaddr_cmp_common(a, aname, b, bname)); 1423 } 1424 1425 static int 1426 byname_cmp(const void *aa, const void *bb) 1427 { 1428 GElf_Sym *a = &sort_syms[*(uint_t *)aa]; 1429 GElf_Sym *b = &sort_syms[*(uint_t *)bb]; 1430 char *aname = sort_strs + a->st_name; 1431 char *bname = sort_strs + b->st_name; 1432 1433 return (strcmp(aname, bname)); 1434 } 1435 1436 /* 1437 * Given a symbol index, look up the corresponding symbol from the 1438 * given symbol table. 1439 * 1440 * This function allows the caller to treat the symbol table as a single 1441 * logical entity even though there may be 2 actual ELF symbol tables 1442 * involved. See the comments in Pcontrol.h for details. 1443 */ 1444 static GElf_Sym * 1445 symtab_getsym(sym_tbl_t *symtab, int ndx, GElf_Sym *dst) 1446 { 1447 /* If index is in range of primary symtab, look it up there */ 1448 if (ndx >= symtab->sym_symn_aux) { 1449 return (gelf_getsym(symtab->sym_data_pri, 1450 ndx - symtab->sym_symn_aux, dst)); 1451 } 1452 1453 /* Not in primary: Look it up in the auxiliary symtab */ 1454 return (gelf_getsym(symtab->sym_data_aux, ndx, dst)); 1455 } 1456 1457 void 1458 optimize_symtab(sym_tbl_t *symtab) 1459 { 1460 GElf_Sym *symp, *syms; 1461 uint_t i, *indexa, *indexb; 1462 size_t symn, strsz, count; 1463 1464 if (symtab == NULL || symtab->sym_data_pri == NULL || 1465 symtab->sym_byaddr != NULL) 1466 return; 1467 1468 symn = symtab->sym_symn; 1469 strsz = symtab->sym_strsz; 1470 1471 symp = syms = malloc(sizeof (GElf_Sym) * symn); 1472 if (symp == NULL) { 1473 dprintf("optimize_symtab: failed to malloc symbol array"); 1474 return; 1475 } 1476 1477 /* 1478 * First record all the symbols into a table and count up the ones 1479 * that we're interested in. We mark symbols as invalid by setting 1480 * the st_name to an illegal value. 1481 */ 1482 for (i = 0, count = 0; i < symn; i++, symp++) { 1483 if (symtab_getsym(symtab, i, symp) != NULL && 1484 symp->st_name < strsz && 1485 IS_DATA_TYPE(GELF_ST_TYPE(symp->st_info))) 1486 count++; 1487 else 1488 symp->st_name = strsz; 1489 } 1490 1491 /* 1492 * Allocate sufficient space for both tables and populate them 1493 * with the same symbols we just counted. 1494 */ 1495 symtab->sym_count = count; 1496 indexa = symtab->sym_byaddr = calloc(sizeof (uint_t), count); 1497 indexb = symtab->sym_byname = calloc(sizeof (uint_t), count); 1498 if (indexa == NULL || indexb == NULL) { 1499 dprintf( 1500 "optimize_symtab: failed to malloc symbol index arrays"); 1501 symtab->sym_count = 0; 1502 if (indexa != NULL) { /* First alloc succeeded. Free it */ 1503 free(indexa); 1504 symtab->sym_byaddr = NULL; 1505 } 1506 free(syms); 1507 return; 1508 } 1509 for (i = 0, symp = syms; i < symn; i++, symp++) { 1510 if (symp->st_name < strsz) 1511 *indexa++ = *indexb++ = i; 1512 } 1513 1514 /* 1515 * Sort the two tables according to the appropriate criteria, 1516 * unless the user has overridden this behaviour. 1517 * 1518 * An example where we might not sort the tables is the relatively 1519 * unusual case of a process with very large symbol tables in which 1520 * we perform few lookups. In such a case the total time would be 1521 * dominated by the sort. It is difficult to determine a priori 1522 * how many lookups an arbitrary client will perform, and 1523 * hence whether the symbol tables should be sorted. We therefore 1524 * sort the tables by default, but provide the user with a 1525 * "chicken switch" in the form of the LIBPROC_NO_QSORT 1526 * environment variable. 1527 */ 1528 if (!_libproc_no_qsort) { 1529 (void) mutex_lock(&sort_mtx); 1530 sort_strs = symtab->sym_strs; 1531 sort_syms = syms; 1532 1533 qsort(symtab->sym_byaddr, count, sizeof (uint_t), byaddr_cmp); 1534 qsort(symtab->sym_byname, count, sizeof (uint_t), byname_cmp); 1535 1536 sort_strs = NULL; 1537 sort_syms = NULL; 1538 (void) mutex_unlock(&sort_mtx); 1539 } 1540 1541 free(syms); 1542 } 1543 1544 1545 static Elf * 1546 build_fake_elf(struct ps_prochandle *P, file_info_t *fptr, GElf_Ehdr *ehdr, 1547 size_t *nshdrs, Elf_Data **shdata) 1548 { 1549 size_t shstrndx; 1550 Elf_Scn *scn; 1551 Elf *elf; 1552 1553 if ((elf = fake_elf(P, fptr)) == NULL || 1554 elf_kind(elf) != ELF_K_ELF || 1555 gelf_getehdr(elf, ehdr) == NULL || 1556 elf_getshdrnum(elf, nshdrs) == -1 || 1557 elf_getshdrstrndx(elf, &shstrndx) == -1 || 1558 (scn = elf_getscn(elf, shstrndx)) == NULL || 1559 (*shdata = elf_getdata(scn, NULL)) == NULL) { 1560 if (elf != NULL) 1561 (void) elf_end(elf); 1562 dprintf("failed to fake up ELF file\n"); 1563 return (NULL); 1564 } 1565 1566 return (elf); 1567 } 1568 1569 /* 1570 * Build the symbol table for the given mapped file. 1571 */ 1572 void 1573 Pbuild_file_symtab(struct ps_prochandle *P, file_info_t *fptr) 1574 { 1575 char objectfile[PATH_MAX]; 1576 uint_t i; 1577 1578 GElf_Ehdr ehdr; 1579 GElf_Sym s; 1580 1581 Elf_Data *shdata; 1582 Elf_Scn *scn; 1583 Elf *elf; 1584 size_t nshdrs, shstrndx; 1585 1586 struct { 1587 GElf_Shdr c_shdr; 1588 Elf_Data *c_data; 1589 const char *c_name; 1590 } *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL; 1591 1592 if (fptr->file_init) 1593 return; /* We've already processed this file */ 1594 1595 /* 1596 * Mark the file_info struct as having the symbol table initialized 1597 * even if we fail below. We tried once; we don't try again. 1598 */ 1599 fptr->file_init = 1; 1600 1601 if (elf_version(EV_CURRENT) == EV_NONE) { 1602 dprintf("libproc ELF version is more recent than libelf\n"); 1603 return; 1604 } 1605 1606 if (P->state == PS_DEAD || P->state == PS_IDLE) { 1607 char *name; 1608 /* 1609 * If we're a not live, we can't open files from the /proc 1610 * object directory; we have only the mapping and file names 1611 * to guide us. We prefer the file_lname, but need to handle 1612 * the case of it being NULL in order to bootstrap: we first 1613 * come here during rd_new() when the only information we have 1614 * is interpreter name associated with the AT_BASE mapping. 