1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/utsname.h> 28 #include <sys/sysmacros.h> 29 30 #include <alloca.h> 31 #include <rtld_db.h> 32 #include <libgen.h> 33 #include <limits.h> 34 #include <string.h> 35 #include <stdlib.h> 36 #include <unistd.h> 37 #include <errno.h> 38 #include <gelf.h> 39 #include <stddef.h> 40 41 #include "libproc.h" 42 #include "Pcontrol.h" 43 #include "P32ton.h" 44 #include "Putil.h" 45 46 /* 47 * Pcore.c - Code to initialize a ps_prochandle from a core dump. We 48 * allocate an additional structure to hold information from the core 49 * file, and attach this to the standard ps_prochandle in place of the 50 * ability to examine /proc/<pid>/ files. 51 */ 52 53 /* 54 * Basic i/o function for reading and writing from the process address space 55 * stored in the core file and associated shared libraries. We compute the 56 * appropriate fd and offsets, and let the provided prw function do the rest. 57 */ 58 static ssize_t 59 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr, 60 ssize_t (*prw)(int, void *, size_t, off64_t)) 61 { 62 ssize_t resid = n; 63 64 while (resid != 0) { 65 map_info_t *mp = Paddr2mptr(P, addr); 66 67 uintptr_t mapoff; 68 ssize_t len; 69 off64_t off; 70 int fd; 71 72 if (mp == NULL) 73 break; /* No mapping for this address */ 74 75 if (mp->map_pmap.pr_mflags & MA_RESERVED1) { 76 if (mp->map_file == NULL || mp->map_file->file_fd < 0) 77 break; /* No file or file not open */ 78 79 fd = mp->map_file->file_fd; 80 } else 81 fd = P->asfd; 82 83 mapoff = addr - mp->map_pmap.pr_vaddr; 84 len = MIN(resid, mp->map_pmap.pr_size - mapoff); 85 off = mp->map_offset + mapoff; 86 87 if ((len = prw(fd, buf, len, off)) <= 0) 88 break; 89 90 resid -= len; 91 addr += len; 92 buf = (char *)buf + len; 93 } 94 95 /* 96 * Important: Be consistent with the behavior of i/o on the as file: 97 * writing to an invalid address yields EIO; reading from an invalid 98 * address falls through to returning success and zero bytes. 99 */ 100 if (resid == n && n != 0 && prw != pread64) { 101 errno = EIO; 102 return (-1); 103 } 104 105 return (n - resid); 106 } 107 108 static ssize_t 109 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr) 110 { 111 return (core_rw(P, buf, n, addr, pread64)); 112 } 113 114 static ssize_t 115 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr) 116 { 117 return (core_rw(P, (void *)buf, n, addr, 118 (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64)); 119 } 120 121 static const ps_rwops_t P_core_ops = { Pread_core, Pwrite_core }; 122 123 /* 124 * Return the lwp_info_t for the given lwpid. If no such lwpid has been 125 * encountered yet, allocate a new structure and return a pointer to it. 126 * Create a list of lwp_info_t structures sorted in decreasing lwp_id order. 127 */ 128 static lwp_info_t * 129 lwpid2info(struct ps_prochandle *P, lwpid_t id) 130 { 131 lwp_info_t *lwp = list_next(&P->core->core_lwp_head); 132 lwp_info_t *next; 133 uint_t i; 134 135 for (i = 0; i < P->core->core_nlwp; i++, lwp = list_next(lwp)) { 136 if (lwp->lwp_id == id) { 137 P->core->core_lwp = lwp; 138 return (lwp); 139 } 140 if (lwp->lwp_id < id) { 141 break; 142 } 143 } 144 145 next = lwp; 146 if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL) 147 return (NULL); 148 149 list_link(lwp, next); 150 lwp->lwp_id = id; 151 152 P->core->core_lwp = lwp; 153 P->core->core_nlwp++; 154 155 return (lwp); 156 } 157 158 /* 159 * The core file itself contains a series of NOTE segments containing saved 160 * structures from /proc at the time the process died. For each note we 161 * comprehend, we define a function to read it in from the core file, 162 * convert it to our native data model if necessary, and store it inside 163 * the ps_prochandle. Each function is invoked by Pfgrab_core() with the 164 * seek pointer on P->asfd positioned appropriately. We populate a table 165 * of pointers to these note functions below. 166 */ 167 168 static int 169 note_pstatus(struct ps_prochandle *P, size_t nbytes) 170 { 171 #ifdef _LP64 172 if (P->core->core_dmodel == PR_MODEL_ILP32) { 173 pstatus32_t ps32; 174 175 if (nbytes < sizeof (pstatus32_t) || 176 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32)) 177 goto err; 178 179 pstatus_32_to_n(&ps32, &P->status); 180 181 } else 182 #endif 183 if (nbytes < sizeof (pstatus_t) || 184 read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t)) 185 goto err; 186 187 P->orig_status = P->status; 188 P->pid = P->status.pr_pid; 189 190 return (0); 191 192 err: 193 dprintf("Pgrab_core: failed to read NT_PSTATUS\n"); 194 return (-1); 195 } 196 197 static int 198 note_lwpstatus(struct ps_prochandle *P, size_t nbytes) 199 { 200 lwp_info_t *lwp; 201 lwpstatus_t lps; 202 203 #ifdef _LP64 204 if (P->core->core_dmodel == PR_MODEL_ILP32) { 205 lwpstatus32_t l32; 206 207 if (nbytes < sizeof (lwpstatus32_t) || 208 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32)) 209 goto err; 210 211 lwpstatus_32_to_n(&l32, &lps); 212 } else 213 #endif 214 if (nbytes < sizeof (lwpstatus_t) || 215 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps)) 216 goto err; 217 218 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) { 219 dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n"); 220 return (-1); 221 } 222 223 /* 224 * Erase a useless and confusing artifact of the kernel implementation: 225 * the lwps which did *not* create the core will show SIGKILL. We can 226 * be assured this is bogus because SIGKILL can't produce core files. 227 */ 228 if (lps.pr_cursig == SIGKILL) 229 lps.pr_cursig = 0; 230 231 (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps)); 232 return (0); 233 234 err: 235 dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n"); 236 return (-1); 237 } 238 239 static int 240 note_psinfo(struct ps_prochandle *P, size_t nbytes) 241 { 242 #ifdef _LP64 243 if (P->core->core_dmodel == PR_MODEL_ILP32) { 244 psinfo32_t ps32; 245 246 if (nbytes < sizeof (psinfo32_t) || 247 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32)) 248 goto err; 249 250 psinfo_32_to_n(&ps32, &P->psinfo); 251 } else 252 #endif 253 if (nbytes < sizeof (psinfo_t) || 254 read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t)) 255 goto err; 256 257 dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname); 258 dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs); 259 dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat); 260 261 return (0); 262 263 err: 264 dprintf("Pgrab_core: failed to read NT_PSINFO\n"); 265 return (-1); 266 } 267 268 static int 269 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes) 270 { 271 lwp_info_t *lwp; 272 lwpsinfo_t lps; 273 274 #ifdef _LP64 275 if (P->core->core_dmodel == PR_MODEL_ILP32) { 276 lwpsinfo32_t l32; 277 278 if (nbytes < sizeof (lwpsinfo32_t) || 279 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32)) 280 goto err; 281 282 lwpsinfo_32_to_n(&l32, &lps); 283 } else 284 #endif 285 if (nbytes < sizeof (lwpsinfo_t) || 286 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps)) 287 goto err; 288 289 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) { 290 dprintf("Pgrab_core: failed to add NT_LWPSINFO\n"); 291 return (-1); 292 } 293 294 (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps)); 295 return (0); 296 297 err: 298 dprintf("Pgrab_core: failed to read NT_LWPSINFO\n"); 299 return (-1); 300 } 301 302 static int 303 note_platform(struct ps_prochandle *P, size_t nbytes) 304 { 305 char *plat; 306 307 if (P->core->core_platform != NULL) 308 return (0); /* Already seen */ 309 310 if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) { 311 if (read(P->asfd, plat, nbytes) != nbytes) { 312 dprintf("Pgrab_core: failed to read NT_PLATFORM\n"); 313 free(plat); 314 return (-1); 315 } 316 plat[nbytes - 1] = '\0'; 317 P->core->core_platform = plat; 318 } 319 320 return (0); 321 } 322 323 static int 324 note_utsname(struct