xref: /illumos-gate/usr/src/lib/libproc/common/Pcore.c (revision a92282e44f968185a6bba094d1e5fece2da819cf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
27  * Copyright (c) 2018, Joyent, Inc. All rights reserved.
28  * Copyright (c) 2013 by Delphix. All rights reserved.
29  * Copyright 2015 Gary Mills
30  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/utsname.h>
35 #include <sys/sysmacros.h>
36 #include <sys/proc.h>
37 
38 #include <alloca.h>
39 #include <rtld_db.h>
40 #include <libgen.h>
41 #include <limits.h>
42 #include <string.h>
43 #include <stdlib.h>
44 #include <unistd.h>
45 #include <errno.h>
46 #include <gelf.h>
47 #include <stddef.h>
48 #include <signal.h>
49 
50 #include "libproc.h"
51 #include "Pcontrol.h"
52 #include "P32ton.h"
53 #include "Putil.h"
54 #include "proc_fd.h"
55 #ifdef __x86
56 #include "Pcore_linux.h"
57 #endif
58 
59 /*
60  * Pcore.c - Code to initialize a ps_prochandle from a core dump.  We
61  * allocate an additional structure to hold information from the core
62  * file, and attach this to the standard ps_prochandle in place of the
63  * ability to examine /proc/<pid>/ files.
64  */
65 
66 /*
67  * Basic i/o function for reading and writing from the process address space
68  * stored in the core file and associated shared libraries.  We compute the
69  * appropriate fd and offsets, and let the provided prw function do the rest.
70  */
71 static ssize_t
72 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
73     ssize_t (*prw)(int, void *, size_t, off64_t))
74 {
75 	ssize_t resid = n;
76 
77 	while (resid != 0) {
78 		map_info_t *mp = Paddr2mptr(P, addr);
79 
80 		uintptr_t mapoff;
81 		ssize_t len;
82 		off64_t off;
83 		int fd;
84 
85 		if (mp == NULL)
86 			break;	/* No mapping for this address */
87 
88 		if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
89 			if (mp->map_file == NULL || mp->map_file->file_fd < 0)
90 				break;	/* No file or file not open */
91 
92 			fd = mp->map_file->file_fd;
93 		} else
94 			fd = P->asfd;
95 
96 		mapoff = addr - mp->map_pmap.pr_vaddr;
97 		len = MIN(resid, mp->map_pmap.pr_size - mapoff);
98 		off = mp->map_offset + mapoff;
99 
100 		if ((len = prw(fd, buf, len, off)) <= 0)
101 			break;
102 
103 		resid -= len;
104 		addr += len;
105 		buf = (char *)buf + len;
106 	}
107 
108 	/*
109 	 * Important: Be consistent with the behavior of i/o on the as file:
110 	 * writing to an invalid address yields EIO; reading from an invalid
111 	 * address falls through to returning success and zero bytes.
112 	 */
113 	if (resid == n && n != 0 && prw != pread64) {
114 		errno = EIO;
115 		return (-1);
116 	}
117 
118 	return (n - resid);
119 }
120 
121 /*ARGSUSED*/
122 static ssize_t
123 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
124     void *data)
125 {
126 	return (core_rw(P, buf, n, addr, pread64));
127 }
128 
129 /*ARGSUSED*/
130 static ssize_t
131 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr,
132     void *data)
133 {
134 	return (core_rw(P, (void *)buf, n, addr,
135 	    (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64));
136 }
137 
138 /*ARGSUSED*/
139 static int
140 Pcred_core(struct ps_prochandle *P, prcred_t *pcrp, int ngroups, void *data)
141 {
142 	core_info_t *core = data;
143 
144 	if (core->core_cred != NULL) {
145 		/*
146 		 * Avoid returning more supplementary group data than the
147 		 * caller has allocated in their buffer.  We expect them to
148 		 * check pr_ngroups afterward and potentially call us again.
149 		 */
150 		ngroups = MIN(ngroups, core->core_cred->pr_ngroups);
151 
152 		(void) memcpy(pcrp, core->core_cred,
153 		    sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t));
154 
155 		return (0);
156 	}
157 
158 	errno = ENODATA;
159 	return (-1);
160 }
161 
162 /*ARGSUSED*/
163 static int
164 Psecflags_core(struct ps_prochandle *P, prsecflags_t **psf, void *data)
165 {
166 	core_info_t *core = data;
167 
168 	if (core->core_secflags == NULL) {
169 		errno = ENODATA;
170 		return (-1);
171 	}
172 
173 	if ((*psf = calloc(1, sizeof (prsecflags_t))) == NULL)
174 		return (-1);
175 
176 	(void) memcpy(*psf, core->core_secflags, sizeof (prsecflags_t));
177 
178 	return (0);
179 }
180 
181 /*ARGSUSED*/
182 static int
183 Ppriv_core(struct ps_prochandle *P, prpriv_t **pprv, void *data)
184 {
185 	core_info_t *core = data;
186 
187 	if (core->core_priv == NULL) {
188 		errno = ENODATA;
189 		return (-1);
190 	}
191 
192 	*pprv = malloc(core->core_priv_size);
193 	if (*pprv == NULL) {
194 		return (-1);
195 	}
196 
197 	(void) memcpy(*pprv, core->core_priv, core->core_priv_size);
198 	return (0);
199 }
200 
201 /*ARGSUSED*/
202 static const psinfo_t *
203 Ppsinfo_core(struct ps_prochandle *P, psinfo_t *psinfo, void *data)
204 {
205 	return (&P->psinfo);
206 }
207 
208 /*ARGSUSED*/
209 static void
210 Pfini_core(struct ps_prochandle *P, void *data)
211 {
212 	core_info_t *core = data;
213 
214 	if (core != NULL) {
215 		extern void __priv_free_info(void *);
216 		lwp_info_t *nlwp, *lwp = list_next(&core->core_lwp_head);
217 		int i;
218 
219 		for (i = 0; i < core->core_nlwp; i++, lwp = nlwp) {
220 			nlwp = list_next(lwp);
221 #ifdef __sparc
222 			if (lwp->lwp_gwins != NULL)
223 				free(lwp->lwp_gwins);
224 			if (lwp->lwp_xregs != NULL)
225 				free(lwp->lwp_xregs);
226 			if (lwp->lwp_asrs != NULL)
227 				free(lwp->lwp_asrs);
228 #endif
229 			free(lwp);
230 		}
231 
232 		if (core->core_platform != NULL)
233 			free(core->core_platform);
234 		if (core->core_uts != NULL)
235 			free(core->core_uts);
236 		if (core->core_cred != NULL)
237 			free(core->core_cred);
238 		if (core->core_priv != NULL)
239 			free(core->core_priv);
240 		if (core->core_privinfo != NULL)
241 			__priv_free_info(core->core_privinfo);
242 		if (core->core_ppii != NULL)
243 			free(core->core_ppii);
244 		if (core->core_zonename != NULL)
245 			free(core->core_zonename);
246 		if (core->core_secflags != NULL)
247 			free(core->core_secflags);
248 		if (core->core_upanic != NULL)
249 			free(core->core_upanic);
250 #ifdef __x86
251 		if (core->core_ldt != NULL)
252 			free(core->core_ldt);
253 #endif
254 
255 		free(core);
256 	}
257 }
258 
259 /*ARGSUSED*/
260 static char *
261 Pplatform_core(struct ps_prochandle *P, char *s, size_t n, void *data)
262 {
263 	core_info_t *core = data;
264 
265 	if (core->core_platform == NULL) {
266 		errno = ENODATA;
267 		return (NULL);
268 	}
269 	(void) strncpy(s, core->core_platform, n - 1);
270 	s[n - 1] = '\0';
271 	return (s);
272 }
273 
274 /*ARGSUSED*/
275 static int
276 Puname_core(struct ps_prochandle *P, struct utsname *u, void *data)
277 {
278 	core_info_t *core = data;
279 
280 	if (core->core_uts == NULL) {
281 		errno = ENODATA;
282 		return (-1);
283 	}
284 	(void) memcpy(u, core->core_uts, sizeof (struct utsname));
285 	return (0);
286 }
287 
288 /*ARGSUSED*/
289 static char *
290 Pzonename_core(struct ps_prochandle *P, char *s, size_t n, void *data)
291 {
292 	core_info_t *core = data;
293 
294 	if (core->core_zonename == NULL) {
295 		errno = ENODATA;
296 		return (NULL);
297 	}
298 	(void) strlcpy(s, core->core_zonename, n);
299 	return (s);
300 }
301 
302 #ifdef __x86
303 /*ARGSUSED*/
304 static int
305 Pldt_core(struct ps_prochandle *P, struct ssd *pldt, int nldt, void *data)
306 {
307 	core_info_t *core = data;
308 
309 	if (pldt == NULL || nldt == 0)
310 		return (core->core_nldt);
311 
312 	if (core->core_ldt != NULL) {
313 		nldt = MIN(nldt, core->core_nldt);
314 
315 		(void) memcpy(pldt, core->core_ldt,
316 		    nldt * sizeof (struct ssd));
317 
318 		return (nldt);
319 	}
320 
321 	errno = ENODATA;
322 	return (-1);
323 }
324 #endif
325 
326 static const ps_ops_t P_core_ops = {
327 	.pop_pread	= Pread_core,
328 	.pop_pwrite	= Pwrite_core,
329 	.pop_cred	= Pcred_core,
330 	.pop_priv	= Ppriv_core,
331 	.pop_psinfo	= Ppsinfo_core,
332 	.pop_fini	= Pfini_core,
333 	.pop_platform	= Pplatform_core,
334 	.pop_uname	= Puname_core,
335 	.pop_zonename	= Pzonename_core,
336 	.pop_secflags	= Psecflags_core,
337 #ifdef __x86
338 	.pop_ldt	= Pldt_core
339 #endif
340 };
341 
342 /*
343  * Return the lwp_info_t for the given lwpid.  If no such lwpid has been
344  * encountered yet, allocate a new structure and return a pointer to it.
345  * Create a list of lwp_info_t structures sorted in decreasing lwp_id order.
346  */
347 static lwp_info_t *
348 lwpid2info(struct ps_prochandle *P, lwpid_t id)
349 {
350 	core_info_t *core = P->data;
351 	lwp_info_t *lwp = list_next(&core->core_lwp_head);
352 	lwp_info_t *next;
353 	uint_t i;
354 
355 	for (i = 0; i < core->core_nlwp; i++, lwp = list_next(lwp)) {
356 		if (lwp->lwp_id == id) {
357 			core->core_lwp = lwp;
358 			return (lwp);
359 		}
360 		if (lwp->lwp_id < id) {
361 			break;
362 		}
363 	}
364 
365 	next = lwp;
366 	if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL)
367 		return (NULL);
368 
369 	list_link(lwp, next);
370 	lwp->lwp_id = id;
371 
372 	core->core_lwp = lwp;
373 	core->core_nlwp++;
374 
375 	return (lwp);
376 }
377 
378 /*
379  * The core file itself contains a series of NOTE segments containing saved
380  * structures from /proc at the time the process died.  For each note we
381  * comprehend, we define a function to read it in from the core file,
382  * convert it to our native data model if necessary, and store it inside
383  * the ps_prochandle.  Each function is invoked by Pfgrab_core() with the
384  * seek pointer on P->asfd positioned appropriately.  We populate a table
385  * of pointers to these note functions below.
386  */
387 
388 static int
389 note_pstatus(struct ps_prochandle *P, size_t nbytes)
390 {
391 #ifdef _LP64
392 	core_info_t *core = P->data;
393 
394 	if (core->core_dmodel == PR_MODEL_ILP32) {
395 		pstatus32_t ps32;
396 
397 		if (nbytes < sizeof (pstatus32_t) ||
398 		    read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
399 			goto err;
400 
401 		pstatus_32_to_n(&ps32, &P->status);
402 
403 	} else
404 #endif
405 	if (nbytes < sizeof (pstatus_t) ||
406 	    read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t))
407 		goto err;
408 
409 	P->orig_status = P->status;
410 	P->pid = P->status.pr_pid;
411 
412 	return (0);
413 
414 err:
415 	dprintf("Pgrab_core: failed to read NT_PSTATUS\n");
416 	return (-1);
417 }
418 
419 static int
420 note_lwpstatus(struct ps_prochandle *P, size_t nbytes)
421 {
422 	lwp_info_t *lwp;
423 	lwpstatus_t lps;
424 
425 #ifdef _LP64
426 	core_info_t *core = P->data;
427 
428 	if (core->core_dmodel == PR_MODEL_ILP32) {
429 		lwpstatus32_t l32;
430 
431 		if (nbytes < sizeof (lwpstatus32_t) ||
432 		    read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
433 			goto err;
434 
435 		lwpstatus_32_to_n(&l32, &lps);
436 	} else
437 #endif
438 	if (nbytes < sizeof (lwpstatus_t) ||
439 	    read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
440 		goto err;
441 
442 	if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
443 		dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n");
444 		return (-1);
445 	}
446 
447 	/*
448 	 * Erase a useless and confusing artifact of the kernel implementation:
449 	 * the lwps which did *not* create the core will show SIGKILL.  We can
450 	 * be assured this is bogus because SIGKILL can't produce core files.