1615 * 1616 * Also, if the zone associated with the core file seems 1617 * to exists on this machine we'll try to open the object 1618 * file within the zone. 1619 */ 1620 if (fptr->file_rname != NULL) 1621 name = fptr->file_rname; 1622 else if (fptr->file_lname != NULL) 1623 name = fptr->file_lname; 1624 else 1625 name = fptr->file_pname; 1626 (void) strlcpy(objectfile, name, sizeof (objectfile)); 1627 } else { 1628 (void) snprintf(objectfile, sizeof (objectfile), 1629 "%s/%d/object/%s", 1630 procfs_path, (int)P->pid, fptr->file_pname); 1631 } 1632 1633 /* 1634 * Open the object file, create the elf file, and then get the elf 1635 * header and .shstrtab data buffer so we can process sections by 1636 * name. If anything goes wrong try to fake up an elf file from 1637 * the in-core elf image. 1638 */ 1639 1640 if (_libproc_incore_elf || (P->flags & INCORE)) { 1641 dprintf("Pbuild_file_symtab: using in-core data for: %s\n", 1642 fptr->file_pname); 1643 1644 if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) == 1645 NULL) 1646 return; 1647 1648 } else if ((fptr->file_fd = open(objectfile, O_RDONLY)) < 0) { 1649 dprintf("Pbuild_file_symtab: failed to open %s: %s\n", 1650 objectfile, strerror(errno)); 1651 1652 if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) == 1653 NULL) 1654 return; 1655 1656 } else if ((elf = elf_begin(fptr->file_fd, ELF_C_READ, NULL)) == NULL || 1657 elf_kind(elf) != ELF_K_ELF || 1658 gelf_getehdr(elf, &ehdr) == NULL || 1659 elf_getshdrnum(elf, &nshdrs) == -1 || 1660 elf_getshdrstrndx(elf, &shstrndx) == -1 || 1661 (scn = elf_getscn(elf, shstrndx)) == NULL || 1662 (shdata = elf_getdata(scn, NULL)) == NULL) { 1663 int err = elf_errno(); 1664 1665 dprintf("failed to process ELF file %s: %s\n", 1666 objectfile, (err == 0) ? "<null>" : elf_errmsg(err)); 1667 (void) elf_end(elf); 1668 1669 if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) == 1670 NULL) 1671 return; 1672 1673 } else if (file_differs(P, elf, fptr)) { 1674 Elf *newelf; 1675 1676 /* 1677 * Before we get too excited about this elf file, we'll check 1678 * its checksum value against the value we have in memory. If 1679 * they don't agree, we try to fake up a new elf file and 1680 * proceed with that instead. 1681 */ 1682 dprintf("ELF file %s (%lx) doesn't match in-core image\n", 1683 fptr->file_pname, 1684 (ulong_t)fptr->file_map->map_pmap.pr_vaddr); 1685 1686 if ((newelf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) 1687 != NULL) { 1688 (void) elf_end(elf); 1689 elf = newelf; 1690 dprintf("switched to faked up ELF file\n"); 1691 1692 /* 1693 * Check to see if the file that we just discovered 1694 * to be an imposter matches the execname that was 1695 * determined by Pfindexec(). If it does, we (clearly) 1696 * don't have the right binary, and we zero out 1697 * execname before anyone gets hurt. 1698 */ 1699 if (fptr->file_rname != NULL && P->execname != NULL && 1700 strcmp(fptr->file_rname, P->execname) == 0) { 1701 dprintf("file/in-core image mismatch was " 1702 "on P->execname; discarding\n"); 1703 free(P->execname); 1704 P->execname = NULL; 1705 } 1706 } 1707 } 1708 1709 if ((cache = malloc(nshdrs * sizeof (*cache))) == NULL) { 1710 dprintf("failed to malloc section cache for %s\n", objectfile); 1711 goto bad; 1712 } 1713 1714 dprintf("processing ELF file %s\n", objectfile); 1715 fptr->file_class = ehdr.e_ident[EI_CLASS]; 1716 fptr->file_etype = ehdr.e_type; 1717 fptr->file_elf = elf; 1718 fptr->file_shstrs = shdata->d_buf; 1719 fptr->file_shstrsz = shdata->d_size; 1720 1721 /* 1722 * Iterate through each section, caching its section header, data 1723 * pointer, and name. We use this for handling sh_link values below. 1724 */ 1725 for (cp = cache + 1, scn = NULL; scn = elf_nextscn(elf, scn); cp++) { 1726 if (gelf_getshdr(scn, &cp->c_shdr) == NULL) { 1727 dprintf("Pbuild_file_symtab: Failed to get section " 1728 "header\n"); 1729 goto bad; /* Failed to get section header */ 1730 } 1731 1732 if ((cp->c_data = elf_getdata(scn, NULL)) == NULL) { 1733 dprintf("Pbuild_file_symtab: Failed to get section " 1734 "data\n"); 1735 goto bad; /* Failed to get section data */ 1736 } 1737 1738 if (cp->c_shdr.sh_name >= shdata->d_size) { 1739 dprintf("Pbuild_file_symtab: corrupt section name"); 1740 goto bad; /* Corrupt section name */ 1741 } 1742 1743 cp->c_name = (const char *)shdata->d_buf + cp->c_shdr.sh_name; 1744 } 1745 1746 /* 1747 * Now iterate through the section cache in order to locate info 1748 * for the .symtab, .dynsym, .SUNW_ldynsym, .dynamic, .plt, 1749 * and .SUNW_ctf sections: 1750 */ 1751 for (i = 1, cp = cache + 1; i < nshdrs; i++, cp++) { 1752 GElf_Shdr *shp = &cp->c_shdr; 1753 1754 if (shp->sh_type == SHT_SYMTAB || shp->sh_type == SHT_DYNSYM) { 1755 sym_tbl_t *symp = shp->sh_type == SHT_SYMTAB ? 1756 &fptr->file_symtab : &fptr->file_dynsym; 1757 /* 1758 * It's possible that the we already got the symbol 1759 * table from the core file itself. Either the file 1760 * differs in which case our faked up elf file will 1761 * only contain the dynsym (not the symtab) or the 1762 * file matches in which case we'll just be replacing 1763 * the symbol table we pulled out of the core file 1764 * with an equivalent one. In either case, this 1765 * check isn't essential, but it's a good idea. 1766 */ 1767 if (symp->sym_data_pri == NULL) { 1768 dprintf("Symbol table found for %s\n", 1769 objectfile); 1770 symp->sym_data_pri = cp->c_data; 1771 symp->sym_symn += 1772 shp->sh_size / shp->sh_entsize; 1773 symp->sym_strs = 1774 cache[shp->sh_link].c_data->d_buf; 1775 symp->sym_strsz = 1776 cache[shp->sh_link].c_data->d_size; 1777 symp->sym_hdr_pri = cp->c_shdr; 1778 symp->sym_strhdr = cache[shp->sh_link].c_shdr; 1779 } else { 1780 dprintf("Symbol table already there for %s\n", 1781 objectfile); 1782 } 1783 } else if (shp->sh_type == SHT_SUNW_LDYNSYM) { 1784 /* .SUNW_ldynsym section is auxiliary to .dynsym */ 1785 if (fptr->file_dynsym.sym_data_aux == NULL) { 1786 dprintf(".SUNW_ldynsym symbol table" 1787 " found for %s\n", objectfile); 1788 fptr->file_dynsym.sym_data_aux = cp->c_data; 1789 fptr->file_dynsym.sym_symn_aux = 1790 shp->sh_size / shp->sh_entsize; 1791 fptr->file_dynsym.sym_symn += 1792 fptr->file_dynsym.sym_symn_aux; 1793 fptr->file_dynsym.sym_hdr_aux = cp->c_shdr; 1794 } else { 1795 dprintf(".SUNW_ldynsym symbol table already" 1796 " there for %s\n", objectfile); 1797 } 1798 } else if (shp->sh_type == SHT_DYNAMIC) { 1799 dyn = cp; 1800 } else if (strcmp(cp->c_name, ".plt") == 0) { 1801 plt = cp; 1802 } else if (strcmp(cp->c_name, ".SUNW_ctf") == 0) { 1803 /* 1804 * Skip over bogus CTF sections so they don't come back 1805 * to haunt us later. 