ps_prochandle *P, size_t nbytes) 325 { 326 size_t ubytes = sizeof (struct utsname); 327 struct utsname *utsp; 328 329 if (P->core->core_uts != NULL || nbytes < ubytes) 330 return (0); /* Already seen or bad size */ 331 332 if ((utsp = malloc(ubytes)) == NULL) 333 return (-1); 334 335 if (read(P->asfd, utsp, ubytes) != ubytes) { 336 dprintf("Pgrab_core: failed to read NT_UTSNAME\n"); 337 free(utsp); 338 return (-1); 339 } 340 341 if (_libproc_debug) { 342 dprintf("uts.sysname = \"%s\"\n", utsp->sysname); 343 dprintf("uts.nodename = \"%s\"\n", utsp->nodename); 344 dprintf("uts.release = \"%s\"\n", utsp->release); 345 dprintf("uts.version = \"%s\"\n", utsp->version); 346 dprintf("uts.machine = \"%s\"\n", utsp->machine); 347 } 348 349 P->core->core_uts = utsp; 350 return (0); 351 } 352 353 static int 354 note_content(struct ps_prochandle *P, size_t nbytes) 355 { 356 core_content_t content; 357 358 if (sizeof (P->core->core_content) != nbytes) 359 return (-1); 360 361 if (read(P->asfd, &content, sizeof (content)) != sizeof (content)) 362 return (-1); 363 364 P->core->core_content = content; 365 366 dprintf("core content = %llx\n", content); 367 368 return (0); 369 } 370 371 static int 372 note_cred(struct ps_prochandle *P, size_t nbytes) 373 { 374 prcred_t *pcrp; 375 int ngroups; 376 const size_t min_size = sizeof (prcred_t) - sizeof (gid_t); 377 378 /* 379 * We allow for prcred_t notes that are actually smaller than a 380 * prcred_t since the last member isn't essential if there are 381 * no group memberships. This allows for more flexibility when it 382 * comes to slightly malformed -- but still valid -- notes. 383 */ 384 if (P->core->core_cred != NULL || nbytes < min_size) 385 return (0); /* Already seen or bad size */ 386 387 ngroups = (nbytes - min_size) / sizeof (gid_t); 388 nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t); 389 390 if ((pcrp = malloc(nbytes)) == NULL) 391 return (-1); 392 393 if (read(P->asfd, pcrp, nbytes) != nbytes) { 394 dprintf("Pgrab_core: failed to read NT_PRCRED\n"); 395 free(pcrp); 396 return (-1); 397 } 398 399 if (pcrp->pr_ngroups > ngroups) { 400 dprintf("pr_ngroups = %d; resetting to %d based on note size\n", 401 pcrp->pr_ngroups, ngroups); 402 pcrp->pr_ngroups = ngroups; 403 } 404 405 P->core->core_cred = pcrp; 406 return (0); 407 } 408 409 #if defined(__i386) || defined(__amd64) 410 static int 411 note_ldt(struct ps_prochandle *P, size_t nbytes) 412 { 413 struct ssd *pldt; 414 uint_t nldt; 415 416 if (P->core->core_ldt != NULL || nbytes < sizeof (struct ssd)) 417 return (0); /* Already seen or bad size */ 418 419 nldt = nbytes / sizeof (struct ssd); 420 nbytes = nldt * sizeof (struct ssd); 421 422 if ((pldt = malloc(nbytes)) == NULL) 423 return (-1); 424 425 if (read(P->asfd, pldt, nbytes) != nbytes) { 426 dprintf("Pgrab_core: failed to read NT_LDT\n"); 427 free(pldt); 428 return (-1); 429 } 430 431 P->core->core_ldt = pldt; 432 P->core->core_nldt = nldt; 433 return (0); 434 } 435 #endif /* __i386 */ 436 437 static int 438 note_priv(struct ps_prochandle *P, size_t nbytes) 439 { 440 prpriv_t *pprvp; 441 442 if (P->core->core_priv != NULL || nbytes < sizeof (prpriv_t)) 443 return (0); /* Already seen or bad size */ 444 445 if ((pprvp = malloc(nbytes)) == NULL) 446 return (-1); 447 448 if (read(P->asfd, pprvp, nbytes) != nbytes) { 449 dprintf("Pgrab_core: failed to read NT_PRPRIV\n"); 450 free(pprvp); 451 return (-1); 452 } 453 454 P->core->core_priv = pprvp; 455 P->core->core_priv_size = nbytes; 456 return (0); 457 } 458 459 static int 460 note_priv_info(struct ps_prochandle *P, size_t nbytes) 461 { 462 extern void *__priv_parse_info(); 463 priv_impl_info_t *ppii; 464 465 if (P->core->core_privinfo != NULL || 466 nbytes < sizeof (priv_impl_info_t)) 467 return (0); /* Already seen or bad size */ 468 469 if ((ppii = malloc(nbytes)) == NULL) 470 return (-1); 471 472 if (read(P->asfd, ppii, nbytes) != nbytes || 473 PRIV_IMPL_INFO_SIZE(ppii) != nbytes) { 474 dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n"); 475 free(ppii); 476 return (-1); 477 } 478 479 P->core->core_privinfo = __priv_parse_info(ppii); 480 P->core->core_ppii = ppii; 481 return (0); 482 } 483 484 static int 485 note_zonename(struct ps_prochandle *P, size_t nbytes) 486 { 487 char *zonename; 488 489 if (P->core->core_zonename != NULL) 490 return (0); /* Already seen */ 491 492 if (nbytes != 0) { 493 if ((zonename = malloc(nbytes)) == NULL) 494 return (-1); 495 if (read(P->asfd, zonename, nbytes) != nbytes) { 496 dprintf("Pgrab_core: failed to read NT_ZONENAME\n"); 497 free(zonename); 498 return (-1); 499 } 500 zonename[nbytes - 1] = '\0'; 501 P->core->core_zonename = zonename; 502 } 503 504 return (0); 505 } 506 507 static int 508 note_auxv(struct ps_prochandle *P, size_t nbytes) 509 { 510 size_t n, i; 511 512 #ifdef _LP64 513 if (P->core->core_dmodel == PR_MODEL_ILP32) { 514 auxv32_t *a32; 515 516 n = nbytes / sizeof (auxv32_t); 517 nbytes = n * sizeof (auxv32_t); 518 a32 = alloca(nbytes); 519 520 if (read(P->asfd, a32, nbytes) != nbytes) { 521 dprintf("Pgrab_core: failed to read NT_AUXV\n"); 522 return (-1); 523 } 524 525 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL) 526 return (-1); 527 528 for (i = 0; i < n; i++) 529 auxv_32_to_n(&a32[i], &P->auxv[i]); 530 531 } else { 532 #endif 533 n = nbytes / sizeof (auxv_t); 534 nbytes = n * sizeof (auxv_t); 535 536 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL) 537 return (-1); 538 539 if (read(P->asfd, P->auxv, nbytes) != nbytes) { 540 free(P->auxv); 541 P->auxv = NULL; 542 return (-1); 543 } 544 #ifdef _LP64 545 } 546 #endif 547 548 if (_libproc_debug) { 549 for (i = 0; i < n; i++) { 550 dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i, 551 P->auxv[i].a_type, P->auxv[i].a_un.a_val); 552 } 553 } 554 555 /* 556 * Defensive coding for loops which depend upon the auxv array being 557 * terminated by an AT_NULL element; in each case, we've allocated 558 * P->auxv to have an additional element which we force to be AT_NULL. 559 */ 560 P->auxv[n].a_type = AT_NULL; 561 P->auxv[n].a_un.a_val = 0L; 562 P->nauxv = (int)n; 563 564 return (0); 565 } 566 567 #ifdef __sparc 568 static int 569 note_xreg(struct ps_prochandle *P, size_t nbytes) 570 { 571 lwp_info_t *lwp = P->core->core_lwp; 572 size_t xbytes = sizeof (prxregset_t); 573 prxregset_t *xregs; 574 575 if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes) 576 return (0); /* No lwp yet, already seen, or bad size */ 577 578 if ((xregs = malloc(xbytes)) == NULL) 579 return (-1); 580 581 if (read(P->asfd, xregs, xbytes) != xbytes) { 582 dprintf("Pgrab_core: failed to read NT_PRXREG\n"); 583 free(xregs); 584 return (-1); 585 } 586 587 lwp->lwp_xregs = xregs; 588 return (0); 589 } 590 591 static int 592 note_gwindows(struct ps_prochandle *P, size_t nbytes) 593 { 594 lwp_info_t *lwp = P->core->core_lwp; 595 596 if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0) 597 return (0); /* No lwp yet or already seen or no data */ 598 599 if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL) 600 return (-1); 601 602 /* 603 * Since the amount of gwindows data varies with how many windows were 604 * actually saved, we just read up to the minimum of the note size 605 * and the size of the gwindows_t type. It doesn't matter if the read 606 * fails since we have to zero out gwindows first anyway. 