1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/utsname.h> 31 #include <sys/sysmacros.h> 32 33 #include <alloca.h> 34 #include <rtld_db.h> 35 #include <libgen.h> 36 #include <limits.h> 37 #include <string.h> 38 #include <stdlib.h> 39 #include <unistd.h> 40 #include <errno.h> 41 #include <gelf.h> 42 #include <stddef.h> 43 44 #include "Pcontrol.h" 45 #include "P32ton.h" 46 #include "Putil.h" 47 48 /* 49 * Pcore.c - Code to initialize a ps_prochandle from a core dump. We 50 * allocate an additional structure to hold information from the core 51 * file, and attach this to the standard ps_prochandle in place of the 52 * ability to examine /proc/<pid>/ files. 53 */ 54 55 /* 56 * Basic i/o function for reading and writing from the process address space 57 * stored in the core file and associated shared libraries. We compute the 58 * appropriate fd and offsets, and let the provided prw function do the rest. 59 */ 60 static ssize_t 61 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr, 62 ssize_t (*prw)(int, void *, size_t, off64_t)) 63 { 64 ssize_t resid = n; 65 66 while (resid != 0) { 67 map_info_t *mp = Paddr2mptr(P, addr); 68 69 uintptr_t mapoff; 70 ssize_t len; 71 off64_t off; 72 int fd; 73 74 if (mp == NULL) 75 break; /* No mapping for this address */ 76 77 if (mp->map_pmap.pr_mflags & MA_RESERVED1) { 78 if (mp->map_file == NULL || mp->map_file->file_fd < 0) 79 break; /* No file or file not open */ 80 81 fd = mp->map_file->file_fd; 82 } else 83 fd = P->asfd; 84 85 mapoff = addr - mp->map_pmap.pr_vaddr; 86 len = MIN(resid, mp->map_pmap.pr_size - mapoff); 87 off = mp->map_offset + mapoff; 88 89 if ((len = prw(fd, buf, len, off)) <= 0) 90 break; 91 92 resid -= len; 93 addr += len; 94 buf = (char *)buf + len; 95 } 96 97 /* 98 * Important: Be consistent with the behavior of i/o on the as file: 99 * writing to an invalid address yields EIO; reading from an invalid 100 * address falls through to returning success and zero bytes. 101 */ 102 if (resid == n && n != 0 && prw != pread64) { 103 errno = EIO; 104 return (-1); 105 } 106 107 return (n - resid); 108 } 109 110 static ssize_t 111 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr) 112 { 113 return (core_rw(P, buf, n, addr, pread64)); 114 } 115 116 static ssize_t 117 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr) 118 { 119 return (core_rw(P, (void *)buf, n, addr, 120 (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64)); 121 } 122 123 static const ps_rwops_t P_core_ops = { Pread_core, Pwrite_core }; 124 125 /* 126 * Return the lwp_info_t for the given lwpid. If no such lwpid has been 127 * encountered yet, allocate a new structure and return a pointer to it. 128 * Create a list of lwp_info_t structures sorted in decreasing lwp_id order. 129 */ 130 static lwp_info_t * 131 lwpid2info(struct ps_prochandle *P, lwpid_t id) 132 { 133 lwp_info_t *lwp = list_next(&P->core->core_lwp_head); 134 lwp_info_t *next; 135 uint_t i; 136 137 for (i = 0; i < P->core->core_nlwp; i++, lwp = list_next(lwp)) { 138 if (lwp->lwp_id == id) { 139 P->core->core_lwp = lwp; 140 return (lwp); 141 } 142 if (lwp->lwp_id < id) { 143 break; 144 } 145 } 146 147 next = lwp; 148 if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL) 149 return (NULL); 150 151 list_link(lwp, next); 152 lwp->lwp_id = id; 153 154 P->core->core_lwp = lwp; 155 P->core->core_nlwp++; 156 157 return (lwp); 158 } 159 160 /* 161 * The core file itself contains a series of NOTE segments containing saved 162 * structures from /proc at the time the process died. For each note we 163 * comprehend, we define a function to read it in from the core file, 164 * convert it to our native data model if necessary, and store it inside 165 * the ps_prochandle. Each function is invoked by Pfgrab_core() with the 166 * seek pointer on P->asfd positioned appropriately. We populate a table 167 * of pointers to these note functions below. 168 */ 169 170 static int 171 note_pstatus(struct ps_prochandle *P, size_t nbytes) 172 { 173 #ifdef _LP64 174 if (P->core->core_dmodel == PR_MODEL_ILP32) { 175 pstatus32_t ps32; 176 177 if (nbytes < sizeof (pstatus32_t) || 178 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32)) 179 goto err; 180 181 pstatus_32_to_n(&ps32, &P->status); 182 183 } else 184 #endif 185 if (nbytes < sizeof (pstatus_t) || 186 read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t)) 187 goto err; 188 189 P->orig_status = P->status; 190 P->pid = P->status.pr_pid; 191 192 return (0); 193 194 err: 195 dprintf("Pgrab_core: failed to read NT_PSTATUS\n"); 196 return (-1); 197 } 198 199 static int 200 note_lwpstatus(struct ps_prochandle *P, size_t nbytes) 201 { 202 lwp_info_t *lwp; 203 lwpstatus_t lps; 204 205 #ifdef _LP64 206 if (P->core->core_dmodel == PR_MODEL_ILP32) { 207 lwpstatus32_t l32; 208 209 if (nbytes < sizeof (lwpstatus32_t) || 210 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32)) 211 goto err; 212 213 lwpstatus_32_to_n(&l32, &lps); 214 } else 215 #endif 216 if (nbytes < sizeof (lwpstatus_t) || 217 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps)) 218 goto err; 219 220 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) { 221 dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n"); 222 return (-1); 223 } 224 225 /* 226 * Erase a useless and confusing artifact of the kernel implementation: 227 * the lwps which did *not* create the core will show SIGKILL. We can 228 * be assured this is bogus because SIGKILL can't produce core files. 229 */ 230 if (lps.pr_cursig == SIGKILL) 231 lps.pr_cursig = 0; 232 233 (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps)); 234 return (0); 235 236 err: 237 dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n"); 238 return (-1); 239 } 240 241 static int 242 note_psinfo(struct ps_prochandle *P, size_t nbytes) 243 { 244 #ifdef _LP64 245 if (P->core->core_dmodel == PR_MODEL_ILP32) { 246 psinfo32_t ps32; 247 248 if (nbytes < sizeof (psinfo32_t) || 249 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32)) 250 goto err; 251 252 psinfo_32_to_n(&ps32, &P->psinfo); 253 } else 254 #endif 255 if (nbytes < sizeof (psinfo_t) || 256 read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t)) 257 goto err; 258 259 dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname); 260 dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs); 261 dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat); 262 263 return (0); 264 265 err: 266 dprintf("Pgrab_core: failed to read NT_PSINFO\n"); 267 return (-1); 268 } 269 270 static int 271 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes) 272 { 273 lwp_info_t *lwp; 274 lwpsinfo_t lps; 275 276 #ifdef _LP64 277 if (P->core->core_dmodel == PR_MODEL_ILP32) { 278 lwpsinfo32_t l32; 279 280 if (nbytes < sizeof (lwpsinfo32_t) || 281 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32)) 282 goto err; 283 284 lwpsinfo_32_to_n(&l32, &lps); 285 } else 286 #endif 287 if (nbytes < sizeof (lwpsinfo_t) || 288 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps)) 289 goto err; 290 291 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) { 292 dprintf("Pgrab_core: failed to add NT_LWPSINFO\n"); 293 return (-1); 294 } 295 296 (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps)); 297 return (0); 298 299 err: 300 dprintf("Pgrab_core: failed to read NT_LWPSINFO\n"); 301 return (-1); 302 } 303 304 static int 305 note_platform(struct ps_prochandle *P, size_t nbytes) 306 { 307 char *plat; 308 309 if (P->core->core_platform != NULL) 310 return (0); /* Already seen */ 311 312 if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) { 313 if (read(P->asfd, plat, nbytes) != nbytes) { 314 dprintf("Pgrab_core: failed to read NT_PLATFORM\n"); 315 free(plat); 316 return (-1); 317 } 318 