1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/utsname.h> 31 #include <sys/sysmacros.h> 32 33 #include <alloca.h> 34 #include <rtld_db.h> 35 #include <libgen.h> 36 #include <limits.h> 37 #include <string.h> 38 #include <stdlib.h> 39 #include <unistd.h> 40 #include <errno.h> 41 #include <gelf.h> 42 #include <stddef.h> 43 44 #include "Pcontrol.h" 45 #include "P32ton.h" 46 #include "Putil.h" 47 48 /* 49 * Pcore.c - Code to initialize a ps_prochandle from a core dump. We 50 * allocate an additional structure to hold information from the core 51 * file, and attach this to the standard ps_prochandle in place of the 52 * ability to examine /proc/<pid>/ files. 53 */ 54 55 /* 56 * Basic i/o function for reading and writing from the process address space 57 * stored in the core file and associated shared libraries. We compute the 58 * appropriate fd and offsets, and let the provided prw function do the rest. 59 */ 60 static ssize_t 61 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr, 62 ssize_t (*prw)(int, void *, size_t, off64_t)) 63 { 64 ssize_t resid = n; 65 66 while (resid != 0) { 67 map_info_t *mp = Paddr2mptr(P, addr); 68 69 uintptr_t mapoff; 70 ssize_t len; 71 off64_t off; 72 int fd; 73 74 if (mp == NULL) 75 break; /* No mapping for this address */ 76 77 if (mp->map_pmap.pr_mflags & MA_RESERVED1) { 78 if (mp->map_file == NULL || mp->map_file->file_fd < 0) 79 break; /* No file or file not open */ 80 81 fd = mp->map_file->file_fd; 82 } else 83 fd = P->asfd; 84 85 mapoff = addr - mp->map_pmap.pr_vaddr; 86 len = MIN(resid, mp->map_pmap.pr_size - mapoff); 87 off = mp->map_offset + mapoff; 88 89 if ((len = prw(fd, buf, len, off)) <= 0) 90 break; 91 92 resid -= len; 93 addr += len; 94 buf = (char *)buf + len; 95 } 96 97 /* 98 * Important: Be consistent with the behavior of i/o on the as file: 99 * writing to an invalid address yields EIO; reading from an invalid 100 * address falls through to returning success and zero bytes. 101 */ 102 if (resid == n && n != 0 && prw != pread64) { 103 errno = EIO; 104 return (-1); 105 } 106 107 return (n - resid); 108 } 109 110 static ssize_t 111 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr) 112 { 113 return (core_rw(P, buf, n, addr, pread64)); 114 } 115 116 static ssize_t 117 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr) 118 { 119 return (core_rw(P, (void *)buf, n, addr, 120 (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64)); 121 } 122 123 static const ps_rwops_t P_core_ops = { Pread_core, Pwrite_core }; 124 125 /* 126 * Return the lwp_info_t for the given lwpid. If no such lwpid has been 127 * encountered yet, allocate a new structure and return a pointer to it. 128 * Create a list of lwp_info_t structures sorted in decreasing lwp_id order. 129 */ 130 static lwp_info_t * 131 lwpid2info(struct ps_prochandle *P, lwpid_t id) 132 { 133 lwp_info_t *lwp = list_next(&P->core->core_lwp_head); 134 lwp_info_t *next; 135 uint_t i; 136 137 for (i = 0; i < P->core->core_nlwp; i++, lwp = list_next(lwp)) { 138 if (lwp->lwp_id == id) { 139 P->core->core_lwp = lwp; 140 return (lwp); 141 } 142 if (lwp->lwp_id < id) { 143 break; 144 } 145 } 146 147 next = lwp; 148 if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL) 149 return (NULL); 150 151 list_link(lwp, next); 152 lwp->lwp_id = id; 153 154 P->core->core_lwp = lwp; 155 P->core->core_nlwp++; 156 157 return (lwp); 158 } 159 160 /* 161 * The core file itself contains a series of NOTE segments containing saved 162 * structures from /proc at the time the process died. For each note we 163 * comprehend, we define a function to read it in from the core file, 164 * convert it to our native data model if necessary, and store it inside 165 * the ps_prochandle. Each function is invoked by Pfgrab_core() with the 166 * seek pointer on P->asfd positioned appropriately. We populate a table 167 * of pointers to these note functions below. 168 */ 169 170 static int 171 note_pstatus(struct ps_prochandle *P, size_t nbytes) 172 { 173 #ifdef _LP64 174 if (P->core->core_dmodel == PR_MODEL_ILP32) { 175 pstatus32_t ps32; 176 177 if (nbytes < sizeof (pstatus32_t) || 178 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32)) 179 goto err; 180 181 pstatus_32_to_n(&ps32, &P->status); 182 183 } else 184 #endif 185 if (nbytes < sizeof (pstatus_t) || 186 read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t)) 187 goto err; 188 189 P->orig_status = P->status; 190 P->pid = P->status.pr_pid; 191 192 return (0); 193 194 err: 195 dprintf("Pgrab_core: failed to read NT_PSTATUS\n"); 196 return (-1); 197 } 198 199 static int 200 note_lwpstatus(struct ps_prochandle *P, size_t nbytes) 201 { 202 lwp_info_t *lwp; 203 lwpstatus_t lps; 204 205 #ifdef _LP64 206 if (P->core->core_dmodel == PR_MODEL_ILP32) { 207 lwpstatus32_t l32; 208 209 if (nbytes < sizeof (lwpstatus32_t) || 210 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32)) 211 goto err; 212 213 lwpstatus_32_to_n(&l32, &lps); 214 } else 215 #endif 216 if (nbytes < sizeof (lwpstatus_t) || 217 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps)) 218 goto err; 219 220 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) { 221 dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n"); 222 return (-1); 223 } 224 225 /* 226 * Erase a useless and confusing artifact of the kernel implementation: 227 * the lwps which did *not* create the core will show SIGKILL. We can 228 * be assured this is bogus because SIGKILL can't produce core files. 