xref: /illumos-gate/usr/src/lib/libproc/common/Pcore.c (revision cffcfaee1e6b29ef9ceb7d80e4e053ffd029906b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
27  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
28  * Copyright (c) 2013 by Delphix. All rights reserved.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/utsname.h>
33 #include <sys/sysmacros.h>
34 #include <sys/proc.h>
35 
36 #include <alloca.h>
37 #include <rtld_db.h>
38 #include <libgen.h>
39 #include <limits.h>
40 #include <string.h>
41 #include <stdlib.h>
42 #include <unistd.h>
43 #include <errno.h>
44 #include <gelf.h>
45 #include <stddef.h>
46 #include <signal.h>
47 
48 #include "libproc.h"
49 #include "Pcontrol.h"
50 #include "P32ton.h"
51 #include "Putil.h"
52 #include "Pcore_linux.h"
53 
54 /*
55  * Pcore.c - Code to initialize a ps_prochandle from a core dump.  We
56  * allocate an additional structure to hold information from the core
57  * file, and attach this to the standard ps_prochandle in place of the
58  * ability to examine /proc/<pid>/ files.
59  */
60 
61 /*
62  * Basic i/o function for reading and writing from the process address space
63  * stored in the core file and associated shared libraries.  We compute the
64  * appropriate fd and offsets, and let the provided prw function do the rest.
65  */
66 static ssize_t
67 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
68     ssize_t (*prw)(int, void *, size_t, off64_t))
69 {
70 	ssize_t resid = n;
71 
72 	while (resid != 0) {
73 		map_info_t *mp = Paddr2mptr(P, addr);
74 
75 		uintptr_t mapoff;
76 		ssize_t len;
77 		off64_t off;
78 		int fd;
79 
80 		if (mp == NULL)
81 			break;	/* No mapping for this address */
82 
83 		if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
84 			if (mp->map_file == NULL || mp->map_file->file_fd < 0)
85 				break;	/* No file or file not open */
86 
87 			fd = mp->map_file->file_fd;
88 		} else
89 			fd = P->asfd;
90 
91 		mapoff = addr - mp->map_pmap.pr_vaddr;
92 		len = MIN(resid, mp->map_pmap.pr_size - mapoff);
93 		off = mp->map_offset + mapoff;
94 
95 		if ((len = prw(fd, buf, len, off)) <= 0)
96 			break;
97 
98 		resid -= len;
99 		addr += len;
100 		buf = (char *)buf + len;
101 	}
102 
103 	/*
104 	 * Important: Be consistent with the behavior of i/o on the as file:
105 	 * writing to an invalid address yields EIO; reading from an invalid
106 	 * address falls through to returning success and zero bytes.
107 	 */
108 	if (resid == n && n != 0 && prw != pread64) {
109 		errno = EIO;
110 		return (-1);
111 	}
112 
113 	return (n - resid);
114 }
115 
116 /*ARGSUSED*/
117 static ssize_t
118 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
119     void *data)
120 {
121 	return (core_rw(P, buf, n, addr, pread64));
122 }
123 
124 /*ARGSUSED*/
125 static ssize_t
126 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr,
127     void *data)
128 {
129 	return (core_rw(P, (void *)buf, n, addr,
130 	    (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64));
131 }
132 
133 /*ARGSUSED*/
134 static int
135 Pcred_core(struct ps_prochandle *P, prcred_t *pcrp, int ngroups, void *data)
136 {
137 	core_info_t *core = data;
138 
139 	if (core->core_cred != NULL) {
140 		/*
141 		 * Avoid returning more supplementary group data than the
142 		 * caller has allocated in their buffer.  We expect them to
143 		 * check pr_ngroups afterward and potentially call us again.
144 		 */
145 		ngroups = MIN(ngroups, core->core_cred->pr_ngroups);
146 
147 		(void) memcpy(pcrp, core->core_cred,
148 		    sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t));
149 
150 		return (0);
151 	}
152 
153 	errno = ENODATA;
154 	return (-1);
155 }
156 
157 /*ARGSUSED*/
158 static int
159 Ppriv_core(struct ps_prochandle *P, prpriv_t **pprv, void *data)
160 {
161 	core_info_t *core = data;
162 
163 	if (core->core_priv == NULL) {
164 		errno = ENODATA;
165 		return (-1);
166 	}
167 
168 	*pprv = malloc(core->core_priv_size);
169 	if (*pprv == NULL) {
170 		return (-1);
171 	}
172 
173 	(void) memcpy(*pprv, core->core_priv, core->core_priv_size);
174 	return (0);
175 }
176 
177 /*ARGSUSED*/
178 static const psinfo_t *
179 Ppsinfo_core(struct ps_prochandle *P, psinfo_t *psinfo, void *data)
180 {
181 	return (&P->psinfo);
182 }
183 
184 /*ARGSUSED*/
185 static void
186 Pfini_core(struct ps_prochandle *P, void *data)
187 {
188 	core_info_t *core = data;
189 
190 	if (core != NULL) {
191 		extern void __priv_free_info(void *);
192 		lwp_info_t *nlwp, *lwp = list_next(&core->core_lwp_head);
193 		int i;
194 
195 		for (i = 0; i < core->core_nlwp; i++, lwp = nlwp) {
196 			nlwp = list_next(lwp);
197 #ifdef __sparc
198 			if (lwp->lwp_gwins != NULL)
199 				free(lwp->lwp_gwins);
200 			if (lwp->lwp_xregs != NULL)
201 				free(lwp->lwp_xregs);
202 			if (lwp->lwp_asrs != NULL)
203 				free(lwp->lwp_asrs);
204 #endif
205 			free(lwp);
206 		}
207 
208 		if (core->core_platform != NULL)
209 			free(core->core_platform);
210 		if (core->core_uts != NULL)
211 			free(core->core_uts);
212 		if (core->core_cred != NULL)
213 			free(core->core_cred);
214 		if (core->core_priv != NULL)
215 			free(core->core_priv);
216 		if (core->core_privinfo != NULL)
217 			__priv_free_info(core->core_privinfo);
218 		if (core->core_ppii != NULL)
219 			free(core->core_ppii);
220 		if (core->core_zonename != NULL)
221 			free(core->core_zonename);
222 #if defined(__i386) || defined(__amd64)
223 		if (core->core_ldt != NULL)
224 			free(core->core_ldt);
225 #endif
226 
227 		free(core);
228 	}
229 }
230 
231 /*ARGSUSED*/
232 static char *
233 Pplatform_core(struct ps_prochandle *P, char *s, size_t n, void *data)
234 {
235 	core_info_t *core = data;
236 
237 	if (core->core_platform == NULL) {
238 		errno = ENODATA;
239 		return (NULL);
240 	}
241 	(void) strncpy(s, core->core_platform, n - 1);
242 	s[n - 1] = '\0';
243 	return (s);
244 }
245 
246 /*ARGSUSED*/
247 static int
248 Puname_core(struct ps_prochandle *P, struct utsname *u, void *data)
249 {
250 	core_info_t *core = data;
251 
252 	if (core->core_uts == NULL) {
253 		errno = ENODATA;
254 		return (-1);
255 	}
256 	(void) memcpy(u, core->core_uts, sizeof (struct utsname));
257 	return (0);
258 }
259 
260 /*ARGSUSED*/
261 static char *
262 Pzonename_core(struct ps_prochandle *P, char *s, size_t n, void *data)
263 {
264 	core_info_t *core = data;
265 
266 	if (core->core_zonename == NULL) {
267 		errno = ENODATA;
268 		return (NULL);
269 	}
270 	(void) strlcpy(s, core->core_zonename, n);
271 	return (s);
272 }
273 
274 #if defined(__i386) || defined(__amd64)
275 /*ARGSUSED*/
276 static int
277 Pldt_core(struct ps_prochandle *P, struct ssd *pldt, int nldt, void *data)
278 {
279 	core_info_t *core = data;
280 
281 	if (pldt == NULL || nldt == 0)
282 		return (core->core_nldt);
283 
284 	if (core->core_ldt != NULL) {
285 		nldt = MIN(nldt, core->core_nldt);
286 
287 		(void) memcpy(pldt, core->core_ldt,
288 		    nldt * sizeof (struct ssd));
289 
290 		return (nldt);
291 	}
292 
293 	errno = ENODATA;
294 	return (-1);
295 }
296 #endif
297 
298 static const ps_ops_t P_core_ops = {
299 	.pop_pread	= Pread_core,
300 	.pop_pwrite	= Pwrite_core,
301 	.pop_cred	= Pcred_core,
302 	.pop_priv	= Ppriv_core,
303 	.pop_psinfo	= Ppsinfo_core,
304 	.pop_fini	= Pfini_core,
305 	.pop_platform	= Pplatform_core,
306 	.pop_uname	= Puname_core,
307 	.pop_zonename	= Pzonename_core,
308 #if defined(__i386) || defined(__amd64)
309 	.pop_ldt	= Pldt_core
310 #endif
311 };
312 
313 /*
314  * Return the lwp_info_t for the given lwpid.  If no such lwpid has been
315  * encountered yet, allocate a new structure and return a pointer to it.
316  * Create a list of lwp_info_t structures sorted in decreasing lwp_id order.
317  */
318 static lwp_info_t *
319 lwpid2info(struct ps_prochandle *P, lwpid_t id)
320 {
321 	core_info_t *core = P->data;
322 	lwp_info_t *lwp = list_next(&core->core_lwp_head);
323 	lwp_info_t *next;
324 	uint_t i;
325 
326 	for (i = 0; i < core->core_nlwp; i++, lwp = list_next(lwp)) {
327 		if (lwp->lwp_id == id) {
328 			core->core_lwp = lwp;
329 			return (lwp);
330 		}
331 		if (lwp->lwp_id < id) {
332 			break;
333 		}
334 	}
335 
336 	next = lwp;
337 	if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL)
338 		return (NULL);
339 
340 	list_link(lwp, next);
341 	lwp->lwp_id = id;
342 
343 	core->core_lwp = lwp;
344 	core->core_nlwp++;
345 
346 	return (lwp);
347 }
348 
349 /*
350  * The core file itself contains a series of NOTE segments containing saved
351  * structures from /proc at the time the process died.  For each note we
352  * comprehend, we define a function to read it in from the core file,
353  * convert it to our native data model if necessary, and store it inside
354  * the ps_prochandle.  Each function is invoked by Pfgrab_core() with the
355  * seek pointer on P->asfd positioned appropriately.  We populate a table
356  * of pointers to these note functions below.
357  */
358 
359 static int
360 note_pstatus(struct ps_prochandle *P, size_t nbytes)
361 {
362 #ifdef _LP64
363 	core_info_t *core = P->data;
364 
365 	if (core->core_dmodel == PR_MODEL_ILP32) {
366 		pstatus32_t ps32;
367 
368 		if (nbytes < sizeof (pstatus32_t) ||
369 		    read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
370 			goto err;
371 
372 		pstatus_32_to_n(&ps32, &P->status);
373 
374 	} else
375 #endif
376 	if (nbytes < sizeof (pstatus_t) ||
377 	    read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t))
378 		goto err;
379 
380 	P->orig_status = P->status;
381 	P->pid = P->status.pr_pid;
382 
383 	return (0);
384 
385 err:
386 	dprintf("Pgrab_core: failed to read NT_PSTATUS\n");
387 	return (-1);
388 }
389 
390 static int
391 note_lwpstatus(struct ps_prochandle *P, size_t nbytes)
392 {
393 	lwp_info_t *lwp;
394 	lwpstatus_t lps;
395 
396 #ifdef _LP64
397 	core_info_t *core = P->data;
398 
399 	if (core->core_dmodel == PR_MODEL_ILP32) {
400 		lwpstatus32_t l32;
401 
402 		if (nbytes < sizeof (lwpstatus32_t) ||
403 		    read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
404 			goto err;
405 
406 		lwpstatus_32_to_n(&l32, &lps);
407 	} else
408 #endif
409 	if (nbytes < sizeof (lwpstatus_t) ||
410 	    read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
411 		goto err;
412 
413 	if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
414 		dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n");
415 		return (-1);
416 	}
417 
418 	/*
419 	 * Erase a useless and confusing artifact of the kernel implementation:
420 	 * the lwps which did *not* create the core will show SIGKILL.  We can
421 	 * be assured this is bogus because SIGKILL can't produce core files.
