xref: /illumos-gate/usr/src/lib/libproc/common/Pcore.c (revision 7ab4e62e3b5c454f248a38bec0d489e8f5543324)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
27  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
28  * Copyright (c) 2013 by Delphix. All rights reserved.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/utsname.h>
33 #include <sys/sysmacros.h>
34 #include <sys/proc.h>
35 
36 #include <alloca.h>
37 #include <rtld_db.h>
38 #include <libgen.h>
39 #include <limits.h>
40 #include <string.h>
41 #include <stdlib.h>
42 #include <unistd.h>
43 #include <errno.h>
44 #include <gelf.h>
45 #include <stddef.h>
46 #include <signal.h>
47 
48 #include "libproc.h"
49 #include "Pcontrol.h"
50 #include "P32ton.h"
51 #include "Putil.h"
52 
53 /*
54  * Pcore.c - Code to initialize a ps_prochandle from a core dump.  We
55  * allocate an additional structure to hold information from the core
56  * file, and attach this to the standard ps_prochandle in place of the
57  * ability to examine /proc/<pid>/ files.
58  */
59 
60 /*
61  * Basic i/o function for reading and writing from the process address space
62  * stored in the core file and associated shared libraries.  We compute the
63  * appropriate fd and offsets, and let the provided prw function do the rest.
64  */
65 static ssize_t
66 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
67     ssize_t (*prw)(int, void *, size_t, off64_t))
68 {
69 	ssize_t resid = n;
70 
71 	while (resid != 0) {
72 		map_info_t *mp = Paddr2mptr(P, addr);
73 
74 		uintptr_t mapoff;
75 		ssize_t len;
76 		off64_t off;
77 		int fd;
78 
79 		if (mp == NULL)
80 			break;	/* No mapping for this address */
81 
82 		if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
83 			if (mp->map_file == NULL || mp->map_file->file_fd < 0)
84 				break;	/* No file or file not open */
85 
86 			fd = mp->map_file->file_fd;
87 		} else
88 			fd = P->asfd;
89 
90 		mapoff = addr - mp->map_pmap.pr_vaddr;
91 		len = MIN(resid, mp->map_pmap.pr_size - mapoff);
92 		off = mp->map_offset + mapoff;
93 
94 		if ((len = prw(fd, buf, len, off)) <= 0)
95 			break;
96 
97 		resid -= len;
98 		addr += len;
99 		buf = (char *)buf + len;
100 	}
101 
102 	/*
103 	 * Important: Be consistent with the behavior of i/o on the as file:
104 	 * writing to an invalid address yields EIO; reading from an invalid
105 	 * address falls through to returning success and zero bytes.
106 	 */
107 	if (resid == n && n != 0 && prw != pread64) {
108 		errno = EIO;
109 		return (-1);
110 	}
111 
112 	return (n - resid);
113 }
114 
115 /*ARGSUSED*/
116 static ssize_t
117 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
118     void *data)
119 {
120 	return (core_rw(P, buf, n, addr, pread64));
121 }
122 
123 /*ARGSUSED*/
124 static ssize_t
125 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr,
126     void *data)
127 {
128 	return (core_rw(P, (void *)buf, n, addr,
129 	    (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64));
130 }
131 
132 /*ARGSUSED*/
133 static int
134 Pcred_core(struct ps_prochandle *P, prcred_t *pcrp, int ngroups, void *data)
135 {
136 	core_info_t *core = data;
137 
138 	if (core->core_cred != NULL) {
139 		/*
140 		 * Avoid returning more supplementary group data than the
141 		 * caller has allocated in their buffer.  We expect them to
142 		 * check pr_ngroups afterward and potentially call us again.
143 		 */
144 		ngroups = MIN(ngroups, core->core_cred->pr_ngroups);
145 
146 		(void) memcpy(pcrp, core->core_cred,
147 		    sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t));
148 
149 		return (0);
150 	}
151 
152 	errno = ENODATA;
153 	return (-1);
154 }
155 
156 /*ARGSUSED*/
157 static int
158 Ppriv_core(struct ps_prochandle *P, prpriv_t **pprv, void *data)
159 {
160 	core_info_t *core = data;
161 
162 	if (core->core_priv == NULL) {
163 		errno = ENODATA;
164 		return (-1);
165 	}
166 
167 	*pprv = malloc(core->core_priv_size);
168 	if (*pprv == NULL) {
169 		return (-1);
170 	}
171 
172 	(void) memcpy(*pprv, core->core_priv, core->core_priv_size);
173 	return (0);
174 }
175 
176 /*ARGSUSED*/
177 static const psinfo_t *
178 Ppsinfo_core(struct ps_prochandle *P, psinfo_t *psinfo, void *data)
179 {
180 	return (&P->psinfo);
181 }
182 
183 /*ARGSUSED*/
184 static void
185 Pfini_core(struct ps_prochandle *P, void *data)
186 {
187 	core_info_t *core = data;
188 
189 	if (core != NULL) {
190 		extern void __priv_free_info(void *);
191 		lwp_info_t *nlwp, *lwp = list_next(&core->core_lwp_head);
192 		int i;
193 
194 		for (i = 0; i < core->core_nlwp; i++, lwp = nlwp) {
195 			nlwp = list_next(lwp);
196 #ifdef __sparc
197 			if (lwp->lwp_gwins != NULL)
198 				free(lwp->lwp_gwins);
199 			if (lwp->lwp_xregs != NULL)
200 				free(lwp->lwp_xregs);
201 			if (lwp->lwp_asrs != NULL)
202 				free(lwp->lwp_asrs);
203 #endif
204 			free(lwp);
205 		}
206 
207 		if (core->core_platform != NULL)
208 			free(core->core_platform);
209 		if (core->core_uts != NULL)
210 			free(core->core_uts);
211 		if (core->core_cred != NULL)
212 			free(core->core_cred);
213 		if (core->core_priv != NULL)
214 			free(core->core_priv);
215 		if (core->core_privinfo != NULL)
216 			__priv_free_info(core->core_privinfo);
217 		if (core->core_ppii != NULL)
218 			free(core->core_ppii);
219 		if (core->core_zonename != NULL)
220 			free(core->core_zonename);
221 #if defined(__i386) || defined(__amd64)
222 		if (core->core_ldt != NULL)
223 			free(core->core_ldt);
224 #endif
225 
226 		free(core);
227 	}
228 }
229 
230 /*ARGSUSED*/
231 static char *
232 Pplatform_core(struct ps_prochandle *P, char *s, size_t n, void *data)
233 {
234 	core_info_t *core = data;
235 
236 	if (core->core_platform == NULL) {
237 		errno = ENODATA;
238 		return (NULL);
239 	}
240 	(void) strncpy(s, core->core_platform, n - 1);
241 	s[n - 1] = '\0';
242 	return (s);
243 }
244 
245 /*ARGSUSED*/
246 static int
247 Puname_core(struct ps_prochandle *P, struct utsname *u, void *data)
248 {
249 	core_info_t *core = data;
250 
251 	if (core->core_uts == NULL) {
252 		errno = ENODATA;
253 		return (-1);
254 	}
255 	(void) memcpy(u, core->core_uts, sizeof (struct utsname));
256 	return (0);
257 }
258 
259 /*ARGSUSED*/
260 static char *
261 Pzonename_core(struct ps_prochandle *P, char *s, size_t n, void *data)
262 {
263 	core_info_t *core = data;
264 
265 	if (core->core_zonename == NULL) {
266 		errno = ENODATA;
267 		return (NULL);
268 	}
269 	(void) strlcpy(s, core->core_zonename, n);
270 	return (s);
271 }
272 
273 #if defined(__i386) || defined(__amd64)
274 /*ARGSUSED*/
275 static int
276 Pldt_core(struct ps_prochandle *P, struct ssd *pldt, int nldt, void *data)
277 {
278 	core_info_t *core = data;
279 
280 	if (pldt == NULL || nldt == 0)
281 		return (core->core_nldt);
282 
283 	if (core->core_ldt != NULL) {
284 		nldt = MIN(nldt, core->core_nldt);
285 
286 		(void) memcpy(pldt, core->core_ldt,
287 		    nldt * sizeof (struct ssd));
288 
289 		return (nldt);
290 	}
291 
292 	errno = ENODATA;
293 	return (-1);
294 }
295 #endif
296 
297 static const ps_ops_t P_core_ops = {
298 	.pop_pread	= Pread_core,
299 	.pop_pwrite	= Pwrite_core,
300 	.pop_cred	= Pcred_core,
301 	.pop_priv	= Ppriv_core,
302 	.pop_psinfo	= Ppsinfo_core,
303 	.pop_fini	= Pfini_core,
304 	.pop_platform	= Pplatform_core,
305 	.pop_uname	= Puname_core,
306 	.pop_zonename	= Pzonename_core,
307 #if defined(__i386) || defined(__amd64)
308 	.pop_ldt	= Pldt_core
309 #endif
310 };
311 
312 /*
313  * Return the lwp_info_t for the given lwpid.  If no such lwpid has been
314  * encountered yet, allocate a new structure and return a pointer to it.
315  * Create a list of lwp_info_t structures sorted in decreasing lwp_id order.
316  */
317 static lwp_info_t *
318 lwpid2info(struct ps_prochandle *P, lwpid_t id)
319 {
320 	core_info_t *core = P->data;
321 	lwp_info_t *lwp = list_next(&core->core_lwp_head);
322 	lwp_info_t *next;
323 	uint_t i;
324 
325 	for (i = 0; i < core->core_nlwp; i++, lwp = list_next(lwp)) {
326 		if (lwp->lwp_id == id) {
327 			core->core_lwp = lwp;
328 			return (lwp);
329 		}
330 		if (lwp->lwp_id < id) {
331 			break;
332 		}
333 	}
334 
335 	next = lwp;
336 	if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL)
337 		return (NULL);
338 
339 	list_link(lwp, next);
340 	lwp->lwp_id = id;
341 
342 	core->core_lwp = lwp;
343 	core->core_nlwp++;
344 
345 	return (lwp);
346 }
347 
348 /*
349  * The core file itself contains a series of NOTE segments containing saved
350  * structures from /proc at the time the process died.  For each note we
351  * comprehend, we define a function to read it in from the core file,
352  * convert it to our native data model if necessary, and store it inside
353  * the ps_prochandle.  Each function is invoked by Pfgrab_core() with the
354  * seek pointer on P->asfd positioned appropriately.  We populate a table
355  * of pointers to these note functions below.