229 */ 230 if (lps.pr_cursig == SIGKILL) 231 lps.pr_cursig = 0; 232 233 (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps)); 234 return (0); 235 236 err: 237 dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n"); 238 return (-1); 239 } 240 241 static int 242 note_psinfo(struct ps_prochandle *P, size_t nbytes) 243 { 244 #ifdef _LP64 245 if (P->core->core_dmodel == PR_MODEL_ILP32) { 246 psinfo32_t ps32; 247 248 if (nbytes < sizeof (psinfo32_t) || 249 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32)) 250 goto err; 251 252 psinfo_32_to_n(&ps32, &P->psinfo); 253 } else 254 #endif 255 if (nbytes < sizeof (psinfo_t) || 256 read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t)) 257 goto err; 258 259 dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname); 260 dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs); 261 dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat); 262 263 return (0); 264 265 err: 266 dprintf("Pgrab_core: failed to read NT_PSINFO\n"); 267 return (-1); 268 } 269 270 static int 271 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes) 272 { 273 lwp_info_t *lwp; 274 lwpsinfo_t lps; 275 276 #ifdef _LP64 277 if (P->core->core_dmodel == PR_MODEL_ILP32) { 278 lwpsinfo32_t l32; 279 280 if (nbytes < sizeof (lwpsinfo32_t) || 281 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32)) 282 goto err; 283 284 lwpsinfo_32_to_n(&l32, &lps); 285 } else 286 #endif 287 if (nbytes < sizeof (lwpsinfo_t) || 288 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps)) 289 goto err; 290 291 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) { 292 dprintf("Pgrab_core: failed to add NT_LWPSINFO\n"); 293 return (-1); 294 } 295 296 (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps)); 297 return (0); 298 299 err: 300 dprintf("Pgrab_core: failed to read NT_LWPSINFO\n"); 301 return (-1); 302 } 303 304 static int 305 note_platform(struct ps_prochandle *P, size_t nbytes) 306 { 307 char *plat; 308 309 if (P->core->core_platform != NULL) 310 return (0); /* Already seen */ 311 312 if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) { 313 if (read(P->asfd, plat, nbytes) != nbytes) { 314 dprintf("Pgrab_core: failed to read NT_PLATFORM\n"); 315 free(plat); 316 return (-1); 317 } 318 plat[nbytes - 1] = '\0'; 319 P->core->core_platform = plat; 320 } 321 322 return (0); 323 } 324 325 static int 326 note_utsname(struct ps_prochandle *P, size_t nbytes) 327 { 328 size_t ubytes = sizeof (struct utsname); 329 struct utsname *utsp; 330 331 if (P->core->core_uts != NULL || nbytes < ubytes) 332 return (0); /* Already seen or bad size */ 333 334 if ((utsp = malloc(ubytes)) == NULL) 335 return (-1); 336 337 if (read(P->asfd, utsp, ubytes) != ubytes) { 338 dprintf("Pgrab_core: failed to read NT_UTSNAME\n"); 339 free(utsp); 340 return (-1); 341 } 342 343 if (_libproc_debug) { 344 dprintf("uts.sysname = \"%s\"\n", utsp->sysname); 345 dprintf("uts.nodename = \"%s\"\n", utsp->nodename); 346 dprintf("uts.release = \"%s\"\n", utsp->release); 347 dprintf("uts.version = \"%s\"\n", utsp->version); 348 dprintf("uts.machine = \"%s\"\n", utsp->machine); 349 } 350 351 P->core->core_uts = utsp; 352 return (0); 353 } 354 355 static int 356 note_content(struct ps_prochandle *P, size_t nbytes) 357 { 358 core_content_t content; 359 360 if (sizeof (P->core->core_content) != nbytes) 361 return (-1); 362 363 if (read(P->asfd, &content, sizeof (content)) != sizeof (content)) 364 return (-1); 365 366 P->core->core_content = content; 367 368 dprintf("core content = %llx\n", content); 369 370 return (0); 371 } 372 373 static int 374 note_cred(struct ps_prochandle *P, size_t nbytes) 375 { 376 prcred_t *pcrp; 377 int ngroups; 378 const size_t min_size = sizeof (prcred_t) - sizeof (gid_t); 379 380 /* 381 * We allow for prcred_t notes that are actually smaller than a 382 * prcred_t since the last member isn't essential if there are 383 * no group memberships. This allows for more flexibility when it 384 * comes to slightly malformed -- but still valid -- notes. 385 */ 386 if (P->core->core_cred != NULL || nbytes < min_size) 387 return (0); /* Already seen or bad size */ 388 389 ngroups = (nbytes - min_size) / sizeof (gid_t); 390 nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t); 391 392 if ((pcrp = malloc(nbytes)) == NULL) 393 return (-1); 394 395 if (read(P->asfd, pcrp, nbytes) != nbytes) { 396 dprintf("Pgrab_core: failed to read NT_PRCRED\n"); 397 free(pcrp); 398 return (-1); 399 } 400 401 if (pcrp->pr_ngroups > ngroups) { 402 dprintf("pr_ngroups = %d; resetting to %d based on note size\n", 403 pcrp->pr_ngroups, ngroups); 404 pcrp->pr_ngroups = ngroups; 405 } 406 407 P->core->core_cred = pcrp; 408 return (0); 409 } 410 411 #if defined(__i386) || defined(__amd64) 412 static int 413 note_ldt(struct ps_prochandle *P, size_t nbytes) 414 { 415 struct ssd *pldt; 416 uint_t nldt; 417 418 if (P->core->core_ldt != NULL || nbytes < sizeof (struct ssd)) 419 return (0); /* Already seen or bad size */ 420 421 nldt = nbytes / sizeof (struct ssd); 422 nbytes = nldt * sizeof (struct ssd); 423 424 if ((pldt = malloc(nbytes)) == NULL) 425 return (-1); 426 427 if (read(P->asfd, pldt, nbytes) != nbytes) { 428 dprintf("Pgrab_core: failed to read NT_LDT\n"); 429 free(pldt); 430 return (-1); 431 } 432 433 P->core->core_ldt = pldt; 434 P->core->core_nldt = nldt; 435 return (0); 436 } 437 #endif /* __i386 */ 438 439 static int 440 note_priv(struct ps_prochandle *P, size_t nbytes) 441 { 442 prpriv_t *pprvp; 443 444 if (P->core->core_priv != NULL || nbytes < sizeof (prpriv_t)) 445 return (0); /* Already seen or bad size */ 446 447 if ((pprvp = malloc(nbytes)) == NULL) 448 return (-1); 449 450 