1806 */ 1807 if (shp->sh_link == 0 || 1808 shp->sh_link >= nshdrs || 1809 (cache[shp->sh_link].c_shdr.sh_type != SHT_DYNSYM && 1810 cache[shp->sh_link].c_shdr.sh_type != SHT_SYMTAB)) { 1811 dprintf("Bad sh_link %d for " 1812 "CTF\n", shp->sh_link); 1813 continue; 1814 } 1815 ctf = cp; 1816 } 1817 } 1818 1819 /* 1820 * At this point, we've found all the symbol tables we're ever going 1821 * to find: the ones in the loop above and possibly the symtab that 1822 * was included in the core file. Before we perform any lookups, we 1823 * create sorted versions to optimize for lookups. 1824 */ 1825 optimize_symtab(&fptr->file_symtab); 1826 optimize_symtab(&fptr->file_dynsym); 1827 1828 /* 1829 * Fill in the base address of the text mapping for shared libraries. 1830 * This allows us to translate symbols before librtld_db is ready. 1831 */ 1832 if (fptr->file_etype == ET_DYN) { 1833 fptr->file_dyn_base = fptr->file_map->map_pmap.pr_vaddr - 1834 fptr->file_map->map_pmap.pr_offset; 1835 dprintf("setting file_dyn_base for %s to %lx\n", 1836 objectfile, (long)fptr->file_dyn_base); 1837 } 1838 1839 /* 1840 * Record the CTF section information in the file info structure. 1841 */ 1842 if (ctf != NULL) { 1843 fptr->file_ctf_off = ctf->c_shdr.sh_offset; 1844 fptr->file_ctf_size = ctf->c_shdr.sh_size; 1845 if (ctf->c_shdr.sh_link != 0 && 1846 cache[ctf->c_shdr.sh_link].c_shdr.sh_type == SHT_DYNSYM) 1847 fptr->file_ctf_dyn = 1; 1848 } 1849 1850 if (fptr->file_lo == NULL) 1851 goto done; /* Nothing else to do if no load object info */ 1852 1853 /* 1854 * If the object is a shared library and we have a different rl_base 1855 * value, reset file_dyn_base according to librtld_db's information. 1856 */ 1857 if (fptr->file_etype == ET_DYN && 1858 fptr->file_lo->rl_base != fptr->file_dyn_base) { 1859 dprintf("resetting file_dyn_base for %s to %lx\n", 1860 objectfile, (long)fptr->file_lo->rl_base); 1861 fptr->file_dyn_base = fptr->file_lo->rl_base; 1862 } 1863 1864 /* 1865 * Fill in the PLT information for this file if a PLT symbol is found. 1866 */ 1867 if (sym_by_name(&fptr->file_dynsym, "_PROCEDURE_LINKAGE_TABLE_", &s, 1868 NULL) != NULL) { 1869 fptr->file_plt_base = s.st_value + fptr->file_dyn_base; 1870 fptr->file_plt_size = (plt != NULL) ? plt->c_shdr.sh_size : 0; 1871 1872 /* 1873 * Bring the load object up to date; it is the only way the 1874 * user has to access the PLT data. The PLT information in the 1875 * rd_loadobj_t is not set in the call to map_iter() (the 1876 * callback for rd_loadobj_iter) where we set file_lo. 1877 */ 1878 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 1879 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 1880 1881 dprintf("PLT found at %p, size = %lu\n", 1882 (void *)fptr->file_plt_base, (ulong_t)fptr->file_plt_size); 1883 } 1884 1885 /* 1886 * Fill in the PLT information. 1887 */ 1888 if (dyn != NULL) { 1889 uintptr_t dynaddr = dyn->c_shdr.sh_addr + fptr->file_dyn_base; 1890 size_t ndyn = dyn->c_shdr.sh_size / dyn->c_shdr.sh_entsize; 1891 GElf_Dyn d; 1892 1893 for (i = 0; i < ndyn; i++) { 1894 if (gelf_getdyn(dyn->c_data, i, &d) == NULL) 1895 continue; 1896 1897 switch (d.d_tag) { 1898 case DT_JMPREL: 1899 dprintf("DT_JMPREL is %p\n", 1900 (void *)(uintptr_t)d.d_un.d_ptr); 1901 fptr->file_jmp_rel = 1902 d.d_un.d_ptr + fptr->file_dyn_base; 1903 break; 1904 case DT_STRTAB: 1905 dprintf("DT_STRTAB is %p\n", 1906 (void *)(uintptr_t)d.d_un.d_ptr); 1907 break; 1908 case DT_PLTGOT: 1909 dprintf("DT_PLTGOT is %p\n", 1910 (void *)(uintptr_t)d.d_un.d_ptr); 1911 break; 1912 case DT_SUNW_SYMTAB: 1913 dprintf("DT_SUNW_SYMTAB is %p\n", 1914 (void *)(uintptr_t)d.d_un.d_ptr); 1915 break; 1916 case DT_SYMTAB: 1917 dprintf("DT_SYMTAB is %p\n", 1918 (void *)(uintptr_t)d.d_un.d_ptr); 1919 break; 1920 case DT_HASH: 1921 dprintf("DT_HASH is %p\n", 1922 (void *)(uintptr_t)d.d_un.d_ptr); 1923 break; 1924 } 1925 } 1926 1927 dprintf("_DYNAMIC found at %p, %lu entries, DT_JMPREL = %p\n", 1928 (void *)dynaddr, (ulong_t)ndyn, (void *)fptr->file_jmp_rel); 1929 } 1930 1931 done: 1932 free(cache); 1933 return; 1934 1935 bad: 1936 if (cache != NULL) 1937 free(cache); 1938 1939 (void) elf_end(elf); 1940 fptr->file_elf = NULL; 1941 if (fptr->file_elfmem != NULL) { 1942 free(fptr->file_elfmem); 1943 fptr->file_elfmem = NULL; 1944 } 1945 (void) close(fptr->file_fd); 1946 fptr->file_fd = -1; 1947 } 1948 1949 /* 1950 * Given a process virtual address, return the map_info_t containing it. 1951 * If none found, return NULL. 1952 */ 1953 map_info_t * 1954 Paddr2mptr(struct ps_prochandle *P, uintptr_t addr) 1955 { 1956 int lo = 0; 1957 int hi = P->map_count - 1; 1958 int mid; 1959 map_info_t *mp; 1960 1961 while (lo <= hi) { 1962 1963 mid = (lo + hi) / 2; 1964 mp = &P->mappings[mid]; 1965 1966 /* check that addr is in [vaddr, vaddr + size) */ 1967 if ((addr - mp->map_pmap.pr_vaddr) < mp->map_pmap.pr_size) 1968 return (mp); 1969 1970 if (addr < mp->map_pmap.pr_vaddr) 1971 hi = mid - 1; 1972 else 1973 lo = mid + 1; 1974 } 1975 1976 return (NULL); 1977 } 1978 1979 /* 1980 * Return the map_info_t for the executable file. 1981 * If not found, return NULL. 1982 */ 1983 static map_info_t * 1984 exec_map(struct ps_prochandle *P) 1985 { 1986 uint_t i; 1987 map_info_t *mptr; 1988 map_info_t *mold = NULL; 1989 file_info_t *fptr; 1990 uintptr_t base; 1991 1992 for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) { 1993 if (mptr->map_pmap.pr_mapname[0] == '\0') 1994 continue; 1995 if (strcmp(mptr->map_pmap.pr_mapname, "a.out") == 0) { 1996 if ((fptr = mptr->map_file) != NULL && 1997 fptr->file_lo != NULL) { 1998 base = fptr->file_lo->rl_base; 1999 if (base >= mptr->map_pmap.pr_vaddr && 2000 base < mptr->map_pmap.pr_vaddr + 2001 mptr->map_pmap.pr_size) /* text space */ 2002 return (mptr); 2003 mold = mptr; /* must be the data */ 2004 continue; 2005 } 2006 /* This is a poor way to test for text space */ 2007 if (!