422 	 */
423 	if (lps.pr_cursig == SIGKILL)
424 		lps.pr_cursig = 0;
425 
426 	(void) memcpy(&lwp->lwp_status, &lps, sizeof (lps));
427 	return (0);
428 
429 err:
430 	dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n");
431 	return (-1);
432 }
433 
434 static void
435 lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t *p32, psinfo_t *psinfo)
436 {
437 	psinfo->pr_flag = p32->pr_flag;
438 	psinfo->pr_pid = p32->pr_pid;
439 	psinfo->pr_ppid = p32->pr_ppid;
440 	psinfo->pr_uid = p32->pr_uid;
441 	psinfo->pr_gid = p32->pr_gid;
442 	psinfo->pr_sid = p32->pr_sid;
443 	psinfo->pr_pgid = p32->pr_pgrp;
444 
445 	(void) memcpy(psinfo->pr_fname, p32->pr_fname,
446 	    sizeof (psinfo->pr_fname));
447 	(void) memcpy(psinfo->pr_psargs, p32->pr_psargs,
448 	    sizeof (psinfo->pr_psargs));
449 }
450 
451 static void
452 lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t *p64, psinfo_t *psinfo)
453 {
454 	psinfo->pr_flag = p64->pr_flag;
455 	psinfo->pr_pid = p64->pr_pid;
456 	psinfo->pr_ppid = p64->pr_ppid;
457 	psinfo->pr_uid = p64->pr_uid;
458 	psinfo->pr_gid = p64->pr_gid;
459 	psinfo->pr_sid = p64->pr_sid;
460 	psinfo->pr_pgid = p64->pr_pgrp;
461 	psinfo->pr_pgid = p64->pr_pgrp;
462 
463 	(void) memcpy(psinfo->pr_fname, p64->pr_fname,
464 	    sizeof (psinfo->pr_fname));
465 	(void) memcpy(psinfo->pr_psargs, p64->pr_psargs,
466 	    sizeof (psinfo->pr_psargs));
467 }
468 
469 static int
470 note_linux_psinfo(struct ps_prochandle *P, size_t nbytes)
471 {
472 	core_info_t *core = P->data;
473 	lx_prpsinfo32_t p32;
474 	lx_prpsinfo64_t p64;
475 
476 	if (core->core_dmodel == PR_MODEL_ILP32) {
477 		if (nbytes < sizeof (p32) ||
478 		    read(P->asfd, &p32, sizeof (p32)) != sizeof (p32))
479 			goto err;
480 
481 		lx_prpsinfo32_to_psinfo(&p32, &P->psinfo);
482 	} else {
483 		if (nbytes < sizeof (p64) ||
484 		    read(P->asfd, &p64, sizeof (p64)) != sizeof (p64))
485 			goto err;
486 
487 		lx_prpsinfo64_to_psinfo(&p64, &P->psinfo);
488 	}
489 
490 
491 	P->status.pr_pid = P->psinfo.pr_pid;
492 	P->status.pr_ppid = P->psinfo.pr_ppid;
493 	P->status.pr_pgid = P->psinfo.pr_pgid;
494 	P->status.pr_sid = P->psinfo.pr_sid;
495 
496 	P->psinfo.pr_nlwp = 0;
497 	P->status.pr_nlwp = 0;
498 
499 	return (0);
500 err:
501 	dprintf("Pgrab_core: failed to read NT_PSINFO\n");
502 	return (-1);
503 }
504 
505 static void
506 lx_prstatus64_to_lwp(lx_prstatus64_t *prs64, lwp_info_t *lwp)
507 {
508 	LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs64->pr_utime);
509 	LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs64->pr_stime);
510 
511 	lwp->lwp_status.pr_reg[REG_R15] = prs64->pr_reg.lxr_r15;
512 	lwp->lwp_status.pr_reg[REG_R14] = prs64->pr_reg.lxr_r14;
513 	lwp->lwp_status.pr_reg[REG_R13] = prs64->pr_reg.lxr_r13;
514 	lwp->lwp_status.pr_reg[REG_R12] = prs64->pr_reg.lxr_r12;
515 	lwp->lwp_status.pr_reg[REG_R11] = prs64->pr_reg.lxr_r11;
516 	lwp->lwp_status.pr_reg[REG_R10] = prs64->pr_reg.lxr_r10;
517 	lwp->lwp_status.pr_reg[REG_R9] = prs64->pr_reg.lxr_r9;
518 	lwp->lwp_status.pr_reg[REG_R8] = prs64->pr_reg.lxr_r8;
519 
520 	lwp->lwp_status.pr_reg[REG_RDI] = prs64->pr_reg.lxr_rdi;
521 	lwp->lwp_status.pr_reg[REG_RSI] = prs64->pr_reg.lxr_rsi;
522 	lwp->lwp_status.pr_reg[REG_RBP] = prs64->pr_reg.lxr_rbp;
523 	lwp->lwp_status.pr_reg[REG_RBX] = prs64->pr_reg.lxr_rbx;
524 	lwp->lwp_status.pr_reg[REG_RDX] = prs64->pr_reg.lxr_rdx;
525 	lwp->lwp_status.pr_reg[REG_RCX] = prs64->pr_reg.lxr_rcx;
526 	lwp->lwp_status.pr_reg[REG_RAX] = prs64->pr_reg.lxr_rax;
527 
528 	lwp->lwp_status.pr_reg[REG_RIP] = prs64->pr_reg.lxr_rip;
529 	lwp->lwp_status.pr_reg[REG_CS] = prs64->pr_reg.lxr_cs;
530 	lwp->lwp_status.pr_reg[REG_RSP] = prs64->pr_reg.lxr_rsp;
531 	lwp->lwp_status.pr_reg[REG_FS] = prs64->pr_reg.lxr_fs;
532 	lwp->lwp_status.pr_reg[REG_SS] = prs64->pr_reg.lxr_ss;
533 	lwp->lwp_status.pr_reg[REG_GS] = prs64->pr_reg.lxr_gs;
534 	lwp->lwp_status.pr_reg[REG_ES] = prs64->pr_reg.lxr_es;
535 	lwp->lwp_status.pr_reg[REG_DS] = prs64->pr_reg.lxr_ds;
536 
537 	lwp->lwp_status.pr_reg[REG_GSBASE] = prs64->pr_reg.lxr_gs_base;
538 	lwp->lwp_status.pr_reg[REG_FSBASE] = prs64->pr_reg.lxr_fs_base;
539 }
540 
541 static void
542 lx_prstatus32_to_lwp(lx_prstatus32_t *prs32, lwp_info_t *lwp)
543 {
544 	LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs32->pr_utime);
545 	LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs32->pr_stime);
546 
547 #ifdef __amd64
548 	lwp->lwp_status.pr_reg[REG_GS] = prs32->pr_reg.lxr_gs;
549 	lwp->lwp_status.pr_reg[REG_FS] = prs32->pr_reg.lxr_fs;
550 	lwp->lwp_status.pr_reg[REG_DS] = prs32->pr_reg.lxr_ds;
551 	lwp->lwp_status.pr_reg[REG_ES] = prs32->pr_reg.lxr_es;
552 	lwp->lwp_status.pr_reg[REG_RDI] = prs32->pr_reg.lxr_di;
553 	lwp->lwp_status.pr_reg[REG_RSI] = prs32->pr_reg.lxr_si;
554 	lwp->lwp_status.pr_reg[REG_RBP] = prs32->pr_reg.lxr_bp;
555 	lwp->lwp_status.pr_reg[REG_RBX] = prs32->pr_reg.lxr_bx;
556 	lwp->lwp_status.pr_reg[REG_RDX] = prs32->pr_reg.lxr_dx;
557 	lwp->lwp_status.pr_reg[REG_RCX] = prs32->pr_reg.lxr_cx;
558 	lwp->lwp_status.pr_reg[REG_RAX] = prs32->pr_reg.lxr_ax;
559 	lwp->lwp_status.pr_reg[REG_RIP] = prs32->pr_reg.lxr_ip;
560 	lwp->lwp_status.pr_reg[REG_CS] = prs32->pr_reg.lxr_cs;
561 	lwp->lwp_status.pr_reg[REG_RFL] = prs32->pr_reg.lxr_flags;
562 	lwp->lwp_status.pr_reg[REG_RSP] = prs32->pr_reg.lxr_sp;
563 	lwp->lwp_status.pr_reg[REG_SS] = prs32->pr_reg.lxr_ss;
564 #else /* __amd64 */
565 	lwp->lwp_status.pr_reg[EBX] = prs32->pr_reg.lxr_bx;
566 	lwp->lwp_status.pr_reg[ECX] = prs32->pr_reg.lxr_cx;
567 	lwp->lwp_status.pr_reg[EDX] = prs32->pr_reg.lxr_dx;
568 	lwp->lwp_status.pr_reg[ESI] = prs32->pr_reg.lxr_si;
569 	lwp->lwp_status.pr_reg[EDI] = prs32->pr_reg.lxr_di;
570 	lwp->lwp_status.pr_reg[EBP] = prs32->pr_reg.lxr_bp;
571 	lwp->lwp_status.pr_reg[EAX] = prs32->pr_reg.lxr_ax;
572 	lwp->lwp_status.pr_reg[EIP] = prs32->pr_reg.lxr_ip;
573 	lwp->lwp_status.pr_reg[UESP] = prs32->pr_reg.lxr_sp;
574 
575 	lwp->lwp_status.pr_reg[DS] = prs32->pr_reg.lxr_ds;
576 	lwp->lwp_status.pr_reg[ES] = prs32->pr_reg.lxr_es;
577 	lwp->lwp_status.pr_reg[FS] = prs32->pr_reg.lxr_fs;
578 	lwp->lwp_status.pr_reg[GS] = prs32->pr_reg.lxr_gs;
579 	lwp->lwp_status.pr_reg[CS] = prs32->pr_reg.lxr_cs;
580 	lwp->lwp_status.pr_reg[SS] = prs32->pr_reg.lxr_ss;
581 
582 	lwp->lwp_status.pr_reg[EFL] = prs32->pr_reg.lxr_flags;
583 #endif	/* !__amd64 */
584 }
585 
586 static int
587 note_linux_prstatus(struct ps_prochandle *P, size_t nbytes)
588 {
589 	core_info_t *core = P->data;
590 
591 	lx_prstatus64_t prs64;
592 	lx_prstatus32_t prs32;
593 	lwp_info_t *lwp;
594 	lwpid_t tid;
595 
596 	dprintf("looking for model %d, %ld/%ld\n", core->core_dmodel,
597 	    (ulong_t)nbytes, (ulong_t)sizeof (prs32));
598 	if (core->core_dmodel == PR_MODEL_ILP32) {
599 		if (nbytes < sizeof (prs32) ||
600 		    read(P->asfd, &prs32, sizeof (prs32)) != nbytes)
601 			goto err;
602 		tid = prs32.pr_pid;
603 	} else {
604 		if (nbytes < sizeof (prs64) ||
605 		    read(P->asfd, &prs64, sizeof (prs64)) != nbytes)
606 			goto err;
607 		tid = prs64.pr_pid;
608 	}
609 
610 	if ((lwp = lwpid2info(P, tid)) == NULL) {
611 		dprintf("Pgrab_core: failed to add lwpid2info "
612 		    "linux_prstatus\n");
613 		return (-1);
614 	}
615 
616 	P->psinfo.pr_nlwp++;
617 	P->status.pr_nlwp++;
618 
619 	lwp->lwp_status.pr_lwpid = tid;
620 
621 	if (core->core_dmodel == PR_MODEL_ILP32)
622 		lx_prstatus32_to_lwp(&prs32, lwp);
623 	else
624 		lx_prstatus64_to_lwp(&prs64, lwp);
625 
626 	return (0);
627 err:
628 	dprintf("Pgrab_core: failed to read NT_PRSTATUS\n");
629 	return (-1);
630 }
631 
632 static int
633 note_psinfo(struct ps_prochandle *P, size_t nbytes)
634 {
635 #ifdef _LP64
636 	core_info_t *core = P->data;
637 
638 	if (core->core_dmodel == PR_MODEL_ILP32) {
639 		psinfo32_t ps32;
640 
641 		if (nbytes < sizeof (psinfo32_t) ||
642 		    read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
643 			goto err;
644 
645 		psinfo_32_to_n(&ps32, &P->psinfo);
646 	} else
647 #endif
648 	if (nbytes < sizeof (psinfo_t) ||
649 	    read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
650 		goto err;
651 
652 	dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
653 	dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
654 	dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
655 
656 	return (0);
657 
658 err:
659 	dprintf("Pgrab_core: failed to read NT_PSINFO\n");
660 	return (-1);
661 }
662 
663 static int
664 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes)
665 {
666 	lwp_info_t *lwp;
667 	lwpsinfo_t lps;
668 
669 #ifdef _LP64
670 	core_info_t *core = P->data;
671 
672 	if (core->core_dmodel == PR_MODEL_ILP32) {
673 		lwpsinfo32_t l32;
674 
675 		if (nbytes < sizeof (lwpsinfo32_t) ||
676 		    read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
677 			goto err;
678 
679 		lwpsinfo_32_to_n(&l32, &lps);
680 	} else
681 #endif
682 	if (nbytes < sizeof (lwpsinfo_t) ||
683 	    read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
684 		goto err;
685 
686 	if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
687 		dprintf("Pgrab_core: failed to add NT_LWPSINFO\n");
688 		return (-1);
689 	}
690 
691 	(void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps));
692 	return (0);
693 