if (read(P->asfd, pprvp, nbytes) != nbytes) { 451 dprintf("Pgrab_core: failed to read NT_PRPRIV\n"); 452 free(pprvp); 453 return (-1); 454 } 455 456 P->core->core_priv = pprvp; 457 P->core->core_priv_size = nbytes; 458 return (0); 459 } 460 461 static int 462 note_priv_info(struct ps_prochandle *P, size_t nbytes) 463 { 464 extern void *__priv_parse_info(); 465 priv_impl_info_t *ppii; 466 467 if (P->core->core_privinfo != NULL || 468 nbytes < sizeof (priv_impl_info_t)) 469 return (0); /* Already seen or bad size */ 470 471 if ((ppii = malloc(nbytes)) == NULL) 472 return (-1); 473 474 if (read(P->asfd, ppii, nbytes) != nbytes || 475 PRIV_IMPL_INFO_SIZE(ppii) != nbytes) { 476 dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n"); 477 free(ppii); 478 return (-1); 479 } 480 481 P->core->core_privinfo = __priv_parse_info(ppii); 482 P->core->core_ppii = ppii; 483 return (0); 484 } 485 486 static int 487 note_zonename(struct ps_prochandle *P, size_t nbytes) 488 { 489 char *zonename; 490 491 if (P->core->core_zonename != NULL) 492 return (0); /* Already seen */ 493 494 if (nbytes != 0) { 495 if ((zonename = malloc(nbytes)) == NULL) 496 return (-1); 497 if (read(P->asfd, zonename, nbytes) != nbytes) { 498 dprintf("Pgrab_core: failed to read NT_ZONENAME\n"); 499 free(zonename); 500 return (-1); 501 } 502 zonename[nbytes - 1] = '\0'; 503 P->core->core_zonename = zonename; 504 } 505 506 return (0); 507 } 508 509 static int 510 note_auxv(struct ps_prochandle *P, size_t nbytes) 511 { 512 size_t n, i; 513 514 #ifdef _LP64 515 if (P->core->core_dmodel == PR_MODEL_ILP32) { 516 auxv32_t *a32; 517 518 n = nbytes / sizeof (auxv32_t); 519 nbytes = n * sizeof (auxv32_t); 520 a32 = alloca(nbytes); 521 522 if (read(P->asfd, a32, nbytes) != nbytes) { 523 dprintf("Pgrab_core: failed to read NT_AUXV\n"); 524 return (-1); 525 } 526 527 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL) 528 return (-1); 529 530 for (i = 0; i < n; i++) 531 auxv_32_to_n(&a32[i], &P->auxv[i]); 532 533 } else { 534 #endif 535 n = nbytes / sizeof (auxv_t); 536 nbytes = n * sizeof (auxv_t); 537 538 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL) 539 return (-1); 540 541 if (read(P->asfd, P->auxv, nbytes) != nbytes) { 542 free(P->auxv); 543 P->auxv = NULL; 544 return (-1); 545 } 546 #ifdef _LP64 547 } 548 #endif 549 550 if (_libproc_debug) { 551 for (i = 0; i < n; i++) { 552 dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i, 553 P->auxv[i].a_type, P->auxv[i].a_un.a_val); 554 } 555 } 556 557 /* 558 * Defensive coding for loops which depend upon the auxv array being 559 * terminated by an AT_NULL element; in each case, we've allocated 560 * P->auxv to have an additional element which we force to be AT_NULL. 561 */ 562 P->auxv[n].a_type = AT_NULL; 563 P->auxv[n].a_un.a_val = 0L; 564 P->nauxv = (int)n; 565 566 return (0); 567 } 568 569 #ifdef __sparc 570 static int 571 note_xreg(struct ps_prochandle *P, size_t nbytes) 572 { 573 lwp_info_t *lwp = P->core->core_lwp; 574 size_t xbytes = sizeof (prxregset_t); 575 prxregset_t *xregs; 576 577 if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes) 578 return (0); /* No lwp yet, already seen, or bad size */ 579 580 if ((xregs = malloc(xbytes)) == NULL) 581 return (-1); 582 583 if (read(P->asfd, xregs, xbytes) != xbytes) { 584 dprintf("Pgrab_core: failed to read NT_PRXREG\n"); 585 free(xregs); 586 return (-1); 587 } 588 589 lwp->lwp_xregs = xregs; 590 return (0); 591 } 592 593 static int 594 note_gwindows(struct ps_prochandle *P, size_t nbytes) 595 { 596 lwp_info_t *lwp = P->core->core_lwp; 597 598 if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0) 599 return (0); /* No lwp yet or already seen or no data */ 600 601 if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL) 602 return (-1); 603 604 /* 605 * Since the amount of gwindows data varies with how many windows were 606 * actually saved, we just read up to the minimum of the note size 607 * and the size of the gwindows_t type. It doesn't matter if the read 608 * fails since we have to zero out gwindows first anyway. 609 */ 610 #ifdef _LP64 611 if (P->core->core_dmodel == PR_MODEL_ILP32) { 612 gwindows32_t g32; 613 614 (void) memset(&g32, 0, sizeof (g32)); 615 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32))); 616 gwindows_32_to_n(&g32, lwp->lwp_gwins); 617 618 } else { 619 #endif 620 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t)); 621 (void) read(P->asfd, lwp->lwp_gwins, 622 MIN(nbytes, sizeof (gwindows_t))); 623 #ifdef _LP64 624 } 625 #endif 626 return (0); 627 } 628 629 #ifdef __sparcv9 630 static int 631 note_asrs(struct ps_prochandle *P, size_t nbytes) 632 { 633 lwp_info_t *lwp = P->core->core_lwp; 634 int64_t *asrs; 635 636 if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t)) 637 return (0); /* No lwp yet, already seen, or bad size */ 638 639 if ((asrs = malloc(sizeof (asrset_t))) == NULL) 640 return (-1); 641 642 if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) { 643 dprintf("Pgrab_core: failed to read NT_ASRS\n"); 644 free(asrs); 645 return (-1); 646 } 647 648 lwp->lwp_asrs = asrs; 649 return (0); 650 } 651 #endif /* __sparcv9 */ 652 #endif /* __sparc */ 653 654 /*ARGSUSED*/ 655 static int 656 note_notsup(struct ps_prochandle *P, size_t nbytes) 657 { 658 dprintf("skipping unsupported note type\n"); 659 return (0); 660 } 661 662 /* 663 * Populate a table of function pointers indexed by Note type with our 664 * functions to process each type of core file note: 665 */ 666 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = { 667 note_notsup, /* 0 unassigned */ 668 note_notsup, /* 1 NT_PRSTATUS (old) */ 669 note_notsup, /* 2 NT_PRFPREG (old) */ 670 note_notsup, /* 3 NT_PRPSINFO (old) */ 671 #ifdef __sparc 672 note_xreg, /* 4 NT_PRXREG */ 673 #else 674 note_notsup, /* 4 NT_PRXREG */ 675 #endif 676 note_platform, /* 5 NT_PLATFORM */ 677 note_auxv, /* 6 NT_AUXV */ 678 #ifdef __sparc 679 note_gwindows, /* 7 NT_GWINDOWS */ 680 #ifdef __sparcv9 681 note_asrs, /* 8 NT_ASRS */ 682 #else 683 note_notsup, /* 8 NT_ASRS */ 684 #endif 685 #else 686 note_notsup, /* 7 NT_GWINDOWS */ 687 note_notsup, /* 8 NT_ASRS */ 688 #endif 689 #if defined(__i386) || defined(__amd64) 690 note_ldt, /* 9 NT_LDT */ 691 #else 692 note_notsup, /* 9 NT_LDT */ 693 #endif 694 note_pstatus, /* 10 NT_PSTATUS */ 695 note_notsup, /* 11 unassigned */ 696 note_notsup, /* 12 unassigned */ 697 note_psinfo, /* 13 NT_PSINFO */ 698 note_cred, /* 14 NT_PRCRED */ 699 note_utsname, /* 15 NT_UTSNAME */ 700 note_lwpstatus, /* 16 NT_LWPSTATUS */ 701 note_lwpsinfo, /* 17 NT_LWPSINFO */ 702 note_priv, /* 18 NT_PRPRIV */ 703 note_priv_info, /* 19 NT_PRPRIVINFO */ 704 note_content, /* 20 NT_CONTENT */ 705 note_zonename, /* 21 NT_ZONENAME */ 706 }; 707 708 /* 709 * Add information on the address space mapping described by the given 710 * PT_LOAD program header. We fill in more information on the mapping later. 711 */ 712 static int 713 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php) 714 { 715 int err = 0; 716 prmap_t pmap; 717 718 dprintf("mapping base %llx filesz %llu memsz %llu offset %llu\n", 719 (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz, 720 (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset); 721 722 pmap.pr_vaddr = (uintptr_t)php->p_vaddr; 723 pmap.pr_size = php->p_memsz; 724 725 /* 726 * If Pgcore() or elfcore() fail to write a mapping, they will set 727 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us. 728 */ 729 if (php->p_flags & PF_SUNW_FAILURE) { 730 (void) pread64(P->asfd, &err, 731 sizeof (err), (off64_t)php->p_offset); 732 733 Perror_printf(P, "core file data for mapping at %p not saved: " 734 "%s\n", (void *)(uintptr_t)php->p_vaddr, strerror(err)); 735 dprintf("core file data for mapping at %p not saved: %s\n", 736 (void *)(uintptr_t)php->p_vaddr, strerror(err)); 737 738 } else if (php->p_filesz != 0 && php->p_offset >= P->core->core_size) { 739 Perror_printf(P, "core file may be corrupt -- data for mapping " 740 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr); 741 dprintf("core file may be corrupt -- data for mapping " 742 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr); 743 } 744 745 /* 746 * The mapping name and offset will hopefully be filled in 747 * by the librtld_db agent. Unfortunately, if it isn't a 748 * shared library mapping, this information is gone forever. 749 */ 750 pmap.pr_mapname[0] = '\0'; 751 pmap.pr_offset = 0; 752 753 pmap.pr_mflags = 0; 754 if (php->p_flags & PF_R) 755 pmap.pr_mflags |= MA_READ; 756 if (php->p_flags & PF_W) 757 pmap.pr_mflags |= MA_WRITE; 758 if (php->p_flags & PF_X) 759 pmap.pr_mflags |= MA_EXEC; 760 761 if (php->p_filesz == 0) 762 pmap.pr_mflags |= MA_RESERVED1; 763 764 /* 765 * At the time of adding this mapping, we just zero the pagesize. 766 * Once we've processed more of the core file, we'll have the 767 * pagesize from the auxv's AT_PAGESZ element and we can fill this in. 768 */ 769 pmap.pr_pagesize = 0; 770 771 /* 772 * Unfortunately whether or not the mapping was a System V 773 * shared memory segment is lost. We use -1 to mark it as not shm. 774 */ 775 pmap.pr_shmid = -1; 776 777 return (Padd_mapping(P, php->p_offset, NULL, &pmap)); 778 } 779 780 /* 781 * Given a virtual address, name the mapping at that address using the 782 * specified name, and return the map_info_t pointer. 783 */ 784 static map_info_t * 785 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name) 786 { 787 map_info_t *mp = Paddr2mptr(P, addr); 788 789 if (mp != NULL) { 790 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ); 791 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 792 } 793 794 return (mp); 795 } 796 797 /* 798 * libproc uses libelf for all of its symbol table manipulation. This function 799 * takes a symbol table and string table from a core file and places them 800 * in a memory backed elf file. 801 */ 802 static void 803 fake_up_symtab(struct ps_prochandle *P, GElf_Ehdr *ehdr, 804 GElf_Shdr *symtab, GElf_Shdr *strtab) 805 { 806 size_t size; 807 off64_t off, base; 808 map_info_t *mp; 809 file_info_t *fp; 810 Elf_Scn *scn; 811 Elf_Data *data; 812 813 if (symtab->sh_addr == 0 || 814 (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL || 815 (fp = mp->map_file) == NULL || 816 fp->file_symtab.sym_data != NULL) 817 return; 818 819 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 820 struct { 821 Elf32_Ehdr ehdr; 822 Elf32_Shdr shdr[3]; 823 char data[1]; 824 } *b; 825 826 base = sizeof (b->ehdr) + sizeof (b->shdr); 827 size = base + symtab->sh_size + strtab->sh_size; 828 829 if ((b = calloc(1, size)) == NULL) 830 return; 831 832 (void) memcpy(&b->ehdr, ehdr, offsetof(GElf_Ehdr, e_entry)); 833 b->ehdr.e_ehsize = sizeof (b->ehdr); 834 b->ehdr.e_shoff = sizeof (b->ehdr); 835 b->ehdr.e_shentsize = sizeof (b->shdr[0]); 836 b->ehdr.e_shnum = 3; 837 off = 0; 838 839 b->shdr[1].sh_size = symtab->sh_size; 840 b->shdr[1].sh_type = SHT_SYMTAB; 841 b->shdr[1].sh_offset = off + base; 842 b->shdr[1].sh_entsize = sizeof (Elf32_Sym); 843 b->shdr[1].sh_link = 2; 844 b->shdr[1].sh_info = symtab->sh_info; 845 b->shdr[1].sh_addralign = symtab->sh_addralign; 846 847 