plat[nbytes - 1] = '\0'; 319 P->core->core_platform = plat; 320 } 321 322 return (0); 323 } 324 325 static int 326 note_utsname(struct ps_prochandle *P, size_t nbytes) 327 { 328 size_t ubytes = sizeof (struct utsname); 329 struct utsname *utsp; 330 331 if (P->core->core_uts != NULL || nbytes < ubytes) 332 return (0); /* Already seen or bad size */ 333 334 if ((utsp = malloc(ubytes)) == NULL) 335 return (-1); 336 337 if (read(P->asfd, utsp, ubytes) != ubytes) { 338 dprintf("Pgrab_core: failed to read NT_UTSNAME\n"); 339 free(utsp); 340 return (-1); 341 } 342 343 if (_libproc_debug) { 344 dprintf("uts.sysname = \"%s\"\n", utsp->sysname); 345 dprintf("uts.nodename = \"%s\"\n", utsp->nodename); 346 dprintf("uts.release = \"%s\"\n", utsp->release); 347 dprintf("uts.version = \"%s\"\n", utsp->version); 348 dprintf("uts.machine = \"%s\"\n", utsp->machine); 349 } 350 351 P->core->core_uts = utsp; 352 return (0); 353 } 354 355 static int 356 note_content(struct ps_prochandle *P, size_t nbytes) 357 { 358 core_content_t content; 359 360 if (sizeof (P->core->core_content) != nbytes) 361 return (-1); 362 363 if (read(P->asfd, &content, sizeof (content)) != sizeof (content)) 364 return (-1); 365 366 P->core->core_content = content; 367 368 dprintf("core content = %llx\n", content); 369 370 return (0); 371 } 372 373 static int 374 note_cred(struct ps_prochandle *P, size_t nbytes) 375 { 376 prcred_t *pcrp; 377 int ngroups; 378 const size_t min_size = sizeof (prcred_t) - sizeof (gid_t); 379 380 /* 381 * We allow for prcred_t notes that are actually smaller than a 382 * prcred_t since the last member isn't essential if there are 383 * no group memberships. This allows for more flexibility when it 384 * comes to slightly malformed -- but still valid -- notes. 385 */ 386 if (P->core->core_cred != NULL || nbytes < min_size) 387 return (0); /* Already seen or bad size */ 388 389 ngroups = (nbytes - min_size) / sizeof (gid_t); 390 nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t); 391 392 if ((pcrp = malloc(nbytes)) == NULL) 393 return (-1); 394 395 if (read(P->asfd, pcrp, nbytes) != nbytes) { 396 dprintf("Pgrab_core: failed to read NT_PRCRED\n"); 397 free(pcrp); 398 return (-1); 399 } 400 401 if (pcrp->pr_ngroups > ngroups) { 402 dprintf("pr_ngroups = %d; resetting to %d based on note size\n", 403 pcrp->pr_ngroups, ngroups); 404 pcrp->pr_ngroups = ngroups; 405 } 406 407 P->core->core_cred = pcrp; 408 return (0); 409 } 410 411 #if defined(__i386) || defined(__amd64) 412 static int 413 note_ldt(struct ps_prochandle *P, size_t nbytes) 414 { 415 struct ssd *pldt; 416 uint_t nldt; 417 418 if (P->core->core_ldt != NULL || nbytes < sizeof (struct ssd)) 419 return (0); /* Already seen or bad size */ 420 421 nldt = nbytes / sizeof (struct ssd); 422 nbytes = nldt * sizeof (struct ssd); 423 424 if ((pldt = malloc(nbytes)) == NULL) 425 return (-1); 426 427 if (read(P->asfd, pldt, nbytes) != nbytes) { 428 dprintf("Pgrab_core: failed to read NT_LDT\n"); 429 free(pldt); 430 return (-1); 431 } 432 433 P->core->core_ldt = pldt; 434 P->core->core_nldt = nldt; 435 return (0); 436 } 437 #endif /* __i386 */ 438 439 static int 440 note_priv(struct ps_prochandle *P, size_t nbytes) 441 { 442 prpriv_t *pprvp; 443 444 if (P->core->core_priv != NULL || nbytes < sizeof (prpriv_t)) 445 return (0); /* Already seen or bad size */ 446 447 if ((pprvp = malloc(nbytes)) == NULL) 448 return (-1); 449 450 if (read(P->asfd, pprvp, nbytes) != nbytes) { 451 dprintf("Pgrab_core: failed to read NT_PRPRIV\n"); 452 free(pprvp); 453 return (-1); 454 } 455 456 P->core->core_priv = pprvp; 457 P->core->core_priv_size = nbytes; 458 return (0); 459 } 460 461 static int 462 note_priv_info(struct ps_prochandle *P, size_t nbytes) 463 { 464 extern void *__priv_parse_info(); 465 priv_impl_info_t *ppii; 466 467 if (P->core->core_privinfo != NULL || 468 nbytes < sizeof (priv_impl_info_t)) 469 return (0); /* Already seen or bad size */ 470 471 if ((ppii = malloc(nbytes)) == NULL) 472 return (-1); 473 474 if (read(P->asfd, ppii, nbytes) != nbytes || 475 PRIV_IMPL_INFO_SIZE(ppii) != nbytes) { 476 dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n"); 477 free(ppii); 478 return (-1); 479 } 480 481 P->core->core_privinfo = __priv_parse_info(ppii); 482 P->core->core_ppii = ppii; 483 return (0); 484 } 485 486 static int 487 note_zonename(struct ps_prochandle *P, size_t nbytes) 488 { 489 char *zonename; 490 491 if (P->core->core_zonename != NULL) 492 return (0); /* Already seen */ 493 494 if (nbytes != 0) { 495 if ((zonename = malloc(nbytes)) == NULL) 496 return (-1); 497 if (read(P->asfd, zonename, nbytes) != nbytes) { 498 dprintf("Pgrab_core: failed to read NT_ZONENAME\n"); 499 free(zonename); 500 return (-1); 501 } 502 zonename[nbytes - 1] = '\0'; 503 P->core->core_zonename = zonename; 504 } 505 506 return (0); 507 } 508 509 static int 510 note_auxv(struct ps_prochandle *P, size_t nbytes) 511 { 512 size_t n, i; 513 514 #ifdef _LP64 515 if (P->core->core_dmodel == PR_MODEL_ILP32) { 516 auxv32_t *a32; 517 518 n = nbytes / sizeof (auxv32_t); 519 nbytes = n * sizeof (auxv32_t); 520 a32 = alloca(nbytes); 521 522 if (read(P->asfd, a32, nbytes) != nbytes) { 523 dprintf("Pgrab_core: failed to read NT_AUXV\n"); 524 return (-1); 525 } 526 527 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL) 528 return (-1); 529 530 for (i = 0; i < n; i++) 531 auxv_32_to_n(&a32[i], &P->auxv[i]); 532 533 } else { 534 #endif 535 n = nbytes / sizeof (auxv_t); 536 nbytes = n * sizeof (auxv_t); 537 538 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL) 539 return (-1); 540 541 if (read(P->asfd, P->auxv, nbytes) != nbytes) { 542 free(P->auxv); 543 P->auxv = NULL; 544 return (-1); 545 } 546 #ifdef _LP64 547 } 548 #endif 549 550 if (_libproc_debug) { 551 for (i = 0; i < n; i++) { 552 dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i, 553 P->auxv[i].a_type, P->auxv[i].a_un.a_val); 554 } 555 } 556 557 /* 558 * Defensive coding for loops which depend upon the auxv array being 559 * terminated by an AT_NULL element; in each case, we've allocated 560 * P->auxv to have an additional element which we force to be AT_NULL. 561 */ 562 P->auxv[n].a_type = AT_NULL; 563 P->auxv[n].a_un.a_val = 0L; 564 P->nauxv = (int)n; 565 566 return (0); 567 } 568 569 #ifdef __sparc 570 static int 571 note_xreg(struct ps_prochandle *P, size_t nbytes) 572 { 573 lwp_info_t *lwp = P->core->core_lwp; 574 size_t xbytes = sizeof (prxregset_t); 575 prxregset_t *xregs; 576 577 if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes) 578 return (0); /* No lwp yet, already seen, or bad size */ 579 580 if ((xregs = malloc(xbytes)) == NULL) 581 return (-1); 582 583 if (read(P->asfd, xregs, xbytes) != xbytes) { 584 dprintf("Pgrab_core: failed to read NT_PRXREG\n"); 585 free(xregs); 586 return (-1); 587 } 588 589 lwp->lwp_xregs = xregs; 590 return (0); 591 } 592 593 static int 594 note_gwindows(struct ps_prochandle *P, size_t nbytes) 595 { 596 lwp_info_t *lwp = P->core->core_lwp; 597 598 if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0) 599 return (0); /* No lwp yet or already seen or no data */ 600 601 if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL) 602 return (-1); 603 604 /* 605 * Since the amount of gwindows data varies with how many windows were 606 * actually saved, we just read up to the minimum of the note size 607 * and the size of the gwindows_t type. It doesn't matter if the read 608 * fails since we have to zero out gwindows first anyway. 