694 err:
695 	dprintf("Pgrab_core: failed to read NT_LWPSINFO\n");
696 	return (-1);
697 }
698 
699 static int
700 note_fdinfo(struct ps_prochandle *P, size_t nbytes)
701 {
702 	prfdinfo_t prfd;
703 	fd_info_t *fip;
704 
705 	if ((nbytes < sizeof (prfd)) ||
706 	    (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) {
707 		dprintf("Pgrab_core: failed to read NT_FDINFO\n");
708 		return (-1);
709 	}
710 
711 	if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) {
712 		dprintf("Pgrab_core: failed to add NT_FDINFO\n");
713 		return (-1);
714 	}
715 	(void) memcpy(&fip->fd_info, &prfd, sizeof (prfd));
716 	return (0);
717 }
718 
719 static int
720 note_platform(struct ps_prochandle *P, size_t nbytes)
721 {
722 	core_info_t *core = P->data;
723 	char *plat;
724 
725 	if (core->core_platform != NULL)
726 		return (0);	/* Already seen */
727 
728 	if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) {
729 		if (read(P->asfd, plat, nbytes) != nbytes) {
730 			dprintf("Pgrab_core: failed to read NT_PLATFORM\n");
731 			free(plat);
732 			return (-1);
733 		}
734 		plat[nbytes - 1] = '\0';
735 		core->core_platform = plat;
736 	}
737 
738 	return (0);
739 }
740 
741 static int
742 note_utsname(struct ps_prochandle *P, size_t nbytes)
743 {
744 	core_info_t *core = P->data;
745 	size_t ubytes = sizeof (struct utsname);
746 	struct utsname *utsp;
747 
748 	if (core->core_uts != NULL || nbytes < ubytes)
749 		return (0);	/* Already seen or bad size */
750 
751 	if ((utsp = malloc(ubytes)) == NULL)
752 		return (-1);
753 
754 	if (read(P->asfd, utsp, ubytes) != ubytes) {
755 		dprintf("Pgrab_core: failed to read NT_UTSNAME\n");
756 		free(utsp);
757 		return (-1);
758 	}
759 
760 	if (_libproc_debug) {
761 		dprintf("uts.sysname = \"%s\"\n", utsp->sysname);
762 		dprintf("uts.nodename = \"%s\"\n", utsp->nodename);
763 		dprintf("uts.release = \"%s\"\n", utsp->release);
764 		dprintf("uts.version = \"%s\"\n", utsp->version);
765 		dprintf("uts.machine = \"%s\"\n", utsp->machine);
766 	}
767 
768 	core->core_uts = utsp;
769 	return (0);
770 }
771 
772 static int
773 note_content(struct ps_prochandle *P, size_t nbytes)
774 {
775 	core_info_t *core = P->data;
776 	core_content_t content;
777 
778 	if (sizeof (core->core_content) != nbytes)
779 		return (-1);
780 
781 	if (read(P->asfd, &content, sizeof (content)) != sizeof (content))
782 		return (-1);
783 
784 	core->core_content = content;
785 
786 	dprintf("core content = %llx\n", content);
787 
788 	return (0);
789 }
790 
791 static int
792 note_cred(struct ps_prochandle *P, size_t nbytes)
793 {
794 	core_info_t *core = P->data;
795 	prcred_t *pcrp;
796 	int ngroups;
797 	const size_t min_size = sizeof (prcred_t) - sizeof (gid_t);
798 
799 	/*
800 	 * We allow for prcred_t notes that are actually smaller than a
801 	 * prcred_t since the last member isn't essential if there are
802 	 * no group memberships. This allows for more flexibility when it
803 	 * comes to slightly malformed -- but still valid -- notes.
804 	 */
805 	if (core->core_cred != NULL || nbytes < min_size)
806 		return (0);	/* Already seen or bad size */
807 
808 	ngroups = (nbytes - min_size) / sizeof (gid_t);
809 	nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t);
810 
811 	if ((pcrp = malloc(nbytes)) == NULL)
812 		return (-1);
813 
814 	if (read(P->asfd, pcrp, nbytes) != nbytes) {
815 		dprintf("Pgrab_core: failed to read NT_PRCRED\n");
816 		free(pcrp);
817 		return (-1);
818 	}
819 
820 	if (pcrp->pr_ngroups > ngroups) {
821 		dprintf("pr_ngroups = %d; resetting to %d based on note size\n",
822 		    pcrp->pr_ngroups, ngroups);
823 		pcrp->pr_ngroups = ngroups;
824 	}
825 
826 	core->core_cred = pcrp;
827 	return (0);
828 }
829 
830 #if defined(__i386) || defined(__amd64)
831 static int
832 note_ldt(struct ps_prochandle *P, size_t nbytes)
833 {
834 	core_info_t *core = P->data;
835 	struct ssd *pldt;
836 	uint_t nldt;
837 
838 	if (core->core_ldt != NULL || nbytes < sizeof (struct ssd))
839 		return (0);	/* Already seen or bad size */
840 
841 	nldt = nbytes / sizeof (struct ssd);
842 	nbytes = nldt * sizeof (struct ssd);
843 
844 	if ((pldt = malloc(nbytes)) == NULL)
845 		return (-1);
846 
847 	if (read(P->asfd, pldt, nbytes) != nbytes) {
848 		dprintf("Pgrab_core: failed to read NT_LDT\n");
849 		free(pldt);
850 		return (-1);
851 	}
852 
853 	core->core_ldt = pldt;
854 	core->core_nldt = nldt;
855 	return (0);
856 }
857 #endif	/* __i386 */
858 
859 static int
860 note_priv(struct ps_prochandle *P, size_t nbytes)
861 {
862 	core_info_t *core = P->data;
863 	prpriv_t *pprvp;
864 
865 	if (core->core_priv != NULL || nbytes < sizeof (prpriv_t))
866 		return (0);	/* Already seen or bad size */
867 
868 	if ((pprvp = malloc(nbytes)) == NULL)
869 		return (-1);
870 
871 	if (read(P->asfd, pprvp, nbytes) != nbytes) {
872 		dprintf("Pgrab_core: failed to read NT_PRPRIV\n");
873 		free(pprvp);
874 		return (-1);
875 	}
876 
877 	core->core_priv = pprvp;
878 	core->core_priv_size = nbytes;
879 	return (0);
880 }
881 
882 static int
883 note_priv_info(struct ps_prochandle *P, size_t nbytes)
884 {
885 	core_info_t *core = P->data;
886 	extern void *__priv_parse_info();
887 	priv_impl_info_t *ppii;
888 
889 	if (core->core_privinfo != NULL ||
890 	    nbytes < sizeof (priv_impl_info_t))
891 		return (0);	/* Already seen or bad size */
892 
893 	if ((ppii = malloc(nbytes)) == NULL)
894 		return (-1);
895 
896 	if (read(P->asfd, ppii, nbytes) != nbytes ||
897 	    PRIV_IMPL_INFO_SIZE(ppii) != nbytes) {
898 		dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n");
899 		free(ppii);
900 		return (-1);
901 	}
902 
903 	core->core_privinfo = __priv_parse_info(ppii);
904 	core->core_ppii = ppii;
905 	return (0);
906 }
907 
908 static int
909 note_zonename(struct ps_prochandle *P, size_t nbytes)
910 {
911 	core_info_t *core = P->data;
912 	char *zonename;
913 
914 	if (core->core_zonename != NULL)
915 		return (0);	/* Already seen */
916 
917 	if (nbytes != 0) {
918 		if ((zonename = malloc(nbytes)) == NULL)
919 			return (-1);
920 		if (read(P->asfd, zonename, nbytes) != nbytes) {
921 			dprintf("Pgrab_core: failed to read NT_ZONENAME\n");
922 			free(zonename);
923 			return (-1);
924 		}
925 		zonename[nbytes - 1] = '\0';
926 		core->core_zonename = zonename;
927 	}
928 
929 	return (0);
930 }
931 
932 static int
933 note_auxv(struct ps_prochandle *P, size_t nbytes)
934 {
935 	size_t n, i;
936 
937 #ifdef _LP64
938 	core_info_t *core = P->data;
939 
940 	if (core->core_dmodel == PR_MODEL_ILP32) {
941 		auxv32_t *a32;
942 
943 		n = nbytes / sizeof (auxv32_t);
944 		nbytes = n * sizeof (auxv32_t);
945 		a32 = alloca(nbytes);
946 
947 		if (read(P->asfd, a32, nbytes) != nbytes) {
948 			dprintf("Pgrab_core: failed to read NT_AUXV\n");
949 			return (-1);
950 		}
951 
952 		if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL)
953 			return (-1);
954 
955 		for (i = 0; i < n; i++)
956 			auxv_32_to_n(&a32[i], &P->auxv[i]);
957 
958 	} else {
959 #endif
960 		n = nbytes / sizeof (auxv_t);
961 		nbytes = n * sizeof (auxv_t);
962 
963 		if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL)
964 			return (-1);
965 
966 		if (read(P->asfd, P->auxv, nbytes) != nbytes) {
967 			free(P->auxv);
968 			P->auxv = NULL;
969 			return (-1);
970 		}
971 #ifdef _LP64
972 	}
973 #endif
974 
975 	if (_libproc_debug) {
976 		for (i = 0; i < n; i++) {
977 			dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i,
978 			    P->auxv[i].a_type, P->auxv[i].a_un.a_val);
979 		}
980 	}
981 
982 	/*
983 	 * Defensive coding for loops which depend upon the auxv array being
984 	 * terminated by an AT_NULL element; in each case, we've allocated
985 	 * P->auxv to have an additional element which we force to be AT_NULL.
986 	 */
987 	P->auxv[n].a_type = AT_NULL;
988 	P->auxv[n].a_un.a_val = 0L;
989 	P->nauxv = (int)n;
990 
991 	return (0);
992 }
993 
994 #ifdef __sparc
995 static int
996 note_xreg(struct ps_prochandle *P, size_t nbytes)
997 {
998 	core_info_t *core = P->data;
999 	lwp_info_t *lwp = core->core_lwp;
1000 	size_t xbytes = sizeof (prxregset_t);
1001 	prxregset_t *xregs;
1002 
1003 	if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes)
1004 		return (0);	/* No lwp yet, already seen, or bad size */
1005 
1006 	if ((xregs = malloc(xbytes)) == NULL)
1007 		return (-1);
1008 
1009 	if (read(P->asfd, xregs, xbytes) != xbytes) {
1010 		dprintf("Pgrab_core: failed to read NT_PRXREG\n");
1011 		free(xregs);
1012 		return (-1);
1013 	}
1014 
1015 	lwp->lwp_xregs = xregs;
1016 	return (0);
1017 }
1018 
1019 static int
1020 note_gwindows(struct ps_prochandle *P, size_t nbytes)
1021 {
1022 	core_info_t *core = P->data;
1023 	lwp_info_t *lwp = core->core_lwp;
1024 
1025 	if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
1026 		return (0);	/* No lwp yet or already seen or no data */
1027 
1028 	if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
1029 		return (-1);
1030 
1031 	/*
1032 	 * Since the amount of gwindows data varies with how many windows were
1033 	 * actually saved, we just read up to the minimum of the note size
1034 	 * and the size of the gwindows_t type.  It doesn't matter if the read
1035 	 * fails since we have to zero out gwindows first anyway.