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size, 848 symtab->sh_offset) != b->shdr[1].sh_size) { 849 free(b); 850 return; 851 } 852 853 off += b->shdr[1].sh_size; 854 855 b->shdr[2].sh_flags = SHF_STRINGS; 856 b->shdr[2].sh_size = strtab->sh_size; 857 b->shdr[2].sh_type = SHT_STRTAB; 858 b->shdr[2].sh_offset = off + base; 859 b->shdr[2].sh_info = strtab->sh_info; 860 b->shdr[2].sh_addralign = 1; 861 862 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size, 863 strtab->sh_offset) != b->shdr[2].sh_size) { 864 free(b); 865 return; 866 } 867 868 off += b->shdr[2].sh_size; 869 870 fp->file_symtab.sym_elf = elf_memory((char *)b, size); 871 if (fp->file_symtab.sym_elf == NULL) { 872 free(b); 873 return; 874 } 875 876 fp->file_symtab.sym_elfmem = b; 877 #ifdef _LP64 878 } else { 879 struct { 880 Elf64_Ehdr ehdr; 881 Elf64_Shdr shdr[3]; 882 char data[1]; 883 } *b; 884 885 base = sizeof (b->ehdr) + sizeof (b->shdr); 886 size = base + symtab->sh_size + strtab->sh_size; 887 888 if ((b = calloc(1, size)) == NULL) 889 return; 890 891 (void) memcpy(&b->ehdr, ehdr, offsetof(GElf_Ehdr, e_entry)); 892 b->ehdr.e_ehsize = sizeof (b->ehdr); 893 b->ehdr.e_shoff = sizeof (b->ehdr); 894 b->ehdr.e_shentsize = sizeof (b->shdr[0]); 895 b->ehdr.e_shnum = 3; 896 off = 0; 897 898 b->shdr[1].sh_size = symtab->sh_size; 899 b->shdr[1].sh_type = SHT_SYMTAB; 900 b->shdr[1].sh_offset = off + base; 901 b->shdr[1].sh_entsize = sizeof (Elf64_Sym); 902 b->shdr[1].sh_link = 2; 903 b->shdr[1].sh_info = symtab->sh_info; 904 b->shdr[1].sh_addralign = symtab->sh_addralign; 905 906 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size, 907 symtab->sh_offset) != b->shdr[1].sh_size) { 908 free(b); 909 return; 910 } 911 912 off += b->shdr[1].sh_size; 913 914 b->shdr[2].sh_flags = SHF_STRINGS; 915 b->shdr[2].sh_size = strtab->sh_size; 916 b->shdr[2].sh_type = SHT_STRTAB; 917 b->shdr[2].sh_offset = off + base; 918 b->shdr[2].sh_info = strtab->sh_info; 919 b->shdr[2].sh_addralign = 1; 920 921 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size, 922 strtab->sh_offset) != b->shdr[2].sh_size) { 923 free(b); 924 return; 925 } 926 927 off += b->shdr[2].sh_size; 928 929 fp->file_symtab.sym_elf = elf_memory((char *)b, size); 930 if (fp->file_symtab.sym_elf == NULL) { 931 free(b); 932 return; 933 } 934 935 fp->file_symtab.sym_elfmem = b; 936 #endif 937 } 938 939 if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL || 940 (fp->file_symtab.sym_data = elf_getdata(scn, NULL)) == NULL || 941 (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL || 942 (data = elf_getdata(scn, NULL)) == NULL) 943 goto err; 944 945 fp->file_symtab.sym_strs = data->d_buf; 946 fp->file_symtab.sym_strsz = data->d_size; 947 fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize; 948 fp->file_symtab.sym_hdr = *symtab; 949 fp->file_symtab.sym_strhdr = *strtab; 950 951 optimize_symtab(&fp->file_symtab); 952 953 return; 954 err: 955 (void) elf_end(fp->file_symtab.sym_elf); 956 free(fp->file_symtab.sym_elfmem); 957 fp->file_symtab.sym_elf = NULL; 958 fp->file_symtab.sym_elfmem = NULL; 959 } 960 961 static void 962 core_ehdr_to_gelf(const Elf32_Ehdr *src, GElf_Ehdr *dst) 963 { 964 (void) memcpy(dst->e_ident, src->e_ident, EI_NIDENT); 965 dst->e_type = src->e_type; 966 dst->e_machine = src->e_machine; 967 dst->e_version = src->e_version; 968 dst->e_entry = (Elf64_Addr)src->e_entry; 969 dst->e_phoff = (Elf64_Off)src->e_phoff; 970 dst->e_shoff = (Elf64_Off)src->e_shoff; 971 dst->e_flags = src->e_flags; 972 dst->e_ehsize = src->e_ehsize; 973 dst->e_phentsize = src->e_phentsize; 974 dst->e_phnum = src->e_phnum; 975 dst->e_shentsize = src->e_shentsize; 976 dst->e_shnum = src->e_shnum; 977 dst->e_shstrndx = src->e_shstrndx; 978 } 979 980 static void 981 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst) 982 { 983 dst->p_type = src->p_type; 984 dst->p_flags = src->p_flags; 985 dst->p_offset = (Elf64_Off)src->p_offset; 986 dst->p_vaddr = (Elf64_Addr)src->p_vaddr; 987 dst->p_paddr = (Elf64_Addr)src->p_paddr; 988 dst->p_filesz = (Elf64_Xword)src->p_filesz; 989 dst->p_memsz = (Elf64_Xword)src->p_memsz; 990 dst->p_align = (Elf64_Xword)src->p_align; 991 } 992 993 static void 994 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst) 995 { 996 dst->sh_name = src->sh_name; 997 dst->sh_type = src->sh_type; 998 dst->sh_flags = (Elf64_Xword)src->sh_flags; 999 dst->sh_addr = (Elf64_Addr)src->sh_addr; 1000 dst->sh_offset = (Elf64_Off)src->sh_offset; 1001 dst->sh_size = (Elf64_Xword)src->sh_size; 1002 dst->sh_link = src->sh_link; 1003 dst->sh_info = src->sh_info; 1004 dst->sh_addralign = (Elf64_Xword)src->sh_addralign; 1005 dst->sh_entsize = (Elf64_Xword)src->sh_entsize; 1006 } 1007 1008 /* 1009 * Perform elf_begin on efp->e_fd and verify the ELF file's type and class. 