(mptr->map_pmap.pr_mflags & MA_EXEC) || 2008 (mptr->map_pmap.pr_mflags & MA_WRITE)) { 2009 mold = mptr; 2010 continue; 2011 } 2012 return (mptr); 2013 } 2014 } 2015 2016 return (mold); 2017 } 2018 2019 /* 2020 * Given a shared object name, return the map_info_t for it. If no matching 2021 * object is found, return NULL. Normally, the link maps contain the full 2022 * object pathname, e.g. /usr/lib/libc.so.1. We allow the object name to 2023 * take one of the following forms: 2024 * 2025 * 1. An exact match (i.e. a full pathname): "/usr/lib/libc.so.1" 2026 * 2. An exact basename match: "libc.so.1" 2027 * 3. An initial basename match up to a '.' suffix: "libc.so" or "libc" 2028 * 4. The literal string "a.out" is an alias for the executable mapping 2029 * 2030 * The third case is a convenience for callers and may not be necessary. 2031 * 2032 * As the exact same object name may be loaded on different link maps (see 2033 * dlmopen(3DL)), we also allow the caller to resolve the object name by 2034 * specifying a particular link map id. If lmid is PR_LMID_EVERY, the 2035 * first matching name will be returned, regardless of the link map id. 2036 */ 2037 static map_info_t * 2038 object_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *objname) 2039 { 2040 map_info_t *mp; 2041 file_info_t *fp; 2042 size_t objlen; 2043 uint_t i; 2044 2045 /* 2046 * If we have no rtld_db, then always treat a request as one for all 2047 * link maps. 2048 */ 2049 if (P->rap == NULL) 2050 lmid = PR_LMID_EVERY; 2051 2052 /* 2053 * First pass: look for exact matches of the entire pathname or 2054 * basename (cases 1 and 2 above): 2055 */ 2056 for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) { 2057 2058 if (mp->map_pmap.pr_mapname[0] == '\0' || 2059 (fp = mp->map_file) == NULL || 2060 ((fp->file_lname == NULL) && (fp->file_rname == NULL))) 2061 continue; 2062 2063 if (lmid != PR_LMID_EVERY && 2064 (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident)) 2065 continue; 2066 2067 /* 2068 * If we match, return the primary text mapping; otherwise 2069 * just return the mapping we matched. 2070 */ 2071 if ((fp->file_lbase && strcmp(fp->file_lbase, objname) == 0) || 2072 (fp->file_rbase && strcmp(fp->file_rbase, objname) == 0) || 2073 (fp->file_lname && strcmp(fp->file_lname, objname) == 0) || 2074 (fp->file_rname && strcmp(fp->file_rname, objname) == 0)) 2075 return (fp->file_map ? fp->file_map : mp); 2076 } 2077 2078 objlen = strlen(objname); 2079 2080 /* 2081 * Second pass: look for partial matches (case 3 above): 2082 */ 2083 for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) { 2084 2085 if (mp->map_pmap.pr_mapname[0] == '\0' || 2086 (fp = mp->map_file) == NULL || 2087 ((fp->file_lname == NULL) && (fp->file_rname == NULL))) 2088 continue; 2089 2090 if (lmid != PR_LMID_EVERY && 2091 (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident)) 2092 continue; 2093 2094 /* 2095 * If we match, return the primary text mapping; otherwise 2096 * just return the mapping we matched. 2097 */ 2098 if ((fp->file_lbase != NULL) && 2099 (strncmp(fp->file_lbase, objname, objlen) == 0) && 2100 (fp->file_lbase[objlen] == '.')) 2101 return (fp->file_map ? fp->file_map : mp); 2102 if ((fp->file_rbase != NULL) && 2103 (strncmp(fp->file_rbase, objname, objlen) == 0) && 2104 (fp->file_rbase[objlen] == '.')) 2105 return (fp->file_map ? fp->file_map : mp); 2106 } 2107 2108 /* 2109 * One last check: we allow "a.out" to always alias the executable, 2110 * assuming this name was not in use for something else. 2111 */ 2112 if ((lmid == PR_LMID_EVERY || lmid == LM_ID_BASE) && 2113 (strcmp(objname, "a.out") == 0)) 2114 return (P->map_exec); 2115 2116 return (NULL); 2117 } 2118 2119 static map_info_t * 2120 object_name_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name) 2121 { 2122 map_info_t *mptr; 2123 2124 if (!P->info_valid) 2125 Pupdate_maps(P); 2126 2127 if (P->map_exec == NULL && ((mptr = Paddr2mptr(P, 2128 Pgetauxval(P, AT_ENTRY))) != NULL || (mptr = exec_map(P)) != NULL)) 2129 P->map_exec = mptr; 2130 2131 if (P->map_ldso == NULL && (mptr = Paddr2mptr(P, 2132 Pgetauxval(P, AT_BASE))) != NULL) 2133 P->map_ldso = mptr; 2134 2135 if (name == PR_OBJ_EXEC) 2136 mptr = P->map_exec; 2137 else if (name == PR_OBJ_LDSO) 2138 mptr = P->map_ldso; 2139 else if (Prd_agent(P) != NULL || P->state == PS_IDLE) 2140 mptr = object_to_map(P, lmid, name); 2141 else 2142 mptr = NULL; 2143 2144 return (mptr); 2145 } 2146 2147 /* 2148 * When two symbols are found by address, decide which one is to be preferred. 2149 */ 2150 static GElf_Sym * 2151 sym_prefer(GElf_Sym *sym1, char *name1, GElf_Sym *sym2, char *name2) 2152 { 2153 /* 2154 * Prefer the non-NULL symbol. 2155 */ 2156 if (sym1 == NULL) 2157 return (sym2); 2158 if (sym2 == NULL) 2159 return (sym1); 2160 2161 /* 2162 * Defer to the sort ordering... 2163 */ 2164 return (byaddr_cmp_common(sym1, name1, sym2, name2) <= 0 ? sym1 : sym2); 2165 } 2166 2167 /* 2168 * Use a binary search to do the work of sym_by_addr(). 2169 */ 2170 static GElf_Sym * 2171 sym_by_addr_binary(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, 2172 uint_t *idp) 2173 { 2174 GElf_Sym sym, osym; 2175 uint_t i, oid, *byaddr = symtab->sym_byaddr; 2176 int min, max, mid, omid, found = 0; 2177 2178 if (symtab->sym_data_pri == NULL || symtab->sym_count == 0) 2179 return (NULL); 2180 2181 min = 0; 2182 max = symtab->sym_count - 1; 2183 osym.st_value = 0; 2184 2185 /* 2186 * We can't return when we've found a match, we have to continue 2187 * searching for the closest matching symbol. 2188 */ 2189 while (min <= max) { 2190 mid = (max + min) / 2; 2191 2192 i = byaddr[mid]; 2193 (void) symtab_getsym(symtab, i, &sym); 2194 2195 if (addr >= sym.st_value && 2196 addr < sym.st_value + sym.st_size && 2197 (!found || sym.st_value > osym.st_value)) { 2198 osym = sym; 2199 omid = mid; 2200 oid = i; 2201 found = 1; 2202 } 2203 2204 if (addr < sym.st_value) 2205 max = mid - 1; 2206 else 2207 min = mid + 1; 2208 } 2209 2210 if (!found) 2211 return (NULL); 2212 2213 /* 2214 * There may be many symbols with identical values so we walk 2215 * backward in the byaddr table to find the best match. 2216 */ 2217 do { 2218 sym = osym; 2219 i = oid; 2220 2221 if (omid == 0) 2222 break; 2223 2224 oid = byaddr[--omid]; 2225 (void) symtab_getsym(symtab, oid, &osym); 2226 } while (addr >= osym.st_value && 2227 addr < sym.st_value + osym.st_size && 2228 osym.st_value == sym.st_value); 2229 2230 *symp = sym; 2231 if (idp != NULL) 2232 *idp = i; 2233 return (symp); 2234 } 2235 2236 /* 2237 * Use a linear search to do the work of sym_by_addr(). 