451 	 */
452 	if (lps.pr_cursig == SIGKILL)
453 		lps.pr_cursig = 0;
454 
455 	(void) memcpy(&lwp->lwp_status, &lps, sizeof (lps));
456 	return (0);
457 
458 err:
459 	dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n");
460 	return (-1);
461 }
462 
463 #ifdef __x86
464 
465 static void
466 lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t *p32, psinfo_t *psinfo)
467 {
468 	psinfo->pr_flag = p32->pr_flag;
469 	psinfo->pr_pid = p32->pr_pid;
470 	psinfo->pr_ppid = p32->pr_ppid;
471 	psinfo->pr_uid = p32->pr_uid;
472 	psinfo->pr_gid = p32->pr_gid;
473 	psinfo->pr_sid = p32->pr_sid;
474 	psinfo->pr_pgid = p32->pr_pgrp;
475 
476 	(void) memcpy(psinfo->pr_fname, p32->pr_fname,
477 	    sizeof (psinfo->pr_fname));
478 	(void) memcpy(psinfo->pr_psargs, p32->pr_psargs,
479 	    sizeof (psinfo->pr_psargs));
480 }
481 
482 static void
483 lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t *p64, psinfo_t *psinfo)
484 {
485 	psinfo->pr_flag = p64->pr_flag;
486 	psinfo->pr_pid = p64->pr_pid;
487 	psinfo->pr_ppid = p64->pr_ppid;
488 	psinfo->pr_uid = p64->pr_uid;
489 	psinfo->pr_gid = p64->pr_gid;
490 	psinfo->pr_sid = p64->pr_sid;
491 	psinfo->pr_pgid = p64->pr_pgrp;
492 	psinfo->pr_pgid = p64->pr_pgrp;
493 
494 	(void) memcpy(psinfo->pr_fname, p64->pr_fname,
495 	    sizeof (psinfo->pr_fname));
496 	(void) memcpy(psinfo->pr_psargs, p64->pr_psargs,
497 	    sizeof (psinfo->pr_psargs));
498 }
499 
500 static int
501 note_linux_psinfo(struct ps_prochandle *P, size_t nbytes)
502 {
503 	core_info_t *core = P->data;
504 	lx_prpsinfo32_t p32;
505 	lx_prpsinfo64_t p64;
506 
507 	if (core->core_dmodel == PR_MODEL_ILP32) {
508 		if (nbytes < sizeof (p32) ||
509 		    read(P->asfd, &p32, sizeof (p32)) != sizeof (p32))
510 			goto err;
511 
512 		lx_prpsinfo32_to_psinfo(&p32, &P->psinfo);
513 	} else {
514 		if (nbytes < sizeof (p64) ||
515 		    read(P->asfd, &p64, sizeof (p64)) != sizeof (p64))
516 			goto err;
517 
518 		lx_prpsinfo64_to_psinfo(&p64, &P->psinfo);
519 	}
520 
521 
522 	P->status.pr_pid = P->psinfo.pr_pid;
523 	P->status.pr_ppid = P->psinfo.pr_ppid;
524 	P->status.pr_pgid = P->psinfo.pr_pgid;
525 	P->status.pr_sid = P->psinfo.pr_sid;
526 
527 	P->psinfo.pr_nlwp = 0;
528 	P->status.pr_nlwp = 0;
529 
530 	return (0);
531 err:
532 	dprintf("Pgrab_core: failed to read NT_PSINFO\n");
533 	return (-1);
534 }
535 
536 static void
537 lx_prstatus64_to_lwp(lx_prstatus64_t *prs64, lwp_info_t *lwp)
538 {
539 	LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs64->pr_utime);
540 	LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs64->pr_stime);
541 
542 	lwp->lwp_status.pr_reg[REG_R15] = prs64->pr_reg.lxr_r15;
543 	lwp->lwp_status.pr_reg[REG_R14] = prs64->pr_reg.lxr_r14;
544 	lwp->lwp_status.pr_reg[REG_R13] = prs64->pr_reg.lxr_r13;
545 	lwp->lwp_status.pr_reg[REG_R12] = prs64->pr_reg.lxr_r12;
546 	lwp->lwp_status.pr_reg[REG_R11] = prs64->pr_reg.lxr_r11;
547 	lwp->lwp_status.pr_reg[REG_R10] = prs64->pr_reg.lxr_r10;
548 	lwp->lwp_status.pr_reg[REG_R9] = prs64->pr_reg.lxr_r9;
549 	lwp->lwp_status.pr_reg[REG_R8] = prs64->pr_reg.lxr_r8;
550 
551 	lwp->lwp_status.pr_reg[REG_RDI] = prs64->pr_reg.lxr_rdi;
552 	lwp->lwp_status.pr_reg[REG_RSI] = prs64->pr_reg.lxr_rsi;
553 	lwp->lwp_status.pr_reg[REG_RBP] = prs64->pr_reg.lxr_rbp;
554 	lwp->lwp_status.pr_reg[REG_RBX] = prs64->pr_reg.lxr_rbx;
555 	lwp->lwp_status.pr_reg[REG_RDX] = prs64->pr_reg.lxr_rdx;
556 	lwp->lwp_status.pr_reg[REG_RCX] = prs64->pr_reg.lxr_rcx;
557 	lwp->lwp_status.pr_reg[REG_RAX] = prs64->pr_reg.lxr_rax;
558 
559 	lwp->lwp_status.pr_reg[REG_RIP] = prs64->pr_reg.lxr_rip;
560 	lwp->lwp_status.pr_reg[REG_CS] = prs64->pr_reg.lxr_cs;
561 	lwp->lwp_status.pr_reg[REG_RSP] = prs64->pr_reg.lxr_rsp;
562 	lwp->lwp_status.pr_reg[REG_FS] = prs64->pr_reg.lxr_fs;
563 	lwp->lwp_status.pr_reg[REG_SS] = prs64->pr_reg.lxr_ss;
564 	lwp->lwp_status.pr_reg[REG_GS] = prs64->pr_reg.lxr_gs;
565 	lwp->lwp_status.pr_reg[REG_ES] = prs64->pr_reg.lxr_es;
566 	lwp->lwp_status.pr_reg[REG_DS] = prs64->pr_reg.lxr_ds;
567 
568 	lwp->lwp_status.pr_reg[REG_GSBASE] = prs64->pr_reg.lxr_gs_base;
569 	lwp->lwp_status.pr_reg[REG_FSBASE] = prs64->pr_reg.lxr_fs_base;
570 }
571 
572 static void
573 lx_prstatus32_to_lwp(lx_prstatus32_t *prs32, lwp_info_t *lwp)
574 {
575 	LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs32->pr_utime);
576 	LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs32->pr_stime);
577 
578 #ifdef __amd64
579 	lwp->lwp_status.pr_reg[REG_GS] = prs32->pr_reg.lxr_gs;
580 	lwp->lwp_status.pr_reg[REG_FS] = prs32->pr_reg.lxr_fs;
581 	lwp->lwp_status.pr_reg[REG_DS] = prs32->pr_reg.lxr_ds;
582 	lwp->lwp_status.pr_reg[REG_ES] = prs32->pr_reg.lxr_es;
583 	lwp->lwp_status.pr_reg[REG_RDI] = prs32->pr_reg.lxr_di;
584 	lwp->lwp_status.pr_reg[REG_RSI] = prs32->pr_reg.lxr_si;
585 	lwp->lwp_status.pr_reg[REG_RBP] = prs32->pr_reg.lxr_bp;
586 	lwp->lwp_status.pr_reg[REG_RBX] = prs32->pr_reg.lxr_bx;
587 	lwp->lwp_status.pr_reg[REG_RDX] = prs32->pr_reg.lxr_dx;
588 	lwp->lwp_status.pr_reg[REG_RCX] = prs32->pr_reg.lxr_cx;
589 	lwp->lwp_status.pr_reg[REG_RAX] = prs32->pr_reg.lxr_ax;
590 	lwp->lwp_status.pr_reg[REG_RIP] = prs32->pr_reg.lxr_ip;
591 	lwp->lwp_status.pr_reg[REG_CS] = prs32->pr_reg.lxr_cs;
592 	lwp->lwp_status.pr_reg[REG_RFL] = prs32->pr_reg.lxr_flags;
593 	lwp->lwp_status.pr_reg[REG_RSP] = prs32->pr_reg.lxr_sp;
594 	lwp->lwp_status.pr_reg[REG_SS] = prs32->pr_reg.lxr_ss;
595 #else /* __amd64 */
596 	lwp->lwp_status.pr_reg[EBX] = prs32->pr_reg.lxr_bx;
597 	lwp->lwp_status.pr_reg[ECX] = prs32->pr_reg.lxr_cx;
598 	lwp->lwp_status.pr_reg[EDX] = prs32->pr_reg.lxr_dx;
599 	lwp->lwp_status.pr_reg[ESI] = prs32->pr_reg.lxr_si;
600 	lwp->lwp_status.pr_reg[EDI] = prs32->pr_reg.lxr_di;
601 	lwp->lwp_status.pr_reg[EBP] = prs32->pr_reg.lxr_bp;
602 	lwp->lwp_status.pr_reg[EAX] = prs32->pr_reg.lxr_ax;
603 	lwp->lwp_status.pr_reg[EIP] = prs32->pr_reg.lxr_ip;
604 	lwp->lwp_status.pr_reg[UESP] = prs32->pr_reg.lxr_sp;
605 
606 	lwp->lwp_status.pr_reg[DS] = prs32->pr_reg.lxr_ds;
607 	lwp->lwp_status.pr_reg[ES] = prs32->pr_reg.lxr_es;
608 	lwp->lwp_status.pr_reg[FS] = prs32->pr_reg.lxr_fs;
609 	lwp->lwp_status.pr_reg[GS] = prs32->pr_reg.lxr_gs;
610 	lwp->lwp_status.pr_reg[CS] = prs32->pr_reg.lxr_cs;
611 	lwp->lwp_status.pr_reg[SS] = prs32->pr_reg.lxr_ss;
612 
613 	lwp->lwp_status.pr_reg[EFL] = prs32->pr_reg.lxr_flags;
614 #endif	/* !__amd64 */
615 }
616 
617 static int
618 note_linux_prstatus(struct ps_prochandle *P, size_t nbytes)
619 {
620 	core_info_t *core = P->data;
621 
622 	lx_prstatus64_t prs64;
623 	lx_prstatus32_t prs32;
624 	lwp_info_t *lwp;
625 	lwpid_t tid;
626 
627 	dprintf("looking for model %d, %ld/%ld\n", core->core_dmodel,
628 	    (ulong_t)nbytes, (ulong_t)sizeof (prs32));
629 	if (core->core_dmodel == PR_MODEL_ILP32) {
630 		if (nbytes < sizeof (prs32) ||
631 		    read(P->asfd, &prs32, sizeof (prs32)) != nbytes)
632 			goto err;
633 		tid = prs32.pr_pid;
634 	} else {
635 		if (nbytes < sizeof (prs64) ||
636 		    read(P->asfd, &prs64, sizeof (prs64)) != nbytes)
637 			goto err;
638 		tid = prs64.pr_pid;
639 	}
640 
641 	if ((lwp = lwpid2info(P, tid)) == NULL) {
642 		dprintf("Pgrab_core: failed to add lwpid2info "
643 		    "linux_prstatus\n");
644 		return (-1);
645 	}
646 
647 	P->psinfo.pr_nlwp++;
648 	P->status.pr_nlwp++;
649 
650 	lwp->lwp_status.pr_lwpid = tid;
651 
652 	if (core->core_dmodel == PR_MODEL_ILP32)
653 		lx_prstatus32_to_lwp(&prs32, lwp);
654 	else
655 		lx_prstatus64_to_lwp(&prs64, lwp);
656 
657 	return (0);
658 err:
659 	dprintf("Pgrab_core: failed to read NT_PRSTATUS\n");
660 	return (-1);
661 }
662 
663 #endif /* __x86 */
664 
665 static int
666 note_psinfo(struct ps_prochandle *P, size_t nbytes)
667 {
668 #ifdef _LP64
669 	core_info_t *core = P->data;
670 
671 	if (core->core_dmodel == PR_MODEL_ILP32) {
672 		psinfo32_t ps32;
673 
674 		if (nbytes < sizeof (psinfo32_t) ||
675 		    read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
676 			goto err;
677 
678 		psinfo_32_to_n(&ps32, &P->psinfo);
679 	} else
680 #endif
681 	if (nbytes < sizeof (psinfo_t) ||
682 	    read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
683 		goto err;
684 
685 	dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
686 	dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
687 	dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
688 
689 	return (0);
690 
691 err:
692 	dprintf("Pgrab_core: failed to read NT_PSINFO\n");
693 	return (-1);
694 }
695 
696 static int
697 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes)
698 {
699 	lwp_info_t *lwp;
700 	lwpsinfo_t lps;
701 
702 #ifdef _LP64
703 	core_info_t *core = P->data;
704 
705 	if (core->core_dmodel == PR_MODEL_ILP32) {
706 		lwpsinfo32_t l32;
707 
708 		if (nbytes < sizeof (lwpsinfo32_t) ||
709 		    read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
710 			goto err;
711 
712 		lwpsinfo_32_to_n(&l32, &lps);
713 	} else
714 #endif
715 	if (nbytes < sizeof (lwpsinfo_t) ||
716 	    read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
717 		goto err;
718 
719 	if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
720 		dprintf("Pgrab_core: failed to add NT_LWPSINFO\n");
721 		return (-1);
722 	}
723 
724 	(void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps));
725 	return (0);
726 
727 err:
728 	dprintf("Pgrab_core: failed to read NT_LWPSINFO\n");
729 	return (-1);
730 }
731 
732 static int
733 note_lwpname(struct ps_prochandle *P, size_t nbytes)
734 {
735 	prlwpname_t name;
736 	lwp_info_t *lwp;
737 
738 	if (nbytes != sizeof (name) ||
739 	    read(P->asfd, &name, sizeof (name)) != sizeof (name))
740 		goto err;
741 
742 	if ((lwp = lwpid2info(P, name.pr_lwpid)) == NULL)
743 		goto err;
744 
745 	if (strlcpy(lwp->lwp_name, name.pr_lwpname,
746 	    sizeof (lwp->lwp_name)) >= sizeof (lwp->lwp_name)) {
747 		errno = ENAMETOOLONG;
748 		goto err;
749 	}
750 
751 	return (0);
752 
753 err:
754 	dprintf("Pgrab_core: failed to read NT_LWPNAME\n");
755 	return (-1);
756 }
757 
758 static int
759 note_fdinfo(struct ps_prochandle *P, size_t nbytes)
760 {
761 	prfdinfo_core_t prfd;
762 	fd_info_t *fip;
763 
764 	if ((nbytes < sizeof (prfd)) ||
765 	    (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) {
766 		dprintf("Pgrab_core: failed to read NT_FDINFO\n");
767 		return (-1);
768 	}
769 
770 	if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) {
771 		dprintf("Pgrab_core: failed to add NT_FDINFO\n");
772 		return (-1);
773 	}
774 	if (fip->fd_info == NULL) {
775 		if (proc_fdinfo_from_core(&prfd, &fip->fd_info) != 0) {
776 			dprintf("Pgrab_core: failed to convert NT_FDINFO\n");
777 			return (-1);
778 		}
779 	}
780 
781 	return (0);
782 }
783 
784 static int
785 note_platform(struct ps_prochandle *P, size_t nbytes)
786 {
787 	core_info_t *core = P->data;
788 	char *plat;
789 
790 	if (core->core_platform != NULL)
791 		return (0);	/* Already seen */
792 
793 	if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) {
794 		if (read(P->asfd, plat, nbytes) != nbytes) {
795 			dprintf("Pgrab_core: failed to read NT_PLATFORM\n");
796 			free(plat);
797 			return (-1);
798 		}
799 		plat[nbytes - 1] = '\0';
800 		core->core_platform = plat;
801 	}
802 
803 	return (0);
804 }
805 
806 static int
807 note_secflags(struct ps_prochandle *P, size_t nbytes)
808 {
809 	core_info_t *core = P->data;
810 	prsecflags_t *psf;
811 
812 	if (core->core_secflags != NULL)
813 		return (0);	/* Already seen */
814 
815 	if (sizeof (*psf) != nbytes) {
816 		dprintf("Pgrab_core: NT_SECFLAGS changed size."