1010 */ 1011 static int 1012 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr) 1013 { 1014 #ifdef _BIG_ENDIAN 1015 uchar_t order = ELFDATA2MSB; 1016 #else 1017 uchar_t order = ELFDATA2LSB; 1018 #endif 1019 Elf32_Ehdr e32; 1020 int is_noelf = -1; 1021 int isa_err = 0; 1022 1023 /* 1024 * Because 32-bit libelf cannot deal with large files, we need to read, 1025 * check, and convert the file header manually in case type == ET_CORE. 1026 */ 1027 if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) { 1028 if (perr != NULL) 1029 *perr = G_FORMAT; 1030 goto err; 1031 } 1032 if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 || 1033 e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) || 1034 e32.e_version != EV_CURRENT) { 1035 if (perr != NULL) { 1036 if (is_noelf == 0 && isa_err) { 1037 *perr = G_ISAINVAL; 1038 } else { 1039 *perr = G_FORMAT; 1040 } 1041 } 1042 goto err; 1043 } 1044 1045 /* 1046 * If the file is 64-bit and we are 32-bit, fail with G_LP64. If the 1047 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr. 1048 * Otherwise, the file is 32-bit, so convert e32 to a GElf_Ehdr. 1049 */ 1050 if (e32.e_ident[EI_CLASS] == ELFCLASS64) { 1051 #ifdef _LP64 1052 if (pread64(efp->e_fd, &efp->e_hdr, 1053 sizeof (GElf_Ehdr), 0) != sizeof (GElf_Ehdr)) { 1054 if (perr != NULL) 1055 *perr = G_FORMAT; 1056 goto err; 1057 } 1058 #else /* _LP64 */ 1059 if (perr != NULL) 1060 *perr = G_LP64; 1061 goto err; 1062 #endif /* _LP64 */ 1063 } else 1064 core_ehdr_to_gelf(&e32, &efp->e_hdr); 1065 1066 /* 1067 * The libelf implementation was never ported to be large-file aware. 1068 * This is typically not a problem for your average executable or 1069 * shared library, but a large 32-bit core file can exceed 2GB in size. 1070 * So if type is ET_CORE, we don't bother doing elf_begin; the code 1071 * in Pfgrab_core() below will do its own i/o and struct conversion. 1072 */ 1073 1074 if (type == ET_CORE) { 1075 efp->e_elf = NULL; 1076 return (0); 1077 } 1078 1079 if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) { 1080 if (perr != NULL) 1081 *perr = G_ELF; 1082 goto err; 1083 } 1084 1085 return (0); 1086 1087 err: 1088 efp->e_elf = NULL; 1089 return (-1); 1090 } 1091 1092 /* 1093 * Open the specified file and then do a core_elf_fdopen on it. 1094 */ 1095 static int 1096 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr) 1097 { 1098 (void) memset(efp, 0, sizeof (elf_file_t)); 1099 1100 if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) { 1101 if (core_elf_fdopen(efp, type, perr) == 0) 1102 return (0); 1103 1104 (void) close(efp->e_fd); 1105 efp->e_fd = -1; 1106 } 1107 1108 return (-1); 1109 } 1110 1111 /* 1112 * Close the ELF handle and file descriptor. 1113 */ 1114 static void 1115 core_elf_close(elf_file_t *efp) 1116 { 1117 if (efp->e_elf != NULL) { 1118 (void) elf_end(efp->e_elf); 1119 efp->e_elf = NULL; 1120 } 1121 1122 if (efp->e_fd != -1) { 1123 (void) close(efp->e_fd); 1124 efp->e_fd = -1; 1125 } 1126 } 1127 1128 /* 1129 * Given an ELF file for a statically linked executable, locate the likely 1130 * primary text section and fill in rl_base with its virtual address. 1131 */ 1132 static map_info_t * 1133 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp) 1134 { 1135 GElf_Ehdr ehdr; 1136 GElf_Phdr phdr; 1137 uint_t i; 1138 1139 if (gelf_getehdr(elf, &ehdr) != NULL) { 1140 for (i = 0; i < ehdr.e_phnum; i++) { 1141 if (gelf_getphdr(elf, i, &phdr) != NULL && 1142 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) { 1143 rlp->rl_base = phdr.p_vaddr; 1144 return (Paddr2mptr(P, rlp->rl_base)); 1145 } 1146 } 1147 } 1148 1149 return (NULL); 1150 } 1151 1152 /* 1153 * Given an ELF file and the librtld_db structure corresponding to its primary 1154 * text mapping, deduce where its data segment was loaded and fill in 1155 * rl_data_base and prmap_t.pr_offset accordingly. 1156 */ 1157 static map_info_t * 1158 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp) 1159 { 1160 GElf_Ehdr ehdr; 1161 GElf_Phdr phdr; 1162 1163 map_info_t *mp; 1164 uint_t i, pagemask; 1165 1166 rlp->rl_data_base = NULL; 1167 1168 /* 1169 * Find the first loadable, writeable Phdr and compute rl_data_base 1170 * as the virtual address at which is was loaded. 1171 */ 1172 if (gelf_getehdr(elf, &ehdr) != NULL) { 1173 for (i = 0; i < ehdr.e_phnum; i++) { 1174 if (gelf_getphdr(elf, i, &phdr) != NULL && 1175 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) { 1176 1177 rlp->rl_data_base = phdr.p_vaddr; 1178 if (ehdr.e_type == ET_DYN) 1179 rlp->rl_data_base += rlp->rl_base; 1180 break; 1181 } 1182 } 1183 } 1184 1185 /* 1186 * If we didn't find an appropriate phdr or if the address we 1187 * computed has no mapping, return NULL. 1188 */ 1189 if (rlp->rl_data_base == NULL || 1190 (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL) 1191 return (NULL); 1192 1193 /* 1194 * It wouldn't be procfs-related code if we didn't make use of 1195 * unclean knowledge of segvn, even in userland ... the prmap_t's 1196 * pr_offset field will be the segvn offset from mmap(2)ing the 1197 * data section, which will be the file offset & PAGEMASK. 1198 */ 1199 pagemask = ~(mp->map_pmap.pr_pagesize - 1); 1200 mp->map_pmap.pr_offset = phdr.p_offset & pagemask; 1201 1202 return (mp); 1203 } 1204 1205 /* 1206 * Librtld_db agent callback for iterating over load object mappings. 1207 * For each load object, we allocate a new file_info_t, perform naming, 1208 * and attempt to construct a symbol table for the load object. 1209 */ 1210 static int 1211 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P) 1212 { 1213 char lname[PATH_MAX]; 1214 file_info_t *fp; 1215 map_info_t *mp; 1216 1217 if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) { 1218 dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr); 1219 return (1); /* Keep going; forget this if we can't get a name */ 1220 } 1221 1222 dprintf("rd_loadobj name = \"%s\" rl_base = %p\n", 1223 lname, (void *)rlp->rl_base); 1224 1225 if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) { 1226 dprintf("no mapping for %p\n", (void *)rlp->rl_base); 1227 return (1); /* No mapping; advance to next mapping */ 1228 } 1229 1230 if ((fp = mp->map_file) == NULL) { 1231 if ((fp = malloc(sizeof (file_info_t))) == NULL) { 1232 P->core->core_errno = errno; 1233 dprintf("failed to malloc mapping data\n"); 1234 return (0); /* Abort */ 1235 } 1236 1237 (void) memset(fp, 0, sizeof (file_info_t)); 1238 1239 list_link(fp, &P->file_head); 1240 mp->map_file = fp; 1241 P->num_files++; 1242 1243 fp->file_ref = 1; 1244 fp->file_fd = -1; 1245 } 1246 1247 if ((fp->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) { 1248 P->core->core_errno = errno; 1249 dprintf("failed to malloc mapping data\n"); 1250 return (0); /* Abort */ 1251 } 1252 1253 *fp->file_lo = *rlp; 1254 1255 if (fp->file_lname == NULL && 1256 strcmp(mp->map_pmap.pr_mapname, "a.out") == 0) { 1257 /* 1258 * Naming dance part 1: if the file_info_t is unnamed and 1259 * it represents the main executable, name it after the 1260 * execname. 