356  */
357 
358 static int
359 note_pstatus(struct ps_prochandle *P, size_t nbytes)
360 {
361 #ifdef _LP64
362 	core_info_t *core = P->data;
363 
364 	if (core->core_dmodel == PR_MODEL_ILP32) {
365 		pstatus32_t ps32;
366 
367 		if (nbytes < sizeof (pstatus32_t) ||
368 		    read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
369 			goto err;
370 
371 		pstatus_32_to_n(&ps32, &P->status);
372 
373 	} else
374 #endif
375 	if (nbytes < sizeof (pstatus_t) ||
376 	    read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t))
377 		goto err;
378 
379 	P->orig_status = P->status;
380 	P->pid = P->status.pr_pid;
381 
382 	return (0);
383 
384 err:
385 	dprintf("Pgrab_core: failed to read NT_PSTATUS\n");
386 	return (-1);
387 }
388 
389 static int
390 note_lwpstatus(struct ps_prochandle *P, size_t nbytes)
391 {
392 	lwp_info_t *lwp;
393 	lwpstatus_t lps;
394 
395 #ifdef _LP64
396 	core_info_t *core = P->data;
397 
398 	if (core->core_dmodel == PR_MODEL_ILP32) {
399 		lwpstatus32_t l32;
400 
401 		if (nbytes < sizeof (lwpstatus32_t) ||
402 		    read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
403 			goto err;
404 
405 		lwpstatus_32_to_n(&l32, &lps);
406 	} else
407 #endif
408 	if (nbytes < sizeof (lwpstatus_t) ||
409 	    read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
410 		goto err;
411 
412 	if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
413 		dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n");
414 		return (-1);
415 	}
416 
417 	/*
418 	 * Erase a useless and confusing artifact of the kernel implementation:
419 	 * the lwps which did *not* create the core will show SIGKILL.  We can
420 	 * be assured this is bogus because SIGKILL can't produce core files.
421 	 */
422 	if (lps.pr_cursig == SIGKILL)
423 		lps.pr_cursig = 0;
424 
425 	(void) memcpy(&lwp->lwp_status, &lps, sizeof (lps));
426 	return (0);
427 
428 err:
429 	dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n");
430 	return (-1);
431 }
432 
433 static int
434 note_psinfo(struct ps_prochandle *P, size_t nbytes)
435 {
436 #ifdef _LP64
437 	core_info_t *core = P->data;
438 
439 	if (core->core_dmodel == PR_MODEL_ILP32) {
440 		psinfo32_t ps32;
441 
442 		if (nbytes < sizeof (psinfo32_t) ||
443 		    read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
444 			goto err;
445 
446 		psinfo_32_to_n(&ps32, &P->psinfo);
447 	} else
448 #endif
449 	if (nbytes < sizeof (psinfo_t) ||
450 	    read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
451 		goto err;
452 
453 	dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
454 	dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
455 	dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
456 
457 	return (0);
458 
459 err:
460 	dprintf("Pgrab_core: failed to read NT_PSINFO\n");
461 	return (-1);
462 }
463 
464 static int
465 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes)
466 {
467 	lwp_info_t *lwp;
468 	lwpsinfo_t lps;
469 
470 #ifdef _LP64
471 	core_info_t *core = P->data;
472 
473 	if (core->core_dmodel == PR_MODEL_ILP32) {
474 		lwpsinfo32_t l32;
475 
476 		if (nbytes < sizeof (lwpsinfo32_t) ||
477 		    read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
478 			goto err;
479 
480 		lwpsinfo_32_to_n(&l32, &lps);
481 	} else
482 #endif
483 	if (nbytes < sizeof (lwpsinfo_t) ||
484 	    read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
485 		goto err;
486 
487 	if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
488 		dprintf("Pgrab_core: failed to add NT_LWPSINFO\n");
489 		return (-1);
490 	}
491 
492 	(void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps));
493 	return (0);
494 
495 err:
496 	dprintf("Pgrab_core: failed to read NT_LWPSINFO\n");
497 	return (-1);
498 }
499 
500 static int
501 note_fdinfo(struct ps_prochandle *P, size_t nbytes)
502 {
503 	prfdinfo_t prfd;
504 	fd_info_t *fip;
505 
506 	if ((nbytes < sizeof (prfd)) ||
507 	    (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) {
508 		dprintf("Pgrab_core: failed to read NT_FDINFO\n");
509 		return (-1);
510 	}
511 
512 	if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) {
513 		dprintf("Pgrab_core: failed to add NT_FDINFO\n");
514 		return (-1);
515 	}
516 	(void) memcpy(&fip->fd_info, &prfd, sizeof (prfd));
517 	return (0);
518 }
519 
520 static int
521 note_platform(struct ps_prochandle *P, size_t nbytes)
522 {
523 	core_info_t *core = P->data;
524 	char *plat;
525 
526 	if (core->core_platform != NULL)
527 		return (0);	/* Already seen */
528 
529 	if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) {
530 		if (read(P->asfd, plat, nbytes) != nbytes) {
531 			dprintf("Pgrab_core: failed to read NT_PLATFORM\n");
532 			free(plat);
533 			return (-1);
534 		}
535 		plat[nbytes - 1] = '\0';
536 		core->core_platform = plat;
537 	}
538 
539 	return (0);
540 }
541 
542 static int
543 note_utsname(struct ps_prochandle *P, size_t nbytes)
544 {
545 	core_info_t *core = P->data;
546 	size_t ubytes = sizeof (struct utsname);
547 	struct utsname *utsp;
548 
549 	if (core->core_uts != NULL || nbytes < ubytes)
550 		return (0);	/* Already seen or bad size */
551 
552 	if ((utsp = malloc(ubytes)) == NULL)
553 		return (-1);
554 
555 	if (read(P->asfd, utsp, ubytes) != ubytes) {
556 		dprintf("Pgrab_core: failed to read NT_UTSNAME\n");
557 		free(utsp);
558 		return (-1);
559 	}
560 
561 	if (_libproc_debug) {
562 		dprintf("uts.sysname = \"%s\"\n", utsp->sysname);
563 		dprintf("uts.nodename = \"%s\"\n", utsp->nodename);
564 		dprintf("uts.release = \"%s\"\n", utsp->release);
565 		dprintf("uts.version = \"%s\"\n", utsp->version);
566 		dprintf("uts.machine = \"%s\"\n", utsp->machine);
567 	}
568 
569 	core->core_uts = utsp;
570 	return (0);
571 }
572 
573 static int
574 note_content(struct ps_prochandle *P, size_t nbytes)
575 {
576 	core_info_t *core = P->data;
577 	core_content_t content;
578 
579 	if (sizeof (core->core_content) != nbytes)
580 		return (-1);
581 
582 	if (read(P->asfd, &content, sizeof (content)) != sizeof (content))
583 		return (-1);
584 
585 	core->core_content = content;
586 
587 	dprintf("core content = %llx\n", content);
588 
589 	return (0);
590 }
591 
592 static int
593 note_cred(struct ps_prochandle *P, size_t nbytes)
594 {
595 	core_info_t *core = P->data;
596 	prcred_t *pcrp;
597 	int ngroups;
598 	const size_t min_size = sizeof (prcred_t) - sizeof (gid_t);
599 
600 	/*
601 	 * We allow for prcred_t notes that are actually smaller than a
602 	 * prcred_t since the last member isn't essential if there are
603 	 * no group memberships. This allows for more flexibility when it
604 	 * comes to slightly malformed -- but still valid -- notes.
605 	 */
606 	if (core->core_cred != NULL || nbytes < min_size)
607 		return (0);	/* Already seen or bad size */
608 
609 	ngroups = (nbytes - min_size) / sizeof (gid_t);
610 	nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t);
611 
612 	if ((pcrp = malloc(nbytes)) == NULL)
613 		return (-1);
614 
615 	if (read(P->asfd, pcrp, nbytes) != nbytes) {
616 		dprintf("Pgrab_core: failed to read NT_PRCRED\n");
617 		free(pcrp);
618 		return (-1);
619 	}
620 
621 	if (pcrp->pr_ngroups > ngroups) {
622 		dprintf("pr_ngroups = %d; resetting to %d based on note size\n",
623 		    pcrp->pr_ngroups, ngroups);
624 		pcrp->pr_ngroups = ngroups;
625 	}
626 
627 	core->core_cred = pcrp;
628 	return (0);
629 }
630 
631 #if defined(__i386) || defined(__amd64)
632 static int
633 note_ldt(struct ps_prochandle *P, size_t nbytes)
634 {
635 	core_info_t *core = P->data;
636 	struct ssd *pldt;
637 	uint_t nldt;
638 
639 	if (core->core_ldt != NULL || nbytes < sizeof (struct ssd))
640 		return (0);	/* Already seen or bad size */
641 
642 	nldt = nbytes / sizeof (struct ssd);
643 	nbytes = nldt * sizeof (struct ssd);
644 
645 	if ((pldt = malloc(nbytes)) == NULL)
646 		return (-1);
647 
648 	if (read(P->asfd, pldt, nbytes) != nbytes) {
649 		dprintf("Pgrab_core: failed to read NT_LDT\n");
650 		free(pldt);
651 		return (-1);
652 	}
653 
654 	core->core_ldt = pldt;
655 	core->core_nldt = nldt;
656 	return (0);
657 }
658 #endif	/* __i386 */
659 
660 static int
661 note_priv(struct ps_prochandle *P, size_t nbytes)
662 {
663 	core_info_t *core = P->data;
664 	prpriv_t *pprvp;
665 
666 	if (core->core_priv != NULL || nbytes < sizeof (prpriv_t))
667 		return (0);	/* Already seen or bad size */
668 
669 	if ((pprvp = malloc(nbytes)) == NULL)
670 		return (-1);
671 
672 	if (read(P->asfd, pprvp, nbytes) != nbytes) {
673 		dprintf("Pgrab_core: failed to read NT_PRPRIV\n");
674 		free(pprvp);
675 		return (-1);
676 	}
677 
678 	core->core_priv = pprvp;
679 	core->core_priv_size = nbytes;
680 	return (0);
681 }
682 
683 static int
684 note_priv_info(struct ps_prochandle *P, size_t nbytes)
685 {
686 	core_info_t *core = P->data;
687 	extern void *__priv_parse_info();
688 	priv_impl_info_t *ppii;
689 
690 	if (core->core_privinfo != NULL ||
691 	    nbytes < sizeof (priv_impl_info_t))
692 		return (0);	/* Already seen or bad size */
693 
694 	if ((ppii = malloc(nbytes)) == NULL)
695 		return (-1);
696 
697 	if (read(P->asfd, ppii, nbytes) != nbytes ||
698 	    PRIV_IMPL_INFO_SIZE(ppii) != nbytes) {
699 		dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n");
700 		free(ppii);
701 		return (-1);
702 	}
703 
704 	core->core_privinfo = __priv_parse_info(ppii);
705 	core->core_ppii = ppii;
706 	return (0);
707 }
708 
709 static int
710 note_zonename(struct ps_prochandle *P, size_t nbytes)
711 {
712 	core_info_t *core = P->data;
713 	char *zonename;
714 
715 	if (core->core_zonename != NULL)
716 		return (0);	/* Already seen */
717 
718 	if (nbytes != 0) {
719 		if ((zonename = malloc(nbytes)) == NULL)
720 			return (-1);
721 		if (read(P->asfd, zonename, nbytes) != nbytes) {
722 			dprintf("Pgrab_core: failed to read NT_ZONENAME\n");
723 			free(zonename);
724 			return (-1);
725 		}
726 		zonename[nbytes - 1] = '\0';
727 		core->core_zonename = zonename;
728 	}
729 
730 	return (0);
731 }
732 
733 static int
734 note_auxv(struct ps_prochandle *P, size_t nbytes)
735 {
736 	size_t n, i;
737 
738 #ifdef _LP64
739 	core_info_t *core = P->data;
740 
741 	if (core->core_dmodel == PR_MODEL_ILP32) {
742 		auxv32_t *a32;
743 
744 		n = nbytes / sizeof (auxv32_t);
745 		nbytes = n * sizeof (auxv32_t);
746 		a32 = alloca(nbytes);
747 
748 		if (read(P->asfd, a32, nbytes) != nbytes) {
749 			dprintf("Pgrab_core: failed to read NT_AUXV\n");
750 			return (-1);
751 		}
752 
753 		if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL)
754 			return (-1);
755 
756 		for (i = 0; i < n; i++)
757 			auxv_32_to_n(&a32[i], &P->auxv[i]);
758 
759 	} else {
760 #endif
761 		n = nbytes / sizeof (auxv_t);
762 		nbytes = n * sizeof (auxv_t);
763 
764 		if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL)
765 			return (-1);
766 
767 		if (read(P->asfd, P->auxv, nbytes) != nbytes) {
768 			free(P->auxv);
769 			P->auxv = NULL;
770 			return (-1);
771 		}
772 #ifdef _LP64
773 	}
774 #endif
775 
776 	if (_libproc_debug) {
777 		for (i = 0; i < n; i++) {
778 			dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i,
779 			    P->auxv[i].a_type, P->auxv[i].a_un.a_val);
780 		}
781 	}
782 
783 	/*
784 	 * Defensive coding for loops which depend upon the auxv array being
785 	 * terminated by an AT_NULL element; in each case, we've allocated
786 	 * P->auxv to have an additional element which we force to be AT_NULL.