1036 	 */
1037 #ifdef _LP64
1038 	if (core->core_dmodel == PR_MODEL_ILP32) {
1039 		gwindows32_t g32;
1040 
1041 		(void) memset(&g32, 0, sizeof (g32));
1042 		(void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
1043 		gwindows_32_to_n(&g32, lwp->lwp_gwins);
1044 
1045 	} else {
1046 #endif
1047 		(void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));
1048 		(void) read(P->asfd, lwp->lwp_gwins,
1049 		    MIN(nbytes, sizeof (gwindows_t)));
1050 #ifdef _LP64
1051 	}
1052 #endif
1053 	return (0);
1054 }
1055 
1056 #ifdef __sparcv9
1057 static int
1058 note_asrs(struct ps_prochandle *P, size_t nbytes)
1059 {
1060 	core_info_t *core = P->data;
1061 	lwp_info_t *lwp = core->core_lwp;
1062 	int64_t *asrs;
1063 
1064 	if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
1065 		return (0);	/* No lwp yet, already seen, or bad size */
1066 
1067 	if ((asrs = malloc(sizeof (asrset_t))) == NULL)
1068 		return (-1);
1069 
1070 	if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
1071 		dprintf("Pgrab_core: failed to read NT_ASRS\n");
1072 		free(asrs);
1073 		return (-1);
1074 	}
1075 
1076 	lwp->lwp_asrs = asrs;
1077 	return (0);
1078 }
1079 #endif	/* __sparcv9 */
1080 #endif	/* __sparc */
1081 
1082 static int
1083 note_spymaster(struct ps_prochandle *P, size_t nbytes)
1084 {
1085 #ifdef _LP64
1086 	core_info_t *core = P->data;
1087 
1088 	if (core->core_dmodel == PR_MODEL_ILP32) {
1089 		psinfo32_t ps32;
1090 
1091 		if (nbytes < sizeof (psinfo32_t) ||
1092 		    read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
1093 			goto err;
1094 
1095 		psinfo_32_to_n(&ps32, &P->spymaster);
1096 	} else
1097 #endif
1098 	if (nbytes < sizeof (psinfo_t) || read(P->asfd,
1099 	    &P->spymaster, sizeof (psinfo_t)) != sizeof (psinfo_t))
1100 		goto err;
1101 
1102 	dprintf("spymaster pr_fname = <%s>\n", P->psinfo.pr_fname);
1103 	dprintf("spymaster pr_psargs = <%s>\n", P->psinfo.pr_psargs);
1104 	dprintf("spymaster pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
1105 
1106 	return (0);
1107 
1108 err:
1109 	dprintf("Pgrab_core: failed to read NT_SPYMASTER\n");
1110 	return (-1);
1111 }
1112 
1113 /*ARGSUSED*/
1114 static int
1115 note_notsup(struct ps_prochandle *P, size_t nbytes)
1116 {
1117 	dprintf("skipping unsupported note type of size %ld bytes\n",
1118 	    (ulong_t)nbytes);
1119 	return (0);
1120 }
1121 
1122 /*
1123  * Populate a table of function pointers indexed by Note type with our
1124  * functions to process each type of core file note:
1125  */
1126 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = {
1127 	note_notsup,		/*  0	unassigned		*/
1128 	note_linux_prstatus,		/*  1	NT_PRSTATUS (old)	*/
1129 	note_notsup,		/*  2	NT_PRFPREG (old)	*/
1130 	note_linux_psinfo,		/*  3	NT_PRPSINFO (old)	*/
1131 #ifdef __sparc
1132 	note_xreg,		/*  4	NT_PRXREG		*/
1133 #else
1134 	note_notsup,		/*  4	NT_PRXREG		*/
1135 #endif
1136 	note_platform,		/*  5	NT_PLATFORM		*/
1137 	note_auxv,		/*  6	NT_AUXV			*/
1138 #ifdef __sparc
1139 	note_gwindows,		/*  7	NT_GWINDOWS		*/
1140 #ifdef __sparcv9
1141 	note_asrs,		/*  8	NT_ASRS			*/
1142 #else
1143 	note_notsup,		/*  8	NT_ASRS			*/
1144 #endif
1145 #else
1146 	note_notsup,		/*  7	NT_GWINDOWS		*/
1147 	note_notsup,		/*  8	NT_ASRS			*/
1148 #endif
1149 #if defined(__i386) || defined(__amd64)
1150 	note_ldt,		/*  9	NT_LDT			*/
1151 #else
1152 	note_notsup,		/*  9	NT_LDT			*/
1153 #endif
1154 	note_pstatus,		/* 10	NT_PSTATUS		*/
1155 	note_notsup,		/* 11	unassigned		*/
1156 	note_notsup,		/* 12	unassigned		*/
1157 	note_psinfo,		/* 13	NT_PSINFO		*/
1158 	note_cred,		/* 14	NT_PRCRED		*/
1159 	note_utsname,		/* 15	NT_UTSNAME		*/
1160 	note_lwpstatus,		/* 16	NT_LWPSTATUS		*/
1161 	note_lwpsinfo,		/* 17	NT_LWPSINFO		*/
1162 	note_priv,		/* 18	NT_PRPRIV		*/
1163 	note_priv_info,		/* 19	NT_PRPRIVINFO		*/
1164 	note_content,		/* 20	NT_CONTENT		*/
1165 	note_zonename,		/* 21	NT_ZONENAME		*/
1166 	note_fdinfo,		/* 22	NT_FDINFO		*/
1167 	note_spymaster,		/* 23	NT_SPYMASTER		*/
1168 };
1169 
1170 static void
1171 core_report_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1172 {
1173 	prkillinfo_t killinfo;
1174 	siginfo_t *si = &killinfo.prk_info;
1175 	char signame[SIG2STR_MAX], sig[64], info[64];
1176 	void *addr = (void *)(uintptr_t)php->p_vaddr;
1177 
1178 	const char *errfmt = "core file data for mapping at %p not saved: %s\n";
1179 	const char *incfmt = "core file incomplete due to %s%s\n";
1180 	const char *msgfmt = "mappings at and above %p are missing\n";
1181 
1182 	if (!(php->p_flags & PF_SUNW_KILLED)) {
1183 		int err = 0;
1184 
1185 		(void) pread64(P->asfd, &err,
1186 		    sizeof (err), (off64_t)php->p_offset);
1187 
1188 		Perror_printf(P, errfmt, addr, strerror(err));
1189 		dprintf(errfmt, addr, strerror(err));
1190 		return;
1191 	}
1192 
1193 	if (!(php->p_flags & PF_SUNW_SIGINFO))
1194 		return;
1195 
1196 	(void) memset(&killinfo, 0, sizeof (killinfo));
1197 
1198 	(void) pread64(P->asfd, &killinfo,
1199 	    sizeof (killinfo), (off64_t)php->p_offset);
1200 
1201 	/*
1202 	 * While there is (or at least should be) only one segment that has
1203 	 * PF_SUNW_SIGINFO set, the signal information there is globally
1204 	 * useful (even if only to those debugging libproc consumers); we hang
1205 	 * the signal information gleaned here off of the ps_prochandle.
1206 	 */
1207 	P->map_missing = php->p_vaddr;
1208 	P->killinfo = killinfo.prk_info;
1209 
1210 	if (sig2str(si->si_signo, signame) == -1) {
1211 		(void) snprintf(sig, sizeof (sig),
1212 		    "<Unknown signal: 0x%x>, ", si->si_signo);
1213 	} else {
1214 		(void) snprintf(sig, sizeof (sig), "SIG%s, ", signame);
1215 	}
1216 
1217 	if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1218 		(void) snprintf(info, sizeof (info),
1219 		    "pid=%d uid=%d zone=%d ctid=%d",
1220 		    si->si_pid, si->si_uid, si->si_zoneid, si->si_ctid);
1221 	} else {
1222 		(void) snprintf(info, sizeof (info),
1223 		    "code=%d", si->si_code);
1224 	}
1225 
1226 	Perror_printf(P, incfmt, sig, info);
1227 	Perror_printf(P, msgfmt, addr);
1228 
1229 	dprintf(incfmt, sig, info);
1230 	dprintf(msgfmt, addr);
1231 }
1232 
1233 /*
1234  * Add information on the address space mapping described by the given
1235  * PT_LOAD program header.  We fill in more information on the mapping later.
1236  */
1237 static int
1238 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1239 {
1240 	core_info_t *core = P->data;
1241 	prmap_t pmap;
1242 
1243 	dprintf("mapping base %llx filesz %llx memsz %llx offset %llx\n",
1244 	    (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz,
1245 	    (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset);
1246 
1247 	pmap.pr_vaddr = (uintptr_t)php->p_vaddr;
1248 	pmap.pr_size = php->p_memsz;
1249 
1250 	/*
1251 	 * If Pgcore() or elfcore() fail to write a mapping, they will set
1252 	 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us.
1253 	 */
1254 	if (php->p_flags & PF_SUNW_FAILURE) {
1255 		core_report_mapping(P, php);
1256 	} else if (php->p_filesz != 0 && php->p_offset >= core->core_size) {
1257 		Perror_printf(P, "core file may be corrupt -- data for mapping "
1258 		    "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1259 		dprintf("core file may be corrupt -- data for mapping "
1260 		    "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1261 	}
1262 
1263 	/*
1264 	 * The mapping name and offset will hopefully be filled in
1265 	 * by the librtld_db agent.  Unfortunately, if it isn't a
1266 	 * shared library mapping, this information is gone forever.
1267 	 */
1268 	pmap.pr_mapname[0] = '\0';
1269 	pmap.pr_offset = 0;
1270 
1271 	pmap.pr_mflags = 0;
1272 	if (php->p_flags & PF_R)
1273 		pmap.pr_mflags |= MA_READ;
1274 	if (php->p_flags & PF_W)
1275 		pmap.pr_mflags |= MA_WRITE;
1276 	if (php->p_flags & PF_X)
1277 		pmap.pr_mflags |= MA_EXEC;
1278 
1279 	if (php->p_filesz == 0)
1280 		pmap.pr_mflags |= MA_RESERVED1;
1281 
1282 	/*
1283 	 * At the time of adding this mapping, we just zero the pagesize.
1284 	 * Once we've processed more of the core file, we'll have the
1285 	 * pagesize from the auxv's AT_PAGESZ element and we can fill this in.
1286 	 */
1287 	pmap.pr_pagesize = 0;
1288 
1289 	/*
1290 	 * Unfortunately whether or not the mapping was a System V
1291 	 * shared memory segment is lost.  We use -1 to mark it as not shm.
1292 	 */
1293 	pmap.pr_shmid = -1;
1294 
1295 	return (Padd_mapping(P, php->p_offset, NULL, &pmap));
1296 }
1297 
1298 /*
1299  * Given a virtual address, name the mapping at that address using the
1300  * specified name, and return the map_info_t pointer.
1301  */
1302 static map_info_t *
1303 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name)
1304 {
1305 	map_info_t *mp = Paddr2mptr(P, addr);
1306 
1307 	if (mp != NULL) {
1308 		(void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ);
1309 		mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1310 	}
1311 
1312 	return (mp);
1313 }
1314 
1315 /*
1316  * libproc uses libelf for all of its symbol table manipulation. This function
1317  * takes a symbol table and string table from a core file and places them
1318  * in a memory backed elf file.