609 */ 610 #ifdef _LP64 611 if (P->core->core_dmodel == PR_MODEL_ILP32) { 612 gwindows32_t g32; 613 614 (void) memset(&g32, 0, sizeof (g32)); 615 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32))); 616 gwindows_32_to_n(&g32, lwp->lwp_gwins); 617 618 } else { 619 #endif 620 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t)); 621 (void) read(P->asfd, lwp->lwp_gwins, 622 MIN(nbytes, sizeof (gwindows_t))); 623 #ifdef _LP64 624 } 625 #endif 626 return (0); 627 } 628 629 #ifdef __sparcv9 630 static int 631 note_asrs(struct ps_prochandle *P, size_t nbytes) 632 { 633 lwp_info_t *lwp = P->core->core_lwp; 634 int64_t *asrs; 635 636 if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t)) 637 return (0); /* No lwp yet, already seen, or bad size */ 638 639 if ((asrs = malloc(sizeof (asrset_t))) == NULL) 640 return (-1); 641 642 if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) { 643 dprintf("Pgrab_core: failed to read NT_ASRS\n"); 644 free(asrs); 645 return (-1); 646 } 647 648 lwp->lwp_asrs = asrs; 649 return (0); 650 } 651 #endif /* __sparcv9 */ 652 #endif /* __sparc */ 653 654 /*ARGSUSED*/ 655 static int 656 note_notsup(struct ps_prochandle *P, size_t nbytes) 657 { 658 dprintf("skipping unsupported note type\n"); 659 return (0); 660 } 661 662 /* 663 * Populate a table of function pointers indexed by Note type with our 664 * functions to process each type of core file note: 665 */ 666 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = { 667 note_notsup, /* 0 unassigned */ 668 note_notsup, /* 1 NT_PRSTATUS (old) */ 669 note_notsup, /* 2 NT_PRFPREG (old) */ 670 note_notsup, /* 3 NT_PRPSINFO (old) */ 671 #ifdef __sparc 672 note_xreg, /* 4 NT_PRXREG */ 673 #else 674 note_notsup, /* 4 NT_PRXREG */ 675 #endif 676 note_platform, /* 5 NT_PLATFORM */ 677 note_auxv, /* 6 NT_AUXV */ 678 #ifdef __sparc 679 note_gwindows, /* 7 NT_GWINDOWS */ 680 #ifdef __sparcv9 681 note_asrs, /* 8 NT_ASRS */ 682 #else 683 note_notsup, /* 8 NT_ASRS */ 684 #endif 685 #else 686 note_notsup, /* 7 NT_GWINDOWS */ 687 note_notsup, /* 8 NT_ASRS */ 688 #endif 689 #if defined(__i386) || defined(__amd64) 690 note_ldt, /* 9 NT_LDT */ 691 #else 692 note_notsup, /* 9 NT_LDT */ 693 #endif 694 note_pstatus, /* 10 NT_PSTATUS */ 695 note_notsup, /* 11 unassigned */ 696 note_notsup, /* 12 unassigned */ 697 note_psinfo, /* 13 NT_PSINFO */ 698 note_cred, /* 14 NT_PRCRED */ 699 note_utsname, /* 15 NT_UTSNAME */ 700 note_lwpstatus, /* 16 NT_LWPSTATUS */ 701 note_lwpsinfo, /* 17 NT_LWPSINFO */ 702 note_priv, /* 18 NT_PRPRIV */ 703 note_priv_info, /* 19 NT_PRPRIVINFO */ 704 note_content, /* 20 NT_CONTENT */ 705 note_zonename, /* 21 NT_ZONENAME */ 706 }; 707 708 /* 709 * Add information on the address space mapping described by the given 710 * PT_LOAD program header. We fill in more information on the mapping later. 711 */ 712 static int 713 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php) 714 { 715 int err = 0; 716 prmap_t pmap; 717 718 dprintf("mapping base %llx filesz %llu memsz %llu offset %llu\n", 719 (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz, 720 (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset); 721 722 pmap.pr_vaddr = (uintptr_t)php->p_vaddr; 723 pmap.pr_size = php->p_memsz; 724 725 /* 726 * If Pgcore() or elfcore() fail to write a mapping, they will set 727 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us. 728 */ 729 if (php->p_flags & PF_SUNW_FAILURE) { 730 (void) pread64(P->asfd, &err, 731 sizeof (err), (off64_t)php->p_offset); 732 733 Perror_printf(P, "core file data for mapping at %p not saved: " 734 "%s\n", (void *)(uintptr_t)php->p_vaddr, strerror(err)); 735 dprintf("core file data for mapping at %p not saved: %s\n", 736 (void *)(uintptr_t)php->p_vaddr, strerror(err)); 737 738 } else if (php->p_filesz != 0 && php->p_offset >= P->core->core_size) { 739 Perror_printf(P, "core file may be corrupt -- data for mapping " 740 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr); 741 dprintf("core file may be corrupt -- data for mapping " 742 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr); 743 } 744 745 /* 746 * The mapping name and offset will hopefully be filled in 747 * by the librtld_db agent. Unfortunately, if it isn't a 748 * shared library mapping, this information is gone forever. 749 */ 750 pmap.pr_mapname[0] = '\0'; 751 pmap.pr_offset = 0; 752 753 pmap.pr_mflags = 0; 754 if (php->p_flags & PF_R) 755 pmap.pr_mflags |= MA_READ; 756 if (php->p_flags & PF_W) 757 pmap.pr_mflags |= MA_WRITE; 758 if (php->p_flags & PF_X) 759 pmap.pr_mflags |= MA_EXEC; 760 761 if (php->p_filesz == 0) 762 pmap.pr_mflags |= MA_RESERVED1; 763 764 /* 765 * At the time of adding this mapping, we just zero the pagesize. 766 * Once we've processed more of the core file, we'll have the 767 * pagesize from the auxv's AT_PAGESZ element and we can fill this in. 768 */ 769 pmap.pr_pagesize = 0; 770 771 /* 772 * Unfortunately whether or not the mapping was a System V 773 * shared memory segment is lost. We use -1 to mark it as not shm. 774 */ 775 pmap.pr_shmid = -1; 776 777 return (Padd_mapping(P, php->p_offset, NULL, &pmap)); 778 } 779 780 /* 781 * Given a virtual address, name the mapping at that address using the 782 * specified name, and return the map_info_t pointer. 783 */ 784 static map_info_t * 785 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name) 786 { 787 map_info_t *mp = Paddr2mptr(P, addr); 788 789 if (mp != NULL) { 790 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ); 791 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 792 } 793 794 return (mp); 795 } 796 797 /* 798 * libproc uses libelf for all of its symbol table manipulation. This function 799 * takes a symbol table and string table from a core file and places them 800 * in a memory backed elf file. 801 */ 802 static void 803 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr, 804 GElf_Shdr *symtab, GElf_Shdr *strtab) 805 { 806 size_t size; 807 off64_t off, base; 808 map_info_t *mp; 809 file_info_t *fp; 810 Elf_Scn *scn; 811 Elf_Data *data; 812 813 if (symtab->sh_addr == 0 || 814 (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL || 815 (fp = mp->map_file) == NULL || 816 fp->file_symtab.sym_data != NULL) 817 return; 818 819 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 820 struct { 821 Elf32_Ehdr ehdr; 822 Elf32_Shdr shdr[3]; 823 char data[1]; 824 } *b; 825 826 base = sizeof (b->ehdr) + sizeof (b->shdr); 827 size = base + symtab->sh_size + strtab->sh_size; 828 829 if ((b = calloc(1, size)) == NULL) 830 return; 831 832 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident, 833 sizeof (ehdr->e_ident)); 834 b->ehdr.e_type = ehdr->e_type; 835 b->ehdr.e_machine = ehdr->e_machine; 836 b->ehdr.e_version = ehdr->e_version; 837 b->ehdr.e_flags = ehdr->e_flags; 838 b->ehdr.e_ehsize = sizeof (b->ehdr); 839 b->ehdr.e_shoff = sizeof (b->ehdr); 840 b->ehdr.e_shentsize = sizeof (b->shdr[0]); 841 b->ehdr.e_shnum = 3; 842 off = 0; 843 844 b->shdr[1].sh_size = symtab->sh_size; 845 b->shdr[1].sh_type = SHT_SYMTAB; 846 b->shdr[1].sh_offset = off + base; 847 b->shdr[1].sh_entsize = sizeof (Elf32_Sym); 848 b->shdr[1].sh_link = 2; 849 b->shdr[1].sh_info = symtab->sh_info; 850 b->shdr[1].sh_addralign = symtab->sh_addralign; 851 852 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size, 853 symtab->sh_offset) != b->shdr[1].sh_size) { 854 free(b); 855 return; 856 } 857 858 off += b->shdr[1].sh_size; 859 860 b->shdr[2].sh_flags = SHF_STRINGS; 861 b->shdr[2].sh_size = strtab->sh_size; 862 b->shdr[2].sh_type = SHT_STRTAB; 863 b->shdr[2].sh_offset = off + base; 864 b->shdr[2].sh_info = strtab->sh_info; 865 b->shdr[2].sh_addralign = 1; 866 867 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size, 868 strtab->sh_offset) != b->shdr[2].sh_size) { 869 free(b); 870 return; 871 } 872 873 off += b->shdr[2].sh_size; 874 875 fp->file_symtab.sym_elf = elf_memory((char *)b, size); 876 if (fp->file_symtab.sym_elf == NULL) { 877 free(b); 878 return; 879 } 880 881 fp->file_symtab.sym_elfmem = b; 882 #ifdef _LP64 883 } else { 884 struct { 885 Elf64_Ehdr ehdr; 886 Elf64_Shdr shdr[3]; 887 char data[1]; 888 } *b; 889 890 base = sizeof (b->ehdr) + sizeof (b->shdr); 891 size = base + symtab->sh_size + strtab->sh_size; 892 893 if ((b = calloc(1, size)) == NULL) 894 return; 895 896 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident, 897 sizeof (ehdr->e_ident)); 898 b->ehdr.e_type = ehdr->e_type; 899 b->ehdr.e_machine = ehdr->e_machine; 900 b->ehdr.e_version = ehdr->e_version; 901 b->ehdr.e_flags = ehdr->e_flags; 902 b->ehdr.e_ehsize = sizeof (b->ehdr); 903 b->ehdr.e_shoff = sizeof (b->ehdr); 904 b->ehdr.e_shentsize = sizeof (b->shdr[0]); 905 b->ehdr.e_shnum = 3; 906 off = 0; 907 908 b->shdr[1].sh_size = symtab->sh_size; 909 b->shdr[1].sh_type = SHT_SYMTAB; 910 b->shdr[1].sh_offset = off + base; 911 b->shdr[1].sh_entsize = sizeof (Elf64_Sym); 912 b->shdr[1].sh_link = 2; 913 b->shdr[1].sh_info = symtab->sh_info; 914 b->shdr[1].sh_addralign = symtab->sh_addralign; 915 916 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size, 917 symtab->sh_offset) != b->shdr[1].sh_size) { 918 free(b); 919 return; 920 } 921 922 off += b->shdr[1].sh_size; 923 924 b->shdr[2].sh_flags = SHF_STRINGS; 925 b->shdr[2].sh_size = strtab->sh_size; 926 b->shdr[2].sh_type = SHT_STRTAB; 927 b->shdr[2].sh_offset = off + base; 928 b->shdr[2].sh_info = strtab->sh_info; 929 b->shdr[2].sh_addralign = 1; 930 931 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size, 932 strtab->sh_offset) != b->shdr[2].sh_size) { 933 free(b); 934 return; 935 } 936 937 off += b->shdr[2].sh_size; 938 939 fp->file_symtab.sym_elf = elf_memory((char *)b, size); 940 if (fp->file_symtab.sym_elf == NULL) { 941 free(b); 942 return; 943 } 944 945 fp->file_symtab.sym_elfmem = b; 946 #endif 947 } 948 949 if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL || 950 (fp->file_symtab.sym_data = elf_getdata(scn, NULL)) == NULL || 951 (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL || 952 (data = elf_getdata(scn, NULL)) == NULL) 953 goto err; 954 955 fp->file_symtab.sym_strs = data->d_buf; 956 fp->file_symtab.sym_strsz = data->d_size; 957 fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize; 958 fp->file_symtab.sym_hdr = *symtab; 959 fp->file_symtab.sym_strhdr = *strtab; 960 961 optimize_symtab(&fp->file_symtab); 962 963 return; 964 err: 965 (void) elf_end(fp->file_symtab.sym_elf); 966 free(fp->file_symtab.sym_elfmem); 967 fp->file_symtab.sym_elf = NULL; 968 fp->file_symtab.sym_elfmem = NULL; 969 } 970 971 static void 972 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst) 973 { 974 dst->p_type = src->p_type; 975 dst->p_flags = src->p_flags; 976 dst->p_offset = (Elf64_Off)src->p_offset; 977 dst->p_vaddr = (Elf64_Addr)src->p_vaddr; 978 dst->p_paddr = (Elf64_Addr)src->p_paddr; 979 dst->p_filesz = (Elf64_Xword)src->p_filesz; 980 dst->p_memsz = (Elf64_Xword)src->p_memsz; 981 dst->p_align = (Elf64_Xword)src->p_align; 982 } 983 984 static void 985 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst) 986 { 987 dst->sh_name = src->sh_name; 988 dst->sh_type = src->sh_type; 989 dst->sh_flags = (Elf64_Xword)src->sh_flags; 990 dst->sh_addr = (Elf64_Addr)src->sh_addr; 991 dst->sh_offset = (Elf64_Off)src->sh_offset; 992 dst->sh_size = (Elf64_Xword)src->sh_size; 993 dst->sh_link = src->sh_link; 994 dst->sh_info = src->sh_info; 995 dst->sh_addralign = (Elf64_Xword)src->sh_addralign; 996 dst->sh_entsize = (Elf64_Xword)src->sh_entsize; 997 } 998 999 /* 1000 * Perform elf_begin on efp->e_fd and verify the ELF file's type and class. 1001 */ 1002 static int 1003 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr) 1004 { 1005 #ifdef _BIG_ENDIAN 1006 uchar_t order = ELFDATA2MSB; 1007 #else 1008 uchar_t order = ELFDATA2LSB; 1009 #endif 1010 Elf32_Ehdr e32; 1011 int is_noelf = -1; 1012 int isa_err = 0; 1013 1014 /* 1015 * Because 32-bit libelf cannot deal with large files, we need to read, 1016 * check, and convert the file header manually in case type == ET_CORE. 1017 */ 1018 if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) { 1019 if (perr != NULL) 1020 *perr = G_FORMAT; 1021 goto err; 1022 } 1023 if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 || 1024 e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) || 1025 e32.e_version != EV_CURRENT) { 1026 if (perr != NULL) { 1027 if (is_noelf == 0 && isa_err) { 1028 *perr = G_ISAINVAL; 1029 } else { 1030 *perr = G_FORMAT; 1031 } 1032 } 1033 goto err; 1034 } 1035 1036 /* 1037 * If the file is 64-bit and we are 32-bit, fail with G_LP64. If the 1038 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr, 1039 * and convert it to a elf_file_header_t. Otherwise, the file is 1040 * 32-bit, so convert e32 to a elf_file_header_t. 1041 */ 1042 if (e32.e_ident[EI_CLASS] == ELFCLASS64) { 1043 #ifdef _LP64 1044 Elf64_Ehdr e64; 1045 1046 if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) { 1047 if (perr != NULL) 1048 *perr = G_FORMAT; 1049 goto err; 1050 } 1051 1052 (void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT); 1053 efp->e_hdr.e_type = e64.e_type; 1054 efp->e_hdr.e_machine = e64.e_machine; 1055 efp->e_hdr.e_version = e64.e_version; 1056 efp->e_hdr.e_entry = e64.e_entry; 1057 efp->e_hdr.e_phoff = e64.e_phoff; 1058 efp->e_hdr.e_shoff = e64.e_shoff; 1059 efp->e_hdr.e_flags = e64.e_flags; 1060 efp->e_hdr.e_ehsize = e64.e_ehsize; 1061 efp->e_hdr.e_phentsize = e64.e_phentsize; 1062 efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum; 1063 efp->e_hdr.e_shentsize = e64.e_shentsize; 1064 efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum; 1065 efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx; 1066 #else /* _LP64 */ 1067 if (perr != NULL) 1068 *perr = G_LP64; 1069 goto err; 1070 #endif /* _LP64 */ 1071 } else { 1072 (void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT); 1073 efp->e_hdr.e_type = e32.e_type; 1074 efp->e_hdr.e_machine = e32.e_machine; 1075 efp->e_hdr.e_version = e32.e_version; 1076 efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry; 1077 efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff; 1078 efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff; 1079 efp->e_hdr.e_flags = e32.e_flags; 1080 efp->e_hdr.e_ehsize = e32.e_ehsize; 1081 efp->e_hdr.e_phentsize = e32.e_phentsize; 1082 efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum; 1083 efp->e_hdr.e_shentsize = e32.e_shentsize; 1084 efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum; 1085 efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx; 1086 } 1087 1088 /* 1089 * If the number of section headers or program headers or the section 1090 * header string table index would overflow their respective fields 1091 * in the ELF header, they're stored in the section header at index 1092 * zero. To simplify use elsewhere, we look for those sentinel values 1093 * here. 1094 */ 1095 if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) || 1096 efp->e_hdr.e_shstrndx == SHN_XINDEX || 1097 efp->e_hdr.e_phnum == PN_XNUM) { 1098 GElf_Shdr shdr; 1099 1100 dprintf("extended ELF header\n"); 1101 1102 if (efp->e_hdr.e_shoff == 0) { 1103 if (perr != NULL) 1104 *perr = G_FORMAT; 1105 goto err; 1106 } 1107 1108 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) { 1109 Elf32_Shdr shdr32; 1110 1111 if (pread64(efp->e_fd, &shdr32, sizeof (shdr32), 1112 efp->e_hdr.e_shoff) != sizeof (shdr32)) { 1113 if (perr != NULL) 1114 *perr = G_FORMAT; 1115 goto err; 1116 } 1117 1118 core_shdr_to_gelf(&shdr32, &shdr); 1119 } else { 1120 if (pread64(efp->e_fd, &shdr, sizeof (shdr), 1121 efp->e_hdr.e_shoff) != sizeof (shdr)) { 1122 if (perr != NULL) 1123 *perr = G_FORMAT; 1124 goto err; 1125 } 1126 } 1127 1128 if (efp->e_hdr.e_shnum == 0) { 1129 efp->e_hdr.e_shnum = shdr.sh_size; 1130 dprintf("section header count %lu\n", 1131 (ulong_t)shdr.sh_size); 1132 } 1133 1134 if (efp->e_hdr.e_shstrndx == SHN_XINDEX) { 1135 efp->e_hdr.e_shstrndx = shdr.sh_link; 1136 dprintf("section string index %u\n", shdr.sh_link); 1137 } 1138 1139 if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) { 1140 efp->e_hdr.e_phnum = shdr.sh_info; 1141 dprintf("program header count %u\n", shdr.sh_info); 1142 } 1143 1144 } else if (efp->e_hdr.e_phoff != 0) { 1145 GElf_Phdr phdr; 1146 uint64_t phnum; 1147 1148 /* 1149 * It's possible this core file came from a system that 1150 * accidentally truncated the e_phnum field without correctly 1151 * using the extended format in the section header at index 1152 * zero. We try to detect and correct that specific type of 1153 * corruption by using the knowledge that the core dump 1154 * routines usually place the data referenced by the first 1155 * program header immediately after the last header element. 