817 		    "  Need to handle a version change?\n");
818 		return (-1);
819 	}
820 
821 	if (nbytes != 0 && ((psf = malloc(nbytes)) != NULL)) {
822 		if (read(P->asfd, psf, nbytes) != nbytes) {
823 			dprintf("Pgrab_core: failed to read NT_SECFLAGS\n");
824 			free(psf);
825 			return (-1);
826 		}
827 
828 		core->core_secflags = psf;
829 	}
830 
831 	return (0);
832 }
833 
834 static int
835 note_utsname(struct ps_prochandle *P, size_t nbytes)
836 {
837 	core_info_t *core = P->data;
838 	size_t ubytes = sizeof (struct utsname);
839 	struct utsname *utsp;
840 
841 	if (core->core_uts != NULL || nbytes < ubytes)
842 		return (0);	/* Already seen or bad size */
843 
844 	if ((utsp = malloc(ubytes)) == NULL)
845 		return (-1);
846 
847 	if (read(P->asfd, utsp, ubytes) != ubytes) {
848 		dprintf("Pgrab_core: failed to read NT_UTSNAME\n");
849 		free(utsp);
850 		return (-1);
851 	}
852 
853 	if (_libproc_debug) {
854 		dprintf("uts.sysname = \"%s\"\n", utsp->sysname);
855 		dprintf("uts.nodename = \"%s\"\n", utsp->nodename);
856 		dprintf("uts.release = \"%s\"\n", utsp->release);
857 		dprintf("uts.version = \"%s\"\n", utsp->version);
858 		dprintf("uts.machine = \"%s\"\n", utsp->machine);
859 	}
860 
861 	core->core_uts = utsp;
862 	return (0);
863 }
864 
865 static int
866 note_content(struct ps_prochandle *P, size_t nbytes)
867 {
868 	core_info_t *core = P->data;
869 	core_content_t content;
870 
871 	if (sizeof (core->core_content) != nbytes)
872 		return (-1);
873 
874 	if (read(P->asfd, &content, sizeof (content)) != sizeof (content))
875 		return (-1);
876 
877 	core->core_content = content;
878 
879 	dprintf("core content = %llx\n", content);
880 
881 	return (0);
882 }
883 
884 static int
885 note_cred(struct ps_prochandle *P, size_t nbytes)
886 {
887 	core_info_t *core = P->data;
888 	prcred_t *pcrp;
889 	int ngroups;
890 	const size_t min_size = sizeof (prcred_t) - sizeof (gid_t);
891 
892 	/*
893 	 * We allow for prcred_t notes that are actually smaller than a
894 	 * prcred_t since the last member isn't essential if there are
895 	 * no group memberships. This allows for more flexibility when it
896 	 * comes to slightly malformed -- but still valid -- notes.
897 	 */
898 	if (core->core_cred != NULL || nbytes < min_size)
899 		return (0);	/* Already seen or bad size */
900 
901 	ngroups = (nbytes - min_size) / sizeof (gid_t);
902 	nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t);
903 
904 	if ((pcrp = malloc(nbytes)) == NULL)
905 		return (-1);
906 
907 	if (read(P->asfd, pcrp, nbytes) != nbytes) {
908 		dprintf("Pgrab_core: failed to read NT_PRCRED\n");
909 		free(pcrp);
910 		return (-1);
911 	}
912 
913 	if (pcrp->pr_ngroups > ngroups) {
914 		dprintf("pr_ngroups = %d; resetting to %d based on note size\n",
915 		    pcrp->pr_ngroups, ngroups);
916 		pcrp->pr_ngroups = ngroups;
917 	}
918 
919 	core->core_cred = pcrp;
920 	return (0);
921 }
922 
923 #ifdef __x86
924 static int
925 note_ldt(struct ps_prochandle *P, size_t nbytes)
926 {
927 	core_info_t *core = P->data;
928 	struct ssd *pldt;
929 	uint_t nldt;
930 
931 	if (core->core_ldt != NULL || nbytes < sizeof (struct ssd))
932 		return (0);	/* Already seen or bad size */
933 
934 	nldt = nbytes / sizeof (struct ssd);
935 	nbytes = nldt * sizeof (struct ssd);
936 
937 	if ((pldt = malloc(nbytes)) == NULL)
938 		return (-1);
939 
940 	if (read(P->asfd, pldt, nbytes) != nbytes) {
941 		dprintf("Pgrab_core: failed to read NT_LDT\n");
942 		free(pldt);
943 		return (-1);
944 	}
945 
946 	core->core_ldt = pldt;
947 	core->core_nldt = nldt;
948 	return (0);
949 }
950 #endif	/* __i386 */
951 
952 static int
953 note_priv(struct ps_prochandle *P, size_t nbytes)
954 {
955 	core_info_t *core = P->data;
956 	prpriv_t *pprvp;
957 
958 	if (core->core_priv != NULL || nbytes < sizeof (prpriv_t))
959 		return (0);	/* Already seen or bad size */
960 
961 	if ((pprvp = malloc(nbytes)) == NULL)
962 		return (-1);
963 
964 	if (read(P->asfd, pprvp, nbytes) != nbytes) {
965 		dprintf("Pgrab_core: failed to read NT_PRPRIV\n");
966 		free(pprvp);
967 		return (-1);
968 	}
969 
970 	core->core_priv = pprvp;
971 	core->core_priv_size = nbytes;
972 	return (0);
973 }
974 
975 static int
976 note_priv_info(struct ps_prochandle *P, size_t nbytes)
977 {
978 	core_info_t *core = P->data;
979 	extern void *__priv_parse_info();
980 	priv_impl_info_t *ppii;
981 
982 	if (core->core_privinfo != NULL ||
983 	    nbytes < sizeof (priv_impl_info_t))
984 		return (0);	/* Already seen or bad size */
985 
986 	if ((ppii = malloc(nbytes)) == NULL)
987 		return (-1);
988 
989 	if (read(P->asfd, ppii, nbytes) != nbytes ||
990 	    PRIV_IMPL_INFO_SIZE(ppii) != nbytes) {
991 		dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n");
992 		free(ppii);
993 		return (-1);
994 	}
995 
996 	core->core_privinfo = __priv_parse_info(ppii);
997 	core->core_ppii = ppii;
998 	return (0);
999 }
1000 
1001 static int
1002 note_zonename(struct ps_prochandle *P, size_t nbytes)
1003 {
1004 	core_info_t *core = P->data;
1005 	char *zonename;
1006 
1007 	if (core->core_zonename != NULL)
1008 		return (0);	/* Already seen */
1009 
1010 	if (nbytes != 0) {
1011 		if ((zonename = malloc(nbytes)) == NULL)
1012 			return (-1);
1013 		if (read(P->asfd, zonename, nbytes) != nbytes) {
1014 			dprintf("Pgrab_core: failed to read NT_ZONENAME\n");
1015 			free(zonename);
1016 			return (-1);
1017 		}
1018 		zonename[nbytes - 1] = '\0';
1019 		core->core_zonename = zonename;
1020 	}
1021 
1022 	return (0);
1023 }
1024 
1025 static int
1026 note_auxv(struct ps_prochandle *P, size_t nbytes)
1027 {
1028 	size_t n, i;
1029 
1030 #ifdef _LP64
1031 	core_info_t *core = P->data;
1032 
1033 	if (core->core_dmodel == PR_MODEL_ILP32) {
1034 		auxv32_t *a32;
1035 
1036 		n = nbytes / sizeof (auxv32_t);
1037 		nbytes = n * sizeof (auxv32_t);
1038 		a32 = alloca(nbytes);
1039 
1040 		if (read(P->asfd, a32, nbytes) != nbytes) {
1041 			dprintf("Pgrab_core: failed to read NT_AUXV\n");
1042 			return (-1);
1043 		}
1044 
1045 		if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL)
1046 			return (-1);
1047 
1048 		for (i = 0; i < n; i++)
1049 			auxv_32_to_n(&a32[i], &P->auxv[i]);
1050 
1051 	} else {
1052 #endif
1053 		n = nbytes / sizeof (auxv_t);
1054 		nbytes = n * sizeof (auxv_t);
1055 
1056 		if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL)
1057 			return (-1);
1058 
1059 		if (read(P->asfd, P->auxv, nbytes) != nbytes) {
1060 			free(P->auxv);
1061 			P->auxv = NULL;
1062 			return (-1);
1063 		}
1064 #ifdef _LP64
1065 	}
1066 #endif
1067 
1068 	if (_libproc_debug) {
1069 		for (i = 0; i < n; i++) {
1070 			dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i,
1071 			    P->auxv[i].a_type, P->auxv[i].a_un.a_val);
1072 		}
1073 	}
1074 
1075 	/*
1076 	 * Defensive coding for loops which depend upon the auxv array being
1077 	 * terminated by an AT_NULL element; in each case, we've allocated
1078 	 * P->auxv to have an additional element which we force to be AT_NULL.
1079 	 */
1080 	P->auxv[n].a_type = AT_NULL;
1081 	P->auxv[n].a_un.a_val = 0L;
1082 	P->nauxv = (int)n;
1083 
1084 	return (0);
1085 }
1086 
1087 #ifdef __sparc
1088 static int
1089 note_xreg(struct ps_prochandle *P, size_t nbytes)
1090 {
1091 	core_info_t *core = P->data;
1092 	lwp_info_t *lwp = core->core_lwp;
1093 	size_t xbytes = sizeof (prxregset_t);
1094 	prxregset_t *xregs;
1095 
1096 	if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes)
1097 		return (0);	/* No lwp yet, already seen, or bad size */
1098 
1099 	if ((xregs = malloc(xbytes)) == NULL)
1100 		return (-1);
1101 
1102 	if (read(P->asfd, xregs, xbytes) != xbytes) {
1103 		dprintf("Pgrab_core: failed to read NT_PRXREG\n");
1104 		free(xregs);
1105 		return (-1);
1106 	}
1107 
1108 	lwp->lwp_xregs = xregs;
1109 	return (0);
1110 }
1111 
1112 static int
1113 note_gwindows(struct ps_prochandle *P, size_t nbytes)
1114 {
1115 	core_info_t *core = P->data;
1116 	lwp_info_t *lwp = core->core_lwp;
1117 
1118 	if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
1119 		return (0);	/* No lwp yet or already seen or no data */
1120 
1121 	if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
1122 		return (-1);
1123 
1124 	/*
1125 	 * Since the amount of gwindows data varies with how many windows were
1126 	 * actually saved, we just read up to the minimum of the note size
1127 	 * and the size of the gwindows_t type.  It doesn't matter if the read
1128 	 * fails since we have to zero out gwindows first anyway.