787 	 */
788 	P->auxv[n].a_type = AT_NULL;
789 	P->auxv[n].a_un.a_val = 0L;
790 	P->nauxv = (int)n;
791 
792 	return (0);
793 }
794 
795 #ifdef __sparc
796 static int
797 note_xreg(struct ps_prochandle *P, size_t nbytes)
798 {
799 	core_info_t *core = P->data;
800 	lwp_info_t *lwp = core->core_lwp;
801 	size_t xbytes = sizeof (prxregset_t);
802 	prxregset_t *xregs;
803 
804 	if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes)
805 		return (0);	/* No lwp yet, already seen, or bad size */
806 
807 	if ((xregs = malloc(xbytes)) == NULL)
808 		return (-1);
809 
810 	if (read(P->asfd, xregs, xbytes) != xbytes) {
811 		dprintf("Pgrab_core: failed to read NT_PRXREG\n");
812 		free(xregs);
813 		return (-1);
814 	}
815 
816 	lwp->lwp_xregs = xregs;
817 	return (0);
818 }
819 
820 static int
821 note_gwindows(struct ps_prochandle *P, size_t nbytes)
822 {
823 	core_info_t *core = P->data;
824 	lwp_info_t *lwp = core->core_lwp;
825 
826 	if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
827 		return (0);	/* No lwp yet or already seen or no data */
828 
829 	if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
830 		return (-1);
831 
832 	/*
833 	 * Since the amount of gwindows data varies with how many windows were
834 	 * actually saved, we just read up to the minimum of the note size
835 	 * and the size of the gwindows_t type.  It doesn't matter if the read
836 	 * fails since we have to zero out gwindows first anyway.
837 	 */
838 #ifdef _LP64
839 	if (core->core_dmodel == PR_MODEL_ILP32) {
840 		gwindows32_t g32;
841 
842 		(void) memset(&g32, 0, sizeof (g32));
843 		(void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
844 		gwindows_32_to_n(&g32, lwp->lwp_gwins);
845 
846 	} else {
847 #endif
848 		(void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));
849 		(void) read(P->asfd, lwp->lwp_gwins,
850 		    MIN(nbytes, sizeof (gwindows_t)));
851 #ifdef _LP64
852 	}
853 #endif
854 	return (0);
855 }
856 
857 #ifdef __sparcv9
858 static int
859 note_asrs(struct ps_prochandle *P, size_t nbytes)
860 {
861 	core_info_t *core = P->data;
862 	lwp_info_t *lwp = core->core_lwp;
863 	int64_t *asrs;
864 
865 	if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
866 		return (0);	/* No lwp yet, already seen, or bad size */
867 
868 	if ((asrs = malloc(sizeof (asrset_t))) == NULL)
869 		return (-1);
870 
871 	if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
872 		dprintf("Pgrab_core: failed to read NT_ASRS\n");
873 		free(asrs);
874 		return (-1);
875 	}
876 
877 	lwp->lwp_asrs = asrs;
878 	return (0);
879 }
880 #endif	/* __sparcv9 */
881 #endif	/* __sparc */
882 
883 static int
884 note_spymaster(struct ps_prochandle *P, size_t nbytes)
885 {
886 #ifdef _LP64
887 	core_info_t *core = P->data;
888 
889 	if (core->core_dmodel == PR_MODEL_ILP32) {
890 		psinfo32_t ps32;
891 
892 		if (nbytes < sizeof (psinfo32_t) ||
893 		    read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
894 			goto err;
895 
896 		psinfo_32_to_n(&ps32, &P->spymaster);
897 	} else
898 #endif
899 	if (nbytes < sizeof (psinfo_t) || read(P->asfd,
900 	    &P->spymaster, sizeof (psinfo_t)) != sizeof (psinfo_t))
901 		goto err;
902 
903 	dprintf("spymaster pr_fname = <%s>\n", P->psinfo.pr_fname);
904 	dprintf("spymaster pr_psargs = <%s>\n", P->psinfo.pr_psargs);
905 	dprintf("spymaster pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
906 
907 	return (0);
908 
909 err:
910 	dprintf("Pgrab_core: failed to read NT_SPYMASTER\n");
911 	return (-1);
912 }
913 
914 /*ARGSUSED*/
915 static int
916 note_notsup(struct ps_prochandle *P, size_t nbytes)
917 {
918 	dprintf("skipping unsupported note type\n");
919 	return (0);
920 }
921 
922 /*
923  * Populate a table of function pointers indexed by Note type with our
924  * functions to process each type of core file note:
925  */
926 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = {
927 	note_notsup,		/*  0	unassigned		*/
928 	note_notsup,		/*  1	NT_PRSTATUS (old)	*/
929 	note_notsup,		/*  2	NT_PRFPREG (old)	*/
930 	note_notsup,		/*  3	NT_PRPSINFO (old)	*/
931 #ifdef __sparc
932 	note_xreg,		/*  4	NT_PRXREG		*/
933 #else
934 	note_notsup,		/*  4	NT_PRXREG		*/
935 #endif
936 	note_platform,		/*  5	NT_PLATFORM		*/
937 	note_auxv,		/*  6	NT_AUXV			*/
938 #ifdef __sparc
939 	note_gwindows,		/*  7	NT_GWINDOWS		*/
940 #ifdef __sparcv9
941 	note_asrs,		/*  8	NT_ASRS			*/
942 #else
943 	note_notsup,		/*  8	NT_ASRS			*/
944 #endif
945 #else
946 	note_notsup,		/*  7	NT_GWINDOWS		*/
947 	note_notsup,		/*  8	NT_ASRS			*/
948 #endif
949 #if defined(__i386) || defined(__amd64)
950 	note_ldt,		/*  9	NT_LDT			*/
951 #else
952 	note_notsup,		/*  9	NT_LDT			*/
953 #endif
954 	note_pstatus,		/* 10	NT_PSTATUS		*/
955 	note_notsup,		/* 11	unassigned		*/
956 	note_notsup,		/* 12	unassigned		*/
957 	note_psinfo,		/* 13	NT_PSINFO		*/
958 	note_cred,		/* 14	NT_PRCRED		*/
959 	note_utsname,		/* 15	NT_UTSNAME		*/
960 	note_lwpstatus,		/* 16	NT_LWPSTATUS		*/
961 	note_lwpsinfo,		/* 17	NT_LWPSINFO		*/
962 	note_priv,		/* 18	NT_PRPRIV		*/
963 	note_priv_info,		/* 19	NT_PRPRIVINFO		*/
964 	note_content,		/* 20	NT_CONTENT		*/
965 	note_zonename,		/* 21	NT_ZONENAME		*/
966 	note_fdinfo,		/* 22	NT_FDINFO		*/
967 	note_spymaster,		/* 23	NT_SPYMASTER		*/
968 };
969 
970 static void
971 core_report_mapping(struct ps_prochandle *P, GElf_Phdr *php)
972 {
973 	prkillinfo_t killinfo;
974 	siginfo_t *si = &killinfo.prk_info;
975 	char signame[SIG2STR_MAX], sig[64], info[64];
976 	void *addr = (void *)(uintptr_t)php->p_vaddr;
977 
978 	const char *errfmt = "core file data for mapping at %p not saved: %s\n";
979 	const char *incfmt = "core file incomplete due to %s%s\n";
980 	const char *msgfmt = "mappings at and above %p are missing\n";
981 
982 	if (!(php->p_flags & PF_SUNW_KILLED)) {
983 		int err = 0;
984 
985 		(void) pread64(P->asfd, &err,
986 		    sizeof (err), (off64_t)php->p_offset);
987 
988 		Perror_printf(P, errfmt, addr, strerror(err));
989 		dprintf(errfmt, addr, strerror(err));
990 		return;
991 	}
992 
993 	if (!(php->p_flags & PF_SUNW_SIGINFO))
994 		return;
995 
996 	(void) memset(&killinfo, 0, sizeof (killinfo));
997 
998 	(void) pread64(P->asfd, &killinfo,
999 	    sizeof (killinfo), (off64_t)php->p_offset);
1000 
1001 	/*
1002 	 * While there is (or at least should be) only one segment that has
1003 	 * PF_SUNW_SIGINFO set, the signal information there is globally
1004 	 * useful (even if only to those debugging libproc consumers); we hang
1005 	 * the signal information gleaned here off of the ps_prochandle.
1006 	 */
1007 	P->map_missing = php->p_vaddr;
1008 	P->killinfo = killinfo.prk_info;
1009 
1010 	if (sig2str(si->si_signo, signame) == -1) {
1011 		(void) snprintf(sig, sizeof (sig),
1012 		    "<Unknown signal: 0x%x>, ", si->si_signo);
1013 	} else {
1014 		(void) snprintf(sig, sizeof (sig), "SIG%s, ", signame);
1015 	}
1016 
1017 	if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1018 		(void) snprintf(info, sizeof (info),
1019 		    "pid=%d uid=%d zone=%d ctid=%d",
1020 		    si->si_pid, si->si_uid, si->si_zoneid, si->si_ctid);
1021 	} else {
1022 		(void) snprintf(info, sizeof (info),
1023 		    "code=%d", si->si_code);
1024 	}
1025 
1026 	Perror_printf(P, incfmt, sig, info);
1027 	Perror_printf(P, msgfmt, addr);
1028 
1029 	dprintf(incfmt, sig, info);
1030 	dprintf(msgfmt, addr);
1031 }
1032 
1033 /*
1034  * Add information on the address space mapping described by the given
1035  * PT_LOAD program header.  We fill in more information on the mapping later.