2238 */ 2239 static GElf_Sym * 2240 sym_by_addr_linear(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symbolp, 2241 uint_t *idp) 2242 { 2243 size_t symn = symtab->sym_symn; 2244 char *strs = symtab->sym_strs; 2245 GElf_Sym sym, *symp = NULL; 2246 GElf_Sym osym, *osymp = NULL; 2247 int i, id; 2248 2249 if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL) 2250 return (NULL); 2251 2252 for (i = 0; i < symn; i++) { 2253 if ((symp = symtab_getsym(symtab, i, &sym)) != NULL) { 2254 if (addr >= sym.st_value && 2255 addr < sym.st_value + sym.st_size) { 2256 if (osymp) 2257 symp = sym_prefer( 2258 symp, strs + symp->st_name, 2259 osymp, strs + osymp->st_name); 2260 if (symp != osymp) { 2261 osym = sym; 2262 osymp = &osym; 2263 id = i; 2264 } 2265 } 2266 } 2267 } 2268 if (osymp) { 2269 *symbolp = osym; 2270 if (idp) 2271 *idp = id; 2272 return (symbolp); 2273 } 2274 return (NULL); 2275 } 2276 2277 /* 2278 * Look up a symbol by address in the specified symbol table. 2279 * Adjustment to 'addr' must already have been made for the 2280 * offset of the symbol if this is a dynamic library symbol table. 2281 * 2282 * Use a linear or a binary search depending on whether or not we 2283 * chose to sort the table in optimize_symtab(). 2284 */ 2285 static GElf_Sym * 2286 sym_by_addr(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, uint_t *idp) 2287 { 2288 if (_libproc_no_qsort) { 2289 return (sym_by_addr_linear(symtab, addr, symp, idp)); 2290 } else { 2291 return (sym_by_addr_binary(symtab, addr, symp, idp)); 2292 } 2293 } 2294 2295 /* 2296 * Use a binary search to do the work of sym_by_name(). 2297 */ 2298 static GElf_Sym * 2299 sym_by_name_binary(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, 2300 uint_t *idp) 2301 { 2302 char *strs = symtab->sym_strs; 2303 uint_t i, *byname = symtab->sym_byname; 2304 int min, mid, max, cmp; 2305 2306 if (symtab->sym_data_pri == NULL || strs == NULL || 2307 symtab->sym_count == 0) 2308 return (NULL); 2309 2310 min = 0; 2311 max = symtab->sym_count - 1; 2312 2313 while (min <= max) { 2314 mid = (max + min) / 2; 2315 2316 i = byname[mid]; 2317 (void) symtab_getsym(symtab, i, symp); 2318 2319 if ((cmp = strcmp(name, strs + symp->st_name)) == 0) { 2320 if (idp != NULL) 2321 *idp = i; 2322 return (symp); 2323 } 2324 2325 if (cmp < 0) 2326 max = mid - 1; 2327 else 2328 min = mid + 1; 2329 } 2330 2331 return (NULL); 2332 } 2333 2334 /* 2335 * Use a linear search to do the work of sym_by_name(). 2336 */ 2337 static GElf_Sym * 2338 sym_by_name_linear(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, 2339 uint_t *idp) 2340 { 2341 size_t symn = symtab->sym_symn; 2342 char *strs = symtab->sym_strs; 2343 int i; 2344 2345 if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL) 2346 return (NULL); 2347 2348 for (i = 0; i < symn; i++) { 2349 if (symtab_getsym(symtab, i, symp) && 2350 strcmp(name, strs + symp->st_name) == 0) { 2351 if (idp) 2352 *idp = i; 2353 return (symp); 2354 } 2355 } 2356 2357 return (NULL); 2358 } 2359 2360 /* 2361 * Look up a symbol by name in the specified symbol table. 2362 * 2363 * Use a linear or a binary search depending on whether or not we 2364 * chose to sort the table in optimize_symtab(). 2365 */ 2366 static GElf_Sym * 2367 sym_by_name(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, uint_t *idp) 2368 { 2369 if (_libproc_no_qsort) { 2370 return (sym_by_name_linear(symtab, name, symp, idp)); 2371 } else { 2372 return (sym_by_name_binary(symtab, name, symp, idp)); 2373 } 2374 } 2375 2376 /* 2377 * Search the process symbol tables looking for a symbol whose 2378 * value to value+size contain the address specified by addr. 2379 * Return values are: 2380 * sym_name_buffer containing the symbol name 2381 * GElf_Sym symbol table entry 2382 * prsyminfo_t ancillary symbol information 2383 * Returns 0 on success, -1 on failure. 2384 */ 2385 static int 2386 i_Pxlookup_by_addr( 2387 struct ps_prochandle *P, 2388 int lmresolve, /* use resolve linker object names */ 2389 uintptr_t addr, /* process address being sought */ 2390 char *sym_name_buffer, /* buffer for the symbol name */ 2391 size_t bufsize, /* size of sym_name_buffer */ 2392 GElf_Sym *symbolp, /* returned symbol table entry */ 2393 prsyminfo_t *sip) /* returned symbol info */ 2394 { 2395 GElf_Sym *symp; 2396 char *name; 2397 GElf_Sym sym1, *sym1p = NULL; 2398 GElf_Sym sym2, *sym2p = NULL; 2399 char *name1 = NULL; 2400 char *name2 = NULL; 2401 uint_t i1; 2402 uint_t i2; 2403 map_info_t *mptr; 2404 file_info_t *fptr; 2405 2406 (void) Prd_agent(P); 2407 2408 if ((mptr = Paddr2mptr(P, addr)) == NULL || /* no such address */ 2409 (fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */ 2410 fptr->file_elf == NULL) /* not an ELF file */ 2411 return (-1); 2412 2413 /* 2414 * Adjust the address by the load object base address in 2415 * case the address turns out to be in a shared library. 2416 */ 2417 addr -= fptr->file_dyn_base; 2418 2419 /* 2420 * Search both symbol tables, symtab first, then dynsym. 2421 */ 2422 if ((sym1p = sym_by_addr(&fptr->file_symtab, addr, &sym1, &i1)) != NULL) 2423 name1 = fptr->file_symtab.sym_strs + sym1.st_name; 2424 if ((sym2p = sym_by_addr(&fptr->file_dynsym, addr, &sym2, &i2)) != NULL) 2425 name2 = fptr->file_dynsym.sym_strs + sym2.st_name; 2426 2427 if ((symp = sym_prefer(sym1p, name1, sym2p, name2)) == NULL) 2428 return (-1); 2429 2430 name = (symp == sym1p) ? name1 : name2; 2431 if (bufsize > 0) { 2432 (void) strncpy(sym_name_buffer, name, bufsize); 2433 sym_name_buffer[bufsize - 1] = '\0'; 2434 } 2435 2436 *symbolp = *symp; 2437 if (sip != NULL) { 2438 sip->prs_name = bufsize == 0 ? NULL : sym_name_buffer; 2439 if (lmresolve && (fptr->file_rname != NULL)) 2440 sip->prs_object = fptr->file_rbase; 2441 else 2442 sip->prs_object = fptr->file_lbase; 2443 sip->prs_id = (symp == sym1p) ? i1 : i2; 2444 sip->prs_table = (symp == sym1p) ? PR_SYMTAB : PR_DYNSYM; 2445 sip->prs_lmid = (fptr->file_lo == NULL) ? LM_ID_BASE : 2446 fptr->file_lo->rl_lmident; 2447 } 2448 2449 if (GELF_ST_TYPE(symbolp->st_info) != STT_TLS) 2450 symbolp->st_value += fptr->file_dyn_base; 2451 2452 return (0); 2453 } 2454 2455 int 2456 Pxlookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf, 2457 size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip) 2458 { 2459 return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, bufsize, symp, sip)); 2460 } 2461 2462 int 2463 Pxlookup_by_addr_resolved(struct ps_prochandle *P, uintptr_t addr, char *buf, 2464 size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip) 2465 { 2466 return (i_Pxlookup_by_addr(P, B_TRUE, addr, buf, bufsize, symp, sip)); 2467 } 2468 2469 int 2470 Plookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf, 2471 size_t size, GElf_Sym *symp) 2472 { 2473 return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, size, symp, NULL)); 2474 } 2475 2476 /* 2477 * Search the process symbol tables looking for a symbol whose name matches the 2478 * specified name and whose object and link map optionally match the specified 2479 * parameters. On success, the function returns 0 and fills in the GElf_Sym 2480 * symbol table entry. On failure, -1 is returned. 2481 */ 2482 int 2483 Pxlookup_by_name( 2484 struct ps_prochandle *P, 2485 Lmid_t lmid, /* link map to match, or -1 for any */ 2486 const char *oname, /* load object name */ 2487 const char *sname, /* symbol name */ 2488 GElf_Sym *symp, /* returned symbol table entry */ 2489 prsyminfo_t *sip) /* returned symbol info */ 2490 { 2491 map_info_t *mptr; 2492 file_info_t *fptr; 2493 int cnt; 2494 2495 GElf_Sym sym; 2496 prsyminfo_t si; 2497 int rv = -1; 2498 uint_t id; 2499 2500 if (oname == PR_OBJ_EVERY) { 2501 /* create all the file_info_t's for all the mappings */ 2502 (void) Prd_agent(P); 2503 cnt = P->num_files; 2504 fptr = list_next(&P->file_head); 2505 } else { 2506 cnt = 1; 2507 if ((mptr = object_name_to_map(P, lmid, oname)) == NULL || 2508 (fptr = build_map_symtab(P, mptr)) == NULL) 2509 return (-1); 2510 } 2511 2512 /* 2513 * Iterate through the loaded object files and look for the symbol 2514 * name in the .symtab and .dynsym of each. If we encounter a match 2515 * with SHN_UNDEF, keep looking in hopes of finding a better match. 2516 * This means that a name such as "puts" will match the puts function 2517 * in libc instead of matching the puts PLT entry in the a.out file. 2518 */ 2519 for (; cnt > 0; cnt--, fptr = list_next(fptr)) { 2520 Pbuild_file_symtab(P, fptr); 2521 2522 if (fptr->file_elf == NULL) 2523 continue; 2524 2525 if (lmid != PR_LMID_EVERY && fptr->file_lo != NULL && 2526 lmid != fptr->file_lo->rl_lmident) 2527 continue; 2528 2529 if (fptr->file_symtab.sym_data_pri != NULL && 2530 sym_by_name(&fptr->file_symtab, sname, symp, &id)) { 2531 if (sip != NULL) { 2532 sip->prs_id = id; 2533 sip->prs_table = PR_SYMTAB; 2534 sip->prs_object = oname; 2535 sip->prs_name = sname; 2536 sip->prs_lmid = fptr->file_lo == NULL ? 2537 LM_ID_BASE : fptr->file_lo->rl_lmident; 2538 } 2539 } else if (fptr->file_dynsym.sym_data_pri != NULL && 2540 sym_by_name(&fptr->file_dynsym, sname, symp, &id)) { 2541 if (sip != NULL) { 2542 sip->prs_id = id; 2543 sip->prs_table = PR_DYNSYM; 2544 sip->prs_object = oname; 2545 sip->prs_name = sname; 2546 sip->prs_lmid = fptr->file_lo == NULL ? 2547 LM_ID_BASE : fptr->file_lo->rl_lmident; 2548 } 2549 } else { 2550 continue; 2551 } 2552 2553 if (GELF_ST_TYPE(symp->st_info) != STT_TLS) 2554 symp->st_value += fptr->file_dyn_base; 2555 2556 if (symp->st_shndx != SHN_UNDEF) 2557 return (0); 2558 2559 if (rv != 0) { 2560 if (sip != NULL) 2561 si = *sip; 2562 sym = *symp; 2563 rv = 0; 2564 } 2565 } 2566 2567 if (rv == 0) { 2568 if (sip != NULL) 2569 *sip = si; 2570 *symp = sym; 2571 } 2572 2573 return (rv); 2574 } 2575 2576 /* 2577 * Search the process symbol tables looking for a symbol whose name matches the 2578 * specified name, but without any restriction on the link map id. 2579 */ 2580 int 2581 Plookup_by_name(struct ps_prochandle *P, const char *object, 2582 const char *symbol, GElf_Sym *symp) 2583 { 2584 return (Pxlookup_by_name(P, PR_LMID_EVERY, object, symbol, symp, NULL)); 2585 } 2586 2587 /* 2588 * Iterate over the process's address space mappings. 2589 */ 2590 static int 2591 i_Pmapping_iter(struct ps_prochandle *P, boolean_t lmresolve, 2592 proc_map_f *func, void *cd) 2593 { 2594 map_info_t *mptr; 2595 file_info_t *fptr; 2596 char *object_name; 2597 int rc = 0; 2598 int i; 2599 2600 /* create all the file_info_t's for all the mappings */ 2601 (void) Prd_agent(P); 2602 2603 for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) { 2604 if ((fptr = mptr->map_file) == NULL) 2605 object_name = NULL; 2606 else if (lmresolve && (fptr->file_rname != NULL)) 2607 object_name = fptr->file_rname; 2608 else 2609 object_name = fptr->file_lname; 2610 if ((rc = func(cd, &mptr->map_pmap, object_name)) != 0) 2611 return (rc); 2612 } 2613 return (0); 2614 } 2615 2616 int 2617 Pmapping_iter(struct ps_prochandle *P, proc_map_f *func, void *cd) 2618 { 2619 return (i_Pmapping_iter(P, B_FALSE, func, cd)); 2620 } 2621 2622 int 2623 Pmapping_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd) 2624 { 2625 return (i_Pmapping_iter(P, B_TRUE, func, cd)); 2626 } 2627 2628 /* 2629 * Iterate over the process's mapped objects. 2630 */ 2631 static int 2632 i_Pobject_iter(struct ps_prochandle *P, boolean_t lmresolve, 2633 proc_map_f *func, void *cd) 2634 { 2635 map_info_t *mptr; 2636 file_info_t *fptr; 2637 uint_t cnt; 2638 int rc = 0; 2639 2640 (void) Prd_agent(P); /* create file_info_t's for all the mappings */ 2641 Pupdate_maps(P); 2642 2643 for (cnt = P->num_files, fptr = list_next(&P->file_head); 2644 cnt; cnt--, fptr = list_next(fptr)) { 2645 const char *lname; 2646 2647 if (lmresolve && (fptr->file_rname != NULL)) 2648 lname = fptr->file_rname; 2649 else if (fptr->file_lname != NULL) 2650 lname = fptr->file_lname; 2651 else 2652 lname = ""; 2653 2654 if ((mptr = fptr->file_map) == NULL) 2655 continue; 2656 2657 if ((rc = func(cd, &mptr->map_pmap, lname)) != 0) 2658 return (rc); 2659 2660 if (!P->info_valid) 2661 Pupdate_maps(P); 2662 } 2663 return (0); 2664 } 2665 2666 int 2667 Pobject_iter(struct ps_prochandle *P, proc_map_f *func, void *cd) 2668 { 2669 return (i_Pobject_iter(P, B_FALSE, func, cd)); 2670 } 2671 2672 int 2673 Pobject_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd) 2674 { 2675 return (i_Pobject_iter(P, B_TRUE, func, cd)); 2676 } 2677 2678 static char * 2679 i_Pobjname(struct ps_prochandle *P, boolean_t lmresolve, uintptr_t addr, 2680 char *buffer, size_t bufsize) 2681 { 2682 map_info_t *mptr; 2683 file_info_t *fptr; 2684 2685 /* create all the file_info_t's for all the mappings */ 2686 (void) Prd_agent(P); 2687 2688 if ((mptr = Paddr2mptr(P, addr)) == NULL) 2689 return (NULL); 2690 2691 if (!lmresolve) { 2692 if (((fptr = mptr->map_file) == NULL) || 2693 (fptr->file_lname == NULL)) 2694 return (NULL); 2695 (void) strlcpy(buffer, fptr->file_lname, bufsize); 2696 return (buffer); 2697 } 2698 2699 /* Check for a cached copy of the resolved path */ 2700 if (Pfindmap(P, mptr, buffer, bufsize) != NULL) 2701 return (buffer); 2702 2703 return (NULL); 2704 } 2705 2706 /* 2707 * Given a virtual address, return the name of the underlying 2708 * mapped object (file) as provided by the dynamic linker. 2709 * Return NULL if we can't find any name information for the object. 2710 */ 2711 char * 2712 Pobjname(struct ps_prochandle *P, uintptr_t addr, 2713 char *buffer, size_t bufsize) 2714 { 2715 return (i_Pobjname(P, B_FALSE, addr, buffer, bufsize)); 2716 } 2717 2718 /* 2719 * Given a virtual address, try to return a filesystem path to the 2720 * underlying mapped object (file). If we're in the global zone, 2721 * this path could resolve to an object in another zone. If we're 2722 * unable return a valid filesystem path, we'll fall back to providing 2723 * the mapped object (file) name provided by the dynamic linker in 2724 * the target process (ie, the object reported by Pobjname()). 2725 */ 2726 char * 2727 Pobjname_resolved(struct ps_prochandle *P, uintptr_t addr, 2728 char *buffer, size_t bufsize) 2729 { 2730 return (i_Pobjname(P, B_TRUE, addr, buffer, bufsize)); 2731 } 2732 2733 /* 2734 * Given a virtual address, return the link map id of the underlying mapped 2735 * object (file), as provided by the dynamic linker. Return -1 on failure. 2736 */ 2737 int 2738 Plmid(struct ps_prochandle *P, uintptr_t addr, Lmid_t *lmidp) 2739 { 2740 map_info_t *mptr; 2741 file_info_t *fptr; 2742 2743 /* create all the file_info_t's for all the mappings */ 2744 (void) Prd_agent(P); 2745 2746 if ((mptr = Paddr2mptr(P, addr)) != NULL && 2747 (fptr = mptr->map_file) != NULL && fptr->file_lo != NULL) { 2748 *lmidp = fptr->file_lo->rl_lmident; 2749 return (0); 2750 } 2751 2752 return (-1); 2753 } 2754 2755 /* 2756 * Given an object name and optional lmid, iterate over the object's symbols. 2757 * If which == PR_SYMTAB, search the normal symbol table. 2758 * If which == PR_DYNSYM, search the dynamic symbol table. 2759 */ 2760 static int 2761 Psymbol_iter_com(struct ps_prochandle *P, Lmid_t lmid, const char *object_name, 2762 int which, int mask, pr_order_t order, proc_xsym_f *func, void *cd) 2763 { 2764 #if STT_NUM != (STT_TLS + 1) 2765 #error "STT_NUM has grown. update Psymbol_iter_com()" 2766 #endif 2767 2768 GElf_Sym sym; 2769 GElf_Shdr shdr; 2770 map_info_t *mptr; 2771 file_info_t *fptr; 2772 sym_tbl_t *symtab; 2773 size_t symn; 2774 const char *strs; 2775 size_t strsz; 2776 prsyminfo_t si; 2777 int rv; 2778 uint_t *map, i, count, ndx; 2779 2780 if ((mptr = object_name_to_map(P, lmid, object_name)) == NULL) 2781 return (-1); 2782 2783 if ((fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */ 2784 fptr->file_elf == NULL) /* not an ELF file */ 2785 return (-1); 2786 2787 /* 2788 * Search the specified symbol table. 2789 */ 2790 switch (which) { 2791 case PR_SYMTAB: 2792 symtab = &fptr->file_symtab; 2793 si.prs_table = PR_SYMTAB; 2794 break; 2795 case PR_DYNSYM: 2796 symtab = &fptr->file_dynsym; 2797 si.prs_table = PR_DYNSYM; 2798 break; 2799 default: 2800 return (-1); 2801 } 2802 2803 si.prs_object = object_name; 2804 si.prs_lmid = fptr->file_lo == NULL ? 2805 LM_ID_BASE : fptr->file_lo->rl_lmident; 2806 2807 symn = symtab->sym_symn; 2808 strs = symtab->sym_strs; 2809 strsz = symtab->sym_strsz; 2810 2811 switch (order) { 2812 case PRO_NATURAL: 2813 map = NULL; 2814 count = symn; 2815 break; 2816 case PRO_BYNAME: 2817 map = symtab->sym_byname; 2818 count = symtab->sym_count; 2819 break; 2820 case PRO_BYADDR: 2821 map = symtab->sym_byaddr; 2822 count = symtab->sym_count; 2823 break; 2824 default: 2825 return (-1); 2826 } 2827 2828 if (symtab->sym_data_pri == NULL || strs == NULL || count == 0) 2829 return (-1); 2830 2831 rv = 0; 2832 2833 for (i = 0; i < count; i++) { 2834 ndx = map == NULL ? i : map[i]; 2835 if (symtab_getsym(symtab, ndx, &sym) != NULL) { 2836 uint_t s_bind, s_type, type; 2837 2838 if (sym.st_name >= strsz) /* invalid st_name */ 2839 continue; 2840 2841 s_bind = GELF_ST_BIND(sym.st_info); 2842 s_type = GELF_ST_TYPE(sym.st_info); 2843 2844 /* 2845 * In case you haven't already guessed, this relies on 2846 * the bitmask used in <libproc.h> for encoding symbol 2847 * type and binding matching the order of STB and STT 2848 * constants in <sys/elf.h>. Changes to ELF must 2849 * maintain binary compatibility, so I think this is 2850 * reasonably fair game. 2851 */ 2852 if (s_bind < STB_NUM && s_type < STT_NUM) { 2853 type = (1 << (s_type + 8)) | (1 << s_bind); 2854 if ((type & ~mask) != 0) 2855 continue; 2856 } else 2857 continue; /* Invalid type or binding */ 2858 2859 if (GELF_ST_TYPE(sym.st_info) != STT_TLS) 2860 sym.st_value += fptr->file_dyn_base; 2861 2862 si.prs_name = strs + sym.st_name; 2863 2864 /* 2865 * If symbol's type is STT_SECTION, then try to lookup 2866 * the name of the corresponding section. 