1156 */ 1157 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) { 1158 Elf32_Phdr phdr32; 1159 1160 if (pread64(efp->e_fd, &phdr32, sizeof (phdr32), 1161 efp->e_hdr.e_phoff) != sizeof (phdr32)) { 1162 if (perr != NULL) 1163 *perr = G_FORMAT; 1164 goto err; 1165 } 1166 1167 core_phdr_to_gelf(&phdr32, &phdr); 1168 } else { 1169 if (pread64(efp->e_fd, &phdr, sizeof (phdr), 1170 efp->e_hdr.e_phoff) != sizeof (phdr)) { 1171 if (perr != NULL) 1172 *perr = G_FORMAT; 1173 goto err; 1174 } 1175 } 1176 1177 phnum = phdr.p_offset - efp->e_hdr.e_ehsize - 1178 (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize; 1179 phnum /= efp->e_hdr.e_phentsize; 1180 1181 if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) { 1182 dprintf("suspicious program header count %u %u\n", 1183 (uint_t)phnum, efp->e_hdr.e_phnum); 1184 1185 /* 1186 * If the new program header count we computed doesn't 1187 * jive with count in the ELF header, we'll use the 1188 * data that's there and hope for the best. 1189 * 1190 * If it does, it's also possible that the section 1191 * header offset is incorrect; we'll check that and 1192 * possibly try to fix it. 1193 */ 1194 if (phnum <= INT_MAX && 1195 (uint16_t)phnum == efp->e_hdr.e_phnum) { 1196 1197 if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff + 1198 efp->e_hdr.e_phentsize * 1199 (uint_t)efp->e_hdr.e_phnum) { 1200 efp->e_hdr.e_shoff = 1201 efp->e_hdr.e_phoff + 1202 efp->e_hdr.e_phentsize * phnum; 1203 } 1204 1205 efp->e_hdr.e_phnum = (Elf64_Word)phnum; 1206 dprintf("using new program header count\n"); 1207 } else { 1208 dprintf("inconsistent program header count\n"); 1209 } 1210 } 1211 } 1212 1213 /* 1214 * The libelf implementation was never ported to be large-file aware. 1215 * This is typically not a problem for your average executable or 1216 * shared library, but a large 32-bit core file can exceed 2GB in size. 1217 * So if type is ET_CORE, we don't bother doing elf_begin; the code 1218 * in Pfgrab_core() below will do its own i/o and struct conversion. 1219 */ 1220 1221 if (type == ET_CORE) { 1222 efp->e_elf = NULL; 1223 return (0); 1224 } 1225 1226 if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) { 1227 if (perr != NULL) 1228 *perr = G_ELF; 1229 goto err; 1230 } 1231 1232 return (0); 1233 1234 err: 1235 efp->e_elf = NULL; 1236 return (-1); 1237 } 1238 1239 /* 1240 * Open the specified file and then do a core_elf_fdopen on it. 1241 */ 1242 static int 1243 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr) 1244 { 1245 (void) memset(efp, 0, sizeof (elf_file_t)); 1246 1247 if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) { 1248 if (core_elf_fdopen(efp, type, perr) == 0) 1249 return (0); 1250 1251 (void) close(efp->e_fd); 1252 efp->e_fd = -1; 1253 } 1254 1255 return (-1); 1256 } 1257 1258 /* 1259 * Close the ELF handle and file descriptor. 1260 */ 1261 static void 1262 core_elf_close(elf_file_t *efp) 1263 { 1264 if (efp->e_elf != NULL) { 1265 (void) elf_end(efp->e_elf); 1266 efp->e_elf = NULL; 1267 } 1268 1269 if (efp->e_fd != -1) { 1270 (void) close(efp->e_fd); 1271 efp->e_fd = -1; 1272 } 1273 } 1274 1275 /* 1276 * Given an ELF file for a statically linked executable, locate the likely 1277 * primary text section and fill in rl_base with its virtual address. 1278 */ 1279 static map_info_t * 1280 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp) 1281 { 1282 GElf_Phdr phdr; 1283 uint_t i; 1284 size_t nphdrs; 1285 1286 if (elf_getphnum(elf, &nphdrs) == 0) 1287 return (NULL); 1288 1289 for (i = 0; i < nphdrs; i++) { 1290 if (gelf_getphdr(elf, i, &phdr) != NULL && 1291 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) { 1292 rlp->rl_base = phdr.p_vaddr; 1293 return (Paddr2mptr(P, rlp->rl_base)); 1294 } 1295 } 1296 1297 return (NULL); 1298 } 1299 1300 /* 1301 * Given an ELF file and the librtld_db structure corresponding to its primary 1302 * text mapping, deduce where its data segment was loaded and fill in 1303 * rl_data_base and prmap_t.pr_offset accordingly. 1304 */ 1305 static map_info_t * 1306 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp) 1307 { 1308 GElf_Ehdr ehdr; 1309 GElf_Phdr phdr; 1310 map_info_t *mp; 1311 uint_t i, pagemask; 1312 size_t nphdrs; 1313 1314 rlp->rl_data_base = NULL; 1315 1316 /* 1317 * Find the first loadable, writeable Phdr and compute rl_data_base 1318 * as the virtual address at which is was loaded. 1319 */ 1320 if (gelf_getehdr(elf, &ehdr) == NULL || 1321 elf_getphnum(elf, &nphdrs) == 0) 1322 return (NULL); 1323 1324 for (i = 0; i < nphdrs; i++) { 1325 if (gelf_getphdr(elf, i, &phdr) != NULL && 1326 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) { 1327 rlp->rl_data_base = phdr.p_vaddr; 1328 if (ehdr.e_type == ET_DYN) 1329 rlp->rl_data_base += rlp->rl_base; 1330 break; 1331 } 1332 } 1333 1334 /* 1335 * If we didn't find an appropriate phdr or if the address we 1336 * computed has no mapping, return NULL. 1337 */ 1338 if (rlp->rl_data_base == NULL || 1339 (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL) 1340 return (NULL); 1341 1342 /* 1343 * It wouldn't be procfs-related code if we didn't make use of 1344 * unclean knowledge of segvn, even in userland ... the prmap_t's 1345 * pr_offset field will be the segvn offset from mmap(2)ing the 1346 * data section, which will be the file offset & PAGEMASK. 1347 */ 1348 pagemask = ~(mp->map_pmap.pr_pagesize - 1); 1349 mp->map_pmap.pr_offset = phdr.p_offset & pagemask; 1350 1351 return (mp); 1352 } 1353 1354 /* 1355 * Librtld_db agent callback for iterating over load object mappings. 1356 * For each load object, we allocate a new file_info_t, perform naming, 1357 * and attempt to construct a symbol table for the load object. 1358 */ 1359 static int 1360 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P) 1361 { 1362 char lname[PATH_MAX]; 1363 file_info_t *fp; 1364 map_info_t *mp; 1365 1366 if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) { 1367 dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr); 1368 return (1); /* Keep going; forget this if we can't get a name */ 1369 } 1370 1371 dprintf("rd_loadobj name = \"%s\" rl_base = %p\n", 1372 lname, (void *)rlp->rl_base); 1373 1374 if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) { 1375 dprintf("no mapping for %p\n", (void *)rlp->rl_base); 1376 return (1); /* No mapping; advance to next mapping */ 1377 } 1378 1379 if ((fp = mp->map_file) == NULL) { 1380 if ((fp = malloc(sizeof (file_info_t))) == NULL) { 1381 P->core->core_errno = errno; 1382 dprintf("failed to malloc mapping data\n"); 1383 return (0); /* Abort */ 1384 } 1385 1386 (void) memset(fp, 0, sizeof (file_info_t)); 1387 1388 list_link(fp, &P->file_head); 1389 mp->map_file = fp; 1390 P->num_files++; 1391 1392 fp->file_ref = 1; 1393 fp->file_fd = -1; 1394 } 1395 1396 if ((fp->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) { 1397 P->core->core_errno = errno; 1398 dprintf("failed to malloc mapping data\n"); 1399 return (0); /* Abort */ 1400 } 1401 1402 *fp->file_lo = *rlp; 1403 1404 if (fp->file_lname == NULL && 1405 strcmp(mp->map_pmap.pr_mapname, "a.out") == 0) { 1406 /* 1407 * Naming dance part 1: if the file_info_t is unnamed and 1408 * it represents the main executable, name it after the 1409 * execname. 