1129 	 */
1130 #ifdef _LP64
1131 	if (core->core_dmodel == PR_MODEL_ILP32) {
1132 		gwindows32_t g32;
1133 
1134 		(void) memset(&g32, 0, sizeof (g32));
1135 		(void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
1136 		gwindows_32_to_n(&g32, lwp->lwp_gwins);
1137 
1138 	} else {
1139 #endif
1140 		(void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));
1141 		(void) read(P->asfd, lwp->lwp_gwins,
1142 		    MIN(nbytes, sizeof (gwindows_t)));
1143 #ifdef _LP64
1144 	}
1145 #endif
1146 	return (0);
1147 }
1148 
1149 #ifdef __sparcv9
1150 static int
1151 note_asrs(struct ps_prochandle *P, size_t nbytes)
1152 {
1153 	core_info_t *core = P->data;
1154 	lwp_info_t *lwp = core->core_lwp;
1155 	int64_t *asrs;
1156 
1157 	if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
1158 		return (0);	/* No lwp yet, already seen, or bad size */
1159 
1160 	if ((asrs = malloc(sizeof (asrset_t))) == NULL)
1161 		return (-1);
1162 
1163 	if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
1164 		dprintf("Pgrab_core: failed to read NT_ASRS\n");
1165 		free(asrs);
1166 		return (-1);
1167 	}
1168 
1169 	lwp->lwp_asrs = asrs;
1170 	return (0);
1171 }
1172 #endif	/* __sparcv9 */
1173 #endif	/* __sparc */
1174 
1175 static int
1176 note_spymaster(struct ps_prochandle *P, size_t nbytes)
1177 {
1178 #ifdef _LP64
1179 	core_info_t *core = P->data;
1180 
1181 	if (core->core_dmodel == PR_MODEL_ILP32) {
1182 		psinfo32_t ps32;
1183 
1184 		if (nbytes < sizeof (psinfo32_t) ||
1185 		    read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
1186 			goto err;
1187 
1188 		psinfo_32_to_n(&ps32, &P->spymaster);
1189 	} else
1190 #endif
1191 	if (nbytes < sizeof (psinfo_t) || read(P->asfd,
1192 	    &P->spymaster, sizeof (psinfo_t)) != sizeof (psinfo_t))
1193 		goto err;
1194 
1195 	dprintf("spymaster pr_fname = <%s>\n", P->psinfo.pr_fname);
1196 	dprintf("spymaster pr_psargs = <%s>\n", P->psinfo.pr_psargs);
1197 	dprintf("spymaster pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
1198 
1199 	return (0);
1200 
1201 err:
1202 	dprintf("Pgrab_core: failed to read NT_SPYMASTER\n");
1203 	return (-1);
1204 }
1205 
1206 static int
1207 note_upanic(struct ps_prochandle *P, size_t nbytes)
1208 {
1209 	core_info_t *core = P->data;
1210 	prupanic_t *pru;
1211 
1212 	if (core->core_upanic != NULL)
1213 		return (0);
1214 
1215 	if (sizeof (*pru) != nbytes) {
1216 		dprintf("Pgrab_core: NT_UPANIC changed size."
1217 		    "  Need to handle a version change?\n");
1218 		return (-1);
1219 	}
1220 
1221 	if (nbytes != 0 && ((pru = malloc(nbytes)) != NULL)) {
1222 		if (read(P->asfd, pru, nbytes) != nbytes) {
1223 			dprintf("Pgrab_core: failed to read NT_UPANIC\n");
1224 			free(pru);
1225 			return (-1);
1226 		}
1227 
1228 		core->core_upanic = pru;
1229 	}
1230 
1231 	return (0);
1232 }
1233 
1234 /*ARGSUSED*/
1235 static int
1236 note_notsup(struct ps_prochandle *P, size_t nbytes)
1237 {
1238 	dprintf("skipping unsupported note type of size %ld bytes\n",
1239 	    (ulong_t)nbytes);
1240 	return (0);
1241 }
1242 
1243 /*
1244  * Populate a table of function pointers indexed by Note type with our
1245  * functions to process each type of core file note:
1246  */
1247 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = {
1248 	note_notsup,		/*  0	unassigned		*/
1249 #ifdef __x86
1250 	note_linux_prstatus,		/*  1	NT_PRSTATUS (old)	*/
1251 #else
1252 	note_notsup,		/*  1	NT_PRSTATUS (old)	*/
1253 #endif
1254 	note_notsup,		/*  2	NT_PRFPREG (old)	*/
1255 #ifdef __x86
1256 	note_linux_psinfo,		/*  3	NT_PRPSINFO (old)	*/
1257 #else
1258 	note_notsup,		/*  3	NT_PRPSINFO (old)	*/
1259 #endif
1260 #ifdef __sparc
1261 	note_xreg,		/*  4	NT_PRXREG		*/
1262 #else
1263 	note_notsup,		/*  4	NT_PRXREG		*/
1264 #endif
1265 	note_platform,		/*  5	NT_PLATFORM		*/
1266 	note_auxv,		/*  6	NT_AUXV			*/
1267 #ifdef __sparc
1268 	note_gwindows,		/*  7	NT_GWINDOWS		*/
1269 #ifdef __sparcv9
1270 	note_asrs,		/*  8	NT_ASRS			*/
1271 #else
1272 	note_notsup,		/*  8	NT_ASRS			*/
1273 #endif
1274 #else
1275 	note_notsup,		/*  7	NT_GWINDOWS		*/
1276 	note_notsup,		/*  8	NT_ASRS			*/
1277 #endif
1278 #ifdef __x86
1279 	note_ldt,		/*  9	NT_LDT			*/
1280 #else
1281 	note_notsup,		/*  9	NT_LDT			*/
1282 #endif
1283 	note_pstatus,		/* 10	NT_PSTATUS		*/
1284 	note_notsup,		/* 11	unassigned		*/
1285 	note_notsup,		/* 12	unassigned		*/
1286 	note_psinfo,		/* 13	NT_PSINFO		*/
1287 	note_cred,		/* 14	NT_PRCRED		*/
1288 	note_utsname,		/* 15	NT_UTSNAME		*/
1289 	note_lwpstatus,		/* 16	NT_LWPSTATUS		*/
1290 	note_lwpsinfo,		/* 17	NT_LWPSINFO		*/
1291 	note_priv,		/* 18	NT_PRPRIV		*/
1292 	note_priv_info,		/* 19	NT_PRPRIVINFO		*/
1293 	note_content,		/* 20	NT_CONTENT		*/
1294 	note_zonename,		/* 21	NT_ZONENAME		*/
1295 	note_fdinfo,		/* 22	NT_FDINFO		*/
1296 	note_spymaster,		/* 23	NT_SPYMASTER		*/
1297 	note_secflags,		/* 24	NT_SECFLAGS		*/
1298 	note_lwpname,		/* 25	NT_LWPNAME		*/
1299 	note_upanic		/* 26	NT_UPANIC		*/
1300 };
1301 
1302 static void
1303 core_report_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1304 {
1305 	prkillinfo_t killinfo;
1306 	siginfo_t *si = &killinfo.prk_info;
1307 	char signame[SIG2STR_MAX], sig[64], info[64];
1308 	void *addr = (void *)(uintptr_t)php->p_vaddr;
1309 
1310 	const char *errfmt = "core file data for mapping at %p not saved: %s\n";
1311 	const char *incfmt = "core file incomplete due to %s%s\n";
1312 	const char *msgfmt = "mappings at and above %p are missing\n";
1313 
1314 	if (!(php->p_flags & PF_SUNW_KILLED)) {
1315 		int err = 0;
1316 
1317 		(void) pread64(P->asfd, &err,
1318 		    sizeof (err), (off64_t)php->p_offset);
1319 
1320 		Perror_printf(P, errfmt, addr, strerror(err));
1321 		dprintf(errfmt, addr, strerror(err));
1322 		return;
1323 	}
1324 
1325 	if (!(php->p_flags & PF_SUNW_SIGINFO))
1326 		return;
1327 
1328 	(void) memset(&killinfo, 0, sizeof (killinfo));
1329 
1330 	(void) pread64(P->asfd, &killinfo,
1331 	    sizeof (killinfo), (off64_t)php->p_offset);
1332 
1333 	/*
1334 	 * While there is (or at least should be) only one segment that has
1335 	 * PF_SUNW_SIGINFO set, the signal information there is globally
1336 	 * useful (even if only to those debugging libproc consumers); we hang
1337 	 * the signal information gleaned here off of the ps_prochandle.
1338 	 */
1339 	P->map_missing = php->p_vaddr;
1340 	P->killinfo = killinfo.prk_info;
1341 
1342 	if (sig2str(si->si_signo, signame) == -1) {
1343 		(void) snprintf(sig, sizeof (sig),
1344 		    "<Unknown signal: 0x%x>, ", si->si_signo);
1345 	} else {
1346 		(void) snprintf(sig, sizeof (sig), "SIG%s, ", signame);
1347 	}
1348 
1349 	if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1350 		(void) snprintf(info, sizeof (info),
1351 		    "pid=%d uid=%d zone=%d ctid=%d",
1352 		    si->si_pid, si->si_uid, si->si_zoneid, si->si_ctid);
1353 	} else {
1354 		(void) snprintf(info, sizeof (info),
1355 		    "code=%d", si->si_code);
1356 	}
1357 
1358 	Perror_printf(P, incfmt, sig, info);
1359 	Perror_printf(P, msgfmt, addr);
1360 
1361 	dprintf(incfmt, sig, info);
1362 	dprintf(msgfmt, addr);
1363 }
1364 
1365 /*
1366  * Add information on the address space mapping described by the given
1367  * PT_LOAD program header.  We fill in more information on the mapping later.
1368  */
1369 static int
1370 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1371 {
1372 	core_info_t *core = P->data;
1373 	prmap_t pmap;
1374 
1375 	dprintf("mapping base %llx filesz %llx memsz %llx offset %llx\n",
1376 	    (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz,
1377 	    (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset);
1378 
1379 	pmap.pr_vaddr = (uintptr_t)php->p_vaddr;
1380 	pmap.pr_size = php->p_memsz;
1381 
1382 	/*
1383 	 * If Pgcore() or elfcore() fail to write a mapping, they will set
1384 	 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us.
1385 	 */
1386 	if (php->p_flags & PF_SUNW_FAILURE) {
1387 		core_report_mapping(P, php);
1388 	} else if (php->p_filesz != 0 && php->p_offset >= core->core_size) {
1389 		Perror_printf(P, "core file may be corrupt -- data for mapping "
1390 		    "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1391 		dprintf("core file may be corrupt -- data for mapping "
1392 		    "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1393 	}
1394 
1395 	/*
1396 	 * The mapping name and offset will hopefully be filled in
1397 	 * by the librtld_db agent.  Unfortunately, if it isn't a
1398 	 * shared library mapping, this information is gone forever.
1399 	 */
1400 	pmap.pr_mapname[0] = '\0';
1401 	pmap.pr_offset = 0;
1402 
1403 	pmap.pr_mflags = 0;
1404 	if (php->p_flags & PF_R)
1405 		pmap.pr_mflags |= MA_READ;
1406 	if (php->p_flags & PF_W)
1407 		pmap.pr_mflags |= MA_WRITE;
1408 	if (php->p_flags & PF_X)
1409 		pmap.pr_mflags |= MA_EXEC;
1410 
1411 	if (php->p_filesz == 0)
1412 		pmap.pr_mflags |= MA_RESERVED1;
1413 
1414 	/*
1415 	 * At the time of adding this mapping, we just zero the pagesize.
1416 	 * Once we've processed more of the core file, we'll have the
1417 	 * pagesize from the auxv's AT_PAGESZ element and we can fill this in.
1418 	 */
1419 	pmap.pr_pagesize = 0;
1420 
1421 	/*
1422 	 * Unfortunately whether or not the mapping was a System V
1423 	 * shared memory segment is lost.  We use -1 to mark it as not shm.
1424 	 */
1425 	pmap.pr_shmid = -1;
1426 
1427 	return (Padd_mapping(P, php->p_offset, NULL, &pmap));
1428 }
1429 
1430 /*
1431  * Given a virtual address, name the mapping at that address using the
1432  * specified name, and return the map_info_t pointer.
1433  */
1434 static map_info_t *
1435 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name)
1436 {
1437 	map_info_t *mp = Paddr2mptr(P, addr);
1438 
1439 	if (mp != NULL) {
1440 		(void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ);
1441 		mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1442 	}
1443 
1444 	return (mp);
1445 }
1446 
1447 /*
1448  * libproc uses libelf for all of its symbol table manipulation. This function
1449  * takes a symbol table and string table from a core file and places them
1450  * in a memory backed elf file.