1036  */
1037 static int
1038 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1039 {
1040 	core_info_t *core = P->data;
1041 	prmap_t pmap;
1042 
1043 	dprintf("mapping base %llx filesz %llu memsz %llu offset %llu\n",
1044 	    (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz,
1045 	    (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset);
1046 
1047 	pmap.pr_vaddr = (uintptr_t)php->p_vaddr;
1048 	pmap.pr_size = php->p_memsz;
1049 
1050 	/*
1051 	 * If Pgcore() or elfcore() fail to write a mapping, they will set
1052 	 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us.
1053 	 */
1054 	if (php->p_flags & PF_SUNW_FAILURE) {
1055 		core_report_mapping(P, php);
1056 	} else if (php->p_filesz != 0 && php->p_offset >= core->core_size) {
1057 		Perror_printf(P, "core file may be corrupt -- data for mapping "
1058 		    "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1059 		dprintf("core file may be corrupt -- data for mapping "
1060 		    "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1061 	}
1062 
1063 	/*
1064 	 * The mapping name and offset will hopefully be filled in
1065 	 * by the librtld_db agent.  Unfortunately, if it isn't a
1066 	 * shared library mapping, this information is gone forever.
1067 	 */
1068 	pmap.pr_mapname[0] = '\0';
1069 	pmap.pr_offset = 0;
1070 
1071 	pmap.pr_mflags = 0;
1072 	if (php->p_flags & PF_R)
1073 		pmap.pr_mflags |= MA_READ;
1074 	if (php->p_flags & PF_W)
1075 		pmap.pr_mflags |= MA_WRITE;
1076 	if (php->p_flags & PF_X)
1077 		pmap.pr_mflags |= MA_EXEC;
1078 
1079 	if (php->p_filesz == 0)
1080 		pmap.pr_mflags |= MA_RESERVED1;
1081 
1082 	/*
1083 	 * At the time of adding this mapping, we just zero the pagesize.
1084 	 * Once we've processed more of the core file, we'll have the
1085 	 * pagesize from the auxv's AT_PAGESZ element and we can fill this in.
1086 	 */
1087 	pmap.pr_pagesize = 0;
1088 
1089 	/*
1090 	 * Unfortunately whether or not the mapping was a System V
1091 	 * shared memory segment is lost.  We use -1 to mark it as not shm.
1092 	 */
1093 	pmap.pr_shmid = -1;
1094 
1095 	return (Padd_mapping(P, php->p_offset, NULL, &pmap));
1096 }
1097 
1098 /*
1099  * Given a virtual address, name the mapping at that address using the
1100  * specified name, and return the map_info_t pointer.
1101  */
1102 static map_info_t *
1103 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name)
1104 {
1105 	map_info_t *mp = Paddr2mptr(P, addr);
1106 
1107 	if (mp != NULL) {
1108 		(void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ);
1109 		mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1110 	}
1111 
1112 	return (mp);
1113 }
1114 
1115 /*
1116  * libproc uses libelf for all of its symbol table manipulation. This function
1117  * takes a symbol table and string table from a core file and places them
1118  * in a memory backed elf file.
1119  */
1120 static void
1121 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr,
1122     GElf_Shdr *symtab, GElf_Shdr *strtab)
1123 {
1124 	size_t size;
1125 	off64_t off, base;
1126 	map_info_t *mp;
1127 	file_info_t *fp;
1128 	Elf_Scn *scn;
1129 	Elf_Data *data;
1130 
1131 	if (symtab->sh_addr == 0 ||
1132 	    (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL ||
1133 	    (fp = mp->map_file) == NULL) {
1134 		dprintf("fake_up_symtab: invalid section\n");
1135 		return;
1136 	}
1137 
1138 	if (fp->file_symtab.sym_data_pri != NULL) {
1139 		dprintf("Symbol table already loaded (sh_addr 0x%lx)\n",
1140 		    (long)symtab->sh_addr);
1141 		return;
1142 	}
1143 
1144 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1145 		struct {
1146 			Elf32_Ehdr ehdr;
1147 			Elf32_Shdr shdr[3];
1148 			char data[1];
1149 		} *b;
1150 
1151 		base = sizeof (b->ehdr) + sizeof (b->shdr);
1152 		size = base + symtab->sh_size + strtab->sh_size;
1153 
1154 		if ((b = calloc(1, size)) == NULL)
1155 			return;
1156 
1157 		(void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1158 		    sizeof (ehdr->e_ident));
1159 		b->ehdr.e_type = ehdr->e_type;
1160 		b->ehdr.e_machine = ehdr->e_machine;
1161 		b->ehdr.e_version = ehdr->e_version;
1162 		b->ehdr.e_flags = ehdr->e_flags;
1163 		b->ehdr.e_ehsize = sizeof (b->ehdr);
1164 		b->ehdr.e_shoff = sizeof (b->ehdr);
1165 		b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1166 		b->ehdr.e_shnum = 3;
1167 		off = 0;
1168 
1169 		b->shdr[1].sh_size = symtab->sh_size;
1170 		b->shdr[1].sh_type = SHT_SYMTAB;
1171 		b->shdr[1].sh_offset = off + base;
1172 		b->shdr[1].sh_entsize = sizeof (Elf32_Sym);
1173 		b->shdr[1].sh_link = 2;
1174 		b->shdr[1].sh_info =  symtab->sh_info;
1175 		b->shdr[1].sh_addralign = symtab->sh_addralign;
1176 
1177 		if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1178 		    symtab->sh_offset) != b->shdr[1].sh_size) {
1179 			dprintf("fake_up_symtab: pread of symtab[1] failed\n");
1180 			free(b);
1181 			return;
1182 		}
1183 
1184 		off += b->shdr[1].sh_size;
1185 
1186 		b->shdr[2].sh_flags = SHF_STRINGS;
1187 		b->shdr[2].sh_size = strtab->sh_size;
1188 		b->shdr[2].sh_type = SHT_STRTAB;
1189 		b->shdr[2].sh_offset = off + base;
1190 		b->shdr[2].sh_info =  strtab->sh_info;
1191 		b->shdr[2].sh_addralign = 1;
1192 
1193 		if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1194 		    strtab->sh_offset) != b->shdr[2].sh_size) {
1195 			dprintf("fake_up_symtab: pread of symtab[2] failed\n");
1196 			free(b);
1197 			return;
1198 		}
1199 
1200 		off += b->shdr[2].sh_size;
1201 
1202 		fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1203 		if (fp->file_symtab.sym_elf == NULL) {
1204 			free(b);
1205 			return;
1206 		}
1207 
1208 		fp->file_symtab.sym_elfmem = b;
1209 #ifdef _LP64
1210 	} else {
1211 		struct {
1212 			Elf64_Ehdr ehdr;
1213 			Elf64_Shdr shdr[3];
1214 			char data[1];
1215 		} *b;
1216 
1217 		base = sizeof (b->ehdr) + sizeof (b->shdr);
1218 		size = base + symtab->sh_size + strtab->sh_size;
1219 
1220 		if ((b = calloc(1, size)) == NULL)
1221 			return;
1222 
1223 		(void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1224 		    sizeof (ehdr->e_ident));
1225 		b->ehdr.e_type = ehdr->e_type;
1226 		b->ehdr.e_machine = ehdr->e_machine;
1227 		b->ehdr.e_version = ehdr->e_version;
1228 		b->ehdr.e_flags = ehdr->e_flags;
1229 		b->ehdr.e_ehsize = sizeof (b->ehdr);
1230 		b->ehdr.e_shoff = sizeof (b->ehdr);
1231 		b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1232 		b->ehdr.e_shnum = 3;
1233 		off = 0;
1234 
1235 		b->shdr[1].sh_size = symtab->sh_size;
1236 		b->shdr[1].sh_type = SHT_SYMTAB;
1237 		b->shdr[1].sh_offset = off + base;
1238 		b->shdr[1].sh_entsize = sizeof (Elf64_Sym);
1239 		b->shdr[1].sh_link = 2;
1240 		b->shdr[1].sh_info =  symtab->sh_info;
1241 		b->shdr[1].sh_addralign = symtab->sh_addralign;
1242 
1243 		if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1244 		    symtab->sh_offset) != b->shdr[1].sh_size) {
1245 			free(b);
1246 			return;
1247 		}
1248 
1249 		off += b->shdr[1].sh_size;
1250 
1251 		b->shdr[2].sh_flags = SHF_STRINGS;
1252 		b->shdr[2].sh_size = strtab->sh_size;
1253 		b->shdr[2].sh_type = SHT_STRTAB;
1254 		b->shdr[2].sh_offset = off + base;
1255 		b->shdr[2].sh_info =  strtab->sh_info;
1256 		b->shdr[2].sh_addralign = 1;
1257 
1258 		if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1259 		    strtab->sh_offset) != b->shdr[2].sh_size) {
1260 			free(b);
1261 			return;
1262 		}
1263 
1264 		off += b->shdr[2].sh_size;
1265 
1266 		fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1267 		if (fp->file_symtab.sym_elf == NULL) {
1268 			free(b);
1269 			return;
1270 		}
1271 
1272 		fp->file_symtab.sym_elfmem = b;
1273 #endif
1274 	}
1275 
1276 	if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL ||
1277 	    (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL ||
1278 	    (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL ||
1279 	    (data = elf_getdata(scn, NULL)) == NULL) {
1280 		dprintf("fake_up_symtab: failed to get section data at %p\n",
1281 		    (void *)scn);
1282 		goto err;
1283 	}
1284 
1285 	fp->file_symtab.sym_strs = data->d_buf;
1286 	fp->file_symtab.sym_strsz = data->d_size;
1287 	fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize;
1288 	fp->file_symtab.sym_hdr_pri = *symtab;
1289 	fp->file_symtab.sym_strhdr = *strtab;
1290 
1291 	optimize_symtab(&fp->file_symtab);
1292 
1293 	return;
1294 err:
1295 	(void) elf_end(fp->file_symtab.sym_elf);
1296 	free(fp->file_symtab.sym_elfmem);
1297 	fp->file_symtab.sym_elf = NULL;
1298 	fp->file_symtab.sym_elfmem = NULL;
1299 }
1300 
1301 static void
1302 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst)
1303 {
1304 	dst->p_type = src->p_type;
1305 	dst->p_flags = src->p_flags;
1306 	dst->p_offset = (Elf64_Off)src->p_offset;
1307 	dst->p_vaddr = (Elf64_Addr)src->p_vaddr;
1308 	dst->p_paddr = (Elf64_Addr)src->p_paddr;
1309 	dst->p_filesz = (Elf64_Xword)src->p_filesz;
1310 	dst->p_memsz = (Elf64_Xword)src->p_memsz;
1311 	dst->p_align = (Elf64_Xword)src->p_align;
1312 }
1313 
1314 static void
1315 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
1316 {
1317 	dst->sh_name = src->sh_name;
1318 	dst->sh_type = src->sh_type;
1319 	dst->sh_flags = (Elf64_Xword)src->sh_flags;
1320 	dst->sh_addr = (Elf64_Addr)src->sh_addr;
1321 	dst->sh_offset = (Elf64_Off)src->sh_offset;
1322 	dst->sh_size = (Elf64_Xword)src->sh_size;
1323 	dst->sh_link = src->sh_link;
1324 	dst->sh_info = src->sh_info;
1325 	dst->sh_addralign = (Elf64_Xword)src->sh_addralign;
1326 	dst->sh_entsize = (Elf64_Xword)src->sh_entsize;
1327 }
1328 
1329 /*
1330  * Perform elf_begin on efp->e_fd and verify the ELF file's type and class.