607 */ 608 #ifdef _LP64 609 if (P->core->core_dmodel == PR_MODEL_ILP32) { 610 gwindows32_t g32; 611 612 (void) memset(&g32, 0, sizeof (g32)); 613 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32))); 614 gwindows_32_to_n(&g32, lwp->lwp_gwins); 615 616 } else { 617 #endif 618 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t)); 619 (void) read(P->asfd, lwp->lwp_gwins, 620 MIN(nbytes, sizeof (gwindows_t))); 621 #ifdef _LP64 622 } 623 #endif 624 return (0); 625 } 626 627 #ifdef __sparcv9 628 static int 629 note_asrs(struct ps_prochandle *P, size_t nbytes) 630 { 631 lwp_info_t *lwp = P->core->core_lwp; 632 int64_t *asrs; 633 634 if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t)) 635 return (0); /* No lwp yet, already seen, or bad size */ 636 637 if ((asrs = malloc(sizeof (asrset_t))) == NULL) 638 return (-1); 639 640 if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) { 641 dprintf("Pgrab_core: failed to read NT_ASRS\n"); 642 free(asrs); 643 return (-1); 644 } 645 646 lwp->lwp_asrs = asrs; 647 return (0); 648 } 649 #endif /* __sparcv9 */ 650 #endif /* __sparc */ 651 652 /*ARGSUSED*/ 653 static int 654 note_notsup(struct ps_prochandle *P, size_t nbytes) 655 { 656 dprintf("skipping unsupported note type\n"); 657 return (0); 658 } 659 660 /* 661 * Populate a table of function pointers indexed by Note type with our 662 * functions to process each type of core file note: 663 */ 664 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = { 665 note_notsup, /* 0 unassigned */ 666 note_notsup, /* 1 NT_PRSTATUS (old) */ 667 note_notsup, /* 2 NT_PRFPREG (old) */ 668 note_notsup, /* 3 NT_PRPSINFO (old) */ 669 #ifdef __sparc 670 note_xreg, /* 4 NT_PRXREG */ 671 #else 672 note_notsup, /* 4 NT_PRXREG */ 673 #endif 674 note_platform, /* 5 NT_PLATFORM */ 675 note_auxv, /* 6 NT_AUXV */ 676 #ifdef __sparc 677 note_gwindows, /* 7 NT_GWINDOWS */ 678 #ifdef __sparcv9 679 note_asrs, /* 8 NT_ASRS */ 680 #else 681 note_notsup, /* 8 NT_ASRS */ 682 #endif 683 #else 684 note_notsup, /* 7 NT_GWINDOWS */ 685 note_notsup, /* 8 NT_ASRS */ 686 #endif 687 #if defined(__i386) || defined(__amd64) 688 note_ldt, /* 9 NT_LDT */ 689 #else 690 note_notsup, /* 9 NT_LDT */ 691 #endif 692 note_pstatus, /* 10 NT_PSTATUS */ 693 note_notsup, /* 11 unassigned */ 694 note_notsup, /* 12 unassigned */ 695 note_psinfo, /* 13 NT_PSINFO */ 696 note_cred, /* 14 NT_PRCRED */ 697 note_utsname, /* 15 NT_UTSNAME */ 698 note_lwpstatus, /* 16 NT_LWPSTATUS */ 699 note_lwpsinfo, /* 17 NT_LWPSINFO */ 700 note_priv, /* 18 NT_PRPRIV */ 701 note_priv_info, /* 19 NT_PRPRIVINFO */ 702 note_content, /* 20 NT_CONTENT */ 703 note_zonename, /* 21 NT_ZONENAME */ 704 }; 705 706 /* 707 * Add information on the address space mapping described by the given 708 * PT_LOAD program header. We fill in more information on the mapping later. 709 */ 710 static int 711 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php) 712 { 713 int err = 0; 714 prmap_t pmap; 715 716 dprintf("mapping base %llx filesz %llu memsz %llu offset %llu\n", 717 (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz, 718 (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset); 719 720 pmap.pr_vaddr = (uintptr_t)php->p_vaddr; 721 pmap.pr_size = php->p_memsz; 722 723 /* 724 * If Pgcore() or elfcore() fail to write a mapping, they will set 725 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us. 726 */ 727 if (php->p_flags & PF_SUNW_FAILURE) { 728 (void) pread64(P->asfd, &err, 729 sizeof (err), (off64_t)php->p_offset); 730 731 Perror_printf(P, "core file data for mapping at %p not saved: " 732 "%s\n", (void *)(uintptr_t)php->p_vaddr, strerror(err)); 733 dprintf("core file data for mapping at %p not saved: %s\n", 734 (void *)(uintptr_t)php->p_vaddr, strerror(err)); 735 736 } else if (php->p_filesz != 0 && php->p_offset >= P->core->core_size) { 737 Perror_printf(P, "core file may be corrupt -- data for mapping " 738 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr); 739 dprintf("core file may be corrupt -- data for mapping " 740 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr); 741 } 742 743 /* 744 * The mapping name and offset will hopefully be filled in 745 * by the librtld_db agent. Unfortunately, if it isn't a 746 * shared library mapping, this information is gone forever. 747 */ 748 pmap.pr_mapname[0] = '\0'; 749 pmap.pr_offset = 0; 750 751 pmap.pr_mflags = 0; 752 if (php->p_flags & PF_R) 753 pmap.pr_mflags |= MA_READ; 754 if (php->p_flags & PF_W) 755 pmap.pr_mflags |= MA_WRITE; 756 if (php->p_flags & PF_X) 757 pmap.pr_mflags |= MA_EXEC; 758 759 if (php->p_filesz == 0) 760 pmap.pr_mflags |= MA_RESERVED1; 761 762 /* 763 * At the time of adding this mapping, we just zero the pagesize. 764 * Once we've processed more of the core file, we'll have the 765 * pagesize from the auxv's AT_PAGESZ element and we can fill this in. 766 */ 767 pmap.pr_pagesize = 0; 768 769 /* 770 * Unfortunately whether or not the mapping was a System V 771 * shared memory segment is lost. We use -1 to mark it as not shm. 772 */ 773 pmap.pr_shmid = -1; 774 775 return (Padd_mapping(P, php->p_offset, NULL, &pmap)); 776 } 777 778 /* 779 * Given a virtual address, name the mapping at that address using the 780 * specified name, and return the map_info_t pointer. 781 */ 782 static map_info_t * 783 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name) 784 { 785 map_info_t *mp = Paddr2mptr(P, addr); 786 787 if (mp != NULL) { 788 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ); 789 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 790 } 791 792 return (mp); 793 } 794 795 /* 796 * libproc uses libelf for all of its symbol table manipulation. This function 797 * takes a symbol table and string table from a core file and places them 798 * in a memory backed elf file. 799 */ 800 static void 801 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr, 802 GElf_Shdr *symtab, GElf_Shdr *strtab) 803 { 804 size_t size; 805 off64_t off, base; 806 map_info_t *mp; 807 file_info_t *fp; 808 Elf_Scn *scn; 809 Elf_Data *data; 810 811 if (symtab->sh_addr == 0 || 812 (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL || 813 (fp = mp->map_file) == NULL) { 814 dprintf("fake_up_symtab: invalid section\n"); 815 return; 816 } 817 818 if (fp->file_symtab.sym_data_pri != NULL) { 819 dprintf("Symbol table already loaded (sh_addr 0x%lx)\n", 820 (long)symtab->sh_addr); 821 return; 822 } 823 824 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 825 struct { 826 Elf32_Ehdr ehdr; 827 Elf32_Shdr shdr[3]; 828 char data[1]; 829 } *b; 830 831 base = sizeof (b->ehdr) + sizeof (b->shdr); 832 size = base + symtab->sh_size + strtab->sh_size; 833 834 if ((b = calloc(1, size)) == NULL) 835 return; 836 837 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident, 838 sizeof (ehdr->e_ident)); 839 b->ehdr.e_type = ehdr->e_type; 840 b->ehdr.e_machine = ehdr->e_machine; 841 b->ehdr.e_version = ehdr->e_version; 842 b->ehdr.e_flags = ehdr->e_flags; 843 b->ehdr.e_ehsize = sizeof (b->ehdr); 844 b->ehdr.e_shoff = sizeof (b->ehdr); 845 b->ehdr.e_shentsize = sizeof (b->shdr[0]); 846 b->ehdr.e_shnum = 3; 847 off = 0; 848 849 b->shdr[1].sh_size = symtab->sh_size; 850 b->shdr[1].sh_type = SHT_SYMTAB; 851 b->shdr[1].sh_offset = off + base; 852 b->shdr[1].sh_entsize = sizeof (Elf32_Sym); 853 b->shdr[1].sh_link = 2; 854 b->shdr[1].sh_info = symtab->sh_info; 855 b->shdr[1].sh_addralign = symtab->sh_addralign; 856 857 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size, 858 symtab->sh_offset) != b->shdr[1].sh_size) { 859 dprintf("fake_up_symtab: pread of symtab[1] failed\n"); 860 free(b); 861 return; 862 } 863 864 off += b->shdr[1].sh_size; 865 866 b->shdr[2].sh_flags = SHF_STRINGS; 867 b->shdr[2].sh_size = strtab->sh_size; 868 b->shdr[2].sh_type = SHT_STRTAB; 869 b->shdr[2].sh_offset = off + base; 870 b->shdr[2].sh_info = strtab->sh_info; 871 b->shdr[2].sh_addralign = 1; 872 873 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size, 874 strtab->sh_offset) != b->shdr[2].sh_size) { 875 dprintf("fake_up_symtab: pread of symtab[2] failed\n"); 876 free(b); 877 return; 878 } 879 880 off += b->shdr[2].sh_size; 881 882 fp->file_symtab.sym_elf = elf_memory((char *)b, size); 883 if (fp->file_symtab.sym_elf == NULL) { 884 free(b); 885 return; 886 } 887 888 fp->file_symtab.sym_elfmem = b; 889 #ifdef _LP64 890 } else { 891 struct { 892 Elf64_Ehdr ehdr; 893 Elf64_Shdr shdr[3]; 894 char data[1]; 895 } *b; 896 897 base = sizeof (b->ehdr) + sizeof (b->shdr); 898 size = base + symtab->sh_size + strtab->sh_size; 899 900 if ((b = calloc(1, size)) == NULL) 901 return; 902 903 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident, 904 sizeof (ehdr->e_ident)); 905 b->ehdr.e_type = ehdr->e_type; 906 b->ehdr.e_machine = ehdr->e_machine; 907 b->ehdr.e_version = ehdr->e_version; 908 b->ehdr.e_flags = ehdr->e_flags; 909 b->ehdr.e_ehsize = sizeof (b->ehdr); 910 b->ehdr.e_shoff = sizeof (b->ehdr); 911 b->ehdr.e_shentsize = sizeof (b->shdr[0]); 912 b->ehdr.e_shnum = 3; 913 off = 0; 914 915 b->shdr[1].sh_size = symtab->sh_size; 916 b->shdr[1].sh_type = SHT_SYMTAB; 917 b->shdr[1].sh_offset = off + base; 918 b->shdr[1].sh_entsize = sizeof (Elf64_Sym); 919 b->shdr[1].sh_link = 2; 920 b->shdr[1].sh_info = symtab->sh_info; 921 b->shdr[1].sh_addralign = symtab->sh_addralign; 922 923 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size, 924 symtab->sh_offset) != b->shdr[1].sh_size) { 925 free(b); 926 return; 927 } 928 929 off += b->shdr[1].sh_size; 930 931 b->shdr[2].sh_flags = SHF_STRINGS; 932 b->shdr[2].sh_size = strtab->sh_size; 933 b->shdr[2].sh_type = SHT_STRTAB; 934 b->shdr[2].sh_offset = off + base; 935 b->shdr[2].sh_info = strtab->sh_info; 936 b->shdr[2].sh_addralign = 1; 937 938 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size, 939 strtab->sh_offset) != b->shdr[2].sh_size) { 940 free(b); 941 return; 942 } 943 944 off += b->shdr[2].sh_size; 945 946 fp->file_symtab.sym_elf = elf_memory((char *)b, size); 947 if (fp->file_symtab.sym_elf == NULL) { 948 free(b); 949 return; 950 } 951 952 fp->file_symtab.sym_elfmem = b; 953 #endif 954 } 955 956 if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL || 957 (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL || 958 (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL || 959 (data = elf_getdata(scn, NULL)) == NULL) { 960 dprintf("fake_up_symtab: failed to get section data at %p\n", 961 (void *)scn); 962 goto err; 963 } 964 965 fp->file_symtab.sym_strs = data->d_buf; 966 fp->file_symtab.sym_strsz = data->d_size; 967 fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize; 968 fp->file_symtab.sym_hdr_pri = *symtab; 969 fp->file_symtab.sym_strhdr = *strtab; 970 971 optimize_symtab(&fp->file_symtab); 972 973 return; 974 err: 975 (void) elf_end(fp->file_symtab.sym_elf); 976 free(fp->file_symtab.sym_elfmem); 977 fp->file_symtab.sym_elf = NULL; 978 fp->file_symtab.sym_elfmem = NULL; 979 } 980 981 static void 982 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst) 983 { 984 dst->p_type = src->p_type; 985 dst->p_flags = src->p_flags; 986 dst->p_offset = (Elf64_Off)src->p_offset; 987 dst->p_vaddr = (Elf64_Addr)src->p_vaddr; 988 dst->p_paddr = (Elf64_Addr)src->p_paddr; 989 dst->p_filesz = (Elf64_Xword)src->p_filesz; 990 dst->p_memsz = (Elf64_Xword)src->p_memsz; 991 dst->p_align = (Elf64_Xword)src->p_align; 992 } 993 994 static void 995 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst) 996 { 997 dst->sh_name = src->sh_name; 998 dst->sh_type = src->sh_type; 999 dst->sh_flags = (Elf64_Xword)src->sh_flags; 1000 dst->sh_addr = (Elf64_Addr)src->sh_addr; 1001 dst->sh_offset = (Elf64_Off)src->sh_offset; 1002 dst->sh_size = (Elf64_Xword)src->sh_size; 1003 dst->sh_link = src->sh_link; 1004 dst->sh_info = src->sh_info; 1005 dst->sh_addralign = (Elf64_Xword)src->sh_addralign; 1006 dst->sh_entsize = (Elf64_Xword)src->sh_entsize; 1007 } 1008 1009 /* 1010 * Perform elf_begin on efp->e_fd and verify the ELF file's type and class. 1011 */ 1012 static int 1013 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr) 1014 { 1015 #ifdef _BIG_ENDIAN 1016 uchar_t order = ELFDATA2MSB; 1017 #else 1018 uchar_t order = ELFDATA2LSB; 1019 #endif 1020 Elf32_Ehdr e32; 1021 int is_noelf = -1; 1022 int isa_err = 0; 1023 1024 /* 1025 * Because 32-bit libelf cannot deal with large files, we need to read, 1026 * check, and convert the file header manually in case type == ET_CORE. 1027 */ 1028 if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) { 1029 if (perr != NULL) 1030 *perr = G_FORMAT; 1031 goto err; 1032 } 1033 if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 || 1034 e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) || 1035 e32.e_version != EV_CURRENT) { 1036 if (perr != NULL) { 1037 if (is_noelf == 0 && isa_err) { 1038 *perr = G_ISAINVAL; 1039 } else { 1040 *perr = G_FORMAT; 1041 } 1042 } 1043 goto err; 1044 } 1045 1046 /* 1047 * If the file is 64-bit and we are 32-bit, fail with G_LP64. If the 1048 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr, 1049 * and convert it to a elf_file_header_t. Otherwise, the file is 1050 * 32-bit, so convert e32 to a elf_file_header_t. 1051 */ 1052 if (e32.e_ident[EI_CLASS] == ELFCLASS64) { 1053 #ifdef _LP64 1054 Elf64_Ehdr e64; 1055 1056 if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) { 1057 if (perr != NULL) 1058 *perr = G_FORMAT; 1059 goto err; 1060 } 1061 1062 (void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT); 1063 efp->e_hdr.e_type = e64.e_type; 1064 efp->e_hdr.e_machine = e64.e_machine; 1065 efp->e_hdr.e_version = e64.e_version; 1066 efp->e_hdr.e_entry = e64.e_entry; 1067 efp->e_hdr.e_phoff = e64.e_phoff; 1068 efp->e_hdr.e_shoff = e64.e_shoff; 1069 efp->e_hdr.e_flags = e64.e_flags; 1070 efp->e_hdr.e_ehsize = e64.e_ehsize; 1071 efp->e_hdr.e_phentsize = e64.e_phentsize; 1072 efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum; 1073 efp->e_hdr.e_shentsize = e64.e_shentsize; 1074 efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum; 1075 efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx; 1076 #else /* _LP64 */ 1077 if (perr != NULL) 1078 *perr = G_LP64; 1079 goto err; 1080 #endif /* _LP64 */ 1081 } else { 1082 (void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT); 1083 efp->e_hdr.e_type = e32.e_type; 1084 efp->e_hdr.e_machine = e32.e_machine; 1085 efp->e_hdr.e_version = e32.e_version; 1086 efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry; 1087 efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff; 1088 efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff; 1089 efp->e_hdr.e_flags = e32.e_flags; 1090 efp->e_hdr.e_ehsize = e32.e_ehsize; 1091 efp->e_hdr.e_phentsize = e32.e_phentsize; 1092 efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum; 1093 efp->e_hdr.e_shentsize = e32.e_shentsize; 1094 efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum; 1095 efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx; 1096 } 1097 1098 /* 1099 * If the number of section headers or program headers or the section 1100 * header string table index would overflow their respective fields 1101 * in the ELF header, they're stored in the section header at index 1102 * zero. To simplify use elsewhere, we look for those sentinel values 1103 * here. 1104 */ 1105 if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) || 1106 efp->e_hdr.e_shstrndx == SHN_XINDEX || 1107 efp->e_hdr.e_phnum == PN_XNUM) { 1108 GElf_Shdr shdr; 1109 1110 dprintf("extended ELF header\n"); 1111 1112 if (efp->e_hdr.e_shoff == 0) { 1113 if (perr != NULL) 1114 *perr = G_FORMAT; 1115 goto err; 1116 } 1117 1118 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) { 1119 Elf32_Shdr shdr32; 1120 1121 if (pread64(efp->e_fd, &shdr32, sizeof (shdr32), 1122 efp->e_hdr.e_shoff) != sizeof (shdr32)) { 1123 if (perr != NULL) 1124 *perr = G_FORMAT; 1125 goto err; 1126 } 1127 1128 core_shdr_to_gelf(&shdr32, &shdr); 1129 } else { 1130 if (pread64(efp->e_fd, &shdr, sizeof (shdr), 1131 efp->e_hdr.e_shoff) != sizeof (shdr)) { 1132 if (perr != NULL) 1133 *perr = G_FORMAT; 1134 goto err; 1135 } 1136 } 1137 1138 if (efp->e_hdr.e_shnum == 0) { 1139 efp->e_hdr.e_shnum = shdr.sh_size; 1140 dprintf("section header count %lu\n", 1141 (ulong_t)shdr.sh_size); 1142 } 1143 1144 if (efp->e_hdr.e_shstrndx == SHN_XINDEX) { 1145 efp->e_hdr.e_shstrndx = shdr.sh_link; 1146 dprintf("section string index %u\n", shdr.sh_link); 1147 } 1148 1149 if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) { 1150 efp->e_hdr.e_phnum = shdr.sh_info; 1151 dprintf("program header count %u\n", shdr.sh_info); 1152 } 1153 1154 } else if (efp->e_hdr.e_phoff != 0) { 1155 GElf_Phdr phdr; 1156 uint64_t phnum; 1157 1158 /* 1159 * It's possible this core file came from a system that 1160 * accidentally truncated the e_phnum field without correctly 1161 * using the extended format in the section header at index 1162 * zero. We try to detect and correct that specific type of 1163 * corruption by using the knowledge that the core dump 1164 * routines usually place the data referenced by the first 1165 * program header immediately after the last header element. 