1410 */ 1411 fp->file_lname = P->execname ? 1412 strdup(P->execname) : strdup("a.out"); 1413 } 1414 1415 if (lname[0] != '\0') { 1416 /* 1417 * Naming dance part 2: if we got a name from librtld_db, then 1418 * copy this name to the prmap_t if it is unnamed. If the 1419 * file_info_t is unnamed, name it after the lname. 1420 */ 1421 if (mp->map_pmap.pr_mapname[0] == '\0') { 1422 (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ); 1423 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 1424 } 1425 1426 if (fp->file_lname == NULL) 1427 fp->file_lname = strdup(lname); 1428 1429 } else if (fp->file_lname == NULL && 1430 mp->map_pmap.pr_mapname[0] != '\0') { 1431 /* 1432 * Naming dance part 3: if the mapping is named and the 1433 * file_info_t is not, name the file after the mapping. 1434 */ 1435 fp->file_lname = strdup(mp->map_pmap.pr_mapname); 1436 } 1437 1438 if (fp->file_lname != NULL) 1439 fp->file_lbase = basename(fp->file_lname); 1440 1441 /* 1442 * Associate the file and the mapping, and attempt to build 1443 * a symbol table for this file. 1444 */ 1445 (void) strcpy(fp->file_pname, mp->map_pmap.pr_mapname); 1446 fp->file_map = mp; 1447 1448 Pbuild_file_symtab(P, fp); 1449 1450 if (fp->file_elf == NULL) 1451 return (1); /* No symbol table; advance to next mapping */ 1452 1453 /* 1454 * Locate the start of a data segment associated with this file, 1455 * name it after the file, and establish the mp->map_file link: 1456 */ 1457 if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) { 1458 dprintf("found data for %s at %p (pr_offset 0x%llx)\n", 1459 fp->file_pname, (void *)fp->file_lo->rl_data_base, 1460 mp->map_pmap.pr_offset); 1461 1462 for (; mp < P->mappings + P->map_count; mp++) { 1463 if (mp->map_pmap.pr_vaddr > fp->file_lo->rl_bend) 1464 break; 1465 if (mp->map_file == NULL) { 1466 mp->map_file = fp; 1467 fp->file_ref++; 1468 } 1469 1470 if (!(mp->map_pmap.pr_mflags & MA_BREAK)) 1471 (void) strcpy(mp->map_pmap.pr_mapname, 1472 fp->file_pname); 1473 } 1474 } 1475 1476 return (1); /* Advance to next mapping */ 1477 } 1478 1479 /* 1480 * Callback function for Pfindexec(). In order to confirm a given pathname, 1481 * we verify that we can open it as an ELF file of type ET_EXEC. 1482 */ 1483 static int 1484 core_exec_open(const char *path, void *efp) 1485 { 1486 return (core_elf_open(efp, path, ET_EXEC, NULL) == 0); 1487 } 1488 1489 /* 1490 * Attempt to load any section headers found in the core file. If present, 1491 * this will refer to non-loadable data added to the core file by the kernel 1492 * based on coreadm(1M) settings, including CTF data and the symbol table. 1493 */ 1494 static void 1495 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp) 1496 { 1497 GElf_Shdr *shp, *shdrs = NULL; 1498 char *shstrtab = NULL; 1499 ulong_t shstrtabsz; 1500 const char *name; 1501 map_info_t *mp; 1502 1503 size_t nbytes; 1504 void *buf; 1505 int i; 1506 1507 if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) { 1508 dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n", 1509 efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum); 1510 return; 1511 } 1512 1513 /* 1514 * Read the section header table from the core file and then iterate 1515 * over the section headers, converting each to a GElf_Shdr. 1516 */ 1517 shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr)); 1518 nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize; 1519 buf = malloc(nbytes); 1520 1521 if (shdrs == NULL || buf == NULL) { 1522 dprintf("failed to malloc %u section headers: %s\n", 1523 (uint_t)efp->e_hdr.e_shnum, strerror(errno)); 1524 free(buf); 1525 goto out; 1526 } 1527 1528 if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) { 1529 dprintf("failed to read section headers at off %lld: %s\n", 1530 (longlong_t)efp->e_hdr.e_shoff, strerror(errno)); 1531 free(buf); 1532 goto out; 1533 } 1534 1535 for (i = 0; i < efp->e_hdr.e_shnum; i++) { 1536 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i; 1537 1538 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) 1539 core_shdr_to_gelf(p, &shdrs[i]); 1540 else 1541 (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr)); 1542 } 1543 1544 free(buf); 1545 buf = NULL; 1546 1547 /* 1548 * Read the .shstrtab section from the core file, terminating it with 1549 * an extra \0 so that a corrupt section will not cause us to die. 1550 */ 1551 shp = &shdrs[efp->e_hdr.e_shstrndx]; 1552 shstrtabsz = shp->sh_size; 1553 1554 if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) { 1555 dprintf("failed to allocate %lu bytes for shstrtab\n", 1556 (ulong_t)shstrtabsz); 1557 goto out; 1558 } 1559 1560 if (pread64(efp->e_fd, shstrtab, shstrtabsz, 1561 shp->sh_offset) != shstrtabsz) { 1562 dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n", 1563 shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno)); 1564 goto out; 1565 } 1566 1567 shstrtab[shstrtabsz] = '\0'; 1568 1569 /* 1570 * Now iterate over each section in the section header table, locating 1571 * sections of interest and initializing more of the ps_prochandle. 1572 */ 1573 for (i = 0; i < efp->e_hdr.e_shnum; i++) { 1574 shp = &shdrs[i]; 1575 name = shstrtab + shp->sh_name; 1576 1577 if (shp->sh_name >= shstrtabsz) { 1578 dprintf("skipping section [%d]: corrupt sh_name\n", i); 1579 continue; 1580 } 1581 1582 if (shp->sh_link >= efp->e_hdr.e_shnum) { 1583 dprintf("skipping section [%d]: corrupt sh_link\n", i); 1584 continue; 1585 } 1586 1587 dprintf("found section header %s (sh_addr 0x%llx)\n", 1588 name, (u_longlong_t)shp->sh_addr); 1589 1590 if (strcmp(name, ".SUNW_ctf") == 0) { 1591 if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) { 1592 dprintf("no map at addr 0x%llx for %s [%d]\n", 1593 (u_longlong_t)shp->sh_addr, name, i); 1594 continue; 1595 } 1596 1597 if (mp->map_file == NULL || 1598 mp->map_file->file_ctf_buf != NULL) { 1599 dprintf("no mapping file or duplicate buffer " 1600 "for %s [%d]\n", name, i); 1601 continue; 1602 } 1603 1604 if ((buf = malloc(shp->sh_size)) == NULL || 1605 pread64(efp->e_fd, buf, shp->sh_size, 1606 shp->sh_offset) != shp->sh_size) { 1607 dprintf("skipping section %s [%d]: %s\n", 1608 name, i, strerror(errno)); 1609 free(buf); 1610 continue; 1611 } 1612 1613 mp->map_file->file_ctf_size = shp->sh_size; 1614 mp->map_file->file_ctf_buf = buf; 1615 1616 if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM) 1617 mp->map_file->file_ctf_dyn = 1; 1618 1619 } else if (strcmp(name, ".symtab") == 0) { 1620 fake_up_symtab(P, &efp->e_hdr, 1621 shp, &shdrs[shp->sh_link]); 1622 } 1623 } 1624 out: 1625 free(shstrtab); 1626 free(shdrs); 1627 } 1628 1629 /* 1630 * Main engine for core file initialization: given an fd for the core file 1631 * and an optional pathname, construct the ps_prochandle. The aout_path can 1632 * either be a suggested executable pathname, or a suggested directory to 1633 * use as a possible current working directory. 