1451  */
1452 static void
1453 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr,
1454     GElf_Shdr *symtab, GElf_Shdr *strtab)
1455 {
1456 	size_t size;
1457 	off64_t off, base;
1458 	map_info_t *mp;
1459 	file_info_t *fp;
1460 	Elf_Scn *scn;
1461 	Elf_Data *data;
1462 
1463 	if (symtab->sh_addr == 0 ||
1464 	    (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL ||
1465 	    (fp = mp->map_file) == NULL) {
1466 		dprintf("fake_up_symtab: invalid section\n");
1467 		return;
1468 	}
1469 
1470 	if (fp->file_symtab.sym_data_pri != NULL) {
1471 		dprintf("Symbol table already loaded (sh_addr 0x%lx)\n",
1472 		    (long)symtab->sh_addr);
1473 		return;
1474 	}
1475 
1476 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1477 		struct {
1478 			Elf32_Ehdr ehdr;
1479 			Elf32_Shdr shdr[3];
1480 			char data[1];
1481 		} *b;
1482 
1483 		base = sizeof (b->ehdr) + sizeof (b->shdr);
1484 		size = base + symtab->sh_size + strtab->sh_size;
1485 
1486 		if ((b = calloc(1, size)) == NULL)
1487 			return;
1488 
1489 		(void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1490 		    sizeof (ehdr->e_ident));
1491 		b->ehdr.e_type = ehdr->e_type;
1492 		b->ehdr.e_machine = ehdr->e_machine;
1493 		b->ehdr.e_version = ehdr->e_version;
1494 		b->ehdr.e_flags = ehdr->e_flags;
1495 		b->ehdr.e_ehsize = sizeof (b->ehdr);
1496 		b->ehdr.e_shoff = sizeof (b->ehdr);
1497 		b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1498 		b->ehdr.e_shnum = 3;
1499 		off = 0;
1500 
1501 		b->shdr[1].sh_size = symtab->sh_size;
1502 		b->shdr[1].sh_type = SHT_SYMTAB;
1503 		b->shdr[1].sh_offset = off + base;
1504 		b->shdr[1].sh_entsize = sizeof (Elf32_Sym);
1505 		b->shdr[1].sh_link = 2;
1506 		b->shdr[1].sh_info =  symtab->sh_info;
1507 		b->shdr[1].sh_addralign = symtab->sh_addralign;
1508 
1509 		if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1510 		    symtab->sh_offset) != b->shdr[1].sh_size) {
1511 			dprintf("fake_up_symtab: pread of symtab[1] failed\n");
1512 			free(b);
1513 			return;
1514 		}
1515 
1516 		off += b->shdr[1].sh_size;
1517 
1518 		b->shdr[2].sh_flags = SHF_STRINGS;
1519 		b->shdr[2].sh_size = strtab->sh_size;
1520 		b->shdr[2].sh_type = SHT_STRTAB;
1521 		b->shdr[2].sh_offset = off + base;
1522 		b->shdr[2].sh_info =  strtab->sh_info;
1523 		b->shdr[2].sh_addralign = 1;
1524 
1525 		if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1526 		    strtab->sh_offset) != b->shdr[2].sh_size) {
1527 			dprintf("fake_up_symtab: pread of symtab[2] failed\n");
1528 			free(b);
1529 			return;
1530 		}
1531 
1532 		off += b->shdr[2].sh_size;
1533 
1534 		fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1535 		if (fp->file_symtab.sym_elf == NULL) {
1536 			free(b);
1537 			return;
1538 		}
1539 
1540 		fp->file_symtab.sym_elfmem = b;
1541 #ifdef _LP64
1542 	} else {
1543 		struct {
1544 			Elf64_Ehdr ehdr;
1545 			Elf64_Shdr shdr[3];
1546 			char data[1];
1547 		} *b;
1548 
1549 		base = sizeof (b->ehdr) + sizeof (b->shdr);
1550 		size = base + symtab->sh_size + strtab->sh_size;
1551 
1552 		if ((b = calloc(1, size)) == NULL)
1553 			return;
1554 
1555 		(void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1556 		    sizeof (ehdr->e_ident));
1557 		b->ehdr.e_type = ehdr->e_type;
1558 		b->ehdr.e_machine = ehdr->e_machine;
1559 		b->ehdr.e_version = ehdr->e_version;
1560 		b->ehdr.e_flags = ehdr->e_flags;
1561 		b->ehdr.e_ehsize = sizeof (b->ehdr);
1562 		b->ehdr.e_shoff = sizeof (b->ehdr);
1563 		b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1564 		b->ehdr.e_shnum = 3;
1565 		off = 0;
1566 
1567 		b->shdr[1].sh_size = symtab->sh_size;
1568 		b->shdr[1].sh_type = SHT_SYMTAB;
1569 		b->shdr[1].sh_offset = off + base;
1570 		b->shdr[1].sh_entsize = sizeof (Elf64_Sym);
1571 		b->shdr[1].sh_link = 2;
1572 		b->shdr[1].sh_info =  symtab->sh_info;
1573 		b->shdr[1].sh_addralign = symtab->sh_addralign;
1574 
1575 		if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1576 		    symtab->sh_offset) != b->shdr[1].sh_size) {
1577 			free(b);
1578 			return;
1579 		}
1580 
1581 		off += b->shdr[1].sh_size;
1582 
1583 		b->shdr[2].sh_flags = SHF_STRINGS;
1584 		b->shdr[2].sh_size = strtab->sh_size;
1585 		b->shdr[2].sh_type = SHT_STRTAB;
1586 		b->shdr[2].sh_offset = off + base;
1587 		b->shdr[2].sh_info =  strtab->sh_info;
1588 		b->shdr[2].sh_addralign = 1;
1589 
1590 		if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1591 		    strtab->sh_offset) != b->shdr[2].sh_size) {
1592 			free(b);
1593 			return;
1594 		}
1595 
1596 		off += b->shdr[2].sh_size;
1597 
1598 		fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1599 		if (fp->file_symtab.sym_elf == NULL) {
1600 			free(b);
1601 			return;
1602 		}
1603 
1604 		fp->file_symtab.sym_elfmem = b;
1605 #endif
1606 	}
1607 
1608 	if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL ||
1609 	    (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL ||
1610 	    (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL ||
1611 	    (data = elf_getdata(scn, NULL)) == NULL) {
1612 		dprintf("fake_up_symtab: failed to get section data at %p\n",
1613 		    (void *)scn);
1614 		goto err;
1615 	}
1616 
1617 	fp->file_symtab.sym_strs = data->d_buf;
1618 	fp->file_symtab.sym_strsz = data->d_size;
1619 	fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize;
1620 	fp->file_symtab.sym_hdr_pri = *symtab;
1621 	fp->file_symtab.sym_strhdr = *strtab;
1622 
1623 	optimize_symtab(&fp->file_symtab);
1624 
1625 	return;
1626 err:
1627 	(void) elf_end(fp->file_symtab.sym_elf);
1628 	free(fp->file_symtab.sym_elfmem);
1629 	fp->file_symtab.sym_elf = NULL;
1630 	fp->file_symtab.sym_elfmem = NULL;
1631 }
1632 
1633 static void
1634 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst)
1635 {
1636 	dst->p_type = src->p_type;
1637 	dst->p_flags = src->p_flags;
1638 	dst->p_offset = (Elf64_Off)src->p_offset;
1639 	dst->p_vaddr = (Elf64_Addr)src->p_vaddr;
1640 	dst->p_paddr = (Elf64_Addr)src->p_paddr;
1641 	dst->p_filesz = (Elf64_Xword)src->p_filesz;
1642 	dst->p_memsz = (Elf64_Xword)src->p_memsz;
1643 	dst->p_align = (Elf64_Xword)src->p_align;
1644 }
1645 
1646 static void
1647 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
1648 {
1649 	dst->sh_name = src->sh_name;
1650 	dst->sh_type = src->sh_type;
1651 	dst->sh_flags = (Elf64_Xword)src->sh_flags;
1652 	dst->sh_addr = (Elf64_Addr)src->sh_addr;
1653 	dst->sh_offset = (Elf64_Off)src->sh_offset;
1654 	dst->sh_size = (Elf64_Xword)src->sh_size;
1655 	dst->sh_link = src->sh_link;
1656 	dst->sh_info = src->sh_info;
1657 	dst->sh_addralign = (Elf64_Xword)src->sh_addralign;
1658 	dst->sh_entsize = (Elf64_Xword)src->sh_entsize;
1659 }
1660 
1661 /*
1662  * Perform elf_begin on efp->e_fd and verify the ELF file's type and class.
1663  */
1664 static int
1665 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr)
1666 {
1667 #ifdef _BIG_ENDIAN
1668 	uchar_t order = ELFDATA2MSB;
1669 #else
1670 	uchar_t order = ELFDATA2LSB;
1671 #endif
1672 	Elf32_Ehdr e32;
1673 	int is_noelf = -1;
1674 	int isa_err = 0;
1675 
1676 	/*
1677 	 * Because 32-bit libelf cannot deal with large files, we need to read,
1678 	 * check, and convert the file header manually in case type == ET_CORE.
1679 	 */
1680 	if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) {
1681 		if (perr != NULL)
1682 			*perr = G_FORMAT;
1683 		goto err;
1684 	}
1685 	if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 ||
1686 	    e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) ||
1687 	    e32.e_version != EV_CURRENT) {
1688 		if (perr != NULL) {
1689 			if (is_noelf == 0 && isa_err) {
1690 				*perr = G_ISAINVAL;
1691 			} else {
1692 				*perr = G_FORMAT;
1693 			}
1694 		}
1695 		goto err;
1696 	}
1697 
1698 	/*
1699 	 * If the file is 64-bit and we are 32-bit, fail with G_LP64.  If the
1700 	 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr,
1701 	 * and convert it to a elf_file_header_t.  Otherwise, the file is
1702 	 * 32-bit, so convert e32 to a elf_file_header_t.
1703 	 */
1704 	if (e32.e_ident[EI_CLASS] == ELFCLASS64) {
1705 #ifdef _LP64
1706 		Elf64_Ehdr e64;
1707 
1708 		if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) {
1709 			if (perr != NULL)
1710 				*perr = G_FORMAT;
1711 			goto err;
1712 		}
1713 
1714 		(void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT);
1715 		efp->e_hdr.e_type = e64.e_type;
1716 		efp->e_hdr.e_machine = e64.e_machine;
1717 		efp->e_hdr.e_version = e64.e_version;
1718 		efp->e_hdr.e_entry = e64.e_entry;
1719 		efp->e_hdr.e_phoff = e64.e_phoff;
1720 		efp->e_hdr.e_shoff = e64.e_shoff;
1721 		efp->e_hdr.e_flags = e64.e_flags;
1722 		efp->e_hdr.e_ehsize = e64.e_ehsize;
1723 		efp->e_hdr.e_phentsize = e64.e_phentsize;
1724 		efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum;
1725 		efp->e_hdr.e_shentsize = e64.e_shentsize;
1726 		efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum;
1727 		efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx;
1728 #else	/* _LP64 */
1729 		if (perr != NULL)
1730 			*perr = G_LP64;
1731 		goto err;
1732 #endif	/* _LP64 */
1733 	} else {
1734 		(void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT);
1735 		efp->e_hdr.e_type = e32.e_type;
1736 		efp->e_hdr.e_machine = e32.e_machine;
1737 		efp->e_hdr.e_version = e32.e_version;
1738 		efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry;
1739 		efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff;
1740 		efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff;
1741 		efp->e_hdr.e_flags = e32.e_flags;
1742 		efp->e_hdr.e_ehsize = e32.e_ehsize;
1743 		efp->e_hdr.e_phentsize = e32.e_phentsize;
1744 		efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum;
1745 		efp->e_hdr.e_shentsize = e32.e_shentsize;
1746 		efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum;
1747 		efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx;
1748 	}
1749 
1750 	/*
1751 	 * If the number of section headers or program headers or the section
1752 	 * header string table index would overflow their respective fields
1753 	 * in the ELF header, they're stored in the section header at index
1754 	 * zero. To simplify use elsewhere, we look for those sentinel values
1755 	 * here.
1756 	 */
1757 	if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) ||
1758 	    efp->e_hdr.e_shstrndx == SHN_XINDEX ||
1759 	    efp->e_hdr.e_phnum == PN_XNUM) {
1760 		GElf_Shdr shdr;
1761 
1762 		dprintf("extended ELF header\n");
1763 
1764 		if (efp->e_hdr.e_shoff == 0) {
1765 			if (perr != NULL)
1766 				*perr = G_FORMAT;
1767 			goto err;
1768 		}
1769 
1770 		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1771 			Elf32_Shdr shdr32;
1772 
1773 			if (pread64(efp->e_fd, &shdr32, sizeof (shdr32),
1774 			    efp->e_hdr.e_shoff) != sizeof (shdr32)) {
1775 				if (perr != NULL)
1776 					*perr = G_FORMAT;
1777 				goto err;
1778 			}
1779 
1780 			core_shdr_to_gelf(&shdr32, &shdr);
1781 		} else {
1782 			if (pread64(efp->e_fd, &shdr, sizeof (shdr),
1783 			    efp->e_hdr.e_shoff) != sizeof (shdr)) {
1784 				if (perr != NULL)
1785 					*perr = G_FORMAT;
1786 				goto err;
1787 			}
1788 		}
1789 
1790 		if (efp->e_hdr.e_shnum == 0) {
1791 			efp->e_hdr.e_shnum = shdr.sh_size;
1792 			dprintf("section header count %lu\n",
1793 			    (ulong_t)shdr.sh_size);
1794 		}
1795 
1796 		if (efp->e_hdr.e_shstrndx == SHN_XINDEX) {
1797 			efp->e_hdr.e_shstrndx = shdr.sh_link;
1798 			dprintf("section string index %u\n", shdr.sh_link);
1799 		}
1800 
1801 		if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) {
1802 			efp->e_hdr.e_phnum = shdr.sh_info;
1803 			dprintf("program header count %u\n", shdr.sh_info);
1804 		}
1805 
1806 	} else if (efp->e_hdr.e_phoff != 0) {
1807 		GElf_Phdr phdr;
1808 		uint64_t phnum;
1809 
1810 		/*
1811 		 * It's possible this core file came from a system that
1812 		 * accidentally truncated the e_phnum field without correctly
1813 		 * using the extended format in the section header at index
1814 		 * zero. We try to detect and correct that specific type of
1815 		 * corruption by using the knowledge that the core dump
1816 		 * routines usually place the data referenced by the first
1817 		 * program header immediately after the last header element.