1261 */ 1262 fp->file_lname = P->execname ? 1263 strdup(P->execname) : strdup("a.out"); 1264 } 1265 1266 if (lname[0] != '\0') { 1267 /* 1268 * Naming dance part 2: if we got a name from librtld_db, then 1269 * copy this name to the prmap_t if it is unnamed. If the 1270 * file_info_t is unnamed, name it after the lname. 1271 */ 1272 if (mp->map_pmap.pr_mapname[0] == '\0') { 1273 (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ); 1274 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 1275 } 1276 1277 if (fp->file_lname == NULL) 1278 fp->file_lname = strdup(lname); 1279 1280 } else if (fp->file_lname == NULL && 1281 mp->map_pmap.pr_mapname[0] != '\0') { 1282 /* 1283 * Naming dance part 3: if the mapping is named and the 1284 * file_info_t is not, name the file after the mapping. 1285 */ 1286 fp->file_lname = strdup(mp->map_pmap.pr_mapname); 1287 } 1288 1289 if (fp->file_lname != NULL) 1290 fp->file_lbase = basename(fp->file_lname); 1291 1292 /* 1293 * Associate the file and the mapping, and attempt to build 1294 * a symbol table for this file. 1295 */ 1296 (void) strcpy(fp->file_pname, mp->map_pmap.pr_mapname); 1297 fp->file_map = mp; 1298 1299 Pbuild_file_symtab(P, fp); 1300 1301 if (fp->file_elf == NULL) 1302 return (1); /* No symbol table; advance to next mapping */ 1303 1304 /* 1305 * Locate the start of a data segment associated with this file, 1306 * name it after the file, and establish the mp->map_file link: 1307 */ 1308 if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) { 1309 dprintf("found data for %s at %p (pr_offset 0x%llx)\n", 1310 fp->file_pname, (void *)fp->file_lo->rl_data_base, 1311 mp->map_pmap.pr_offset); 1312 1313 for (; mp < P->mappings + P->map_count; mp++) { 1314 if (mp->map_pmap.pr_vaddr > fp->file_lo->rl_bend) 1315 break; 1316 if (mp->map_file == NULL) { 1317 mp->map_file = fp; 1318 fp->file_ref++; 1319 } 1320 1321 if (!(mp->map_pmap.pr_mflags & MA_BREAK)) 1322 (void) strcpy(mp->map_pmap.pr_mapname, 1323 fp->file_pname); 1324 } 1325 } 1326 1327 return (1); /* Advance to next mapping */ 1328 } 1329 1330 /* 1331 * Callback function for Pfindexec(). In order to confirm a given pathname, 1332 * we verify that we can open it as an ELF file of type ET_EXEC. 1333 */ 1334 static int 1335 core_exec_open(const char *path, void *efp) 1336 { 1337 return (core_elf_open(efp, path, ET_EXEC, NULL) == 0); 1338 } 1339 1340 /* 1341 * Attempt to load any section headers found in the core file. If present, 1342 * this will refer to non-loadable data added to the core file by the kernel 1343 * based on coreadm(1M) settings, including CTF data and the symbol table. 1344 */ 1345 static void 1346 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp) 1347 { 1348 GElf_Shdr *shp, *shdrs = NULL; 1349 char *shstrtab = NULL; 1350 ulong_t shstrtabsz; 1351 const char *name; 1352 map_info_t *mp; 1353 1354 size_t nbytes; 1355 void *buf; 1356 int i; 1357 1358 if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) { 1359 dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n", 1360 (uint_t)efp->e_hdr.e_shstrndx, (uint_t)efp->e_hdr.e_shnum); 1361 return; 1362 } 1363 1364 /* 1365 * Read the section header table from the core file and then iterate 1366 * over the section headers, converting each to a GElf_Shdr. 1367 */ 1368 shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr)); 1369 nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize; 1370 buf = malloc(nbytes); 1371 1372 if (shdrs == NULL || buf == NULL) { 1373 dprintf("failed to malloc %u section headers: %s\n", 1374 (uint_t)efp->e_hdr.e_shnum, strerror(errno)); 1375 free(buf); 1376 goto out; 1377 } 1378 1379 if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) { 1380 dprintf("failed to read section headers at off %lld: %s\n", 1381 (longlong_t)efp->e_hdr.e_shoff, strerror(errno)); 1382 free(buf); 1383 goto out; 1384 } 1385 1386 for (i = 0; i < efp->e_hdr.e_shnum; i++) { 1387 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i; 1388 1389 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) 1390 core_shdr_to_gelf(p, &shdrs[i]); 1391 else 1392 (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr)); 1393 } 1394 1395 free(buf); 1396 buf = NULL; 1397 1398 /* 1399 * Read the .shstrtab section from the core file, terminating it with 1400 * an extra \0 so that a corrupt section will not cause us to die. 1401 */ 1402 shp = &shdrs[efp->e_hdr.e_shstrndx]; 1403 shstrtabsz = shp->sh_size; 1404 1405 if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) { 1406 dprintf("failed to allocate %lu bytes for shstrtab\n", 1407 (ulong_t)shstrtabsz); 1408 goto out; 1409 } 1410 1411 if (pread64(efp->e_fd, shstrtab, shstrtabsz, 1412 shp->sh_offset) != shstrtabsz) { 1413 dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n", 1414 shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno)); 1415 goto out; 1416 } 1417 1418 shstrtab[shstrtabsz] = '\0'; 1419 1420 /* 1421 * Now iterate over each section in the section header table, locating 1422 * sections of interest and initializing more of the ps_prochandle. 