1319  */
1320 static void
1321 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr,
1322     GElf_Shdr *symtab, GElf_Shdr *strtab)
1323 {
1324 	size_t size;
1325 	off64_t off, base;
1326 	map_info_t *mp;
1327 	file_info_t *fp;
1328 	Elf_Scn *scn;
1329 	Elf_Data *data;
1330 
1331 	if (symtab->sh_addr == 0 ||
1332 	    (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL ||
1333 	    (fp = mp->map_file) == NULL) {
1334 		dprintf("fake_up_symtab: invalid section\n");
1335 		return;
1336 	}
1337 
1338 	if (fp->file_symtab.sym_data_pri != NULL) {
1339 		dprintf("Symbol table already loaded (sh_addr 0x%lx)\n",
1340 		    (long)symtab->sh_addr);
1341 		return;
1342 	}
1343 
1344 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1345 		struct {
1346 			Elf32_Ehdr ehdr;
1347 			Elf32_Shdr shdr[3];
1348 			char data[1];
1349 		} *b;
1350 
1351 		base = sizeof (b->ehdr) + sizeof (b->shdr);
1352 		size = base + symtab->sh_size + strtab->sh_size;
1353 
1354 		if ((b = calloc(1, size)) == NULL)
1355 			return;
1356 
1357 		(void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1358 		    sizeof (ehdr->e_ident));
1359 		b->ehdr.e_type = ehdr->e_type;
1360 		b->ehdr.e_machine = ehdr->e_machine;
1361 		b->ehdr.e_version = ehdr->e_version;
1362 		b->ehdr.e_flags = ehdr->e_flags;
1363 		b->ehdr.e_ehsize = sizeof (b->ehdr);
1364 		b->ehdr.e_shoff = sizeof (b->ehdr);
1365 		b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1366 		b->ehdr.e_shnum = 3;
1367 		off = 0;
1368 
1369 		b->shdr[1].sh_size = symtab->sh_size;
1370 		b->shdr[1].sh_type = SHT_SYMTAB;
1371 		b->shdr[1].sh_offset = off + base;
1372 		b->shdr[1].sh_entsize = sizeof (Elf32_Sym);
1373 		b->shdr[1].sh_link = 2;
1374 		b->shdr[1].sh_info =  symtab->sh_info;
1375 		b->shdr[1].sh_addralign = symtab->sh_addralign;
1376 
1377 		if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1378 		    symtab->sh_offset) != b->shdr[1].sh_size) {
1379 			dprintf("fake_up_symtab: pread of symtab[1] failed\n");
1380 			free(b);
1381 			return;
1382 		}
1383 
1384 		off += b->shdr[1].sh_size;
1385 
1386 		b->shdr[2].sh_flags = SHF_STRINGS;
1387 		b->shdr[2].sh_size = strtab->sh_size;
1388 		b->shdr[2].sh_type = SHT_STRTAB;
1389 		b->shdr[2].sh_offset = off + base;
1390 		b->shdr[2].sh_info =  strtab->sh_info;
1391 		b->shdr[2].sh_addralign = 1;
1392 
1393 		if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1394 		    strtab->sh_offset) != b->shdr[2].sh_size) {
1395 			dprintf("fake_up_symtab: pread of symtab[2] failed\n");
1396 			free(b);
1397 			return;
1398 		}
1399 
1400 		off += b->shdr[2].sh_size;
1401 
1402 		fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1403 		if (fp->file_symtab.sym_elf == NULL) {
1404 			free(b);
1405 			return;
1406 		}
1407 
1408 		fp->file_symtab.sym_elfmem = b;
1409 #ifdef _LP64
1410 	} else {
1411 		struct {
1412 			Elf64_Ehdr ehdr;
1413 			Elf64_Shdr shdr[3];
1414 			char data[1];
1415 		} *b;
1416 
1417 		base = sizeof (b->ehdr) + sizeof (b->shdr);
1418 		size = base + symtab->sh_size + strtab->sh_size;
1419 
1420 		if ((b = calloc(1, size)) == NULL)
1421 			return;
1422 
1423 		(void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1424 		    sizeof (ehdr->e_ident));
1425 		b->ehdr.e_type = ehdr->e_type;
1426 		b->ehdr.e_machine = ehdr->e_machine;
1427 		b->ehdr.e_version = ehdr->e_version;
1428 		b->ehdr.e_flags = ehdr->e_flags;
1429 		b->ehdr.e_ehsize = sizeof (b->ehdr);
1430 		b->ehdr.e_shoff = sizeof (b->ehdr);
1431 		b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1432 		b->ehdr.e_shnum = 3;
1433 		off = 0;
1434 
1435 		b->shdr[1].sh_size = symtab->sh_size;
1436 		b->shdr[1].sh_type = SHT_SYMTAB;
1437 		b->shdr[1].sh_offset = off + base;
1438 		b->shdr[1].sh_entsize = sizeof (Elf64_Sym);
1439 		b->shdr[1].sh_link = 2;
1440 		b->shdr[1].sh_info =  symtab->sh_info;
1441 		b->shdr[1].sh_addralign = symtab->sh_addralign;
1442 
1443 		if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1444 		    symtab->sh_offset) != b->shdr[1].sh_size) {
1445 			free(b);
1446 			return;
1447 		}
1448 
1449 		off += b->shdr[1].sh_size;
1450 
1451 		b->shdr[2].sh_flags = SHF_STRINGS;
1452 		b->shdr[2].sh_size = strtab->sh_size;
1453 		b->shdr[2].sh_type = SHT_STRTAB;
1454 		b->shdr[2].sh_offset = off + base;
1455 		b->shdr[2].sh_info =  strtab->sh_info;
1456 		b->shdr[2].sh_addralign = 1;
1457 
1458 		if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1459 		    strtab->sh_offset) != b->shdr[2].sh_size) {
1460 			free(b);
1461 			return;
1462 		}
1463 
1464 		off += b->shdr[2].sh_size;
1465 
1466 		fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1467 		if (fp->file_symtab.sym_elf == NULL) {
1468 			free(b);
1469 			return;
1470 		}
1471 
1472 		fp->file_symtab.sym_elfmem = b;
1473 #endif
1474 	}
1475 
1476 	if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL ||
1477 	    (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL ||
1478 	    (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL ||
1479 	    (data = elf_getdata(scn, NULL)) == NULL) {
1480 		dprintf("fake_up_symtab: failed to get section data at %p\n",
1481 		    (void *)scn);
1482 		goto err;
1483 	}
1484 
1485 	fp->file_symtab.sym_strs = data->d_buf;
1486 	fp->file_symtab.sym_strsz = data->d_size;
1487 	fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize;
1488 	fp->file_symtab.sym_hdr_pri = *symtab;
1489 	fp->file_symtab.sym_strhdr = *strtab;
1490 
1491 	optimize_symtab(&fp->file_symtab);
1492 
1493 	return;
1494 err:
1495 	(void) elf_end(fp->file_symtab.sym_elf);
1496 	free(fp->file_symtab.sym_elfmem);
1497 	fp->file_symtab.sym_elf = NULL;
1498 	fp->file_symtab.sym_elfmem = NULL;
1499 }
1500 
1501 static void
1502 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst)
1503 {
1504 	dst->p_type = src->p_type;
1505 	dst->p_flags = src->p_flags;
1506 	dst->p_offset = (Elf64_Off)src->p_offset;
1507 	dst->p_vaddr = (Elf64_Addr)src->p_vaddr;
1508 	dst->p_paddr = (Elf64_Addr)src->p_paddr;
1509 	dst->p_filesz = (Elf64_Xword)src->p_filesz;
1510 	dst->p_memsz = (Elf64_Xword)src->p_memsz;
1511 	dst->p_align = (Elf64_Xword)src->p_align;
1512 }
1513 
1514 static void
1515 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
1516 {
1517 	dst->sh_name = src->sh_name;
1518 	dst->sh_type = src->sh_type;
1519 	dst->sh_flags = (Elf64_Xword)src->sh_flags;
1520 	dst->sh_addr = (Elf64_Addr)src->sh_addr;
1521 	dst->sh_offset = (Elf64_Off)src->sh_offset;
1522 	dst->sh_size = (Elf64_Xword)src->sh_size;
1523 	dst->sh_link = src->sh_link;
1524 	dst->sh_info = src->sh_info;
1525 	dst->sh_addralign = (Elf64_Xword)src->sh_addralign;
1526 	dst->sh_entsize = (Elf64_Xword)src->sh_entsize;
1527 }
1528 
1529 /*
1530  * Perform elf_begin on efp->e_fd and verify the ELF file's type and class.
1531  */
1532 static int
1533 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr)
1534 {
1535 #ifdef _BIG_ENDIAN
1536 	uchar_t order = ELFDATA2MSB;
1537 #else
1538 	uchar_t order = ELFDATA2LSB;
1539 #endif
1540 	Elf32_Ehdr e32;
1541 	int is_noelf = -1;
1542 	int isa_err = 0;
1543 
1544 	/*
1545 	 * Because 32-bit libelf cannot deal with large files, we need to read,
1546 	 * check, and convert the file header manually in case type == ET_CORE.
1547 	 */
1548 	if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) {
1549 		if (perr != NULL)
1550 			*perr = G_FORMAT;
1551 		goto err;
1552 	}
1553 	if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 ||
1554 	    e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) ||
1555 	    e32.e_version != EV_CURRENT) {
1556 		if (perr != NULL) {
1557 			if (is_noelf == 0 && isa_err) {
1558 				*perr = G_ISAINVAL;
1559 			} else {
1560 				*perr = G_FORMAT;
1561 			}
1562 		}
1563 		goto err;
1564 	}
1565 
1566 	/*
1567 	 * If the file is 64-bit and we are 32-bit, fail with G_LP64.  If the
1568 	 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr,
1569 	 * and convert it to a elf_file_header_t.  Otherwise, the file is
1570 	 * 32-bit, so convert e32 to a elf_file_header_t.
1571 	 */
1572 	if (e32.e_ident[EI_CLASS] == ELFCLASS64) {
1573 #ifdef _LP64
1574 		Elf64_Ehdr e64;
1575 
1576 		if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) {
1577 			if (perr != NULL)
1578 				*perr = G_FORMAT;
1579 			goto err;
1580 		}
1581 
1582 		(void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT);
1583 		efp->e_hdr.e_type = e64.e_type;
1584 		efp->e_hdr.e_machine = e64.e_machine;
1585 		efp->e_hdr.e_version = e64.e_version;
1586 		efp->e_hdr.e_entry = e64.e_entry;
1587 		efp->e_hdr.e_phoff = e64.e_phoff;
1588 		efp->e_hdr.e_shoff = e64.e_shoff;
1589 		efp->e_hdr.e_flags = e64.e_flags;
1590 		efp->e_hdr.e_ehsize = e64.e_ehsize;
1591 		efp->e_hdr.e_phentsize = e64.e_phentsize;
1592 		efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum;
1593 		efp->e_hdr.e_shentsize = e64.e_shentsize;
1594 		efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum;
1595 		efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx;
1596 #else	/* _LP64 */
1597 		if (perr != NULL)
1598 			*perr = G_LP64;
1599 		goto err;
1600 #endif	/* _LP64 */
1601 	} else {
1602 		(void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT);
1603 		efp->e_hdr.e_type = e32.e_type;
1604 		efp->e_hdr.e_machine = e32.e_machine;
1605 		efp->e_hdr.e_version = e32.e_version;
1606 		efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry;
1607 		efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff;
1608 		efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff;
1609 		efp->e_hdr.e_flags = e32.e_flags;
1610 		efp->e_hdr.e_ehsize = e32.e_ehsize;
1611 		efp->e_hdr.e_phentsize = e32.e_phentsize;
1612 		efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum;
1613 		efp->e_hdr.e_shentsize = e32.e_shentsize;
1614 		efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum;
1615 		efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx;
1616 	}
1617 
1618 	/*
1619 	 * If the number of section headers or program headers or the section
1620 	 * header string table index would overflow their respective fields
1621 	 * in the ELF header, they're stored in the section header at index
1622 	 * zero. To simplify use elsewhere, we look for those sentinel values
1623 	 * here.
1624 	 */
1625 	if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) ||
1626 	    efp->e_hdr.e_shstrndx == SHN_XINDEX ||
1627 	    efp->e_hdr.e_phnum == PN_XNUM) {
1628 		GElf_Shdr shdr;
1629 
1630 		dprintf("extended ELF header\n");
1631 
1632 		if (efp->e_hdr.e_shoff == 0) {
1633 			if (perr != NULL)
1634 				*perr = G_FORMAT;
1635 			goto err;
1636 		}
1637 
1638 		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1639 			Elf32_Shdr shdr32;
1640 
1641 			if (pread64(efp->e_fd, &shdr32, sizeof (shdr32),
1642 			    efp->e_hdr.e_shoff) != sizeof (shdr32)) {
1643 				if (perr != NULL)
1644 					*perr = G_FORMAT;
1645 				goto err;
1646 			}
1647 
1648 			core_shdr_to_gelf(&shdr32, &shdr);
1649 		} else {
1650 			if (pread64(efp->e_fd, &shdr, sizeof (shdr),
1651 			    efp->e_hdr.e_shoff) != sizeof (shdr)) {
1652 				if (perr != NULL)
1653 					*perr = G_FORMAT;
1654 				goto err;
1655 			}
1656 		}
1657 
1658 		if (efp->e_hdr.e_shnum == 0) {
1659 			efp->e_hdr.e_shnum = shdr.sh_size;
1660 			dprintf("section header count %lu\n",
1661 			    (ulong_t)shdr.sh_size);
1662 		}
1663 
1664 		if (efp->e_hdr.e_shstrndx == SHN_XINDEX) {
1665 			efp->e_hdr.e_shstrndx = shdr.sh_link;
1666 			dprintf("section string index %u\n", shdr.sh_link);
1667 		}
1668 
1669 		if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) {
1670 			efp->e_hdr.e_phnum = shdr.sh_info;
1671 			dprintf("program header count %u\n", shdr.sh_info);
1672 		}
1673 
1674 	} else if (efp->e_hdr.e_phoff != 0) {
1675 		GElf_Phdr phdr;
1676 		uint64_t phnum;
1677 
1678 		/*
1679 		 * It's possible this core file came from a system that
1680 		 * accidentally truncated the e_phnum field without correctly
1681 		 * using the extended format in the section header at index
1682 		 * zero. We try to detect and correct that specific type of
1683 		 * corruption by using the knowledge that the core dump
1684 		 * routines usually place the data referenced by the first
1685 		 * program header immediately after the last header element.
1686 		 */
1687 		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1688 			Elf32_Phdr phdr32;
1689 
1690 			if (pread64(efp->e_fd, &phdr32, sizeof (phdr32),
1691 			    efp->e_hdr.e_phoff) != sizeof (phdr32)) {
1692 				if (perr != NULL)
1693 					*perr = G_FORMAT;
1694 				goto err;
1695 			}
1696 
1697 			core_phdr_to_gelf(&phdr32, &phdr);
1698 		} else {
1699 			if (pread64(efp->e_fd, &phdr, sizeof (phdr),
1700 			    efp->e_hdr.e_phoff) != sizeof (phdr)) {
1701 				if (perr != NULL)
1702 					*perr = G_FORMAT;
1703 				goto err;
1704 			}
1705 		}
1706 
1707 		phnum = phdr.p_offset - efp->e_hdr.e_ehsize -
1708 		    (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1709 		phnum /= efp->e_hdr.e_phentsize;
1710 
1711 		if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) {
1712 			dprintf("suspicious program header count %u %u\n",
1713 			    (uint_t)phnum, efp->e_hdr.e_phnum);
1714 
1715 			/*
1716 			 * If the new program header count we computed doesn't
1717 			 * jive with count in the ELF header, we'll use the
1718 			 * data that's there and hope for the best.