1818 		 */
1819 		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1820 			Elf32_Phdr phdr32;
1821 
1822 			if (pread64(efp->e_fd, &phdr32, sizeof (phdr32),
1823 			    efp->e_hdr.e_phoff) != sizeof (phdr32)) {
1824 				if (perr != NULL)
1825 					*perr = G_FORMAT;
1826 				goto err;
1827 			}
1828 
1829 			core_phdr_to_gelf(&phdr32, &phdr);
1830 		} else {
1831 			if (pread64(efp->e_fd, &phdr, sizeof (phdr),
1832 			    efp->e_hdr.e_phoff) != sizeof (phdr)) {
1833 				if (perr != NULL)
1834 					*perr = G_FORMAT;
1835 				goto err;
1836 			}
1837 		}
1838 
1839 		phnum = phdr.p_offset - efp->e_hdr.e_ehsize -
1840 		    (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1841 		phnum /= efp->e_hdr.e_phentsize;
1842 
1843 		if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) {
1844 			dprintf("suspicious program header count %u %u\n",
1845 			    (uint_t)phnum, efp->e_hdr.e_phnum);
1846 
1847 			/*
1848 			 * If the new program header count we computed doesn't
1849 			 * jive with count in the ELF header, we'll use the
1850 			 * data that's there and hope for the best.
1851 			 *
1852 			 * If it does, it's also possible that the section
1853 			 * header offset is incorrect; we'll check that and
1854 			 * possibly try to fix it.
1855 			 */
1856 			if (phnum <= INT_MAX &&
1857 			    (uint16_t)phnum == efp->e_hdr.e_phnum) {
1858 
1859 				if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff +
1860 				    efp->e_hdr.e_phentsize *
1861 				    (uint_t)efp->e_hdr.e_phnum) {
1862 					efp->e_hdr.e_shoff =
1863 					    efp->e_hdr.e_phoff +
1864 					    efp->e_hdr.e_phentsize * phnum;
1865 				}
1866 
1867 				efp->e_hdr.e_phnum = (Elf64_Word)phnum;
1868 				dprintf("using new program header count\n");
1869 			} else {
1870 				dprintf("inconsistent program header count\n");
1871 			}
1872 		}
1873 	}
1874 
1875 	/*
1876 	 * The libelf implementation was never ported to be large-file aware.
1877 	 * This is typically not a problem for your average executable or
1878 	 * shared library, but a large 32-bit core file can exceed 2GB in size.
1879 	 * So if type is ET_CORE, we don't bother doing elf_begin; the code
1880 	 * in Pfgrab_core() below will do its own i/o and struct conversion.
1881 	 */
1882 
1883 	if (type == ET_CORE) {
1884 		efp->e_elf = NULL;
1885 		return (0);
1886 	}
1887 
1888 	if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) {
1889 		if (perr != NULL)
1890 			*perr = G_ELF;
1891 		goto err;
1892 	}
1893 
1894 	return (0);
1895 
1896 err:
1897 	efp->e_elf = NULL;
1898 	return (-1);
1899 }
1900 
1901 /*
1902  * Open the specified file and then do a core_elf_fdopen on it.
1903  */
1904 static int
1905 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr)
1906 {
1907 	(void) memset(efp, 0, sizeof (elf_file_t));
1908 
1909 	if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) {
1910 		if (core_elf_fdopen(efp, type, perr) == 0)
1911 			return (0);
1912 
1913 		(void) close(efp->e_fd);
1914 		efp->e_fd = -1;
1915 	}
1916 
1917 	return (-1);
1918 }
1919 
1920 /*
1921  * Close the ELF handle and file descriptor.
1922  */
1923 static void
1924 core_elf_close(elf_file_t *efp)
1925 {
1926 	if (efp->e_elf != NULL) {
1927 		(void) elf_end(efp->e_elf);
1928 		efp->e_elf = NULL;
1929 	}
1930 
1931 	if (efp->e_fd != -1) {
1932 		(void) close(efp->e_fd);
1933 		efp->e_fd = -1;
1934 	}
1935 }
1936 
1937 /*
1938  * Given an ELF file for a statically linked executable, locate the likely
1939  * primary text section and fill in rl_base with its virtual address.
1940  */
1941 static map_info_t *
1942 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1943 {
1944 	GElf_Phdr phdr;
1945 	uint_t i;
1946 	size_t nphdrs;
1947 
1948 	if (elf_getphdrnum(elf, &nphdrs) == -1)
1949 		return (NULL);
1950 
1951 	for (i = 0; i < nphdrs; i++) {
1952 		if (gelf_getphdr(elf, i, &phdr) != NULL &&
1953 		    phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
1954 			rlp->rl_base = phdr.p_vaddr;
1955 			return (Paddr2mptr(P, rlp->rl_base));
1956 		}
1957 	}
1958 
1959 	return (NULL);
1960 }
1961 
1962 /*
1963  * Given an ELF file and the librtld_db structure corresponding to its primary
1964  * text mapping, deduce where its data segment was loaded and fill in
1965  * rl_data_base and prmap_t.pr_offset accordingly.
1966  */
1967 static map_info_t *
1968 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1969 {
1970 	GElf_Ehdr ehdr;
1971 	GElf_Phdr phdr;
1972 	map_info_t *mp;
1973 	uint_t i, pagemask;
1974 	size_t nphdrs;
1975 
1976 	rlp->rl_data_base = (uintptr_t)NULL;
1977 
1978 	/*
1979 	 * Find the first loadable, writeable Phdr and compute rl_data_base
1980 	 * as the virtual address at which is was loaded.
1981 	 */
1982 	if (gelf_getehdr(elf, &ehdr) == NULL ||
1983 	    elf_getphdrnum(elf, &nphdrs) == -1)
1984 		return (NULL);
1985 
1986 	for (i = 0; i < nphdrs; i++) {
1987 		if (gelf_getphdr(elf, i, &phdr) != NULL &&
1988 		    phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) {
1989 			rlp->rl_data_base = phdr.p_vaddr;
1990 			if (ehdr.e_type == ET_DYN)
1991 				rlp->rl_data_base += rlp->rl_base;
1992 			break;
1993 		}
1994 	}
1995 
1996 	/*
1997 	 * If we didn't find an appropriate phdr or if the address we
1998 	 * computed has no mapping, return NULL.
1999 	 */
2000 	if (rlp->rl_data_base == (uintptr_t)NULL ||
2001 	    (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL)
2002 		return (NULL);
2003 
2004 	/*
2005 	 * It wouldn't be procfs-related code if we didn't make use of
2006 	 * unclean knowledge of segvn, even in userland ... the prmap_t's
2007 	 * pr_offset field will be the segvn offset from mmap(2)ing the
2008 	 * data section, which will be the file offset & PAGEMASK.
2009 	 */
2010 	pagemask = ~(mp->map_pmap.pr_pagesize - 1);
2011 	mp->map_pmap.pr_offset = phdr.p_offset & pagemask;
2012 
2013 	return (mp);
2014 }
2015 
2016 /*
2017  * Librtld_db agent callback for iterating over load object mappings.
2018  * For each load object, we allocate a new file_info_t, perform naming,
2019  * and attempt to construct a symbol table for the load object.
2020  */
2021 static int
2022 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P)
2023 {
2024 	core_info_t *core = P->data;
2025 	char lname[PATH_MAX], buf[PATH_MAX];
2026 	file_info_t *fp;
2027 	map_info_t *mp;
2028 
2029 	if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) {
2030 		dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr);
2031 		return (1); /* Keep going; forget this if we can't get a name */
2032 	}
2033 
2034 	dprintf("rd_loadobj name = \"%s\" rl_base = %p\n",
2035 	    lname, (void *)rlp->rl_base);
2036 
2037 	if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) {
2038 		dprintf("no mapping for %p\n", (void *)rlp->rl_base);
2039 		return (1); /* No mapping; advance to next mapping */
2040 	}
2041 
2042 	/*
2043 	 * Create a new file_info_t for this mapping, and therefore for
2044 	 * this load object.
2045 	 *
2046 	 * If there's an ELF header at the beginning of this mapping,
2047 	 * file_info_new() will try to use its section headers to
2048 	 * identify any other mappings that belong to this load object.
2049 	 */
2050 	if ((fp = mp->map_file) == NULL &&
2051 	    (fp = file_info_new(P, mp)) == NULL) {
2052 		core->core_errno = errno;
2053 		dprintf("failed to malloc mapping data\n");
2054 		return (0); /* Abort */
2055 	}
2056 	fp->file_map = mp;
2057 
2058 	/* Create a local copy of the load object representation */
2059 	if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) {
2060 		core->core_errno = errno;
2061 		dprintf("failed to malloc mapping data\n");
2062 		return (0); /* Abort */
2063 	}
2064 	*fp->file_lo = *rlp;
2065 
2066 	if (lname[0] != '\0') {
2067 		/*
2068 		 * Naming dance part 1: if we got a name from librtld_db, then
2069 		 * copy this name to the prmap_t if it is unnamed.  If the
2070 		 * file_info_t is unnamed, name it after the lname.
2071 		 */
2072 		if (mp->map_pmap.pr_mapname[0] == '\0') {
2073 			(void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ);
2074 			mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2075 		}
2076 
2077 		if (fp->file_lname == NULL)
2078 			fp->file_lname = strdup(lname);
2079 
2080 	} else if (fp->file_lname == NULL &&
2081 	    mp->map_pmap.pr_mapname[0] != '\0') {
2082 		/*
2083 		 * Naming dance part 2: if the mapping is named and the
2084 		 * file_info_t is not, name the file after the mapping.
2085 		 */
2086 		fp->file_lname = strdup(mp->map_pmap.pr_mapname);
2087 	}
2088 
2089 	if ((fp->file_rname == NULL) &&
2090 	    (Pfindmap(P, mp, buf, sizeof (buf)) != NULL))
2091 		fp->file_rname = strdup(buf);
2092 
2093 	if (fp->file_lname != NULL)
2094 		fp->file_lbase = basename(fp->file_lname);
2095 	if (fp->file_rname != NULL)
2096 		fp->file_rbase = basename(fp->file_rname);
2097 
2098 	/* Associate the file and the mapping. */
2099 	(void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ);
2100 	fp->file_pname[PRMAPSZ - 1] = '\0';
2101 
2102 	/*
2103 	 * If no section headers were available then we'll have to
2104 	 * identify this load object's other mappings with what we've
2105 	 * got: the start and end of the object's corresponding
2106 	 * address space.
2107 	 */
2108 	if (fp->file_saddrs == NULL) {
2109 		for (mp = fp->file_map + 1; mp < P->mappings + P->map_count &&
2110 		    mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) {
2111 
2112 			if (mp->map_file == NULL) {
2113 				dprintf("core_iter_mapping %s: associating "
2114 				    "segment at %p\n",
2115 				    fp->file_pname,
2116 				    (void *)mp->map_pmap.pr_vaddr);
2117 				mp->map_file = fp;
2118 				fp->file_ref++;
2119 			} else {
2120 				dprintf("core_iter_mapping %s: segment at "
2121 				    "%p already associated with %s\n",
2122 				    fp->file_pname,
2123 				    (void *)mp->map_pmap.pr_vaddr,
2124 				    (mp == fp->file_map ? "this file" :
2125 				    mp->map_file->file_pname));
2126 			}
2127 		}
2128 	}
2129 
2130 	/* Ensure that all this file's mappings are named. */
2131 	for (mp = fp->file_map; mp < P->mappings + P->map_count &&
2132 	    mp->map_file == fp; mp++) {
2133 		if (mp->map_pmap.pr_mapname[0] == '\0' &&
2134 		    !(mp->map_pmap.pr_mflags & MA_BREAK)) {
2135 			(void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname,
2136 			    PRMAPSZ);
2137 			mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2138 		}
2139 	}
2140 
2141 	/* Attempt to build a symbol table for this file. */
2142 	Pbuild_file_symtab(P, fp);
2143 	if (fp->file_elf == NULL)
2144 		dprintf("core_iter_mapping: no symtab for %s\n",
2145 		    fp->file_pname);
2146 
2147 	/* Locate the start of a data segment associated with this file. */
2148 	if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) {
2149 		dprintf("found data for %s at %p (pr_offset 0x%llx)\n",
2150 		    fp->file_pname, (void *)fp->file_lo->rl_data_base,
2151 		    mp->map_pmap.pr_offset);
2152 	} else {
2153 		dprintf("core_iter_mapping: no data found for %s\n",
2154 		    fp->file_pname);
2155 	}
2156 
2157 	return (1); /* Advance to next mapping */
2158 }
2159 
2160 /*
2161  * Callback function for Pfindexec().  In order to confirm a given pathname,
2162  * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN.
2163  */
2164 static int
2165 core_exec_open(const char *path, void *efp)
2166 {
2167 	if (core_elf_open(efp, path, ET_EXEC, NULL) == 0)
2168 		return (1);
2169 	if (core_elf_open(efp, path, ET_DYN, NULL) == 0)
2170 		return (1);
2171 	return (0);
2172 }
2173 
2174 /*
2175  * Attempt to load any section headers found in the core file.  If present,
2176  * this will refer to non-loadable data added to the core file by the kernel
2177  * based on coreadm(1M) settings, including CTF data and the symbol table.
2178  */
2179 static void
2180 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp)
2181 {
2182 	GElf_Shdr *shp, *shdrs = NULL;
2183 	char *shstrtab = NULL;
2184 	ulong_t shstrtabsz;
2185 	const char *name;
2186 	map_info_t *mp;
2187 
2188 	size_t nbytes;
2189 	void *buf;
2190 	int i;
2191 
2192 	if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) {
2193 		dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n",
2194 		    efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum);
2195 		return;
2196 	}
2197 
2198 	/*
2199 	 * Read the section header table from the core file and then iterate
2200 	 * over the section headers, converting each to a GElf_Shdr.