1331  */
1332 static int
1333 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr)
1334 {
1335 #ifdef _BIG_ENDIAN
1336 	uchar_t order = ELFDATA2MSB;
1337 #else
1338 	uchar_t order = ELFDATA2LSB;
1339 #endif
1340 	Elf32_Ehdr e32;
1341 	int is_noelf = -1;
1342 	int isa_err = 0;
1343 
1344 	/*
1345 	 * Because 32-bit libelf cannot deal with large files, we need to read,
1346 	 * check, and convert the file header manually in case type == ET_CORE.
1347 	 */
1348 	if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) {
1349 		if (perr != NULL)
1350 			*perr = G_FORMAT;
1351 		goto err;
1352 	}
1353 	if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 ||
1354 	    e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) ||
1355 	    e32.e_version != EV_CURRENT) {
1356 		if (perr != NULL) {
1357 			if (is_noelf == 0 && isa_err) {
1358 				*perr = G_ISAINVAL;
1359 			} else {
1360 				*perr = G_FORMAT;
1361 			}
1362 		}
1363 		goto err;
1364 	}
1365 
1366 	/*
1367 	 * If the file is 64-bit and we are 32-bit, fail with G_LP64.  If the
1368 	 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr,
1369 	 * and convert it to a elf_file_header_t.  Otherwise, the file is
1370 	 * 32-bit, so convert e32 to a elf_file_header_t.
1371 	 */
1372 	if (e32.e_ident[EI_CLASS] == ELFCLASS64) {
1373 #ifdef _LP64
1374 		Elf64_Ehdr e64;
1375 
1376 		if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) {
1377 			if (perr != NULL)
1378 				*perr = G_FORMAT;
1379 			goto err;
1380 		}
1381 
1382 		(void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT);
1383 		efp->e_hdr.e_type = e64.e_type;
1384 		efp->e_hdr.e_machine = e64.e_machine;
1385 		efp->e_hdr.e_version = e64.e_version;
1386 		efp->e_hdr.e_entry = e64.e_entry;
1387 		efp->e_hdr.e_phoff = e64.e_phoff;
1388 		efp->e_hdr.e_shoff = e64.e_shoff;
1389 		efp->e_hdr.e_flags = e64.e_flags;
1390 		efp->e_hdr.e_ehsize = e64.e_ehsize;
1391 		efp->e_hdr.e_phentsize = e64.e_phentsize;
1392 		efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum;
1393 		efp->e_hdr.e_shentsize = e64.e_shentsize;
1394 		efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum;
1395 		efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx;
1396 #else	/* _LP64 */
1397 		if (perr != NULL)
1398 			*perr = G_LP64;
1399 		goto err;
1400 #endif	/* _LP64 */
1401 	} else {
1402 		(void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT);
1403 		efp->e_hdr.e_type = e32.e_type;
1404 		efp->e_hdr.e_machine = e32.e_machine;
1405 		efp->e_hdr.e_version = e32.e_version;
1406 		efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry;
1407 		efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff;
1408 		efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff;
1409 		efp->e_hdr.e_flags = e32.e_flags;
1410 		efp->e_hdr.e_ehsize = e32.e_ehsize;
1411 		efp->e_hdr.e_phentsize = e32.e_phentsize;
1412 		efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum;
1413 		efp->e_hdr.e_shentsize = e32.e_shentsize;
1414 		efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum;
1415 		efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx;
1416 	}
1417 
1418 	/*
1419 	 * If the number of section headers or program headers or the section
1420 	 * header string table index would overflow their respective fields
1421 	 * in the ELF header, they're stored in the section header at index
1422 	 * zero. To simplify use elsewhere, we look for those sentinel values
1423 	 * here.
1424 	 */
1425 	if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) ||
1426 	    efp->e_hdr.e_shstrndx == SHN_XINDEX ||
1427 	    efp->e_hdr.e_phnum == PN_XNUM) {
1428 		GElf_Shdr shdr;
1429 
1430 		dprintf("extended ELF header\n");
1431 
1432 		if (efp->e_hdr.e_shoff == 0) {
1433 			if (perr != NULL)
1434 				*perr = G_FORMAT;
1435 			goto err;
1436 		}
1437 
1438 		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1439 			Elf32_Shdr shdr32;
1440 
1441 			if (pread64(efp->e_fd, &shdr32, sizeof (shdr32),
1442 			    efp->e_hdr.e_shoff) != sizeof (shdr32)) {
1443 				if (perr != NULL)
1444 					*perr = G_FORMAT;
1445 				goto err;
1446 			}
1447 
1448 			core_shdr_to_gelf(&shdr32, &shdr);
1449 		} else {
1450 			if (pread64(efp->e_fd, &shdr, sizeof (shdr),
1451 			    efp->e_hdr.e_shoff) != sizeof (shdr)) {
1452 				if (perr != NULL)
1453 					*perr = G_FORMAT;
1454 				goto err;
1455 			}
1456 		}
1457 
1458 		if (efp->e_hdr.e_shnum == 0) {
1459 			efp->e_hdr.e_shnum = shdr.sh_size;
1460 			dprintf("section header count %lu\n",
1461 			    (ulong_t)shdr.sh_size);
1462 		}
1463 
1464 		if (efp->e_hdr.e_shstrndx == SHN_XINDEX) {
1465 			efp->e_hdr.e_shstrndx = shdr.sh_link;
1466 			dprintf("section string index %u\n", shdr.sh_link);
1467 		}
1468 
1469 		if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) {
1470 			efp->e_hdr.e_phnum = shdr.sh_info;
1471 			dprintf("program header count %u\n", shdr.sh_info);
1472 		}
1473 
1474 	} else if (efp->e_hdr.e_phoff != 0) {
1475 		GElf_Phdr phdr;
1476 		uint64_t phnum;
1477 
1478 		/*
1479 		 * It's possible this core file came from a system that
1480 		 * accidentally truncated the e_phnum field without correctly
1481 		 * using the extended format in the section header at index
1482 		 * zero. We try to detect and correct that specific type of
1483 		 * corruption by using the knowledge that the core dump
1484 		 * routines usually place the data referenced by the first
1485 		 * program header immediately after the last header element.
1486 		 */
1487 		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1488 			Elf32_Phdr phdr32;
1489 
1490 			if (pread64(efp->e_fd, &phdr32, sizeof (phdr32),
1491 			    efp->e_hdr.e_phoff) != sizeof (phdr32)) {
1492 				if (perr != NULL)
1493 					*perr = G_FORMAT;
1494 				goto err;
1495 			}
1496 
1497 			core_phdr_to_gelf(&phdr32, &phdr);
1498 		} else {
1499 			if (pread64(efp->e_fd, &phdr, sizeof (phdr),
1500 			    efp->e_hdr.e_phoff) != sizeof (phdr)) {
1501 				if (perr != NULL)
1502 					*perr = G_FORMAT;
1503 				goto err;
1504 			}
1505 		}
1506 
1507 		phnum = phdr.p_offset - efp->e_hdr.e_ehsize -
1508 		    (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1509 		phnum /= efp->e_hdr.e_phentsize;
1510 
1511 		if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) {
1512 			dprintf("suspicious program header count %u %u\n",
1513 			    (uint_t)phnum, efp->e_hdr.e_phnum);
1514 
1515 			/*
1516 			 * If the new program header count we computed doesn't
1517 			 * jive with count in the ELF header, we'll use the
1518 			 * data that's there and hope for the best.
1519 			 *
1520 			 * If it does, it's also possible that the section
1521 			 * header offset is incorrect; we'll check that and
1522 			 * possibly try to fix it.
1523 			 */
1524 			if (phnum <= INT_MAX &&
1525 			    (uint16_t)phnum == efp->e_hdr.e_phnum) {
1526 
1527 				if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff +
1528 				    efp->e_hdr.e_phentsize *
1529 				    (uint_t)efp->e_hdr.e_phnum) {
1530 					efp->e_hdr.e_shoff =
1531 					    efp->e_hdr.e_phoff +
1532 					    efp->e_hdr.e_phentsize * phnum;
1533 				}
1534 
1535 				efp->e_hdr.e_phnum = (Elf64_Word)phnum;
1536 				dprintf("using new program header count\n");
1537 			} else {
1538 				dprintf("inconsistent program header count\n");
1539 			}
1540 		}
1541 	}
1542 
1543 	/*
1544 	 * The libelf implementation was never ported to be large-file aware.
1545 	 * This is typically not a problem for your average executable or
1546 	 * shared library, but a large 32-bit core file can exceed 2GB in size.
1547 	 * So if type is ET_CORE, we don't bother doing elf_begin; the code
1548 	 * in Pfgrab_core() below will do its own i/o and struct conversion.
1549 	 */
1550 
1551 	if (type == ET_CORE) {
1552 		efp->e_elf = NULL;
1553 		return (0);
1554 	}
1555 
1556 	if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) {
1557 		if (perr != NULL)
1558 			*perr = G_ELF;
1559 		goto err;
1560 	}
1561 
1562 	return (0);
1563 
1564 err:
1565 	efp->e_elf = NULL;
1566 	return (-1);
1567 }
1568 
1569 /*
1570  * Open the specified file and then do a core_elf_fdopen on it.
1571  */
1572 static int
1573 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr)
1574 {
1575 	(void) memset(efp, 0, sizeof (elf_file_t));
1576 
1577 	if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) {
1578 		if (core_elf_fdopen(efp, type, perr) == 0)
1579 			return (0);
1580 
1581 		(void) close(efp->e_fd);
1582 		efp->e_fd = -1;
1583 	}
1584 
1585 	return (-1);
1586 }
1587 
1588 /*
1589  * Close the ELF handle and file descriptor.