2867 */ 2868 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && 2869 fptr->file_shstrs != NULL && 2870 gelf_getshdr(elf_getscn(fptr->file_elf, 2871 sym.st_shndx), &shdr) != NULL && 2872 shdr.sh_name != 0 && 2873 shdr.sh_name < fptr->file_shstrsz) 2874 si.prs_name = fptr->file_shstrs + shdr.sh_name; 2875 2876 si.prs_id = ndx; 2877 if ((rv = func(cd, &sym, si.prs_name, &si)) != 0) 2878 break; 2879 } 2880 } 2881 2882 return (rv); 2883 } 2884 2885 int 2886 Pxsymbol_iter(struct ps_prochandle *P, Lmid_t lmid, const char *object_name, 2887 int which, int mask, proc_xsym_f *func, void *cd) 2888 { 2889 return (Psymbol_iter_com(P, lmid, object_name, which, mask, 2890 PRO_NATURAL, func, cd)); 2891 } 2892 2893 int 2894 Psymbol_iter_by_lmid(struct ps_prochandle *P, Lmid_t lmid, 2895 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2896 { 2897 return (Psymbol_iter_com(P, lmid, object_name, which, mask, 2898 PRO_NATURAL, (proc_xsym_f *)func, cd)); 2899 } 2900 2901 int 2902 Psymbol_iter(struct ps_prochandle *P, 2903 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2904 { 2905 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 2906 PRO_NATURAL, (proc_xsym_f *)func, cd)); 2907 } 2908 2909 int 2910 Psymbol_iter_by_addr(struct ps_prochandle *P, 2911 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2912 { 2913 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 2914 PRO_BYADDR, (proc_xsym_f *)func, cd)); 2915 } 2916 2917 int 2918 Psymbol_iter_by_name(struct ps_prochandle *P, 2919 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2920 { 2921 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 2922 PRO_BYNAME, (proc_xsym_f *)func, cd)); 2923 } 2924 2925 /* 2926 * Get the platform string. 2927 */ 2928 char * 2929 Pplatform(struct ps_prochandle *P, char *s, size_t n) 2930 { 2931 return (P->ops.pop_platform(P, s, n, P->data)); 2932 } 2933 2934 /* 2935 * Get the uname(2) information. 2936 */ 2937 int 2938 Puname(struct ps_prochandle *P, struct utsname *u) 2939 { 2940 return (P->ops.pop_uname(P, u, P->data)); 2941 } 2942 2943 /* 2944 * Called from Pcreate(), Pgrab(), and Pfgrab_core() to initialize 2945 * the symbol table heads in the new ps_prochandle. 2946 */ 2947 void 2948 Pinitsym(struct ps_prochandle *P) 2949 { 2950 P->num_files = 0; 2951 list_link(&P->file_head, NULL); 2952 } 2953 2954 /* 2955 * Called from Prelease() to destroy the symbol tables. 2956 * Must be called by the client after an exec() in the victim process. 2957 */ 2958 void 2959 Preset_maps(struct ps_prochandle *P) 2960 { 2961 int i; 2962 2963 if (P->rap != NULL) { 2964 rd_delete(P->rap); 2965 P->rap = NULL; 2966 } 2967 2968 if (P->execname != NULL) { 2969 free(P->execname); 2970 P->execname = NULL; 2971 } 2972 2973 if (P->auxv != NULL) { 2974 free(P->auxv); 2975 P->auxv = NULL; 2976 P->nauxv = 0; 2977 } 2978 2979 for (i = 0; i < P->map_count; i++) 2980 map_info_free(P, &P->mappings[i]); 2981 2982 if (P->mappings != NULL) { 2983 free(P->mappings); 2984 P->mappings = NULL; 2985 } 2986 P->map_count = P->map_alloc = 0; 2987 2988 P->info_valid = 0; 2989 } 2990 2991 typedef struct getenv_data { 2992 char *buf; 2993 size_t bufsize; 2994 const char *search; 2995 size_t searchlen; 2996 } getenv_data_t; 2997 2998 /*ARGSUSED*/ 2999 static int 3000 getenv_func(void *data, struct ps_prochandle *P, uintptr_t addr, 3001 const char *nameval) 3002 { 3003 getenv_data_t *d = data; 3004 size_t len; 3005 3006 if (nameval == NULL) 3007 return (0); 3008 3009 if (d->searchlen < strlen(nameval) && 3010 strncmp(nameval, d->search, d->searchlen) == 0 && 3011 nameval[d->searchlen] == '=') { 3012 len = MIN(strlen(nameval), d->bufsize - 1); 3013 (void) strncpy(d->buf, nameval, len); 3014 d->buf[len] = '\0'; 3015 return (1); 3016 } 3017 3018 return (0); 3019 } 3020 3021 char * 3022 Pgetenv(struct ps_prochandle *P, const char *name, char *buf, size_t buflen) 3023 { 3024 getenv_data_t d; 3025 3026 d.buf = buf; 3027 d.bufsize = buflen; 3028 d.search = name; 3029 d.searchlen = strlen(name); 3030 3031 if (Penv_iter(P, getenv_func, &d) == 1) { 3032 char *equals = strchr(d.buf, '='); 3033 3034 if (equals != NULL) { 3035 (void) memmove(d.buf, equals + 1, 3036 d.buf + buflen - equals - 1); 3037 d.buf[d.buf + buflen - equals] = '\0'; 3038 3039 return (buf); 3040 } 3041 } 3042 3043 return (NULL); 3044 } 3045 3046 /* number of argument or environment pointers to read all at once */ 3047 #define NARG 100 3048 3049 int 3050 Penv_iter(struct ps_prochandle *P, proc_env_f *func, void *data) 3051 { 3052 const psinfo_t *psp; 3053 uintptr_t envpoff; 3054 GElf_Sym sym; 3055 int ret; 3056 char *buf, *nameval; 3057 size_t buflen; 3058 3059 int nenv = NARG; 3060 long envp[NARG]; 3061 3062 /* 3063 * Attempt to find the "_environ" variable in the process. 3064 * Failing that, use the original value provided by Ppsinfo(). 3065 */ 3066 if ((psp = Ppsinfo(P)) == NULL) 3067 return (-1); 3068 3069 envpoff = psp->pr_envp; /* Default if no _environ found */ 3070 3071 if (Plookup_by_name(P, PR_OBJ_EXEC, "_environ", &sym) == 0) { 3072 if (P->status.pr_dmodel == PR_MODEL_NATIVE) { 3073 if (Pread(P, &envpoff, sizeof (envpoff), 3074 sym.st_value) != sizeof (envpoff)) 3075 envpoff = psp->pr_envp; 3076 } else if (P->status.pr_dmodel == PR_MODEL_ILP32) { 3077 uint32_t envpoff32; 3078 3079 if (Pread(P, &envpoff32, sizeof (envpoff32), 3080 sym.st_value) != sizeof (envpoff32)) 3081 envpoff = psp->pr_envp; 3082 else 3083 envpoff = envpoff32; 3084 } 3085 } 3086 3087 buflen = 128; 3088 buf = malloc(buflen); 3089 3090 ret = 0; 3091 for (;;) { 3092 uintptr_t envoff; 3093 3094 if (nenv == NARG) { 3095 (void) memset(envp, 0, sizeof (envp)); 3096 if (P->status.pr_dmodel == PR_MODEL_NATIVE) { 3097 if (Pread(P, envp, 3098 sizeof (envp), envpoff) <= 0) { 3099 ret = -1; 3100 break; 3101 } 3102 } else if (P->status.pr_dmodel == PR_MODEL_ILP32) { 3103 uint32_t e32[NARG]; 3104 int i; 3105 3106 (void) memset(e32, 0, sizeof (e32)); 3107 if (Pread(P, e32, sizeof (e32), envpoff) <= 0) { 3108 ret = -1; 3109 break; 3110 } 3111 for (i = 0; i < NARG; i++) 3112 envp[i] = e32[i]; 3113 } 3114 nenv = 0; 3115 } 3116 3117 if ((envoff = envp[nenv++]) == NULL) 3118 break; 3119 3120 /* 3121 * Attempt to read the string from the process. 3122 */ 3123 again: 3124 ret = Pread_string(P, buf, buflen, envoff); 3125 3126 if (ret <= 0) { 3127 nameval = NULL; 3128 } else if (ret == buflen - 1) { 3129 free(buf); 3130 /* 3131 * Bail if we have a corrupted environment 3132 */ 3133 if (buflen >= ARG_MAX) 3134 return (-1); 3135 buflen *= 2; 3136 buf = malloc(buflen); 3137 goto again; 3138 } else { 3139 nameval = buf; 3140 } 3141 3142 if ((ret = func(data, P, envoff, nameval)) != 0) 3143 break; 3144 3145 envpoff += (P->status.pr_dmodel == PR_MODEL_LP64)? 8 : 4; 3146 } 3147 3148 free(buf); 3149 3150 return (ret); 3151 } 3152