2201 	 */
2202 	if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) {
2203 		dprintf("failed to malloc %u section headers: %s\n",
2204 		    (uint_t)efp->e_hdr.e_shnum, strerror(errno));
2205 		return;
2206 	}
2207 
2208 	nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
2209 	if ((buf = malloc(nbytes)) == NULL) {
2210 		dprintf("failed to malloc %d bytes: %s\n", (int)nbytes,
2211 		    strerror(errno));
2212 		free(shdrs);
2213 		goto out;
2214 	}
2215 
2216 	if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) {
2217 		dprintf("failed to read section headers at off %lld: %s\n",
2218 		    (longlong_t)efp->e_hdr.e_shoff, strerror(errno));
2219 		free(buf);
2220 		goto out;
2221 	}
2222 
2223 	for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2224 		void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i;
2225 
2226 		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32)
2227 			core_shdr_to_gelf(p, &shdrs[i]);
2228 		else
2229 			(void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr));
2230 	}
2231 
2232 	free(buf);
2233 	buf = NULL;
2234 
2235 	/*
2236 	 * Read the .shstrtab section from the core file, terminating it with
2237 	 * an extra \0 so that a corrupt section will not cause us to die.
2238 	 */
2239 	shp = &shdrs[efp->e_hdr.e_shstrndx];
2240 	shstrtabsz = shp->sh_size;
2241 
2242 	if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) {
2243 		dprintf("failed to allocate %lu bytes for shstrtab\n",
2244 		    (ulong_t)shstrtabsz);
2245 		goto out;
2246 	}
2247 
2248 	if (pread64(efp->e_fd, shstrtab, shstrtabsz,
2249 	    shp->sh_offset) != shstrtabsz) {
2250 		dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n",
2251 		    shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno));
2252 		goto out;
2253 	}
2254 
2255 	shstrtab[shstrtabsz] = '\0';
2256 
2257 	/*
2258 	 * Now iterate over each section in the section header table, locating
2259 	 * sections of interest and initializing more of the ps_prochandle.
2260 	 */
2261 	for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2262 		shp = &shdrs[i];
2263 		name = shstrtab + shp->sh_name;
2264 
2265 		if (shp->sh_name >= shstrtabsz) {
2266 			dprintf("skipping section [%d]: corrupt sh_name\n", i);
2267 			continue;
2268 		}
2269 
2270 		if (shp->sh_link >= efp->e_hdr.e_shnum) {
2271 			dprintf("skipping section [%d]: corrupt sh_link\n", i);
2272 			continue;
2273 		}
2274 
2275 		dprintf("found section header %s (sh_addr 0x%llx)\n",
2276 		    name, (u_longlong_t)shp->sh_addr);
2277 
2278 		if (strcmp(name, ".SUNW_ctf") == 0) {
2279 			if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) {
2280 				dprintf("no map at addr 0x%llx for %s [%d]\n",
2281 				    (u_longlong_t)shp->sh_addr, name, i);
2282 				continue;
2283 			}
2284 
2285 			if (mp->map_file == NULL ||
2286 			    mp->map_file->file_ctf_buf != NULL) {
2287 				dprintf("no mapping file or duplicate buffer "
2288 				    "for %s [%d]\n", name, i);
2289 				continue;
2290 			}
2291 
2292 			if ((buf = malloc(shp->sh_size)) == NULL ||
2293 			    pread64(efp->e_fd, buf, shp->sh_size,
2294 			    shp->sh_offset) != shp->sh_size) {
2295 				dprintf("skipping section %s [%d]: %s\n",
2296 				    name, i, strerror(errno));
2297 				free(buf);
2298 				continue;
2299 			}
2300 
2301 			mp->map_file->file_ctf_size = shp->sh_size;
2302 			mp->map_file->file_ctf_buf = buf;
2303 
2304 			if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM)
2305 				mp->map_file->file_ctf_dyn = 1;
2306 
2307 		} else if (strcmp(name, ".symtab") == 0) {
2308 			fake_up_symtab(P, &efp->e_hdr,
2309 			    shp, &shdrs[shp->sh_link]);
2310 		}
2311 	}
2312 out:
2313 	free(shstrtab);
2314 	free(shdrs);
2315 }
2316 
2317 /*
2318  * Main engine for core file initialization: given an fd for the core file
2319  * and an optional pathname, construct the ps_prochandle.  The aout_path can
2320  * either be a suggested executable pathname, or a suggested directory to
2321  * use as a possible current working directory.
2322  */
2323 struct ps_prochandle *
2324 Pfgrab_core(int core_fd, const char *aout_path, int *perr)
2325 {
2326 	struct ps_prochandle *P;
2327 	core_info_t *core_info;
2328 	map_info_t *stk_mp, *brk_mp;
2329 	const char *execname;
2330 	char *interp;
2331 	int i, notes, pagesize;
2332 	uintptr_t addr, base_addr;
2333 	struct stat64 stbuf;
2334 	void *phbuf, *php;
2335 	size_t nbytes;
2336 #ifdef __x86
2337 	boolean_t from_linux = B_FALSE;
2338 #endif
2339 
2340 	elf_file_t aout;
2341 	elf_file_t core;
2342 
2343 	Elf_Scn *scn, *intp_scn = NULL;
2344 	Elf_Data *dp;
2345 
2346 	GElf_Phdr phdr, note_phdr;
2347 	GElf_Shdr shdr;
2348 	GElf_Xword nleft;
2349 
2350 	if (elf_version(EV_CURRENT) == EV_NONE) {
2351 		dprintf("libproc ELF version is more recent than libelf\n");
2352 		*perr = G_ELF;
2353 		return (NULL);
2354 	}
2355 
2356 	aout.e_elf = NULL;
2357 	aout.e_fd = -1;
2358 
2359 	core.e_elf = NULL;
2360 	core.e_fd = core_fd;
2361 
2362 	/*
2363 	 * Allocate and initialize a ps_prochandle structure for the core.
2364 	 * There are several key pieces of initialization here:
2365 	 *
2366 	 * 1. The PS_DEAD state flag marks this prochandle as a core file.
2367 	 *    PS_DEAD also thus prevents all operations which require state
2368 	 *    to be PS_STOP from operating on this handle.
2369 	 *
2370 	 * 2. We keep the core file fd in P->asfd since the core file contains
2371 	 *    the remnants of the process address space.
2372 	 *
2373 	 * 3. We set the P->info_valid bit because all information about the
2374 	 *    core is determined by the end of this function; there is no need
2375 	 *    for proc_update_maps() to reload mappings at any later point.
2376 	 *
2377 	 * 4. The read/write ops vector uses our core_rw() function defined
2378 	 *    above to handle i/o requests.
2379 	 */
2380 	if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
2381 		*perr = G_STRANGE;
2382 		return (NULL);
2383 	}
2384 
2385 	(void) memset(P, 0, sizeof (struct ps_prochandle));
2386 	(void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
2387 	P->state = PS_DEAD;
2388 	P->pid = (pid_t)-1;
2389 	P->asfd = core.e_fd;
2390 	P->ctlfd = -1;
2391 	P->statfd = -1;
2392 	P->agentctlfd = -1;
2393 	P->agentstatfd = -1;
2394 	P->zoneroot = NULL;
2395 	P->info_valid = 1;
2396 	Pinit_ops(&P->ops, &P_core_ops);
2397 
2398 	Pinitsym(P);
2399 
2400 	/*
2401 	 * Fstat and open the core file and make sure it is a valid ELF core.
2402 	 */
2403 	if (fstat64(P->asfd, &stbuf) == -1) {
2404 		*perr = G_STRANGE;
2405 		goto err;
2406 	}
2407 
2408 	if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
2409 		goto err;
2410 
2411 	/*
2412 	 * Allocate and initialize a core_info_t to hang off the ps_prochandle
2413 	 * structure.  We keep all core-specific information in this structure.
2414 	 */
2415 	if ((core_info = calloc(1, sizeof (core_info_t))) == NULL) {
2416 		*perr = G_STRANGE;
2417 		goto err;
2418 	}
2419 
2420 	P->data = core_info;
2421 	list_link(&core_info->core_lwp_head, NULL);
2422 	core_info->core_size = stbuf.st_size;
2423 	/*
2424 	 * In the days before adjustable core file content, this was the
2425 	 * default core file content. For new core files, this value will
2426 	 * be overwritten by the NT_CONTENT note section.
2427 	 */
2428 	core_info->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
2429 	    CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
2430 	    CC_CONTENT_SHANON;
2431 
2432 	switch (core.e_hdr.e_ident[EI_CLASS]) {
2433 	case ELFCLASS32:
2434 		core_info->core_dmodel = PR_MODEL_ILP32;
2435 		break;
2436 	case ELFCLASS64:
2437 		core_info->core_dmodel = PR_MODEL_LP64;
2438 		break;
2439 	default:
2440 		*perr = G_FORMAT;
2441 		goto err;
2442 	}
2443 	core_info->core_osabi = core.e_hdr.e_ident[EI_OSABI];
2444 
2445 	/*
2446 	 * Because the core file may be a large file, we can't use libelf to
2447 	 * read the Phdrs.  We use e_phnum and e_phentsize to simplify things.
2448 	 */
2449 	nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;
2450 
2451 	if ((phbuf = malloc(nbytes)) == NULL) {
2452 		*perr = G_STRANGE;
2453 		goto err;
2454 	}
2455 
2456 	if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
2457 		*perr = G_STRANGE;
2458 		free(phbuf);
2459 		goto err;
2460 	}
2461 
2462 	/*
2463 	 * Iterate through the program headers in the core file.
2464 	 * We're interested in two types of Phdrs: PT_NOTE (which
2465 	 * contains a set of saved /proc structures), and PT_LOAD (which
2466 	 * represents a memory mapping from the process's address space).
2467 	 * In the case of PT_NOTE, we're interested in the last PT_NOTE
2468 	 * in the core file; currently the first PT_NOTE (if present)
2469 	 * contains /proc structs in the pre-2.6 unstructured /proc format.
2470 	 */
2471 	for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
2472 		if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
2473 			(void) memcpy(&phdr, php, sizeof (GElf_Phdr));
2474 		else
2475 			core_phdr_to_gelf(php, &phdr);
2476 
2477 		switch (phdr.p_type) {
2478 		case PT_NOTE:
2479 			note_phdr = phdr;
2480 			notes++;
2481 			break;
2482 
2483 		case PT_LOAD:
2484 			if (core_add_mapping(P, &phdr) == -1) {
2485 				*perr = G_STRANGE;
2486 				free(phbuf);
2487 				goto err;
2488 			}
2489 			break;
2490 		default:
2491 			dprintf("Pgrab_core: unknown phdr %d\n", phdr.p_type);
2492 			break;
2493 		}
2494 
2495 		php = (char *)php + core.e_hdr.e_phentsize;
2496 	}
2497 
2498 	free(phbuf);
2499 
2500 	Psort_mappings(P);
2501 
2502 	/*
2503 	 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE
2504 	 * was present, abort.  The core file is either corrupt or too old.
2505 	 */
2506 	if (notes == 0 || (notes == 1 && core_info->core_osabi ==
2507 	    ELFOSABI_SOLARIS)) {
2508 		*perr = G_NOTE;
2509 		goto err;
2510 	}
2511 
2512 	/*
2513 	 * Advance the seek pointer to the start of the PT_NOTE data
2514 	 */
2515 	if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
2516 		dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
2517 		*perr = G_STRANGE;
2518 		goto err;
2519 	}
2520 
2521 	/*
2522 	 * Now process the PT_NOTE structures.  Each one is preceded by
2523 	 * an Elf{32/64}_Nhdr structure describing its type and size.
2524 	 *
2525 	 *  +--------+
2526 	 *  | header |
2527 	 *  +--------+
2528 	 *  | name   |
2529 	 *  | ...    |
2530 	 *  +--------+
2531 	 *  | desc   |
2532 	 *  | ...    |
2533 	 *  +--------+
2534 	 */
2535 	for (nleft = note_phdr.p_filesz; nleft > 0; ) {
2536 		Elf64_Nhdr nhdr;
2537 		off64_t off, namesz, descsz;
2538 
2539 		/*
2540 		 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
2541 		 * as different types, they are both of the same content and
2542 		 * size, so we don't need to worry about 32/64 conversion here.
2543 		 */
2544 		if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
2545 			dprintf("Pgrab_core: failed to read ELF note header\n");
2546 			*perr = G_NOTE;
2547 			goto err;
2548 		}
2549 
2550 		/*
2551 		 * According to the System V ABI, the amount of padding
2552 		 * following the name field should align the description
2553 		 * field on a 4 byte boundary for 32-bit binaries or on an 8
2554 		 * byte boundary for 64-bit binaries. However, this change
2555 		 * was not made correctly during the 64-bit port so all
2556 		 * descriptions can assume only 4-byte alignment. We ignore
2557 		 * the name field and the padding to 4-byte alignment.
2558 		 */
2559 		namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);
2560 
2561 		if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
2562 			dprintf("failed to seek past name and padding\n");
2563 			*perr = G_STRANGE;
2564 			goto err;
2565 		}
2566 
2567 		dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
2568 		    nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);
2569 
2570 		off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);
2571 
2572 		/*
2573 		 * Invoke the note handler function from our table
2574 		 */
2575 		if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) {
2576 			if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
2577 				dprintf("handler for type %d returned < 0",
2578 				    nhdr.n_type);
2579 				*perr = G_NOTE;
2580 				goto err;
2581 			}
2582 			/*
2583 			 * The presence of either of these notes indicates that
2584 			 * the dump was generated on Linux.