1590  */
1591 static void
1592 core_elf_close(elf_file_t *efp)
1593 {
1594 	if (efp->e_elf != NULL) {
1595 		(void) elf_end(efp->e_elf);
1596 		efp->e_elf = NULL;
1597 	}
1598 
1599 	if (efp->e_fd != -1) {
1600 		(void) close(efp->e_fd);
1601 		efp->e_fd = -1;
1602 	}
1603 }
1604 
1605 /*
1606  * Given an ELF file for a statically linked executable, locate the likely
1607  * primary text section and fill in rl_base with its virtual address.
1608  */
1609 static map_info_t *
1610 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1611 {
1612 	GElf_Phdr phdr;
1613 	uint_t i;
1614 	size_t nphdrs;
1615 
1616 	if (elf_getphdrnum(elf, &nphdrs) == -1)
1617 		return (NULL);
1618 
1619 	for (i = 0; i < nphdrs; i++) {
1620 		if (gelf_getphdr(elf, i, &phdr) != NULL &&
1621 		    phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
1622 			rlp->rl_base = phdr.p_vaddr;
1623 			return (Paddr2mptr(P, rlp->rl_base));
1624 		}
1625 	}
1626 
1627 	return (NULL);
1628 }
1629 
1630 /*
1631  * Given an ELF file and the librtld_db structure corresponding to its primary
1632  * text mapping, deduce where its data segment was loaded and fill in
1633  * rl_data_base and prmap_t.pr_offset accordingly.
1634  */
1635 static map_info_t *
1636 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1637 {
1638 	GElf_Ehdr ehdr;
1639 	GElf_Phdr phdr;
1640 	map_info_t *mp;
1641 	uint_t i, pagemask;
1642 	size_t nphdrs;
1643 
1644 	rlp->rl_data_base = NULL;
1645 
1646 	/*
1647 	 * Find the first loadable, writeable Phdr and compute rl_data_base
1648 	 * as the virtual address at which is was loaded.
1649 	 */
1650 	if (gelf_getehdr(elf, &ehdr) == NULL ||
1651 	    elf_getphdrnum(elf, &nphdrs) == -1)
1652 		return (NULL);
1653 
1654 	for (i = 0; i < nphdrs; i++) {
1655 		if (gelf_getphdr(elf, i, &phdr) != NULL &&
1656 		    phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) {
1657 			rlp->rl_data_base = phdr.p_vaddr;
1658 			if (ehdr.e_type == ET_DYN)
1659 				rlp->rl_data_base += rlp->rl_base;
1660 			break;
1661 		}
1662 	}
1663 
1664 	/*
1665 	 * If we didn't find an appropriate phdr or if the address we
1666 	 * computed has no mapping, return NULL.
1667 	 */
1668 	if (rlp->rl_data_base == NULL ||
1669 	    (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL)
1670 		return (NULL);
1671 
1672 	/*
1673 	 * It wouldn't be procfs-related code if we didn't make use of
1674 	 * unclean knowledge of segvn, even in userland ... the prmap_t's
1675 	 * pr_offset field will be the segvn offset from mmap(2)ing the
1676 	 * data section, which will be the file offset & PAGEMASK.
1677 	 */
1678 	pagemask = ~(mp->map_pmap.pr_pagesize - 1);
1679 	mp->map_pmap.pr_offset = phdr.p_offset & pagemask;
1680 
1681 	return (mp);
1682 }
1683 
1684 /*
1685  * Librtld_db agent callback for iterating over load object mappings.
1686  * For each load object, we allocate a new file_info_t, perform naming,
1687  * and attempt to construct a symbol table for the load object.
1688  */
1689 static int
1690 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P)
1691 {
1692 	core_info_t *core = P->data;
1693 	char lname[PATH_MAX], buf[PATH_MAX];
1694 	file_info_t *fp;
1695 	map_info_t *mp;
1696 
1697 	if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) {
1698 		dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr);
1699 		return (1); /* Keep going; forget this if we can't get a name */
1700 	}
1701 
1702 	dprintf("rd_loadobj name = \"%s\" rl_base = %p\n",
1703 	    lname, (void *)rlp->rl_base);
1704 
1705 	if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) {
1706 		dprintf("no mapping for %p\n", (void *)rlp->rl_base);
1707 		return (1); /* No mapping; advance to next mapping */
1708 	}
1709 
1710 	/*
1711 	 * Create a new file_info_t for this mapping, and therefore for
1712 	 * this load object.
1713 	 *
1714 	 * If there's an ELF header at the beginning of this mapping,
1715 	 * file_info_new() will try to use its section headers to
1716 	 * identify any other mappings that belong to this load object.
1717 	 */
1718 	if ((fp = mp->map_file) == NULL &&
1719 	    (fp = file_info_new(P, mp)) == NULL) {
1720 		core->core_errno = errno;
1721 		dprintf("failed to malloc mapping data\n");
1722 		return (0); /* Abort */
1723 	}
1724 	fp->file_map = mp;
1725 
1726 	/* Create a local copy of the load object representation */
1727 	if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) {
1728 		core->core_errno = errno;
1729 		dprintf("failed to malloc mapping data\n");
1730 		return (0); /* Abort */
1731 	}
1732 	*fp->file_lo = *rlp;
1733 
1734 	if (lname[0] != '\0') {
1735 		/*
1736 		 * Naming dance part 1: if we got a name from librtld_db, then
1737 		 * copy this name to the prmap_t if it is unnamed.  If the
1738 		 * file_info_t is unnamed, name it after the lname.
1739 		 */
1740 		if (mp->map_pmap.pr_mapname[0] == '\0') {
1741 			(void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ);
1742 			mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1743 		}
1744 
1745 		if (fp->file_lname == NULL)
1746 			fp->file_lname = strdup(lname);
1747 
1748 	} else if (fp->file_lname == NULL &&
1749 	    mp->map_pmap.pr_mapname[0] != '\0') {
1750 		/*
1751 		 * Naming dance part 2: if the mapping is named and the
1752 		 * file_info_t is not, name the file after the mapping.
1753 		 */
1754 		fp->file_lname = strdup(mp->map_pmap.pr_mapname);
1755 	}
1756 
1757 	if ((fp->file_rname == NULL) &&
1758 	    (Pfindmap(P, mp, buf, sizeof (buf)) != NULL))
1759 		fp->file_rname = strdup(buf);
1760 
1761 	if (fp->file_lname != NULL)
1762 		fp->file_lbase = basename(fp->file_lname);
1763 	if (fp->file_rname != NULL)
1764 		fp->file_rbase = basename(fp->file_rname);
1765 
1766 	/* Associate the file and the mapping. */
1767 	(void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ);
1768 	fp->file_pname[PRMAPSZ - 1] = '\0';
1769 
1770 	/*
1771 	 * If no section headers were available then we'll have to
1772 	 * identify this load object's other mappings with what we've
1773 	 * got: the start and end of the object's corresponding
1774 	 * address space.
1775 	 */
1776 	if (fp->file_saddrs == NULL) {
1777 		for (mp = fp->file_map + 1; mp < P->mappings + P->map_count &&
1778 		    mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) {
1779 
1780 			if (mp->map_file == NULL) {
1781 				dprintf("core_iter_mapping %s: associating "
1782 				    "segment at %p\n",
1783 				    fp->file_pname,
1784 				    (void *)mp->map_pmap.pr_vaddr);
1785 				mp->map_file = fp;
1786 				fp->file_ref++;
1787 			} else {
1788 				dprintf("core_iter_mapping %s: segment at "
1789 				    "%p already associated with %s\n",
1790 				    fp->file_pname,
1791 				    (void *)mp->map_pmap.pr_vaddr,
1792 				    (mp == fp->file_map ? "this file" :
1793 				    mp->map_file->file_pname));
1794 			}
1795 		}
1796 	}
1797 
1798 	/* Ensure that all this file's mappings are named. */
1799 	for (mp = fp->file_map; mp < P->mappings + P->map_count &&
1800 	    mp->map_file == fp; mp++) {
1801 		if (mp->map_pmap.pr_mapname[0] == '\0' &&
1802 		    !(mp->map_pmap.pr_mflags & MA_BREAK)) {
1803 			(void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname,
1804 			    PRMAPSZ);
1805 			mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1806 		}
1807 	}
1808 
1809 	/* Attempt to build a symbol table for this file. */
1810 	Pbuild_file_symtab(P, fp);
1811 	if (fp->file_elf == NULL)
1812 		dprintf("core_iter_mapping: no symtab for %s\n",
1813 		    fp->file_pname);
1814 
1815 	/* Locate the start of a data segment associated with this file. */
1816 	if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) {
1817 		dprintf("found data for %s at %p (pr_offset 0x%llx)\n",
1818 		    fp->file_pname, (void *)fp->file_lo->rl_data_base,
1819 		    mp->map_pmap.pr_offset);
1820 	} else {
1821 		dprintf("core_iter_mapping: no data found for %s\n",
1822 		    fp->file_pname);
1823 	}
1824 
1825 	return (1); /* Advance to next mapping */
1826 }
1827 
1828 /*
1829  * Callback function for Pfindexec().  In order to confirm a given pathname,
1830  * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN.
1831  */
1832 static int
1833 core_exec_open(const char *path, void *efp)
1834 {
1835 	if (core_elf_open(efp, path, ET_EXEC, NULL) == 0)
1836 		return (1);
1837 	if (core_elf_open(efp, path, ET_DYN, NULL) == 0)
1838 		return (1);
1839 	return (0);
1840 }
1841 
1842 /*
1843  * Attempt to load any section headers found in the core file.  If present,
1844  * this will refer to non-loadable data added to the core file by the kernel
1845  * based on coreadm(1M) settings, including CTF data and the symbol table.
1846  */
1847 static void
1848 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp)
1849 {
1850 	GElf_Shdr *shp, *shdrs = NULL;
1851 	char *shstrtab = NULL;
1852 	ulong_t shstrtabsz;
1853 	const char *name;
1854 	map_info_t *mp;
1855 
1856 	size_t nbytes;
1857 	void *buf;
1858 	int i;
1859 
1860 	if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) {
1861 		dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n",
1862 		    efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum);
1863 		return;
1864 	}
1865 
1866 	/*
1867 	 * Read the section header table from the core file and then iterate
1868 	 * over the section headers, converting each to a GElf_Shdr.
1869 	 */
1870 	if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) {
1871 		dprintf("failed to malloc %u section headers: %s\n",
1872 		    (uint_t)efp->e_hdr.e_shnum, strerror(errno));
1873 		return;
1874 	}
1875 
1876 	nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1877 	if ((buf = malloc(nbytes)) == NULL) {
1878 		dprintf("failed to malloc %d bytes: %s\n", (int)nbytes,
1879 		    strerror(errno));
1880 		free(shdrs);
1881 		goto out;
1882 	}
1883 
1884 	if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) {
1885 		dprintf("failed to read section headers at off %lld: %s\n",
1886 		    (longlong_t)efp->e_hdr.e_shoff, strerror(errno));
1887 		free(buf);
1888 		goto out;
1889 	}
1890 
1891 	for (i = 0; i < efp->e_hdr.e_shnum; i++) {
1892 		void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i;
1893 
1894 		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32)
1895 			core_shdr_to_gelf(p, &shdrs[i]);
1896 		else
1897 			(void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr));
1898 	}
1899 
1900 	free(buf);
1901 	buf = NULL;
1902 
1903 	/*
1904 	 * Read the .shstrtab section from the core file, terminating it with
1905 	 * an extra \0 so that a corrupt section will not cause us to die.