1719 			 *
1720 			 * If it does, it's also possible that the section
1721 			 * header offset is incorrect; we'll check that and
1722 			 * possibly try to fix it.
1723 			 */
1724 			if (phnum <= INT_MAX &&
1725 			    (uint16_t)phnum == efp->e_hdr.e_phnum) {
1726 
1727 				if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff +
1728 				    efp->e_hdr.e_phentsize *
1729 				    (uint_t)efp->e_hdr.e_phnum) {
1730 					efp->e_hdr.e_shoff =
1731 					    efp->e_hdr.e_phoff +
1732 					    efp->e_hdr.e_phentsize * phnum;
1733 				}
1734 
1735 				efp->e_hdr.e_phnum = (Elf64_Word)phnum;
1736 				dprintf("using new program header count\n");
1737 			} else {
1738 				dprintf("inconsistent program header count\n");
1739 			}
1740 		}
1741 	}
1742 
1743 	/*
1744 	 * The libelf implementation was never ported to be large-file aware.
1745 	 * This is typically not a problem for your average executable or
1746 	 * shared library, but a large 32-bit core file can exceed 2GB in size.
1747 	 * So if type is ET_CORE, we don't bother doing elf_begin; the code
1748 	 * in Pfgrab_core() below will do its own i/o and struct conversion.
1749 	 */
1750 
1751 	if (type == ET_CORE) {
1752 		efp->e_elf = NULL;
1753 		return (0);
1754 	}
1755 
1756 	if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) {
1757 		if (perr != NULL)
1758 			*perr = G_ELF;
1759 		goto err;
1760 	}
1761 
1762 	return (0);
1763 
1764 err:
1765 	efp->e_elf = NULL;
1766 	return (-1);
1767 }
1768 
1769 /*
1770  * Open the specified file and then do a core_elf_fdopen on it.
1771  */
1772 static int
1773 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr)
1774 {
1775 	(void) memset(efp, 0, sizeof (elf_file_t));
1776 
1777 	if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) {
1778 		if (core_elf_fdopen(efp, type, perr) == 0)
1779 			return (0);
1780 
1781 		(void) close(efp->e_fd);
1782 		efp->e_fd = -1;
1783 	}
1784 
1785 	return (-1);
1786 }
1787 
1788 /*
1789  * Close the ELF handle and file descriptor.
1790  */
1791 static void
1792 core_elf_close(elf_file_t *efp)
1793 {
1794 	if (efp->e_elf != NULL) {
1795 		(void) elf_end(efp->e_elf);
1796 		efp->e_elf = NULL;
1797 	}
1798 
1799 	if (efp->e_fd != -1) {
1800 		(void) close(efp->e_fd);
1801 		efp->e_fd = -1;
1802 	}
1803 }
1804 
1805 /*
1806  * Given an ELF file for a statically linked executable, locate the likely
1807  * primary text section and fill in rl_base with its virtual address.
1808  */
1809 static map_info_t *
1810 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1811 {
1812 	GElf_Phdr phdr;
1813 	uint_t i;
1814 	size_t nphdrs;
1815 
1816 	if (elf_getphdrnum(elf, &nphdrs) == -1)
1817 		return (NULL);
1818 
1819 	for (i = 0; i < nphdrs; i++) {
1820 		if (gelf_getphdr(elf, i, &phdr) != NULL &&
1821 		    phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
1822 			rlp->rl_base = phdr.p_vaddr;
1823 			return (Paddr2mptr(P, rlp->rl_base));
1824 		}
1825 	}
1826 
1827 	return (NULL);
1828 }
1829 
1830 /*
1831  * Given an ELF file and the librtld_db structure corresponding to its primary
1832  * text mapping, deduce where its data segment was loaded and fill in
1833  * rl_data_base and prmap_t.pr_offset accordingly.
1834  */
1835 static map_info_t *
1836 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1837 {
1838 	GElf_Ehdr ehdr;
1839 	GElf_Phdr phdr;
1840 	map_info_t *mp;
1841 	uint_t i, pagemask;
1842 	size_t nphdrs;
1843 
1844 	rlp->rl_data_base = NULL;
1845 
1846 	/*
1847 	 * Find the first loadable, writeable Phdr and compute rl_data_base
1848 	 * as the virtual address at which is was loaded.
1849 	 */
1850 	if (gelf_getehdr(elf, &ehdr) == NULL ||
1851 	    elf_getphdrnum(elf, &nphdrs) == -1)
1852 		return (NULL);
1853 
1854 	for (i = 0; i < nphdrs; i++) {
1855 		if (gelf_getphdr(elf, i, &phdr) != NULL &&
1856 		    phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) {
1857 			rlp->rl_data_base = phdr.p_vaddr;
1858 			if (ehdr.e_type == ET_DYN)
1859 				rlp->rl_data_base += rlp->rl_base;
1860 			break;
1861 		}
1862 	}
1863 
1864 	/*
1865 	 * If we didn't find an appropriate phdr or if the address we
1866 	 * computed has no mapping, return NULL.
1867 	 */
1868 	if (rlp->rl_data_base == NULL ||
1869 	    (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL)
1870 		return (NULL);
1871 
1872 	/*
1873 	 * It wouldn't be procfs-related code if we didn't make use of
1874 	 * unclean knowledge of segvn, even in userland ... the prmap_t's
1875 	 * pr_offset field will be the segvn offset from mmap(2)ing the
1876 	 * data section, which will be the file offset & PAGEMASK.
1877 	 */
1878 	pagemask = ~(mp->map_pmap.pr_pagesize - 1);
1879 	mp->map_pmap.pr_offset = phdr.p_offset & pagemask;
1880 
1881 	return (mp);
1882 }
1883 
1884 /*
1885  * Librtld_db agent callback for iterating over load object mappings.
1886  * For each load object, we allocate a new file_info_t, perform naming,
1887  * and attempt to construct a symbol table for the load object.
1888  */
1889 static int
1890 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P)
1891 {
1892 	core_info_t *core = P->data;
1893 	char lname[PATH_MAX], buf[PATH_MAX];
1894 	file_info_t *fp;
1895 	map_info_t *mp;
1896 
1897 	if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) {
1898 		dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr);
1899 		return (1); /* Keep going; forget this if we can't get a name */
1900 	}
1901 
1902 	dprintf("rd_loadobj name = \"%s\" rl_base = %p\n",
1903 	    lname, (void *)rlp->rl_base);
1904 
1905 	if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) {
1906 		dprintf("no mapping for %p\n", (void *)rlp->rl_base);
1907 		return (1); /* No mapping; advance to next mapping */
1908 	}
1909 
1910 	/*
1911 	 * Create a new file_info_t for this mapping, and therefore for
1912 	 * this load object.
1913 	 *
1914 	 * If there's an ELF header at the beginning of this mapping,
1915 	 * file_info_new() will try to use its section headers to
1916 	 * identify any other mappings that belong to this load object.
1917 	 */
1918 	if ((fp = mp->map_file) == NULL &&
1919 	    (fp = file_info_new(P, mp)) == NULL) {
1920 		core->core_errno = errno;
1921 		dprintf("failed to malloc mapping data\n");
1922 		return (0); /* Abort */
1923 	}
1924 	fp->file_map = mp;
1925 
1926 	/* Create a local copy of the load object representation */
1927 	if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) {
1928 		core->core_errno = errno;
1929 		dprintf("failed to malloc mapping data\n");
1930 		return (0); /* Abort */
1931 	}
1932 	*fp->file_lo = *rlp;
1933 
1934 	if (lname[0] != '\0') {
1935 		/*
1936 		 * Naming dance part 1: if we got a name from librtld_db, then
1937 		 * copy this name to the prmap_t if it is unnamed.  If the
1938 		 * file_info_t is unnamed, name it after the lname.
1939 		 */
1940 		if (mp->map_pmap.pr_mapname[0] == '\0') {
1941 			(void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ);
1942 			mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1943 		}
1944 
1945 		if (fp->file_lname == NULL)
1946 			fp->file_lname = strdup(lname);
1947 
1948 	} else if (fp->file_lname == NULL &&
1949 	    mp->map_pmap.pr_mapname[0] != '\0') {
1950 		/*
1951 		 * Naming dance part 2: if the mapping is named and the
1952 		 * file_info_t is not, name the file after the mapping.
1953 		 */
1954 		fp->file_lname = strdup(mp->map_pmap.pr_mapname);
1955 	}
1956 
1957 	if ((fp->file_rname == NULL) &&
1958 	    (Pfindmap(P, mp, buf, sizeof (buf)) != NULL))
1959 		fp->file_rname = strdup(buf);
1960 
1961 	if (fp->file_lname != NULL)
1962 		fp->file_lbase = basename(fp->file_lname);
1963 	if (fp->file_rname != NULL)
1964 		fp->file_rbase = basename(fp->file_rname);
1965 
1966 	/* Associate the file and the mapping. */
1967 	(void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ);
1968 	fp->file_pname[PRMAPSZ - 1] = '\0';
1969 
1970 	/*
1971 	 * If no section headers were available then we'll have to
1972 	 * identify this load object's other mappings with what we've
1973 	 * got: the start and end of the object's corresponding
1974 	 * address space.
1975 	 */
1976 	if (fp->file_saddrs == NULL) {
1977 		for (mp = fp->file_map + 1; mp < P->mappings + P->map_count &&
1978 		    mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) {
1979 
1980 			if (mp->map_file == NULL) {
1981 				dprintf("core_iter_mapping %s: associating "
1982 				    "segment at %p\n",
1983 				    fp->file_pname,
1984 				    (void *)mp->map_pmap.pr_vaddr);
1985 				mp->map_file = fp;
1986 				fp->file_ref++;
1987 			} else {
1988 				dprintf("core_iter_mapping %s: segment at "
1989 				    "%p already associated with %s\n",
1990 				    fp->file_pname,
1991 				    (void *)mp->map_pmap.pr_vaddr,
1992 				    (mp == fp->file_map ? "this file" :
1993 				    mp->map_file->file_pname));
1994 			}
1995 		}
1996 	}
1997 
1998 	/* Ensure that all this file's mappings are named. */
1999 	for (mp = fp->file_map; mp < P->mappings + P->map_count &&
2000 	    mp->map_file == fp; mp++) {
2001 		if (mp->map_pmap.pr_mapname[0] == '\0' &&
2002 		    !(mp->map_pmap.pr_mflags & MA_BREAK)) {
2003 			(void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname,
2004 			    PRMAPSZ);
2005 			mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2006 		}
2007 	}
2008 
2009 	/* Attempt to build a symbol table for this file. */
2010 	Pbuild_file_symtab(P, fp);
2011 	if (fp->file_elf == NULL)
2012 		dprintf("core_iter_mapping: no symtab for %s\n",
2013 		    fp->file_pname);
2014 
2015 	/* Locate the start of a data segment associated with this file. */
2016 	if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) {
2017 		dprintf("found data for %s at %p (pr_offset 0x%llx)\n",
2018 		    fp->file_pname, (void *)fp->file_lo->rl_data_base,
2019 		    mp->map_pmap.pr_offset);
2020 	} else {
2021 		dprintf("core_iter_mapping: no data found for %s\n",
2022 		    fp->file_pname);
2023 	}
2024 
2025 	return (1); /* Advance to next mapping */
2026 }
2027 
2028 /*
2029  * Callback function for Pfindexec().  In order to confirm a given pathname,
2030  * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN.
2031  */
2032 static int
2033 core_exec_open(const char *path, void *efp)
2034 {
2035 	if (core_elf_open(efp, path, ET_EXEC, NULL) == 0)
2036 		return (1);
2037 	if (core_elf_open(efp, path, ET_DYN, NULL) == 0)
2038 		return (1);
2039 	return (0);
2040 }
2041 
2042 /*
2043  * Attempt to load any section headers found in the core file.  If present,
2044  * this will refer to non-loadable data added to the core file by the kernel
2045  * based on coreadm(1M) settings, including CTF data and the symbol table.
2046  */
2047 static void
2048 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp)
2049 {
2050 	GElf_Shdr *shp, *shdrs = NULL;
2051 	char *shstrtab = NULL;
2052 	ulong_t shstrtabsz;
2053 	const char *name;
2054 	map_info_t *mp;
2055 
2056 	size_t nbytes;
2057 	void *buf;
2058 	int i;
2059 
2060 	if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) {
2061 		dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n",
2062 		    efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum);
2063 		return;
2064 	}
2065 
2066 	/*
2067 	 * Read the section header table from the core file and then iterate
2068 	 * over the section headers, converting each to a GElf_Shdr.