1166 */ 1167 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) { 1168 Elf32_Phdr phdr32; 1169 1170 if (pread64(efp->e_fd, &phdr32, sizeof (phdr32), 1171 efp->e_hdr.e_phoff) != sizeof (phdr32)) { 1172 if (perr != NULL) 1173 *perr = G_FORMAT; 1174 goto err; 1175 } 1176 1177 core_phdr_to_gelf(&phdr32, &phdr); 1178 } else { 1179 if (pread64(efp->e_fd, &phdr, sizeof (phdr), 1180 efp->e_hdr.e_phoff) != sizeof (phdr)) { 1181 if (perr != NULL) 1182 *perr = G_FORMAT; 1183 goto err; 1184 } 1185 } 1186 1187 phnum = phdr.p_offset - efp->e_hdr.e_ehsize - 1188 (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize; 1189 phnum /= efp->e_hdr.e_phentsize; 1190 1191 if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) { 1192 dprintf("suspicious program header count %u %u\n", 1193 (uint_t)phnum, efp->e_hdr.e_phnum); 1194 1195 /* 1196 * If the new program header count we computed doesn't 1197 * jive with count in the ELF header, we'll use the 1198 * data that's there and hope for the best. 1199 * 1200 * If it does, it's also possible that the section 1201 * header offset is incorrect; we'll check that and 1202 * possibly try to fix it. 1203 */ 1204 if (phnum <= INT_MAX && 1205 (uint16_t)phnum == efp->e_hdr.e_phnum) { 1206 1207 if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff + 1208 efp->e_hdr.e_phentsize * 1209 (uint_t)efp->e_hdr.e_phnum) { 1210 efp->e_hdr.e_shoff = 1211 efp->e_hdr.e_phoff + 1212 efp->e_hdr.e_phentsize * phnum; 1213 } 1214 1215 efp->e_hdr.e_phnum = (Elf64_Word)phnum; 1216 dprintf("using new program header count\n"); 1217 } else { 1218 dprintf("inconsistent program header count\n"); 1219 } 1220 } 1221 } 1222 1223 /* 1224 * The libelf implementation was never ported to be large-file aware. 1225 * This is typically not a problem for your average executable or 1226 * shared library, but a large 32-bit core file can exceed 2GB in size. 1227 * So if type is ET_CORE, we don't bother doing elf_begin; the code 1228 * in Pfgrab_core() below will do its own i/o and struct conversion. 1229 */ 1230 1231 if (type == ET_CORE) { 1232 efp->e_elf = NULL; 1233 return (0); 1234 } 1235 1236 if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) { 1237 if (perr != NULL) 1238 *perr = G_ELF; 1239 goto err; 1240 } 1241 1242 return (0); 1243 1244 err: 1245 efp->e_elf = NULL; 1246 return (-1); 1247 } 1248 1249 /* 1250 * Open the specified file and then do a core_elf_fdopen on it. 1251 */ 1252 static int 1253 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr) 1254 { 1255 (void) memset(efp, 0, sizeof (elf_file_t)); 1256 1257 if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) { 1258 if (core_elf_fdopen(efp, type, perr) == 0) 1259 return (0); 1260 1261 (void) close(efp->e_fd); 1262 efp->e_fd = -1; 1263 } 1264 1265 return (-1); 1266 } 1267 1268 /* 1269 * Close the ELF handle and file descriptor. 1270 */ 1271 static void 1272 core_elf_close(elf_file_t *efp) 1273 { 1274 if (efp->e_elf != NULL) { 1275 (void) elf_end(efp->e_elf); 1276 efp->e_elf = NULL; 1277 } 1278 1279 if (efp->e_fd != -1) { 1280 (void) close(efp->e_fd); 1281 efp->e_fd = -1; 1282 } 1283 } 1284 1285 /* 1286 * Given an ELF file for a statically linked executable, locate the likely 1287 * primary text section and fill in rl_base with its virtual address. 1288 */ 1289 static map_info_t * 1290 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp) 1291 { 1292 GElf_Phdr phdr; 1293 uint_t i; 1294 size_t nphdrs; 1295 1296 if (elf_getphdrnum(elf, &nphdrs) == -1) 1297 return (NULL); 1298 1299 for (i = 0; i < nphdrs; i++) { 1300 if (gelf_getphdr(elf, i, &phdr) != NULL && 1301 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) { 1302 rlp->rl_base = phdr.p_vaddr; 1303 return (Paddr2mptr(P, rlp->rl_base)); 1304 } 1305 } 1306 1307 return (NULL); 1308 } 1309 1310 /* 1311 * Given an ELF file and the librtld_db structure corresponding to its primary 1312 * text mapping, deduce where its data segment was loaded and fill in 1313 * rl_data_base and prmap_t.pr_offset accordingly. 1314 */ 1315 static map_info_t * 1316 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp) 1317 { 1318 GElf_Ehdr ehdr; 1319 GElf_Phdr phdr; 1320 map_info_t *mp; 1321 uint_t i, pagemask; 1322 size_t nphdrs; 1323 1324 rlp->rl_data_base = NULL; 1325 1326 /* 1327 * Find the first loadable, writeable Phdr and compute rl_data_base 1328 * as the virtual address at which is was loaded. 1329 */ 1330 if (gelf_getehdr(elf, &ehdr) == NULL || 1331 elf_getphdrnum(elf, &nphdrs) == -1) 1332 return (NULL); 1333 1334 for (i = 0; i < nphdrs; i++) { 1335 if (gelf_getphdr(elf, i, &phdr) != NULL && 1336 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) { 1337 rlp->rl_data_base = phdr.p_vaddr; 1338 if (ehdr.e_type == ET_DYN) 1339 rlp->rl_data_base += rlp->rl_base; 1340 break; 1341 } 1342 } 1343 1344 /* 1345 * If we didn't find an appropriate phdr or if the address we 1346 * computed has no mapping, return NULL. 1347 */ 1348 if (rlp->rl_data_base == NULL || 1349 (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL) 1350 return (NULL); 1351 1352 /* 1353 * It wouldn't be procfs-related code if we didn't make use of 1354 * unclean knowledge of segvn, even in userland ... the prmap_t's 1355 * pr_offset field will be the segvn offset from mmap(2)ing the 1356 * data section, which will be the file offset & PAGEMASK. 1357 */ 1358 pagemask = ~(mp->map_pmap.pr_pagesize - 1); 1359 mp->map_pmap.pr_offset = phdr.p_offset & pagemask; 1360 1361 return (mp); 1362 } 1363 1364 /* 1365 * Librtld_db agent callback for iterating over load object mappings. 1366 * For each load object, we allocate a new file_info_t, perform naming, 1367 * and attempt to construct a symbol table for the load object. 1368 */ 1369 static int 1370 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P) 1371 { 1372 char lname[PATH_MAX], buf[PATH_MAX]; 1373 file_info_t *fp; 1374 map_info_t *mp; 1375 1376 if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) { 1377 dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr); 1378 return (1); /* Keep going; forget this if we can't get a name */ 1379 } 1380 1381 dprintf("rd_loadobj name = \"%s\" rl_base = %p\n", 1382 lname, (void *)rlp->rl_base); 1383 1384 if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) { 1385 dprintf("no mapping for %p\n", (void *)rlp->rl_base); 1386 return (1); /* No mapping; advance to next mapping */ 1387 } 1388 1389 /* 1390 * Create a new file_info_t for this mapping, and therefore for 1391 * this load object. 1392 * 1393 * If there's an ELF header at the beginning of this mapping, 1394 * file_info_new() will try to use its section headers to 1395 * identify any other mappings that belong to this load object. 1396 */ 1397 if ((fp = mp->map_file) == NULL && 1398 (fp = file_info_new(P, mp)) == NULL) { 1399 P->core->core_errno = errno; 1400 dprintf("failed to malloc mapping data\n"); 1401 return (0); /* Abort */ 1402 } 1403 fp->file_map = mp; 1404 1405 /* Create a local copy of the load object representation */ 1406 if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) { 1407 P->core->core_errno = errno; 1408 dprintf("failed to malloc mapping data\n"); 1409 return (0); /* Abort */ 1410 } 1411 *fp->file_lo = *rlp; 1412 1413 if (lname[0] != '\0') { 1414 /* 1415 * Naming dance part 1: if we got a name from librtld_db, then 1416 * copy this name to the prmap_t if it is unnamed. If the 1417 * file_info_t is unnamed, name it after the lname. 