2585 			 */
2586 #ifdef __x86
2587 			if (nhdr.n_type == NT_PRSTATUS ||
2588 			    nhdr.n_type == NT_PRPSINFO)
2589 				from_linux = B_TRUE;
2590 #endif
2591 		} else {
2592 			(void) note_notsup(P, nhdr.n_descsz);
2593 		}
2594 
2595 		/*
2596 		 * Seek past the current note data to the next Elf_Nhdr
2597 		 */
2598 		descsz = P2ROUNDUP((off64_t)nhdr.n_descsz, (off64_t)4);
2599 		if (lseek64(P->asfd, off + descsz, SEEK_SET) == (off64_t)-1) {
2600 			dprintf("Pgrab_core: failed to seek to next nhdr\n");
2601 			*perr = G_STRANGE;
2602 			goto err;
2603 		}
2604 
2605 		/*
2606 		 * Subtract the size of the header and its data from what
2607 		 * we have left to process.
2608 		 */
2609 		nleft -= sizeof (nhdr) + namesz + descsz;
2610 	}
2611 
2612 #ifdef __x86
2613 	if (from_linux) {
2614 		size_t tcount, pid;
2615 		lwp_info_t *lwp;
2616 
2617 		P->status.pr_dmodel = core_info->core_dmodel;
2618 
2619 		lwp = list_next(&core_info->core_lwp_head);
2620 
2621 		pid = P->status.pr_pid;
2622 
2623 		for (tcount = 0; tcount < core_info->core_nlwp;
2624 		    tcount++, lwp = list_next(lwp)) {
2625 			dprintf("Linux thread with id %d\n", lwp->lwp_id);
2626 
2627 			/*
2628 			 * In the case we don't have a valid psinfo (i.e. pid is
2629 			 * 0, probably because of gdb creating the core) assume
2630 			 * lowest pid count is the first thread (what if the
2631 			 * next thread wraps the pid around?)
2632 			 */
2633 			if (P->status.pr_pid == 0 &&
2634 			    ((pid == 0 && lwp->lwp_id > 0) ||
2635 			    (lwp->lwp_id < pid))) {
2636 				pid = lwp->lwp_id;
2637 			}
2638 		}
2639 
2640 		if (P->status.pr_pid != pid) {
2641 			dprintf("No valid pid, setting to %ld\n", (ulong_t)pid);
2642 			P->status.pr_pid = pid;
2643 			P->psinfo.pr_pid = pid;
2644 		}
2645 
2646 		/*
2647 		 * Consumers like mdb expect the first thread to actually have
2648 		 * an id of 1, on linux that is actually the pid. Find the the
2649 		 * thread with our process id, and set the id to 1
2650 		 */
2651 		if ((lwp = lwpid2info(P, pid)) == NULL) {
2652 			dprintf("Couldn't find first thread\n");
2653 			*perr = G_STRANGE;
2654 			goto err;
2655 		}
2656 
2657 		dprintf("setting representative thread: %d\n", lwp->lwp_id);
2658 
2659 		lwp->lwp_id = 1;
2660 		lwp->lwp_status.pr_lwpid = 1;
2661 
2662 		/* set representative thread */
2663 		(void) memcpy(&P->status.pr_lwp, &lwp->lwp_status,
2664 		    sizeof (P->status.pr_lwp));
2665 	}
2666 #endif /* __x86 */
2667 
2668 	if (nleft != 0) {
2669 		dprintf("Pgrab_core: note section malformed\n");
2670 		*perr = G_STRANGE;
2671 		goto err;
2672 	}
2673 
2674 	if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
2675 		pagesize = getpagesize();
2676 		dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
2677 	}
2678 
2679 	/*
2680 	 * Locate and label the mappings corresponding to the end of the
2681 	 * heap (MA_BREAK) and the base of the stack (MA_STACK).
2682 	 */
2683 	if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
2684 	    (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
2685 	    P->status.pr_brksize - 1)) != NULL)
2686 		brk_mp->map_pmap.pr_mflags |= MA_BREAK;
2687 	else
2688 		brk_mp = NULL;
2689 
2690 	if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
2691 		stk_mp->map_pmap.pr_mflags |= MA_STACK;
2692 
2693 	/*
2694 	 * At this point, we have enough information to look for the
2695 	 * executable and open it: we have access to the auxv, a psinfo_t,
2696 	 * and the ability to read from mappings provided by the core file.
2697 	 */
2698 	(void) Pfindexec(P, aout_path, core_exec_open, &aout);
2699 	dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
2700 	execname = P->execname ? P->execname : "a.out";
2701 
2702 	/*
2703 	 * Iterate through the sections, looking for the .dynamic and .interp
2704 	 * sections.  If we encounter them, remember their section pointers.
2705 	 */
2706 	for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) {
2707 		char *sname;
2708 
2709 		if ((gelf_getshdr(scn, &shdr) == NULL) ||
2710 		    (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
2711 		    (size_t)shdr.sh_name)) == NULL)
2712 			continue;
2713 
2714 		if (strcmp(sname, ".interp") == 0)
2715 			intp_scn = scn;
2716 	}
2717 
2718 	/*
2719 	 * Get the AT_BASE auxv element.  If this is missing (-1), then
2720 	 * we assume this is a statically-linked executable.
2721 	 */
2722 	base_addr = Pgetauxval(P, AT_BASE);
2723 
2724 	/*
2725 	 * In order to get librtld_db initialized, we'll need to identify
2726 	 * and name the mapping corresponding to the run-time linker.  The
2727 	 * AT_BASE auxv element tells us the address where it was mapped,
2728 	 * and the .interp section of the executable tells us its path.
2729 	 * If for some reason that doesn't pan out, just use ld.so.1.
2730 	 */
2731 	if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2732 	    dp->d_size != 0) {
2733 		dprintf(".interp = <%s>\n", (char *)dp->d_buf);
2734 		interp = dp->d_buf;
2735 
2736 	} else if (base_addr != (uintptr_t)-1L) {
2737 		if (core_info->core_dmodel == PR_MODEL_LP64)
2738 			interp = "/usr/lib/64/ld.so.1";
2739 		else
2740 			interp = "/usr/lib/ld.so.1";
2741 
2742 		dprintf(".interp section is missing or could not be read; "
2743 		    "defaulting to %s\n", interp);
2744 	} else
2745 		dprintf("detected statically linked executable\n");
2746 
2747 	/*
2748 	 * If we have an AT_BASE element, name the mapping at that address
2749 	 * using the interpreter pathname.  Name the corresponding data
2750 	 * mapping after the interpreter as well.
2751 	 */
2752 	if (base_addr != (uintptr_t)-1L) {
2753 		elf_file_t intf;
2754 
2755 		P->map_ldso = core_name_mapping(P, base_addr, interp);
2756 
2757 		if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2758 			rd_loadobj_t rl;
2759 			map_info_t *dmp;
2760 
2761 			rl.rl_base = base_addr;
2762 			dmp = core_find_data(P, intf.e_elf, &rl);
2763 
2764 			if (dmp != NULL) {
2765 				dprintf("renamed data at %p to %s\n",
2766 				    (void *)rl.rl_data_base, interp);
2767 				(void) strncpy(dmp->map_pmap.pr_mapname,
2768 				    interp, PRMAPSZ);
2769 				dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2770 			}
2771 		}
2772 
2773 		core_elf_close(&intf);
2774 	}
2775 
2776 	/*
2777 	 * If we have an AT_ENTRY element, name the mapping at that address
2778 	 * using the special name "a.out" just like /proc does.
2779 	 */
2780 	if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2781 		P->map_exec = core_name_mapping(P, addr, "a.out");
2782 
2783 	/*
2784 	 * If we're a statically linked executable (or we're on x86 and looking
2785 	 * at a Linux core dump), then just locate the executable's text and
2786 	 * data and name them after the executable.
2787 	 */
2788 #ifndef __x86
2789 	if (base_addr == (uintptr_t)-1L) {
2790 #else
2791 	if (base_addr == (uintptr_t)-1L || from_linux) {
2792 #endif
2793 		dprintf("looking for text and data: %s\n", execname);
2794 		map_info_t *tmp, *dmp;
2795 		file_info_t *fp;
2796 		rd_loadobj_t rl;
2797 
2798 		if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2799 		    (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2800 			(void) strncpy(tmp->map_pmap.pr_mapname,
2801 			    execname, PRMAPSZ);
2802 			tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2803 			(void) strncpy(dmp->map_pmap.pr_mapname,
2804 			    execname, PRMAPSZ);
2805 			dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2806 		}
2807 
2808 		if ((P->map_exec = tmp) != NULL &&
2809 		    (fp = malloc(sizeof (file_info_t))) != NULL) {
2810 
2811 			(void) memset(fp, 0, sizeof (file_info_t));
2812 
2813 			list_link(fp, &P->file_head);
2814 			tmp->map_file = fp;
2815 			P->num_files++;
2816 
2817 			fp->file_ref = 1;
2818 			fp->file_fd = -1;
2819 			fp->file_dbgfile = -1;
2820 
2821 			fp->file_lo = malloc(sizeof (rd_loadobj_t));
2822 			fp->file_lname = strdup(execname);
2823 
2824 			if (fp->file_lo)
2825 				*fp->file_lo = rl;
2826 			if (fp->file_lname)
2827 				fp->file_lbase = basename(fp->file_lname);
2828 			if (fp->file_rname)
2829 				fp->file_rbase = basename(fp->file_rname);
2830 
2831 			(void) strcpy(fp->file_pname,
2832 			    P->mappings[0].map_pmap.pr_mapname);
2833 			fp->file_map = tmp;
2834 
2835 			Pbuild_file_symtab(P, fp);
2836 
2837 			if (dmp != NULL) {
2838 				dmp->map_file = fp;
2839 				fp->file_ref++;
2840 			}
2841 		}
2842 	}
2843 
2844 	core_elf_close(&aout);
2845 
2846 	/*
2847 	 * We now have enough information to initialize librtld_db.
2848 	 * After it warms up, we can iterate through the load object chain
2849 	 * in the core, which will allow us to construct the file info
2850 	 * we need to provide symbol information for the other shared
2851 	 * libraries, and also to fill in the missing mapping names.
2852 	 */
2853 	rd_log(_libproc_debug);
2854 
2855 	if ((P->rap = rd_new(P)) != NULL) {
2856 		(void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2857 		    core_iter_mapping, P);
2858 
2859 		if (core_info->core_errno != 0) {
2860 			errno = core_info->core_errno;
2861 			*perr = G_STRANGE;
2862 			goto err;
2863 		}
2864 	} else
2865 		dprintf("failed to initialize rtld_db agent\n");
2866 
2867 	/*
2868 	 * If there are sections, load them and process the data from any
2869 	 * sections that we can use to annotate the file_info_t's.
2870 	 */
2871 	core_load_shdrs(P, &core);
2872 
2873 	/*
2874 	 * If we previously located a stack or break mapping, and they are
2875 	 * still anonymous, we now assume that they were MAP_ANON mappings.
2876 	 * If brk_mp turns out to now have a name, then the heap is still
2877 	 * sitting at the end of the executable's data+bss mapping: remove
2878 	 * the previous MA_BREAK setting to be consistent with /proc.
2879 	 */
2880 	if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0')
2881 		stk_mp->map_pmap.pr_mflags |= MA_ANON;
2882 	if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0')
2883 		brk_mp->map_pmap.pr_mflags |= MA_ANON;
2884 	else if (brk_mp != NULL)
2885 		brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;
2886 
2887 	*perr = 0;
2888 	return (P);
2889 
2890 err:
2891 	Pfree(P);
2892 	core_elf_close(&aout);
2893 	return (NULL);
2894 }
2895 
2896 /*
2897  * Grab a core file using a pathname.  We just open it and call Pfgrab_core().
2898  */
2899 struct ps_prochandle *
2900 Pgrab_core(const char *core, const char *aout, int gflag, int *perr)
2901 {
2902 	int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
2903 
2904 	if ((fd = open64(core, oflag)) >= 0)
2905 		return (Pfgrab_core(fd, aout, perr));
2906 
2907 	if (errno != ENOENT)
2908 		*perr = G_STRANGE;
2909 	else
2910 		*perr = G_NOCORE;
2911 
2912 	return (NULL);
2913 }
2914 
2915 int
2916 Pupanic(struct ps_prochandle *P, prupanic_t **pru)
2917 {
2918 	core_info_t *core;
2919 
2920 	if (P->state != PS_DEAD) {
2921 		errno = ENODATA;
2922 		return (-1);
2923 	}
2924 
2925 	core = P->data;
2926 	if (core->core_upanic == NULL) {
2927 		errno = ENOENT;
2928 		return (-1);
2929 	}
2930 
2931 	if (core->core_upanic->pru_version != PRUPANIC_VERSION_1) {
2932 		errno = EINVAL;
2933 		return (-1);
2934 	}
2935 
2936 	if ((*pru = calloc(1, sizeof (prupanic_t))) == NULL)
2937 		return (-1);
2938 	(void) memcpy(*pru, core->core_upanic, sizeof (prupanic_t));
2939 
2940 	return (0);
2941 }
2942 
2943 void
2944 Pupanic_free(prupanic_t *pru)
2945 {
2946 	free(pru);
2947 }
2948