2069 	 */
2070 	if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) {
2071 		dprintf("failed to malloc %u section headers: %s\n",
2072 		    (uint_t)efp->e_hdr.e_shnum, strerror(errno));
2073 		return;
2074 	}
2075 
2076 	nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
2077 	if ((buf = malloc(nbytes)) == NULL) {
2078 		dprintf("failed to malloc %d bytes: %s\n", (int)nbytes,
2079 		    strerror(errno));
2080 		free(shdrs);
2081 		goto out;
2082 	}
2083 
2084 	if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) {
2085 		dprintf("failed to read section headers at off %lld: %s\n",
2086 		    (longlong_t)efp->e_hdr.e_shoff, strerror(errno));
2087 		free(buf);
2088 		goto out;
2089 	}
2090 
2091 	for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2092 		void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i;
2093 
2094 		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32)
2095 			core_shdr_to_gelf(p, &shdrs[i]);
2096 		else
2097 			(void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr));
2098 	}
2099 
2100 	free(buf);
2101 	buf = NULL;
2102 
2103 	/*
2104 	 * Read the .shstrtab section from the core file, terminating it with
2105 	 * an extra \0 so that a corrupt section will not cause us to die.
2106 	 */
2107 	shp = &shdrs[efp->e_hdr.e_shstrndx];
2108 	shstrtabsz = shp->sh_size;
2109 
2110 	if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) {
2111 		dprintf("failed to allocate %lu bytes for shstrtab\n",
2112 		    (ulong_t)shstrtabsz);
2113 		goto out;
2114 	}
2115 
2116 	if (pread64(efp->e_fd, shstrtab, shstrtabsz,
2117 	    shp->sh_offset) != shstrtabsz) {
2118 		dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n",
2119 		    shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno));
2120 		goto out;
2121 	}
2122 
2123 	shstrtab[shstrtabsz] = '\0';
2124 
2125 	/*
2126 	 * Now iterate over each section in the section header table, locating
2127 	 * sections of interest and initializing more of the ps_prochandle.
2128 	 */
2129 	for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2130 		shp = &shdrs[i];
2131 		name = shstrtab + shp->sh_name;
2132 
2133 		if (shp->sh_name >= shstrtabsz) {
2134 			dprintf("skipping section [%d]: corrupt sh_name\n", i);
2135 			continue;
2136 		}
2137 
2138 		if (shp->sh_link >= efp->e_hdr.e_shnum) {
2139 			dprintf("skipping section [%d]: corrupt sh_link\n", i);
2140 			continue;
2141 		}
2142 
2143 		dprintf("found section header %s (sh_addr 0x%llx)\n",
2144 		    name, (u_longlong_t)shp->sh_addr);
2145 
2146 		if (strcmp(name, ".SUNW_ctf") == 0) {
2147 			if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) {
2148 				dprintf("no map at addr 0x%llx for %s [%d]\n",
2149 				    (u_longlong_t)shp->sh_addr, name, i);
2150 				continue;
2151 			}
2152 
2153 			if (mp->map_file == NULL ||
2154 			    mp->map_file->file_ctf_buf != NULL) {
2155 				dprintf("no mapping file or duplicate buffer "
2156 				    "for %s [%d]\n", name, i);
2157 				continue;
2158 			}
2159 
2160 			if ((buf = malloc(shp->sh_size)) == NULL ||
2161 			    pread64(efp->e_fd, buf, shp->sh_size,
2162 			    shp->sh_offset) != shp->sh_size) {
2163 				dprintf("skipping section %s [%d]: %s\n",
2164 				    name, i, strerror(errno));
2165 				free(buf);
2166 				continue;
2167 			}
2168 
2169 			mp->map_file->file_ctf_size = shp->sh_size;
2170 			mp->map_file->file_ctf_buf = buf;
2171 
2172 			if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM)
2173 				mp->map_file->file_ctf_dyn = 1;
2174 
2175 		} else if (strcmp(name, ".symtab") == 0) {
2176 			fake_up_symtab(P, &efp->e_hdr,
2177 			    shp, &shdrs[shp->sh_link]);
2178 		}
2179 	}
2180 out:
2181 	free(shstrtab);
2182 	free(shdrs);
2183 }
2184 
2185 /*
2186  * Main engine for core file initialization: given an fd for the core file
2187  * and an optional pathname, construct the ps_prochandle.  The aout_path can
2188  * either be a suggested executable pathname, or a suggested directory to
2189  * use as a possible current working directory.
2190  */
2191 struct ps_prochandle *
2192 Pfgrab_core(int core_fd, const char *aout_path, int *perr)
2193 {
2194 	struct ps_prochandle *P;
2195 	core_info_t *core_info;
2196 	map_info_t *stk_mp, *brk_mp;
2197 	const char *execname;
2198 	char *interp;
2199 	int i, notes, pagesize;
2200 	uintptr_t addr, base_addr;
2201 	struct stat64 stbuf;
2202 	void *phbuf, *php;
2203 	size_t nbytes;
2204 
2205 	elf_file_t aout;
2206 	elf_file_t core;
2207 
2208 	Elf_Scn *scn, *intp_scn = NULL;
2209 	Elf_Data *dp;
2210 
2211 	GElf_Phdr phdr, note_phdr;
2212 	GElf_Shdr shdr;
2213 	GElf_Xword nleft;
2214 
2215 	if (elf_version(EV_CURRENT) == EV_NONE) {
2216 		dprintf("libproc ELF version is more recent than libelf\n");
2217 		*perr = G_ELF;
2218 		return (NULL);
2219 	}
2220 
2221 	aout.e_elf = NULL;
2222 	aout.e_fd = -1;
2223 
2224 	core.e_elf = NULL;
2225 	core.e_fd = core_fd;
2226 
2227 	/*
2228 	 * Allocate and initialize a ps_prochandle structure for the core.
2229 	 * There are several key pieces of initialization here:
2230 	 *
2231 	 * 1. The PS_DEAD state flag marks this prochandle as a core file.
2232 	 *    PS_DEAD also thus prevents all operations which require state
2233 	 *    to be PS_STOP from operating on this handle.
2234 	 *
2235 	 * 2. We keep the core file fd in P->asfd since the core file contains
2236 	 *    the remnants of the process address space.
2237 	 *
2238 	 * 3. We set the P->info_valid bit because all information about the
2239 	 *    core is determined by the end of this function; there is no need
2240 	 *    for proc_update_maps() to reload mappings at any later point.
2241 	 *
2242 	 * 4. The read/write ops vector uses our core_rw() function defined
2243 	 *    above to handle i/o requests.
2244 	 */
2245 	if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
2246 		*perr = G_STRANGE;
2247 		return (NULL);
2248 	}
2249 
2250 	(void) memset(P, 0, sizeof (struct ps_prochandle));
2251 	(void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
2252 	P->state = PS_DEAD;
2253 	P->pid = (pid_t)-1;
2254 	P->asfd = core.e_fd;
2255 	P->ctlfd = -1;
2256 	P->statfd = -1;
2257 	P->agentctlfd = -1;
2258 	P->agentstatfd = -1;
2259 	P->zoneroot = NULL;
2260 	P->info_valid = 1;
2261 	Pinit_ops(&P->ops, &P_core_ops);
2262 
2263 	Pinitsym(P);
2264 
2265 	/*
2266 	 * Fstat and open the core file and make sure it is a valid ELF core.
2267 	 */
2268 	if (fstat64(P->asfd, &stbuf) == -1) {
2269 		*perr = G_STRANGE;
2270 		goto err;
2271 	}
2272 
2273 	if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
2274 		goto err;
2275 
2276 	/*
2277 	 * Allocate and initialize a core_info_t to hang off the ps_prochandle
2278 	 * structure.  We keep all core-specific information in this structure.
2279 	 */
2280 	if ((core_info = calloc(1, sizeof (core_info_t))) == NULL) {
2281 		*perr = G_STRANGE;
2282 		goto err;
2283 	}
2284 
2285 	P->data = core_info;
2286 	list_link(&core_info->core_lwp_head, NULL);
2287 	core_info->core_size = stbuf.st_size;
2288 	/*
2289 	 * In the days before adjustable core file content, this was the
2290 	 * default core file content. For new core files, this value will
2291 	 * be overwritten by the NT_CONTENT note section.
2292 	 */
2293 	core_info->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
2294 	    CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
2295 	    CC_CONTENT_SHANON;
2296 
2297 	switch (core.e_hdr.e_ident[EI_CLASS]) {
2298 	case ELFCLASS32:
2299 		core_info->core_dmodel = PR_MODEL_ILP32;
2300 		break;
2301 	case ELFCLASS64:
2302 		core_info->core_dmodel = PR_MODEL_LP64;
2303 		break;
2304 	default:
2305 		*perr = G_FORMAT;
2306 		goto err;
2307 	}
2308 	core_info->core_osabi = core.e_hdr.e_ident[EI_OSABI];
2309 
2310 	/*
2311 	 * Because the core file may be a large file, we can't use libelf to
2312 	 * read the Phdrs.  We use e_phnum and e_phentsize to simplify things.
2313 	 */
2314 	nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;
2315 
2316 	if ((phbuf = malloc(nbytes)) == NULL) {
2317 		*perr = G_STRANGE;
2318 		goto err;
2319 	}
2320 
2321 	if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
2322 		*perr = G_STRANGE;
2323 		free(phbuf);
2324 		goto err;
2325 	}
2326 
2327 	/*
2328 	 * Iterate through the program headers in the core file.
2329 	 * We're interested in two types of Phdrs: PT_NOTE (which
2330 	 * contains a set of saved /proc structures), and PT_LOAD (which
2331 	 * represents a memory mapping from the process's address space).
2332 	 * In the case of PT_NOTE, we're interested in the last PT_NOTE
2333 	 * in the core file; currently the first PT_NOTE (if present)
2334 	 * contains /proc structs in the pre-2.6 unstructured /proc format.
2335 	 */
2336 	for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
2337 		if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
2338 			(void) memcpy(&phdr, php, sizeof (GElf_Phdr));
2339 		else
2340 			core_phdr_to_gelf(php, &phdr);
2341 
2342 		switch (phdr.p_type) {
2343 		case PT_NOTE:
2344 			note_phdr = phdr;
2345 			notes++;
2346 			break;
2347 
2348 		case PT_LOAD:
2349 			if (core_add_mapping(P, &phdr) == -1) {
2350 				*perr = G_STRANGE;
2351 				free(phbuf);
2352 				goto err;
2353 			}
2354 			break;
2355 		default:
2356 			dprintf("Pgrab_core: unknown phdr %d\n", phdr.p_type);
2357 			break;
2358 		}
2359 
2360 		php = (char *)php + core.e_hdr.e_phentsize;
2361 	}
2362 
2363 	free(phbuf);
2364 
2365 	Psort_mappings(P);
2366 
2367 	/*
2368 	 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE
2369 	 * was present, abort.  The core file is either corrupt or too old.
2370 	 */
2371 	if (notes == 0 || (notes == 1 && core_info->core_osabi ==
2372 	    ELFOSABI_SOLARIS)) {
2373 		*perr = G_NOTE;
2374 		goto err;
2375 	}
2376 
2377 	/*
2378 	 * Advance the seek pointer to the start of the PT_NOTE data
2379 	 */
2380 	if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
2381 		dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
2382 		*perr = G_STRANGE;
2383 		goto err;
2384 	}
2385 
2386 	/*
2387 	 * Now process the PT_NOTE structures.  Each one is preceded by
2388 	 * an Elf{32/64}_Nhdr structure describing its type and size.
2389 	 *
2390 	 *  +--------+
2391 	 *  | header |
2392 	 *  +--------+
2393 	 *  | name   |
2394 	 *  | ...    |
2395 	 *  +--------+
2396 	 *  | desc   |
2397 	 *  | ...    |
2398 	 *  +--------+
2399 	 */
2400 	for (nleft = note_phdr.p_filesz; nleft > 0; ) {
2401 		Elf64_Nhdr nhdr;
2402 		off64_t off, namesz, descsz;
2403 
2404 		/*
2405 		 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
2406 		 * as different types, they are both of the same content and
2407 		 * size, so we don't need to worry about 32/64 conversion here.
2408 		 */
2409 		if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
2410 			dprintf("Pgrab_core: failed to read ELF note header\n");
2411 			*perr = G_NOTE;
2412 			goto err;
2413 		}
2414 
2415 		/*
2416 		 * According to the System V ABI, the amount of padding
2417 		 * following the name field should align the description
2418 		 * field on a 4 byte boundary for 32-bit binaries or on an 8
2419 		 * byte boundary for 64-bit binaries. However, this change
2420 		 * was not made correctly during the 64-bit port so all
2421 		 * descriptions can assume only 4-byte alignment. We ignore
2422 		 * the name field and the padding to 4-byte alignment.