1418 */ 1419 if (mp->map_pmap.pr_mapname[0] == '\0') { 1420 (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ); 1421 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 1422 } 1423 1424 if (fp->file_lname == NULL) 1425 fp->file_lname = strdup(lname); 1426 1427 } else if (fp->file_lname == NULL && 1428 mp->map_pmap.pr_mapname[0] != '\0') { 1429 /* 1430 * Naming dance part 2: if the mapping is named and the 1431 * file_info_t is not, name the file after the mapping. 1432 */ 1433 fp->file_lname = strdup(mp->map_pmap.pr_mapname); 1434 } 1435 1436 if ((fp->file_rname == NULL) && 1437 (Pfindmap(P, mp, buf, sizeof (buf)) != NULL)) 1438 fp->file_rname = strdup(buf); 1439 1440 if (fp->file_lname != NULL) 1441 fp->file_lbase = basename(fp->file_lname); 1442 if (fp->file_rname != NULL) 1443 fp->file_rbase = basename(fp->file_rname); 1444 1445 /* Associate the file and the mapping. */ 1446 (void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ); 1447 fp->file_pname[PRMAPSZ - 1] = '\0'; 1448 1449 /* 1450 * If no section headers were available then we'll have to 1451 * identify this load object's other mappings with what we've 1452 * got: the start and end of the object's corresponding 1453 * address space. 1454 */ 1455 if (fp->file_saddrs == NULL) { 1456 for (mp = fp->file_map + 1; mp < P->mappings + P->map_count && 1457 mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) { 1458 1459 if (mp->map_file == NULL) { 1460 dprintf("core_iter_mapping %s: associating " 1461 "segment at %p\n", 1462 fp->file_pname, 1463 (void *)mp->map_pmap.pr_vaddr); 1464 mp->map_file = fp; 1465 fp->file_ref++; 1466 } else { 1467 dprintf("core_iter_mapping %s: segment at " 1468 "%p already associated with %s\n", 1469 fp->file_pname, 1470 (void *)mp->map_pmap.pr_vaddr, 1471 (mp == fp->file_map ? "this file" : 1472 mp->map_file->file_pname)); 1473 } 1474 } 1475 } 1476 1477 /* Ensure that all this file's mappings are named. */ 1478 for (mp = fp->file_map; mp < P->mappings + P->map_count && 1479 mp->map_file == fp; mp++) { 1480 if (mp->map_pmap.pr_mapname[0] == '\0' && 1481 !(mp->map_pmap.pr_mflags & MA_BREAK)) { 1482 (void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname, 1483 PRMAPSZ); 1484 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 1485 } 1486 } 1487 1488 /* Attempt to build a symbol table for this file. */ 1489 Pbuild_file_symtab(P, fp); 1490 if (fp->file_elf == NULL) 1491 dprintf("core_iter_mapping: no symtab for %s\n", 1492 fp->file_pname); 1493 1494 /* Locate the start of a data segment associated with this file. */ 1495 if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) { 1496 dprintf("found data for %s at %p (pr_offset 0x%llx)\n", 1497 fp->file_pname, (void *)fp->file_lo->rl_data_base, 1498 mp->map_pmap.pr_offset); 1499 } else { 1500 dprintf("core_iter_mapping: no data found for %s\n", 1501 fp->file_pname); 1502 } 1503 1504 return (1); /* Advance to next mapping */ 1505 } 1506 1507 /* 1508 * Callback function for Pfindexec(). In order to confirm a given pathname, 1509 * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN. 1510 */ 1511 static int 1512 core_exec_open(const char *path, void *efp) 1513 { 1514 if (core_elf_open(efp, path, ET_EXEC, NULL) == 0) 1515 return (1); 1516 if (core_elf_open(efp, path, ET_DYN, NULL) == 0) 1517 return (1); 1518 return (0); 1519 } 1520 1521 /* 1522 * Attempt to load any section headers found in the core file. If present, 1523 * this will refer to non-loadable data added to the core file by the kernel 1524 * based on coreadm(1M) settings, including CTF data and the symbol table. 1525 */ 1526 static void 1527 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp) 1528 { 1529 GElf_Shdr *shp, *shdrs = NULL; 1530 char *shstrtab = NULL; 1531 ulong_t shstrtabsz; 1532 const char *name; 1533 map_info_t *mp; 1534 1535 size_t nbytes; 1536 void *buf; 1537 int i; 1538 1539 if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) { 1540 dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n", 1541 efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum); 1542 return; 1543 } 1544 1545 /* 1546 * Read the section header table from the core file and then iterate 1547 * over the section headers, converting each to a GElf_Shdr. 1548 */ 1549 if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) { 1550 dprintf("failed to malloc %u section headers: %s\n", 1551 (uint_t)efp->e_hdr.e_shnum, strerror(errno)); 1552 return; 1553 } 1554 1555 nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize; 1556 if ((buf = malloc(nbytes)) == NULL) { 1557 dprintf("failed to malloc %d bytes: %s\n", (int)nbytes, 1558 strerror(errno)); 1559 free(shdrs); 1560 goto out; 1561 } 1562 1563 if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) { 1564 dprintf("failed to read section headers at off %lld: %s\n", 1565 (longlong_t)efp->e_hdr.e_shoff, strerror(errno)); 1566 free(buf); 1567 goto out; 1568 } 1569 1570 for (i = 0; i < efp->e_hdr.e_shnum; i++) { 1571 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i; 1572 1573 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) 1574 core_shdr_to_gelf(p, &shdrs[i]); 1575 else 1576 (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr)); 1577 } 1578 1579 free(buf); 1580 buf = NULL; 1581 1582 /* 1583 * Read the .shstrtab section from the core file, terminating it with 1584 * an extra \0 so that a corrupt section will not cause us to die. 1585 */ 1586 shp = &shdrs[efp->e_hdr.e_shstrndx]; 1587 shstrtabsz = shp->sh_size; 1588 1589 if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) { 1590 dprintf("failed to allocate %lu bytes for shstrtab\n", 1591 (ulong_t)shstrtabsz); 1592 goto out; 1593 } 1594 1595 if (pread64(efp->e_fd, shstrtab, shstrtabsz, 1596 shp->sh_offset) != shstrtabsz) { 1597 dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n", 1598 shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno)); 1599 goto out; 1600 } 1601 1602 shstrtab[shstrtabsz] = '\0'; 1603 1604 /* 1605 * Now iterate over each section in the section header table, locating 1606 * sections of interest and initializing more of the ps_prochandle. 1607 */ 1608 for (i = 0; i < efp->e_hdr.e_shnum; i++) { 1609 shp = &shdrs[i]; 1610 name = shstrtab + shp->sh_name; 1611 1612 if (shp->sh_name >= shstrtabsz) { 1613 dprintf("skipping section [%d]: corrupt sh_name\n", i); 1614 continue; 1615 } 1616 1617 if (shp->sh_link >= efp->e_hdr.e_shnum) { 1618 dprintf("skipping section [%d]: corrupt sh_link\n", i); 1619 continue; 1620 } 1621 1622 dprintf("found section header %s (sh_addr 0x%llx)\n", 1623 name, (u_longlong_t)shp->sh_addr); 1624 1625 if (strcmp(name, ".SUNW_ctf") == 0) { 1626 if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) { 1627 dprintf("no map at addr 0x%llx for %s [%d]\n", 1628 (u_longlong_t)shp->sh_addr, name, i); 1629 continue; 1630 } 1631 1632 if (mp->map_file == NULL || 1633 mp->map_file->file_ctf_buf != NULL) { 1634 dprintf("no mapping file or duplicate buffer " 1635 "for %s [%d]\n", name, i); 1636 continue; 1637 } 1638 1639 if ((buf = malloc(shp->sh_size)) == NULL || 1640 pread64(efp->e_fd, buf, shp->sh_size, 1641 shp->sh_offset) != shp->sh_size) { 1642 dprintf("skipping section %s [%d]: %s\n", 1643 name, i, strerror(errno)); 1644 free(buf); 1645 continue; 1646 } 1647 1648 mp->map_file->file_ctf_size = shp->sh_size; 1649 mp->map_file->file_ctf_buf = buf; 1650 1651 if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM) 1652 mp->map_file->file_ctf_dyn = 1; 1653 1654 } else if (strcmp(name, ".symtab") == 0) { 1655 fake_up_symtab(P, &efp->e_hdr, 1656 shp, &shdrs[shp->sh_link]); 1657 } 1658 } 1659 out: 1660 free(shstrtab); 1661 free(shdrs); 1662 } 1663 1664 /* 1665 * Main engine for core file initialization: given an fd for the core file 1666 * and an optional pathname, construct the ps_prochandle. The aout_path can 1667 * either be a suggested executable pathname, or a suggested directory to 1668 * use as a possible current working directory. 