1634 */ 1635 struct ps_prochandle * 1636 Pfgrab_core(int core_fd, const char *aout_path, int *perr) 1637 { 1638 struct ps_prochandle *P; 1639 map_info_t *stk_mp, *brk_mp; 1640 const char *execname; 1641 char *interp; 1642 int i, notes, pagesize; 1643 uintptr_t addr, base_addr; 1644 struct stat64 stbuf; 1645 void *phbuf, *php; 1646 size_t nbytes; 1647 1648 elf_file_t aout; 1649 elf_file_t core; 1650 1651 Elf_Scn *scn, *intp_scn = NULL; 1652 Elf_Data *dp; 1653 1654 GElf_Phdr phdr, note_phdr; 1655 GElf_Shdr shdr; 1656 GElf_Xword nleft; 1657 1658 if (elf_version(EV_CURRENT) == EV_NONE) { 1659 dprintf("libproc ELF version is more recent than libelf\n"); 1660 *perr = G_ELF; 1661 return (NULL); 1662 } 1663 1664 aout.e_elf = NULL; 1665 aout.e_fd = -1; 1666 1667 core.e_elf = NULL; 1668 core.e_fd = core_fd; 1669 1670 /* 1671 * Allocate and initialize a ps_prochandle structure for the core. 1672 * There are several key pieces of initialization here: 1673 * 1674 * 1. The PS_DEAD state flag marks this prochandle as a core file. 1675 * PS_DEAD also thus prevents all operations which require state 1676 * to be PS_STOP from operating on this handle. 1677 * 1678 * 2. We keep the core file fd in P->asfd since the core file contains 1679 * the remnants of the process address space. 1680 * 1681 * 3. We set the P->info_valid bit because all information about the 1682 * core is determined by the end of this function; there is no need 1683 * for proc_update_maps() to reload mappings at any later point. 1684 * 1685 * 4. The read/write ops vector uses our core_rw() function defined 1686 * above to handle i/o requests. 1687 */ 1688 if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) { 1689 *perr = G_STRANGE; 1690 return (NULL); 1691 } 1692 1693 (void) memset(P, 0, sizeof (struct ps_prochandle)); 1694 (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL); 1695 P->state = PS_DEAD; 1696 P->pid = (pid_t)-1; 1697 P->asfd = core.e_fd; 1698 P->ctlfd = -1; 1699 P->statfd = -1; 1700 P->agentctlfd = -1; 1701 P->agentstatfd = -1; 1702 P->info_valid = 1; 1703 P->ops = &P_core_ops; 1704 1705 Pinitsym(P); 1706 1707 /* 1708 * Fstat and open the core file and make sure it is a valid ELF core. 1709 */ 1710 if (fstat64(P->asfd, &stbuf) == -1) { 1711 *perr = G_STRANGE; 1712 goto err; 1713 } 1714 1715 if (core_elf_fdopen(&core, ET_CORE, perr) == -1) 1716 goto err; 1717 1718 /* 1719 * Allocate and initialize a core_info_t to hang off the ps_prochandle 1720 * structure. We keep all core-specific information in this structure. 1721 */ 1722 if ((P->core = malloc(sizeof (core_info_t))) == NULL) { 1723 *perr = G_STRANGE; 1724 goto err; 1725 } 1726 1727 list_link(&P->core->core_lwp_head, NULL); 1728 P->core->core_errno = 0; 1729 P->core->core_lwp = NULL; 1730 P->core->core_nlwp = 0; 1731 P->core->core_size = stbuf.st_size; 1732 P->core->core_platform = NULL; 1733 P->core->core_uts = NULL; 1734 P->core->core_cred = NULL; 1735 /* 1736 * In the days before adjustable core file content, this was the 1737 * default core file content. For new core files, this value will 1738 * be overwritten by the NT_CONTENT note section. 1739 */ 1740 P->core->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP | 1741 CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON | 1742 CC_CONTENT_SHANON; 1743 P->core->core_priv = NULL; 1744 P->core->core_priv_size = 0; 1745 P->core->core_privinfo = NULL; 1746 P->core->core_zonename = NULL; 1747 P->core->core_ppii = NULL; 1748 1749 #if defined(__i386) || defined(__amd64) 1750 P->core->core_ldt = NULL; 1751 P->core->core_nldt = 0; 1752 #endif 1753 1754 switch (core.e_hdr.e_ident[EI_CLASS]) { 1755 case ELFCLASS32: 1756 P->core->core_dmodel = PR_MODEL_ILP32; 1757 break; 1758 case ELFCLASS64: 1759 P->core->core_dmodel = PR_MODEL_LP64; 1760 break; 1761 default: 1762 *perr = G_FORMAT; 1763 goto err; 1764 } 1765 1766 /* 1767 * Because the core file may be a large file, we can't use libelf to 1768 * read the Phdrs. We use e_phnum and e_phentsize to simplify things. 1769 */ 1770 nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize; 1771 1772 if ((phbuf = malloc(nbytes)) == NULL) { 1773 *perr = G_STRANGE; 1774 goto err; 1775 } 1776 1777 if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) { 1778 *perr = G_STRANGE; 1779 free(phbuf); 1780 goto err; 1781 } 1782 1783 /* 1784 * Iterate through the program headers in the core file. 1785 * We're interested in two types of Phdrs: PT_NOTE (which 1786 * contains a set of saved /proc structures), and PT_LOAD (which 1787 * represents a memory mapping from the process's address space). 1788 * In the case of PT_NOTE, we're interested in the last PT_NOTE 1789 * in the core file; currently the first PT_NOTE (if present) 1790 * contains /proc structs in the pre-2.6 unstructured /proc format. 1791 */ 1792 for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) { 1793 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64) 1794 (void) memcpy(&phdr, php, sizeof (GElf_Phdr)); 1795 else 1796 core_phdr_to_gelf(php, &phdr); 1797 1798 switch (phdr.p_type) { 1799 case PT_NOTE: 1800 note_phdr = phdr; 1801 notes++; 1802 break; 1803 1804 case PT_LOAD: 1805 if (core_add_mapping(P, &phdr) == -1) { 1806 *perr = G_STRANGE; 1807 free(phbuf); 1808 goto err; 1809 } 1810 break; 1811 } 1812 1813 php = (char *)php + core.e_hdr.e_phentsize; 1814 } 1815 1816 free(phbuf); 1817 1818 Psort_mappings(P); 1819 1820 /* 1821 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE 1822 * was present, abort. The core file is either corrupt or too old. 1823 */ 1824 if (notes == 0 || notes == 1) { 1825 *perr = G_NOTE; 1826 goto err; 1827 } 1828 1829 /* 1830 * Advance the seek pointer to the start of the PT_NOTE data 1831 */ 1832 if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) { 1833 dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n"); 1834 *perr = G_STRANGE; 1835 goto err; 1836 } 1837 1838 /* 1839 * Now process the PT_NOTE structures. Each one is preceded by 1840 * an Elf{32/64}_Nhdr structure describing its type and size. 1841 * 1842 * +--------+ 1843 * | header | 1844 * +--------+ 1845 * | name | 1846 * | ... | 1847 * +--------+ 1848 * | desc | 1849 * | ... | 1850 * +--------+ 1851 */ 1852 for (nleft = note_phdr.p_filesz; nleft > 0; ) { 1853 Elf64_Nhdr nhdr; 1854 off64_t off, namesz; 1855 1856 /* 1857 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr 1858 * as different types, they are both of the same content and 1859 * size, so we don't need to worry about 32/64 conversion here. 1860 */ 1861 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) { 1862 dprintf("Pgrab_core: failed to read ELF note header\n"); 1863 *perr = G_NOTE; 1864 goto err; 1865 } 1866 1867 /* 1868 * According to the System V ABI, the amount of padding 1869 * following the name field should align the description 1870 * field on a 4 byte boundary for 32-bit binaries or on an 8 1871 * byte boundary for 64-bit binaries. However, this change 1872 * was not made correctly during the 64-bit port so all 1873 * descriptions can assume only 4-byte alignment. We ignore 1874 * the name field and the padding to 4-byte alignment. 1875 */ 1876 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4); 1877 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) { 1878 dprintf("failed to seek past name and padding\n"); 1879 *perr = G_STRANGE; 1880 goto err; 1881 } 1882 1883 dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n", 1884 nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz); 1885 1886 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR); 1887 1888 /* 1889 * Invoke the note handler function from our table 1890 */ 1891 if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) { 1892 if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) { 1893 *perr = G_NOTE; 1894 goto err; 1895 } 1896 } else 1897 (void) note_notsup(P, nhdr.n_descsz); 1898 1899 /* 1900 * Seek past the current note data to the next Elf_Nhdr 1901 */ 1902 if (lseek64(P->asfd, off + nhdr.n_descsz, 1903 SEEK_SET) == (off64_t)-1) { 1904 dprintf("Pgrab_core: failed to seek to next nhdr\n"); 1905 *perr = G_STRANGE; 1906 goto err; 1907 } 1908 1909 /* 1910 * Subtract the size of the header and its data from what 1911 * we have left to process. 