1906 	 */
1907 	shp = &shdrs[efp->e_hdr.e_shstrndx];
1908 	shstrtabsz = shp->sh_size;
1909 
1910 	if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) {
1911 		dprintf("failed to allocate %lu bytes for shstrtab\n",
1912 		    (ulong_t)shstrtabsz);
1913 		goto out;
1914 	}
1915 
1916 	if (pread64(efp->e_fd, shstrtab, shstrtabsz,
1917 	    shp->sh_offset) != shstrtabsz) {
1918 		dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n",
1919 		    shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno));
1920 		goto out;
1921 	}
1922 
1923 	shstrtab[shstrtabsz] = '\0';
1924 
1925 	/*
1926 	 * Now iterate over each section in the section header table, locating
1927 	 * sections of interest and initializing more of the ps_prochandle.
1928 	 */
1929 	for (i = 0; i < efp->e_hdr.e_shnum; i++) {
1930 		shp = &shdrs[i];
1931 		name = shstrtab + shp->sh_name;
1932 
1933 		if (shp->sh_name >= shstrtabsz) {
1934 			dprintf("skipping section [%d]: corrupt sh_name\n", i);
1935 			continue;
1936 		}
1937 
1938 		if (shp->sh_link >= efp->e_hdr.e_shnum) {
1939 			dprintf("skipping section [%d]: corrupt sh_link\n", i);
1940 			continue;
1941 		}
1942 
1943 		dprintf("found section header %s (sh_addr 0x%llx)\n",
1944 		    name, (u_longlong_t)shp->sh_addr);
1945 
1946 		if (strcmp(name, ".SUNW_ctf") == 0) {
1947 			if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) {
1948 				dprintf("no map at addr 0x%llx for %s [%d]\n",
1949 				    (u_longlong_t)shp->sh_addr, name, i);
1950 				continue;
1951 			}
1952 
1953 			if (mp->map_file == NULL ||
1954 			    mp->map_file->file_ctf_buf != NULL) {
1955 				dprintf("no mapping file or duplicate buffer "
1956 				    "for %s [%d]\n", name, i);
1957 				continue;
1958 			}
1959 
1960 			if ((buf = malloc(shp->sh_size)) == NULL ||
1961 			    pread64(efp->e_fd, buf, shp->sh_size,
1962 			    shp->sh_offset) != shp->sh_size) {
1963 				dprintf("skipping section %s [%d]: %s\n",
1964 				    name, i, strerror(errno));
1965 				free(buf);
1966 				continue;
1967 			}
1968 
1969 			mp->map_file->file_ctf_size = shp->sh_size;
1970 			mp->map_file->file_ctf_buf = buf;
1971 
1972 			if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM)
1973 				mp->map_file->file_ctf_dyn = 1;
1974 
1975 		} else if (strcmp(name, ".symtab") == 0) {
1976 			fake_up_symtab(P, &efp->e_hdr,
1977 			    shp, &shdrs[shp->sh_link]);
1978 		}
1979 	}
1980 out:
1981 	free(shstrtab);
1982 	free(shdrs);
1983 }
1984 
1985 /*
1986  * Main engine for core file initialization: given an fd for the core file
1987  * and an optional pathname, construct the ps_prochandle.  The aout_path can
1988  * either be a suggested executable pathname, or a suggested directory to
1989  * use as a possible current working directory.
1990  */
1991 struct ps_prochandle *
1992 Pfgrab_core(int core_fd, const char *aout_path, int *perr)
1993 {
1994 	struct ps_prochandle *P;
1995 	core_info_t *core_info;
1996 	map_info_t *stk_mp, *brk_mp;
1997 	const char *execname;
1998 	char *interp;
1999 	int i, notes, pagesize;
2000 	uintptr_t addr, base_addr;
2001 	struct stat64 stbuf;
2002 	void *phbuf, *php;
2003 	size_t nbytes;
2004 
2005 	elf_file_t aout;
2006 	elf_file_t core;
2007 
2008 	Elf_Scn *scn, *intp_scn = NULL;
2009 	Elf_Data *dp;
2010 
2011 	GElf_Phdr phdr, note_phdr;
2012 	GElf_Shdr shdr;
2013 	GElf_Xword nleft;
2014 
2015 	if (elf_version(EV_CURRENT) == EV_NONE) {
2016 		dprintf("libproc ELF version is more recent than libelf\n");
2017 		*perr = G_ELF;
2018 		return (NULL);
2019 	}
2020 
2021 	aout.e_elf = NULL;
2022 	aout.e_fd = -1;
2023 
2024 	core.e_elf = NULL;
2025 	core.e_fd = core_fd;
2026 
2027 	/*
2028 	 * Allocate and initialize a ps_prochandle structure for the core.
2029 	 * There are several key pieces of initialization here:
2030 	 *
2031 	 * 1. The PS_DEAD state flag marks this prochandle as a core file.
2032 	 *    PS_DEAD also thus prevents all operations which require state
2033 	 *    to be PS_STOP from operating on this handle.
2034 	 *
2035 	 * 2. We keep the core file fd in P->asfd since the core file contains
2036 	 *    the remnants of the process address space.
2037 	 *
2038 	 * 3. We set the P->info_valid bit because all information about the
2039 	 *    core is determined by the end of this function; there is no need
2040 	 *    for proc_update_maps() to reload mappings at any later point.
2041 	 *
2042 	 * 4. The read/write ops vector uses our core_rw() function defined
2043 	 *    above to handle i/o requests.
2044 	 */
2045 	if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
2046 		*perr = G_STRANGE;
2047 		return (NULL);
2048 	}
2049 
2050 	(void) memset(P, 0, sizeof (struct ps_prochandle));
2051 	(void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
2052 	P->state = PS_DEAD;
2053 	P->pid = (pid_t)-1;
2054 	P->asfd = core.e_fd;
2055 	P->ctlfd = -1;
2056 	P->statfd = -1;
2057 	P->agentctlfd = -1;
2058 	P->agentstatfd = -1;
2059 	P->zoneroot = NULL;
2060 	P->info_valid = 1;
2061 	Pinit_ops(&P->ops, &P_core_ops);
2062 
2063 	Pinitsym(P);
2064 
2065 	/*
2066 	 * Fstat and open the core file and make sure it is a valid ELF core.
2067 	 */
2068 	if (fstat64(P->asfd, &stbuf) == -1) {
2069 		*perr = G_STRANGE;
2070 		goto err;
2071 	}
2072 
2073 	if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
2074 		goto err;
2075 
2076 	/*
2077 	 * Allocate and initialize a core_info_t to hang off the ps_prochandle
2078 	 * structure.  We keep all core-specific information in this structure.
2079 	 */
2080 	if ((core_info = calloc(1, sizeof (core_info_t))) == NULL) {
2081 		*perr = G_STRANGE;
2082 		goto err;
2083 	}
2084 
2085 	P->data = core_info;
2086 	list_link(&core_info->core_lwp_head, NULL);
2087 	core_info->core_size = stbuf.st_size;
2088 	/*
2089 	 * In the days before adjustable core file content, this was the
2090 	 * default core file content. For new core files, this value will
2091 	 * be overwritten by the NT_CONTENT note section.
2092 	 */
2093 	core_info->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
2094 	    CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
2095 	    CC_CONTENT_SHANON;
2096 
2097 	switch (core.e_hdr.e_ident[EI_CLASS]) {
2098 	case ELFCLASS32:
2099 		core_info->core_dmodel = PR_MODEL_ILP32;
2100 		break;
2101 	case ELFCLASS64:
2102 		core_info->core_dmodel = PR_MODEL_LP64;
2103 		break;
2104 	default:
2105 		*perr = G_FORMAT;
2106 		goto err;
2107 	}
2108 
2109 	/*
2110 	 * Because the core file may be a large file, we can't use libelf to
2111 	 * read the Phdrs.  We use e_phnum and e_phentsize to simplify things.
2112 	 */
2113 	nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;
2114 
2115 	if ((phbuf = malloc(nbytes)) == NULL) {
2116 		*perr = G_STRANGE;
2117 		goto err;
2118 	}
2119 
2120 	if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
2121 		*perr = G_STRANGE;
2122 		free(phbuf);
2123 		goto err;
2124 	}
2125 
2126 	/*
2127 	 * Iterate through the program headers in the core file.
2128 	 * We're interested in two types of Phdrs: PT_NOTE (which
2129 	 * contains a set of saved /proc structures), and PT_LOAD (which
2130 	 * represents a memory mapping from the process's address space).
2131 	 * In the case of PT_NOTE, we're interested in the last PT_NOTE
2132 	 * in the core file; currently the first PT_NOTE (if present)
2133 	 * contains /proc structs in the pre-2.6 unstructured /proc format.
2134 	 */
2135 	for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
2136 		if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
2137 			(void) memcpy(&phdr, php, sizeof (GElf_Phdr));
2138 		else
2139 			core_phdr_to_gelf(php, &phdr);
2140 
2141 		switch (phdr.p_type) {
2142 		case PT_NOTE:
2143 			note_phdr = phdr;
2144 			notes++;
2145 			break;
2146 
2147 		case PT_LOAD:
2148 			if (core_add_mapping(P, &phdr) == -1) {
2149 				*perr = G_STRANGE;
2150 				free(phbuf);
2151 				goto err;
2152 			}
2153 			break;
2154 		}
2155 
2156 		php = (char *)php + core.e_hdr.e_phentsize;
2157 	}
2158 
2159 	free(phbuf);
2160 
2161 	Psort_mappings(P);
2162 
2163 	/*
2164 	 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE
2165 	 * was present, abort.  The core file is either corrupt or too old.
2166 	 */
2167 	if (notes == 0 || notes == 1) {
2168 		*perr = G_NOTE;
2169 		goto err;
2170 	}
2171 
2172 	/*
2173 	 * Advance the seek pointer to the start of the PT_NOTE data
2174 	 */
2175 	if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
2176 		dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
2177 		*perr = G_STRANGE;
2178 		goto err;
2179 	}
2180 
2181 	/*
2182 	 * Now process the PT_NOTE structures.  Each one is preceded by
2183 	 * an Elf{32/64}_Nhdr structure describing its type and size.