1669 */ 1670 struct ps_prochandle * 1671 Pfgrab_core(int core_fd, const char *aout_path, int *perr) 1672 { 1673 struct ps_prochandle *P; 1674 map_info_t *stk_mp, *brk_mp; 1675 const char *execname; 1676 char *interp; 1677 int i, notes, pagesize; 1678 uintptr_t addr, base_addr; 1679 struct stat64 stbuf; 1680 void *phbuf, *php; 1681 size_t nbytes; 1682 1683 elf_file_t aout; 1684 elf_file_t core; 1685 1686 Elf_Scn *scn, *intp_scn = NULL; 1687 Elf_Data *dp; 1688 1689 GElf_Phdr phdr, note_phdr; 1690 GElf_Shdr shdr; 1691 GElf_Xword nleft; 1692 1693 if (elf_version(EV_CURRENT) == EV_NONE) { 1694 dprintf("libproc ELF version is more recent than libelf\n"); 1695 *perr = G_ELF; 1696 return (NULL); 1697 } 1698 1699 aout.e_elf = NULL; 1700 aout.e_fd = -1; 1701 1702 core.e_elf = NULL; 1703 core.e_fd = core_fd; 1704 1705 /* 1706 * Allocate and initialize a ps_prochandle structure for the core. 1707 * There are several key pieces of initialization here: 1708 * 1709 * 1. The PS_DEAD state flag marks this prochandle as a core file. 1710 * PS_DEAD also thus prevents all operations which require state 1711 * to be PS_STOP from operating on this handle. 1712 * 1713 * 2. We keep the core file fd in P->asfd since the core file contains 1714 * the remnants of the process address space. 1715 * 1716 * 3. We set the P->info_valid bit because all information about the 1717 * core is determined by the end of this function; there is no need 1718 * for proc_update_maps() to reload mappings at any later point. 1719 * 1720 * 4. The read/write ops vector uses our core_rw() function defined 1721 * above to handle i/o requests. 1722 */ 1723 if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) { 1724 *perr = G_STRANGE; 1725 return (NULL); 1726 } 1727 1728 (void) memset(P, 0, sizeof (struct ps_prochandle)); 1729 (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL); 1730 P->state = PS_DEAD; 1731 P->pid = (pid_t)-1; 1732 P->asfd = core.e_fd; 1733 P->ctlfd = -1; 1734 P->statfd = -1; 1735 P->agentctlfd = -1; 1736 P->agentstatfd = -1; 1737 P->zoneroot = NULL; 1738 P->info_valid = 1; 1739 P->ops = &P_core_ops; 1740 1741 Pinitsym(P); 1742 1743 /* 1744 * Fstat and open the core file and make sure it is a valid ELF core. 1745 */ 1746 if (fstat64(P->asfd, &stbuf) == -1) { 1747 *perr = G_STRANGE; 1748 goto err; 1749 } 1750 1751 if (core_elf_fdopen(&core, ET_CORE, perr) == -1) 1752 goto err; 1753 1754 /* 1755 * Allocate and initialize a core_info_t to hang off the ps_prochandle 1756 * structure. We keep all core-specific information in this structure. 1757 */ 1758 if ((P->core = calloc(1, sizeof (core_info_t))) == NULL) { 1759 *perr = G_STRANGE; 1760 goto err; 1761 } 1762 1763 list_link(&P->core->core_lwp_head, NULL); 1764 P->core->core_size = stbuf.st_size; 1765 /* 1766 * In the days before adjustable core file content, this was the 1767 * default core file content. For new core files, this value will 1768 * be overwritten by the NT_CONTENT note section. 1769 */ 1770 P->core->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP | 1771 CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON | 1772 CC_CONTENT_SHANON; 1773 1774 switch (core.e_hdr.e_ident[EI_CLASS]) { 1775 case ELFCLASS32: 1776 P->core->core_dmodel = PR_MODEL_ILP32; 1777 break; 1778 case ELFCLASS64: 1779 P->core->core_dmodel = PR_MODEL_LP64; 1780 break; 1781 default: 1782 *perr = G_FORMAT; 1783 goto err; 1784 } 1785 1786 /* 1787 * Because the core file may be a large file, we can't use libelf to 1788 * read the Phdrs. We use e_phnum and e_phentsize to simplify things. 1789 */ 1790 nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize; 1791 1792 if ((phbuf = malloc(nbytes)) == NULL) { 1793 *perr = G_STRANGE; 1794 goto err; 1795 } 1796 1797 if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) { 1798 *perr = G_STRANGE; 1799 free(phbuf); 1800 goto err; 1801 } 1802 1803 /* 1804 * Iterate through the program headers in the core file. 1805 * We're interested in two types of Phdrs: PT_NOTE (which 1806 * contains a set of saved /proc structures), and PT_LOAD (which 1807 * represents a memory mapping from the process's address space). 1808 * In the case of PT_NOTE, we're interested in the last PT_NOTE 1809 * in the core file; currently the first PT_NOTE (if present) 1810 * contains /proc structs in the pre-2.6 unstructured /proc format. 1811 */ 1812 for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) { 1813 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64) 1814 (void) memcpy(&phdr, php, sizeof (GElf_Phdr)); 1815 else 1816 core_phdr_to_gelf(php, &phdr); 1817 1818 switch (phdr.p_type) { 1819 case PT_NOTE: 1820 note_phdr = phdr; 1821 notes++; 1822 break; 1823 1824 case PT_LOAD: 1825 if (core_add_mapping(P, &phdr) == -1) { 1826 *perr = G_STRANGE; 1827 free(phbuf); 1828 goto err; 1829 } 1830 break; 1831 } 1832 1833 php = (char *)php + core.e_hdr.e_phentsize; 1834 } 1835 1836 free(phbuf); 1837 1838 Psort_mappings(P); 1839 1840 /* 1841 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE 1842 * was present, abort. The core file is either corrupt or too old. 1843 */ 1844 if (notes == 0 || notes == 1) { 1845 *perr = G_NOTE; 1846 goto err; 1847 } 1848 1849 /* 1850 * Advance the seek pointer to the start of the PT_NOTE data 1851 */ 1852 if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) { 1853 dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n"); 1854 *perr = G_STRANGE; 1855 goto err; 1856 } 1857 1858 /* 1859 * Now process the PT_NOTE structures. Each one is preceded by 1860 * an Elf{32/64}_Nhdr structure describing its type and size. 1861 * 1862 * +--------+ 1863 * | header | 1864 * +--------+ 1865 * | name | 1866 * | ... | 1867 * +--------+ 1868 * | desc | 1869 * | ... | 1870 * +--------+ 1871 */ 1872 for (nleft = note_phdr.p_filesz; nleft > 0; ) { 1873 Elf64_Nhdr nhdr; 1874 off64_t off, namesz; 1875 1876 /* 1877 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr 1878 * as different types, they are both of the same content and 1879 * size, so we don't need to worry about 32/64 conversion here. 1880 */ 1881 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) { 1882 dprintf("Pgrab_core: failed to read ELF note header\n"); 1883 *perr = G_NOTE; 1884 goto err; 1885 } 1886 1887 /* 1888 * According to the System V ABI, the amount of padding 1889 * following the name field should align the description 1890 * field on a 4 byte boundary for 32-bit binaries or on an 8 1891 * byte boundary for 64-bit binaries. However, this change 1892 * was not made correctly during the 64-bit port so all 1893 * descriptions can assume only 4-byte alignment. We ignore 1894 * the name field and the padding to 4-byte alignment. 1895 */ 1896 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4); 1897 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) { 1898 dprintf("failed to seek past name and padding\n"); 1899 *perr = G_STRANGE; 1900 goto err; 1901 } 1902 1903 dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n", 1904 nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz); 1905 1906 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR); 1907 1908 /* 1909 * Invoke the note handler function from our table 1910 */ 1911 if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) { 1912 if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) { 1913 *perr = G_NOTE; 1914 goto err; 1915 } 1916 } else 1917 (void) note_notsup(P, nhdr.n_descsz); 1918 1919 /* 1920 * Seek past the current note data to the next Elf_Nhdr 1921 */ 1922 if (lseek64(P->asfd, off + nhdr.n_descsz, 1923 SEEK_SET) == (off64_t)-1) { 1924 dprintf("Pgrab_core: failed to seek to next nhdr\n"); 1925 *perr = G_STRANGE; 1926 goto err; 1927 } 1928 1929 /* 1930 * Subtract the size of the header and its data from what 1931 * we have left to process. 