1912 */ 1913 nleft -= sizeof (nhdr) + namesz + nhdr.n_descsz; 1914 } 1915 1916 if (nleft != 0) { 1917 dprintf("Pgrab_core: note section malformed\n"); 1918 *perr = G_STRANGE; 1919 goto err; 1920 } 1921 1922 if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) { 1923 pagesize = getpagesize(); 1924 dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize); 1925 } 1926 1927 /* 1928 * Locate and label the mappings corresponding to the end of the 1929 * heap (MA_BREAK) and the base of the stack (MA_STACK). 1930 */ 1931 if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) && 1932 (brk_mp = Paddr2mptr(P, P->status.pr_brkbase + 1933 P->status.pr_brksize - 1)) != NULL) 1934 brk_mp->map_pmap.pr_mflags |= MA_BREAK; 1935 else 1936 brk_mp = NULL; 1937 1938 if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL) 1939 stk_mp->map_pmap.pr_mflags |= MA_STACK; 1940 1941 /* 1942 * At this point, we have enough information to look for the 1943 * executable and open it: we have access to the auxv, a psinfo_t, 1944 * and the ability to read from mappings provided by the core file. 1945 */ 1946 (void) Pfindexec(P, aout_path, core_exec_open, &aout); 1947 dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL"); 1948 execname = P->execname ? P->execname : "a.out"; 1949 1950 /* 1951 * Iterate through the sections, looking for the .dynamic and .interp 1952 * sections. If we encounter them, remember their section pointers. 1953 */ 1954 for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) { 1955 char *sname; 1956 1957 if ((gelf_getshdr(scn, &shdr) == NULL) || 1958 (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx, 1959 (size_t)shdr.sh_name)) == NULL) 1960 continue; 1961 1962 if (strcmp(sname, ".interp") == 0) 1963 intp_scn = scn; 1964 } 1965 1966 /* 1967 * Get the AT_BASE auxv element. If this is missing (-1), then 1968 * we assume this is a statically-linked executable. 1969 */ 1970 base_addr = Pgetauxval(P, AT_BASE); 1971 1972 /* 1973 * In order to get librtld_db initialized, we'll need to identify 1974 * and name the mapping corresponding to the run-time linker. The 1975 * AT_BASE auxv element tells us the address where it was mapped, 1976 * and the .interp section of the executable tells us its path. 1977 * If for some reason that doesn't pan out, just use ld.so.1. 1978 */ 1979 if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL && 1980 dp->d_size != 0) { 1981 dprintf(".interp = <%s>\n", (char *)dp->d_buf); 1982 interp = dp->d_buf; 1983 1984 } else if (base_addr != (uintptr_t)-1L) { 1985 if (P->core->core_dmodel == PR_MODEL_LP64) 1986 interp = "/usr/lib/64/ld.so.1"; 1987 else 1988 interp = "/usr/lib/ld.so.1"; 1989 1990 dprintf(".interp section is missing or could not be read; " 1991 "defaulting to %s\n", interp); 1992 } else 1993 dprintf("detected statically linked executable\n"); 1994 1995 /* 1996 * If we have an AT_BASE element, name the mapping at that address 1997 * using the interpreter pathname. Name the corresponding data 1998 * mapping after the interpreter as well. 1999 */ 2000 if (base_addr != (uintptr_t)-1L) { 2001 elf_file_t intf; 2002 2003 P->map_ldso = core_name_mapping(P, base_addr, interp); 2004 2005 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) { 2006 rd_loadobj_t rl; 2007 map_info_t *dmp; 2008 2009 rl.rl_base = base_addr; 2010 dmp = core_find_data(P, intf.e_elf, &rl); 2011 2012 if (dmp != NULL) { 2013 dprintf("renamed data at %p to %s\n", 2014 (void *)rl.rl_data_base, interp); 2015 (void) strncpy(dmp->map_pmap.pr_mapname, 2016 interp, PRMAPSZ); 2017 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2018 } 2019 } 2020 2021 core_elf_close(&intf); 2022 } 2023 2024 /* 2025 * If we have an AT_ENTRY element, name the mapping at that address 2026 * using the special name "a.out" just like /proc does. 2027 */ 2028 if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L) 2029 P->map_exec = core_name_mapping(P, addr, "a.out"); 2030 2031 /* 2032 * If we're a statically linked executable, then just locate the 2033 * executable's text and data and name them after the executable. 2034 */ 2035 if (base_addr == (uintptr_t)-1L) { 2036 map_info_t *tmp, *dmp; 2037 file_info_t *fp; 2038 rd_loadobj_t rl; 2039 2040 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL && 2041 (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) { 2042 (void) strncpy(tmp->map_pmap.pr_mapname, 2043 execname, PRMAPSZ); 2044 tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2045 (void) strncpy(dmp->map_pmap.pr_mapname, 2046 execname, PRMAPSZ); 2047 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2048 } 2049 2050 if ((P->map_exec = tmp) != NULL && 2051 (fp = malloc(sizeof (file_info_t))) != NULL) { 2052 2053 (void) memset(fp, 0, sizeof (file_info_t)); 2054 2055 list_link(fp, &P->file_head); 2056 tmp->map_file = fp; 2057 P->num_files++; 2058 2059 fp->file_ref = 1; 2060 fp->file_fd = -1; 2061 2062 fp->file_lo = malloc(sizeof (rd_loadobj_t)); 2063 fp->file_lname = strdup(execname); 2064 2065 if (fp->file_lo) 2066 *fp->file_lo = rl; 2067 if (fp->file_lname) 2068 fp->file_lbase = basename(fp->file_lname); 2069 2070 (void) strcpy(fp->file_pname, 2071 P->mappings[0].map_pmap.pr_mapname); 2072 fp->file_map = tmp; 2073 2074 Pbuild_file_symtab(P, fp); 2075 2076 if (dmp != NULL) { 2077 dmp->map_file = fp; 2078 fp->file_ref++; 2079 } 2080 } 2081 } 2082 2083 core_elf_close(&aout); 2084 2085 /* 2086 * We now have enough information to initialize librtld_db. 2087 * After it warms up, we can iterate through the load object chain 2088 * in the core, which will allow us to construct the file info 2089 * we need to provide symbol information for the other shared 2090 * libraries, and also to fill in the missing mapping names. 2091 */ 2092 rd_log(_libproc_debug); 2093 2094 if ((P->rap = rd_new(P)) != NULL) { 2095 (void) rd_loadobj_iter(P->rap, (rl_iter_f *) 2096 core_iter_mapping, P); 2097 2098 if (P->core->core_errno != 0) { 2099 errno = P->core->core_errno; 2100 *perr = G_STRANGE; 2101 goto err; 2102 } 2103 } else 2104 dprintf("failed to initialize rtld_db agent\n"); 2105 2106 /* 2107 * If there are sections, load them and process the data from any 2108 * sections that we can use to annotate the file_info_t's. 2109 */ 2110 core_load_shdrs(P, &core); 2111 2112 /* 2113 * If we previously located a stack or break mapping, and they are 2114 * still anonymous, we now assume that they were MAP_ANON mappings. 2115 * If brk_mp turns out to now have a name, then the heap is still 2116 * sitting at the end of the executable's data+bss mapping: remove 2117 * the previous MA_BREAK setting to be consistent with /proc. 2118 */ 2119 if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0') 2120 stk_mp->map_pmap.pr_mflags |= MA_ANON; 2121 if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0') 2122 brk_mp->map_pmap.pr_mflags |= MA_ANON; 2123 else if (brk_mp != NULL) 2124 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK; 2125 2126 *perr = 0; 2127 return (P); 2128 2129 err: 2130 Pfree(P); 2131 core_elf_close(&aout); 2132 return (NULL); 2133 } 2134 2135 /* 2136 * Grab a core file using a pathname. We just open it and call Pfgrab_core(). 2137 */ 2138 struct ps_prochandle * 2139 Pgrab_core(const char *core, const char *aout, int gflag, int *perr) 2140 { 2141 int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR; 2142 2143 if ((fd = open64(core, oflag)) >= 0) 2144 return (Pfgrab_core(fd, aout, perr)); 2145 2146 if (errno != ENOENT) 2147 *perr = G_STRANGE; 2148 else 2149 *perr = G_NOCORE; 2150 2151 return (NULL); 2152 } 2153