2184 	 *
2185 	 *  +--------+
2186 	 *  | header |
2187 	 *  +--------+
2188 	 *  | name   |
2189 	 *  | ...    |
2190 	 *  +--------+
2191 	 *  | desc   |
2192 	 *  | ...    |
2193 	 *  +--------+
2194 	 */
2195 	for (nleft = note_phdr.p_filesz; nleft > 0; ) {
2196 		Elf64_Nhdr nhdr;
2197 		off64_t off, namesz;
2198 
2199 		/*
2200 		 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
2201 		 * as different types, they are both of the same content and
2202 		 * size, so we don't need to worry about 32/64 conversion here.
2203 		 */
2204 		if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
2205 			dprintf("Pgrab_core: failed to read ELF note header\n");
2206 			*perr = G_NOTE;
2207 			goto err;
2208 		}
2209 
2210 		/*
2211 		 * According to the System V ABI, the amount of padding
2212 		 * following the name field should align the description
2213 		 * field on a 4 byte boundary for 32-bit binaries or on an 8
2214 		 * byte boundary for 64-bit binaries. However, this change
2215 		 * was not made correctly during the 64-bit port so all
2216 		 * descriptions can assume only 4-byte alignment. We ignore
2217 		 * the name field and the padding to 4-byte alignment.
2218 		 */
2219 		namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);
2220 		if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
2221 			dprintf("failed to seek past name and padding\n");
2222 			*perr = G_STRANGE;
2223 			goto err;
2224 		}
2225 
2226 		dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
2227 		    nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);
2228 
2229 		off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);
2230 
2231 		/*
2232 		 * Invoke the note handler function from our table
2233 		 */
2234 		if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) {
2235 			if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
2236 				*perr = G_NOTE;
2237 				goto err;
2238 			}
2239 		} else
2240 			(void) note_notsup(P, nhdr.n_descsz);
2241 
2242 		/*
2243 		 * Seek past the current note data to the next Elf_Nhdr
2244 		 */
2245 		if (lseek64(P->asfd, off + nhdr.n_descsz,
2246 		    SEEK_SET) == (off64_t)-1) {
2247 			dprintf("Pgrab_core: failed to seek to next nhdr\n");
2248 			*perr = G_STRANGE;
2249 			goto err;
2250 		}
2251 
2252 		/*
2253 		 * Subtract the size of the header and its data from what
2254 		 * we have left to process.
2255 		 */
2256 		nleft -= sizeof (nhdr) + namesz + nhdr.n_descsz;
2257 	}
2258 
2259 	if (nleft != 0) {
2260 		dprintf("Pgrab_core: note section malformed\n");
2261 		*perr = G_STRANGE;
2262 		goto err;
2263 	}
2264 
2265 	if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
2266 		pagesize = getpagesize();
2267 		dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
2268 	}
2269 
2270 	/*
2271 	 * Locate and label the mappings corresponding to the end of the
2272 	 * heap (MA_BREAK) and the base of the stack (MA_STACK).
2273 	 */
2274 	if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
2275 	    (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
2276 	    P->status.pr_brksize - 1)) != NULL)
2277 		brk_mp->map_pmap.pr_mflags |= MA_BREAK;
2278 	else
2279 		brk_mp = NULL;
2280 
2281 	if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
2282 		stk_mp->map_pmap.pr_mflags |= MA_STACK;
2283 
2284 	/*
2285 	 * At this point, we have enough information to look for the
2286 	 * executable and open it: we have access to the auxv, a psinfo_t,
2287 	 * and the ability to read from mappings provided by the core file.
2288 	 */
2289 	(void) Pfindexec(P, aout_path, core_exec_open, &aout);
2290 	dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
2291 	execname = P->execname ? P->execname : "a.out";
2292 
2293 	/*
2294 	 * Iterate through the sections, looking for the .dynamic and .interp
2295 	 * sections.  If we encounter them, remember their section pointers.
2296 	 */
2297 	for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) {
2298 		char *sname;
2299 
2300 		if ((gelf_getshdr(scn, &shdr) == NULL) ||
2301 		    (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
2302 		    (size_t)shdr.sh_name)) == NULL)
2303 			continue;
2304 
2305 		if (strcmp(sname, ".interp") == 0)
2306 			intp_scn = scn;
2307 	}
2308 
2309 	/*
2310 	 * Get the AT_BASE auxv element.  If this is missing (-1), then
2311 	 * we assume this is a statically-linked executable.
2312 	 */
2313 	base_addr = Pgetauxval(P, AT_BASE);
2314 
2315 	/*
2316 	 * In order to get librtld_db initialized, we'll need to identify
2317 	 * and name the mapping corresponding to the run-time linker.  The
2318 	 * AT_BASE auxv element tells us the address where it was mapped,
2319 	 * and the .interp section of the executable tells us its path.
2320 	 * If for some reason that doesn't pan out, just use ld.so.1.
2321 	 */
2322 	if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2323 	    dp->d_size != 0) {
2324 		dprintf(".interp = <%s>\n", (char *)dp->d_buf);
2325 		interp = dp->d_buf;
2326 
2327 	} else if (base_addr != (uintptr_t)-1L) {
2328 		if (core_info->core_dmodel == PR_MODEL_LP64)
2329 			interp = "/usr/lib/64/ld.so.1";
2330 		else
2331 			interp = "/usr/lib/ld.so.1";
2332 
2333 		dprintf(".interp section is missing or could not be read; "
2334 		    "defaulting to %s\n", interp);
2335 	} else
2336 		dprintf("detected statically linked executable\n");
2337 
2338 	/*
2339 	 * If we have an AT_BASE element, name the mapping at that address
2340 	 * using the interpreter pathname.  Name the corresponding data
2341 	 * mapping after the interpreter as well.
2342 	 */
2343 	if (base_addr != (uintptr_t)-1L) {
2344 		elf_file_t intf;
2345 
2346 		P->map_ldso = core_name_mapping(P, base_addr, interp);
2347 
2348 		if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2349 			rd_loadobj_t rl;
2350 			map_info_t *dmp;
2351 
2352 			rl.rl_base = base_addr;
2353 			dmp = core_find_data(P, intf.e_elf, &rl);
2354 
2355 			if (dmp != NULL) {
2356 				dprintf("renamed data at %p to %s\n",
2357 				    (void *)rl.rl_data_base, interp);
2358 				(void) strncpy(dmp->map_pmap.pr_mapname,
2359 				    interp, PRMAPSZ);
2360 				dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2361 			}
2362 		}
2363 
2364 		core_elf_close(&intf);
2365 	}
2366 
2367 	/*
2368 	 * If we have an AT_ENTRY element, name the mapping at that address
2369 	 * using the special name "a.out" just like /proc does.
2370 	 */
2371 	if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2372 		P->map_exec = core_name_mapping(P, addr, "a.out");
2373 
2374 	/*
2375 	 * If we're a statically linked executable, then just locate the
2376 	 * executable's text and data and name them after the executable.
2377 	 */
2378 	if (base_addr == (uintptr_t)-1L) {
2379 		map_info_t *tmp, *dmp;
2380 		file_info_t *fp;
2381 		rd_loadobj_t rl;
2382 
2383 		if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2384 		    (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2385 			(void) strncpy(tmp->map_pmap.pr_mapname,
2386 			    execname, PRMAPSZ);
2387 			tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2388 			(void) strncpy(dmp->map_pmap.pr_mapname,
2389 			    execname, PRMAPSZ);
2390 			dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2391 		}
2392 
2393 		if ((P->map_exec = tmp) != NULL &&
2394 		    (fp = malloc(sizeof (file_info_t))) != NULL) {
2395 
2396 			(void) memset(fp, 0, sizeof (file_info_t));
2397 
2398 			list_link(fp, &P->file_head);
2399 			tmp->map_file = fp;
2400 			P->num_files++;
2401 
2402 			fp->file_ref = 1;
2403 			fp->file_fd = -1;
2404 
2405 			fp->file_lo = malloc(sizeof (rd_loadobj_t));
2406 			fp->file_lname = strdup(execname);
2407 
2408 			if (fp->file_lo)
2409 				*fp->file_lo = rl;
2410 			if (fp->file_lname)
2411 				fp->file_lbase = basename(fp->file_lname);
2412 			if (fp->file_rname)
2413 				fp->file_rbase = basename(fp->file_rname);
2414 
2415 			(void) strcpy(fp->file_pname,
2416 			    P->mappings[0].map_pmap.pr_mapname);
2417 			fp->file_map = tmp;
2418 
2419 			Pbuild_file_symtab(P, fp);
2420 
2421 			if (dmp != NULL) {
2422 				dmp->map_file = fp;
2423 				fp->file_ref++;
2424 			}
2425 		}
2426 	}
2427 
2428 	core_elf_close(&aout);
2429 
2430 	/*
2431 	 * We now have enough information to initialize librtld_db.
2432 	 * After it warms up, we can iterate through the load object chain
2433 	 * in the core, which will allow us to construct the file info
2434 	 * we need to provide symbol information for the other shared
2435 	 * libraries, and also to fill in the missing mapping names.
2436 	 */
2437 	rd_log(_libproc_debug);
2438 
2439 	if ((P->rap = rd_new(P)) != NULL) {
2440 		(void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2441 		    core_iter_mapping, P);
2442 
2443 		if (core_info->core_errno != 0) {
2444 			errno = core_info->core_errno;
2445 			*perr = G_STRANGE;
2446 			goto err;
2447 		}
2448 	} else
2449 		dprintf("failed to initialize rtld_db agent\n");
2450 
2451 	/*
2452 	 * If there are sections, load them and process the data from any
2453 	 * sections that we can use to annotate the file_info_t's.
2454 	 */
2455 	core_load_shdrs(P, &core);
2456 
2457 	/*
2458 	 * If we previously located a stack or break mapping, and they are
2459 	 * still anonymous, we now assume that they were MAP_ANON mappings.
2460 	 * If brk_mp turns out to now have a name, then the heap is still
2461 	 * sitting at the end of the executable's data+bss mapping: remove
2462 	 * the previous MA_BREAK setting to be consistent with /proc.
2463 	 */
2464 	if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0')
2465 		stk_mp->map_pmap.pr_mflags |= MA_ANON;
2466 	if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0')
2467 		brk_mp->map_pmap.pr_mflags |= MA_ANON;
2468 	else if (brk_mp != NULL)
2469 		brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;
2470 
2471 	*perr = 0;
2472 	return (P);
2473 
2474 err:
2475 	Pfree(P);
2476 	core_elf_close(&aout);
2477 	return (NULL);
2478 }
2479 
2480 /*
2481  * Grab a core file using a pathname.  We just open it and call Pfgrab_core().
2482  */
2483 struct ps_prochandle *
2484 Pgrab_core(const char *core, const char *aout, int gflag, int *perr)
2485 {
2486 	int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
2487 
2488 	if ((fd = open64(core, oflag)) >= 0)
2489 		return (Pfgrab_core(fd, aout, perr));
2490 
2491 	if (errno != ENOENT)
2492 		*perr = G_STRANGE;
2493 	else
2494 		*perr = G_NOCORE;
2495 
2496 	return (NULL);
2497 }
2498