1932 */ 1933 nleft -= sizeof (nhdr) + namesz + nhdr.n_descsz; 1934 } 1935 1936 if (nleft != 0) { 1937 dprintf("Pgrab_core: note section malformed\n"); 1938 *perr = G_STRANGE; 1939 goto err; 1940 } 1941 1942 if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) { 1943 pagesize = getpagesize(); 1944 dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize); 1945 } 1946 1947 /* 1948 * Locate and label the mappings corresponding to the end of the 1949 * heap (MA_BREAK) and the base of the stack (MA_STACK). 1950 */ 1951 if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) && 1952 (brk_mp = Paddr2mptr(P, P->status.pr_brkbase + 1953 P->status.pr_brksize - 1)) != NULL) 1954 brk_mp->map_pmap.pr_mflags |= MA_BREAK; 1955 else 1956 brk_mp = NULL; 1957 1958 if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL) 1959 stk_mp->map_pmap.pr_mflags |= MA_STACK; 1960 1961 /* 1962 * At this point, we have enough information to look for the 1963 * executable and open it: we have access to the auxv, a psinfo_t, 1964 * and the ability to read from mappings provided by the core file. 1965 */ 1966 (void) Pfindexec(P, aout_path, core_exec_open, &aout); 1967 dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL"); 1968 execname = P->execname ? P->execname : "a.out"; 1969 1970 /* 1971 * Iterate through the sections, looking for the .dynamic and .interp 1972 * sections. If we encounter them, remember their section pointers. 1973 */ 1974 for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) { 1975 char *sname; 1976 1977 if ((gelf_getshdr(scn, &shdr) == NULL) || 1978 (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx, 1979 (size_t)shdr.sh_name)) == NULL) 1980 continue; 1981 1982 if (strcmp(sname, ".interp") == 0) 1983 intp_scn = scn; 1984 } 1985 1986 /* 1987 * Get the AT_BASE auxv element. If this is missing (-1), then 1988 * we assume this is a statically-linked executable. 1989 */ 1990 base_addr = Pgetauxval(P, AT_BASE); 1991 1992 /* 1993 * In order to get librtld_db initialized, we'll need to identify 1994 * and name the mapping corresponding to the run-time linker. The 1995 * AT_BASE auxv element tells us the address where it was mapped, 1996 * and the .interp section of the executable tells us its path. 1997 * If for some reason that doesn't pan out, just use ld.so.1. 1998 */ 1999 if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL && 2000 dp->d_size != 0) { 2001 dprintf(".interp = <%s>\n", (char *)dp->d_buf); 2002 interp = dp->d_buf; 2003 2004 } else if (base_addr != (uintptr_t)-1L) { 2005 if (P->core->core_dmodel == PR_MODEL_LP64) 2006 interp = "/usr/lib/64/ld.so.1"; 2007 else 2008 interp = "/usr/lib/ld.so.1"; 2009 2010 dprintf(".interp section is missing or could not be read; " 2011 "defaulting to %s\n", interp); 2012 } else 2013 dprintf("detected statically linked executable\n"); 2014 2015 /* 2016 * If we have an AT_BASE element, name the mapping at that address 2017 * using the interpreter pathname. Name the corresponding data 2018 * mapping after the interpreter as well. 2019 */ 2020 if (base_addr != (uintptr_t)-1L) { 2021 elf_file_t intf; 2022 2023 P->map_ldso = core_name_mapping(P, base_addr, interp); 2024 2025 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) { 2026 rd_loadobj_t rl; 2027 map_info_t *dmp; 2028 2029 rl.rl_base = base_addr; 2030 dmp = core_find_data(P, intf.e_elf, &rl); 2031 2032 if (dmp != NULL) { 2033 dprintf("renamed data at %p to %s\n", 2034 (void *)rl.rl_data_base, interp); 2035 (void) strncpy(dmp->map_pmap.pr_mapname, 2036 interp, PRMAPSZ); 2037 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2038 } 2039 } 2040 2041 core_elf_close(&intf); 2042 } 2043 2044 /* 2045 * If we have an AT_ENTRY element, name the mapping at that address 2046 * using the special name "a.out" just like /proc does. 2047 */ 2048 if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L) 2049 P->map_exec = core_name_mapping(P, addr, "a.out"); 2050 2051 /* 2052 * If we're a statically linked executable, then just locate the 2053 * executable's text and data and name them after the executable. 2054 */ 2055 if (base_addr == (uintptr_t)-1L) { 2056 map_info_t *tmp, *dmp; 2057 file_info_t *fp; 2058 rd_loadobj_t rl; 2059 2060 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL && 2061 (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) { 2062 (void) strncpy(tmp->map_pmap.pr_mapname, 2063 execname, PRMAPSZ); 2064 tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2065 (void) strncpy(dmp->map_pmap.pr_mapname, 2066 execname, PRMAPSZ); 2067 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2068 } 2069 2070 if ((P->map_exec = tmp) != NULL && 2071 (fp = malloc(sizeof (file_info_t))) != NULL) { 2072 2073 (void) memset(fp, 0, sizeof (file_info_t)); 2074 2075 list_link(fp, &P->file_head); 2076 tmp->map_file = fp; 2077 P->num_files++; 2078 2079 fp->file_ref = 1; 2080 fp->file_fd = -1; 2081 2082 fp->file_lo = malloc(sizeof (rd_loadobj_t)); 2083 fp->file_lname = strdup(execname); 2084 2085 if (fp->file_lo) 2086 *fp->file_lo = rl; 2087 if (fp->file_lname) 2088 fp->file_lbase = basename(fp->file_lname); 2089 if (fp->file_rname) 2090 fp->file_rbase = basename(fp->file_rname); 2091 2092 (void) strcpy(fp->file_pname, 2093 P->mappings[0].map_pmap.pr_mapname); 2094 fp->file_map = tmp; 2095 2096 Pbuild_file_symtab(P, fp); 2097 2098 if (dmp != NULL) { 2099 dmp->map_file = fp; 2100 fp->file_ref++; 2101 } 2102 } 2103 } 2104 2105 core_elf_close(&aout); 2106 2107 /* 2108 * We now have enough information to initialize librtld_db. 2109 * After it warms up, we can iterate through the load object chain 2110 * in the core, which will allow us to construct the file info 2111 * we need to provide symbol information for the other shared 2112 * libraries, and also to fill in the missing mapping names. 2113 */ 2114 rd_log(_libproc_debug); 2115 2116 if ((P->rap = rd_new(P)) != NULL) { 2117 (void) rd_loadobj_iter(P->rap, (rl_iter_f *) 2118 core_iter_mapping, P); 2119 2120 if (P->core->core_errno != 0) { 2121 errno = P->core->core_errno; 2122 *perr = G_STRANGE; 2123 goto err; 2124 } 2125 } else 2126 dprintf("failed to initialize rtld_db agent\n"); 2127 2128 /* 2129 * If there are sections, load them and process the data from any 2130 * sections that we can use to annotate the file_info_t's. 2131 */ 2132 core_load_shdrs(P, &core); 2133 2134 /* 2135 * If we previously located a stack or break mapping, and they are 2136 * still anonymous, we now assume that they were MAP_ANON mappings. 2137 * If brk_mp turns out to now have a name, then the heap is still 2138 * sitting at the end of the executable's data+bss mapping: remove 2139 * the previous MA_BREAK setting to be consistent with /proc. 2140 */ 2141 if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0') 2142 stk_mp->map_pmap.pr_mflags |= MA_ANON; 2143 if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0') 2144 brk_mp->map_pmap.pr_mflags |= MA_ANON; 2145 else if (brk_mp != NULL) 2146 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK; 2147 2148 *perr = 0; 2149 return (P); 2150 2151 err: 2152 Pfree(P); 2153 core_elf_close(&aout); 2154 return (NULL); 2155 } 2156 2157 /* 2158 * Grab a core file using a pathname. We just open it and call Pfgrab_core(). 2159 */ 2160 struct ps_prochandle * 2161 Pgrab_core(const char *core, const char *aout, int gflag, int *perr) 2162 { 2163 int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR; 2164 2165 if ((fd = open64(core, oflag)) >= 0) 2166 return (Pfgrab_core(fd, aout, perr)); 2167 2168 if (errno != ENOENT) 2169 *perr = G_STRANGE; 2170 else 2171 *perr = G_NOCORE; 2172 2173 return (NULL); 2174 } 2175