2423 		 */
2424 		namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);
2425 
2426 		if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
2427 			dprintf("failed to seek past name and padding\n");
2428 			*perr = G_STRANGE;
2429 			goto err;
2430 		}
2431 
2432 		dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
2433 		    nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);
2434 
2435 		off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);
2436 
2437 		/*
2438 		 * Invoke the note handler function from our table
2439 		 */
2440 		if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) {
2441 			if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
2442 				dprintf("handler for type %d returned < 0",
2443 				    nhdr.n_type);
2444 				*perr = G_NOTE;
2445 				goto err;
2446 			}
2447 		} else {
2448 			(void) note_notsup(P, nhdr.n_descsz);
2449 		}
2450 
2451 		/*
2452 		 * Seek past the current note data to the next Elf_Nhdr
2453 		 */
2454 		descsz = P2ROUNDUP((off64_t)nhdr.n_descsz, (off64_t)4);
2455 		if (lseek64(P->asfd, off + descsz, SEEK_SET) == (off64_t)-1) {
2456 			dprintf("Pgrab_core: failed to seek to next nhdr\n");
2457 			*perr = G_STRANGE;
2458 			goto err;
2459 		}
2460 
2461 		/*
2462 		 * Subtract the size of the header and its data from what
2463 		 * we have left to process.
2464 		 */
2465 		nleft -= sizeof (nhdr) + namesz + descsz;
2466 	}
2467 
2468 	if (core_info->core_osabi == ELFOSABI_NONE) {
2469 		size_t tcount, pid;
2470 		lwp_info_t *lwp;
2471 
2472 		P->status.pr_dmodel = core_info->core_dmodel;
2473 
2474 		lwp = list_next(&core_info->core_lwp_head);
2475 
2476 		pid = P->status.pr_pid;
2477 
2478 		for (tcount = 0; tcount < core_info->core_nlwp;
2479 		    tcount++, lwp = list_next(lwp)) {
2480 			dprintf("Linux thread with id %d\n", lwp->lwp_id);
2481 
2482 			/*
2483 			 * In the case we don't have a valid psinfo (i.e. pid is
2484 			 * 0, probably because of gdb creating the core) assume
2485 			 * lowest pid count is the first thread (what if the
2486 			 * next thread wraps the pid around?)
2487 			 */
2488 			if (P->status.pr_pid == 0 &&
2489 			    ((pid == 0 && lwp->lwp_id > 0) ||
2490 			    (lwp->lwp_id < pid))) {
2491 				pid = lwp->lwp_id;
2492 			}
2493 		}
2494 
2495 		if (P->status.pr_pid != pid) {
2496 			dprintf("No valid pid, setting to %ld\n", (ulong_t)pid);
2497 			P->status.pr_pid = pid;
2498 			P->psinfo.pr_pid = pid;
2499 		}
2500 
2501 		/*
2502 		 * Consumers like mdb expect the first thread to actually have
2503 		 * an id of 1, on linux that is actually the pid. Find the the
2504 		 * thread with our process id, and set the id to 1
2505 		 */
2506 		if ((lwp = lwpid2info(P, pid)) == NULL) {
2507 			dprintf("Couldn't find first thread\n");
2508 			*perr = G_STRANGE;
2509 			goto err;
2510 		}
2511 
2512 		dprintf("setting representative thread: %d\n", lwp->lwp_id);
2513 
2514 		lwp->lwp_id = 1;
2515 		lwp->lwp_status.pr_lwpid = 1;
2516 
2517 		/* set representative thread */
2518 		(void) memcpy(&P->status.pr_lwp, &lwp->lwp_status,
2519 		    sizeof (P->status.pr_lwp));
2520 
2521 		lwp = list_next(&core_info->core_lwp_head);
2522 	}
2523 
2524 	if (nleft != 0) {
2525 		dprintf("Pgrab_core: note section malformed\n");
2526 		*perr = G_STRANGE;
2527 		goto err;
2528 	}
2529 
2530 	if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
2531 		pagesize = getpagesize();
2532 		dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
2533 	}
2534 
2535 	/*
2536 	 * Locate and label the mappings corresponding to the end of the
2537 	 * heap (MA_BREAK) and the base of the stack (MA_STACK).
2538 	 */
2539 	if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
2540 	    (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
2541 	    P->status.pr_brksize - 1)) != NULL)
2542 		brk_mp->map_pmap.pr_mflags |= MA_BREAK;
2543 	else
2544 		brk_mp = NULL;
2545 
2546 	if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
2547 		stk_mp->map_pmap.pr_mflags |= MA_STACK;
2548 
2549 	/*
2550 	 * At this point, we have enough information to look for the
2551 	 * executable and open it: we have access to the auxv, a psinfo_t,
2552 	 * and the ability to read from mappings provided by the core file.
2553 	 */
2554 	(void) Pfindexec(P, aout_path, core_exec_open, &aout);
2555 	dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
2556 	execname = P->execname ? P->execname : "a.out";
2557 
2558 	/*
2559 	 * Iterate through the sections, looking for the .dynamic and .interp
2560 	 * sections.  If we encounter them, remember their section pointers.
2561 	 */
2562 	for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) {
2563 		char *sname;
2564 
2565 		if ((gelf_getshdr(scn, &shdr) == NULL) ||
2566 		    (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
2567 		    (size_t)shdr.sh_name)) == NULL)
2568 			continue;
2569 
2570 		if (strcmp(sname, ".interp") == 0)
2571 			intp_scn = scn;
2572 	}
2573 
2574 	/*
2575 	 * Get the AT_BASE auxv element.  If this is missing (-1), then
2576 	 * we assume this is a statically-linked executable.
2577 	 */
2578 	base_addr = Pgetauxval(P, AT_BASE);
2579 
2580 	/*
2581 	 * In order to get librtld_db initialized, we'll need to identify
2582 	 * and name the mapping corresponding to the run-time linker.  The
2583 	 * AT_BASE auxv element tells us the address where it was mapped,
2584 	 * and the .interp section of the executable tells us its path.
2585 	 * If for some reason that doesn't pan out, just use ld.so.1.
2586 	 */
2587 	if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2588 	    dp->d_size != 0) {
2589 		dprintf(".interp = <%s>\n", (char *)dp->d_buf);
2590 		interp = dp->d_buf;
2591 
2592 	} else if (base_addr != (uintptr_t)-1L) {
2593 		if (core_info->core_dmodel == PR_MODEL_LP64)
2594 			interp = "/usr/lib/64/ld.so.1";
2595 		else
2596 			interp = "/usr/lib/ld.so.1";
2597 
2598 		dprintf(".interp section is missing or could not be read; "
2599 		    "defaulting to %s\n", interp);
2600 	} else
2601 		dprintf("detected statically linked executable\n");
2602 
2603 	/*
2604 	 * If we have an AT_BASE element, name the mapping at that address
2605 	 * using the interpreter pathname.  Name the corresponding data
2606 	 * mapping after the interpreter as well.
2607 	 */
2608 	if (base_addr != (uintptr_t)-1L) {
2609 		elf_file_t intf;
2610 
2611 		P->map_ldso = core_name_mapping(P, base_addr, interp);
2612 
2613 		if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2614 			rd_loadobj_t rl;
2615 			map_info_t *dmp;
2616 
2617 			rl.rl_base = base_addr;
2618 			dmp = core_find_data(P, intf.e_elf, &rl);
2619 
2620 			if (dmp != NULL) {
2621 				dprintf("renamed data at %p to %s\n",
2622 				    (void *)rl.rl_data_base, interp);
2623 				(void) strncpy(dmp->map_pmap.pr_mapname,
2624 				    interp, PRMAPSZ);
2625 				dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2626 			}
2627 		}
2628 
2629 		core_elf_close(&intf);
2630 	}
2631 
2632 	/*
2633 	 * If we have an AT_ENTRY element, name the mapping at that address
2634 	 * using the special name "a.out" just like /proc does.
2635 	 */
2636 	if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2637 		P->map_exec = core_name_mapping(P, addr, "a.out");
2638 
2639 	/*
2640 	 * If we're a statically linked executable, then just locate the
2641 	 * executable's text and data and name them after the executable.
2642 	 */
2643 	if (base_addr == (uintptr_t)-1L ||
2644 	    core_info->core_osabi == ELFOSABI_NONE) {
2645 		dprintf("looking for text and data: %s\n", execname);
2646 		map_info_t *tmp, *dmp;
2647 		file_info_t *fp;
2648 		rd_loadobj_t rl;
2649 
2650 		if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2651 		    (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2652 			(void) strncpy(tmp->map_pmap.pr_mapname,
2653 			    execname, PRMAPSZ);
2654 			tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2655 			(void) strncpy(dmp->map_pmap.pr_mapname,
2656 			    execname, PRMAPSZ);
2657 			dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2658 		}
2659 
2660 		if ((P->map_exec = tmp) != NULL &&
2661 		    (fp = malloc(sizeof (file_info_t))) != NULL) {
2662 
2663 			(void) memset(fp, 0, sizeof (file_info_t));
2664 
2665 			list_link(fp, &P->file_head);
2666 			tmp->map_file = fp;
2667 			P->num_files++;
2668 
2669 			fp->file_ref = 1;
2670 			fp->file_fd = -1;
2671 
2672 			fp->file_lo = malloc(sizeof (rd_loadobj_t));
2673 			fp->file_lname = strdup(execname);
2674 
2675 			if (fp->file_lo)
2676 				*fp->file_lo = rl;
2677 			if (fp->file_lname)
2678 				fp->file_lbase = basename(fp->file_lname);
2679 			if (fp->file_rname)
2680 				fp->file_rbase = basename(fp->file_rname);
2681 
2682 			(void) strcpy(fp->file_pname,
2683 			    P->mappings[0].map_pmap.pr_mapname);
2684 			fp->file_map = tmp;
2685 
2686 			Pbuild_file_symtab(P, fp);
2687 
2688 			if (dmp != NULL) {
2689 				dmp->map_file = fp;
2690 				fp->file_ref++;
2691 			}
2692 		}
2693 	}
2694 
2695 	core_elf_close(&aout);
2696 
2697 	/*
2698 	 * We now have enough information to initialize librtld_db.
2699 	 * After it warms up, we can iterate through the load object chain
2700 	 * in the core, which will allow us to construct the file info
2701 	 * we need to provide symbol information for the other shared
2702 	 * libraries, and also to fill in the missing mapping names.
2703 	 */
2704 	rd_log(_libproc_debug);
2705 
2706 	if ((P->rap = rd_new(P)) != NULL) {
2707 		(void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2708 		    core_iter_mapping, P);
2709 
2710 		if (core_info->core_errno != 0) {
2711 			errno = core_info->core_errno;
2712 			*perr = G_STRANGE;
2713 			goto err;
2714 		}
2715 	} else
2716 		dprintf("failed to initialize rtld_db agent\n");
2717 
2718 	/*
2719 	 * If there are sections, load them and process the data from any
2720 	 * sections that we can use to annotate the file_info_t's.
2721 	 */
2722 	core_load_shdrs(P, &core);
2723 
2724 	/*
2725 	 * If we previously located a stack or break mapping, and they are
2726 	 * still anonymous, we now assume that they were MAP_ANON mappings.
2727 	 * If brk_mp turns out to now have a name, then the heap is still
2728 	 * sitting at the end of the executable's data+bss mapping: remove
2729 	 * the previous MA_BREAK setting to be consistent with /proc.
2730 	 */
2731 	if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0')
2732 		stk_mp->map_pmap.pr_mflags |= MA_ANON;
2733 	if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0')
2734 		brk_mp->map_pmap.pr_mflags |= MA_ANON;
2735 	else if (brk_mp != NULL)
2736 		brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;
2737 
2738 	*perr = 0;
2739 	return (P);
2740 
2741 err:
2742 	Pfree(P);
2743 	core_elf_close(&aout);
2744 	return (NULL);
2745 }
2746 
2747 /*
2748  * Grab a core file using a pathname.  We just open it and call Pfgrab_core().
2749  */
2750 struct ps_prochandle *
2751 Pgrab_core(const char *core, const char *aout, int gflag, int *perr)
2752 {
2753 	int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
2754 
2755 	if ((fd = open64(core, oflag)) >= 0)
2756 		return (Pfgrab_core(fd, aout, perr));
2757 
2758 	if (errno != ENOENT)
2759 		*perr = G_STRANGE;
2760 	else
2761 		*perr = G_NOCORE;
2762 
2763 	return (NULL);
2764 }
2765