1423 */ 1424 for (i = 0; i < efp->e_hdr.e_shnum; i++) { 1425 shp = &shdrs[i]; 1426 name = shstrtab + shp->sh_name; 1427 1428 if (shp->sh_name >= shstrtabsz) { 1429 dprintf("skipping section [%d]: corrupt sh_name\n", i); 1430 continue; 1431 } 1432 1433 if (shp->sh_link >= efp->e_hdr.e_shnum) { 1434 dprintf("skipping section [%d]: corrupt sh_link\n", i); 1435 continue; 1436 } 1437 1438 dprintf("found section header %s (sh_addr 0x%llx)\n", 1439 name, (u_longlong_t)shp->sh_addr); 1440 1441 if (strcmp(name, ".SUNW_ctf") == 0) { 1442 if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) { 1443 dprintf("no map at addr 0x%llx for %s [%d]\n", 1444 (u_longlong_t)shp->sh_addr, name, i); 1445 continue; 1446 } 1447 1448 if (mp->map_file == NULL || 1449 mp->map_file->file_ctf_buf != NULL) { 1450 dprintf("no mapping file or duplicate buffer " 1451 "for %s [%d]\n", name, i); 1452 continue; 1453 } 1454 1455 if ((buf = malloc(shp->sh_size)) == NULL || 1456 pread64(efp->e_fd, buf, shp->sh_size, 1457 shp->sh_offset) != shp->sh_size) { 1458 dprintf("skipping section %s [%d]: %s\n", 1459 name, i, strerror(errno)); 1460 free(buf); 1461 continue; 1462 } 1463 1464 mp->map_file->file_ctf_size = shp->sh_size; 1465 mp->map_file->file_ctf_buf = buf; 1466 1467 if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM) 1468 mp->map_file->file_ctf_dyn = 1; 1469 1470 } else if (strcmp(name, ".symtab") == 0) { 1471 fake_up_symtab(P, &efp->e_hdr, 1472 shp, &shdrs[shp->sh_link]); 1473 } 1474 } 1475 out: 1476 free(shstrtab); 1477 free(shdrs); 1478 } 1479 1480 /* 1481 * Main engine for core file initialization: given an fd for the core file 1482 * and an optional pathname, construct the ps_prochandle. The aout_path can 1483 * either be a suggested executable pathname, or a suggested directory to 1484 * use as a possible current working directory. 1485 */ 1486 struct ps_prochandle * 1487 Pfgrab_core(int core_fd, const char *aout_path, int *perr) 1488 { 1489 struct ps_prochandle *P; 1490 map_info_t *stk_mp, *brk_mp; 1491 const char *execname; 1492 char *interp; 1493 int i, notes, pagesize; 1494 uintptr_t addr, base_addr; 1495 struct stat64 stbuf; 1496 void *phbuf, *php; 1497 size_t nbytes; 1498 1499 elf_file_t aout; 1500 elf_file_t core; 1501 1502 Elf_Scn *scn, *intp_scn = NULL; 1503 Elf_Data *dp; 1504 1505 GElf_Phdr phdr, note_phdr; 1506 GElf_Shdr shdr; 1507 GElf_Xword nleft; 1508 1509 if (elf_version(EV_CURRENT) == EV_NONE) { 1510 dprintf("libproc ELF version is more recent than libelf\n"); 1511 *perr = G_ELF; 1512 return (NULL); 1513 } 1514 1515 aout.e_elf = NULL; 1516 aout.e_fd = -1; 1517 1518 core.e_elf = NULL; 1519 core.e_fd = core_fd; 1520 1521 /* 1522 * Allocate and initialize a ps_prochandle structure for the core. 1523 * There are several key pieces of initialization here: 1524 * 1525 * 1. The PS_DEAD state flag marks this prochandle as a core file. 1526 * PS_DEAD also thus prevents all operations which require state 1527 * to be PS_STOP from operating on this handle. 1528 * 1529 * 2. We keep the core file fd in P->asfd since the core file contains 1530 * the remnants of the process address space. 1531 * 1532 * 3. We set the P->info_valid bit because all information about the 1533 * core is determined by the end of this function; there is no need 1534 * for proc_update_maps() to reload mappings at any later point. 1535 * 1536 * 4. The read/write ops vector uses our core_rw() function defined 1537 * above to handle i/o requests. 1538 */ 1539 if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) { 1540 *perr = G_STRANGE; 1541 return (NULL); 1542 } 1543 1544 (void) memset(P, 0, sizeof (struct ps_prochandle)); 1545 (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL); 1546 P->state = PS_DEAD; 1547 P->pid = (pid_t)-1; 1548 P->asfd = core.e_fd; 1549 P->ctlfd = -1; 1550 P->statfd = -1; 1551 P->agentctlfd = -1; 1552 P->agentstatfd = -1; 1553 P->info_valid = 1; 1554 P->ops = &P_core_ops; 1555 1556 Pinitsym(P); 1557 1558 /* 1559 * Fstat and open the core file and make sure it is a valid ELF core. 1560 */ 1561 if (fstat64(P->asfd, &stbuf) == -1) { 1562 *perr = G_STRANGE; 1563 goto err; 1564 } 1565 1566 if (core_elf_fdopen(&core, ET_CORE, perr) == -1) 1567 goto err; 1568 1569 /* 1570 * Allocate and initialize a core_info_t to hang off the ps_prochandle 1571 * structure. We keep all core-specific information in this structure. 1572 */ 1573 if ((P->core = malloc(sizeof (core_info_t))) == NULL) { 1574 *perr = G_STRANGE; 1575 goto err; 1576 } 1577 1578 list_link(&P->core->core_lwp_head, NULL); 1579 P->core->core_errno = 0; 1580 P->core->core_lwp = NULL; 1581 P->core->core_nlwp = 0; 1582 P->core->core_size = stbuf.st_size; 1583 P->core->core_platform = NULL; 1584 P->core->core_uts = NULL; 1585 P->core->core_cred = NULL; 1586 /* 1587 * In the days before adjustable core file content, this was the 1588 * default core file content. For new core files, this value will 1589 * be overwritten by the NT_CONTENT note section. 1590 */ 1591 P->core->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP | 1592 CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON | 1593 CC_CONTENT_SHANON; 1594 P->core->core_priv = NULL; 1595 P->core->core_priv_size = 0; 1596 P->core->core_privinfo = NULL; 1597 P->core->core_zonename = NULL; 1598 P->core->core_ppii = NULL; 1599 1600 #if defined(__i386) || defined(__amd64) 1601 P->core->core_ldt = NULL; 1602 P->core->core_nldt = 0; 1603 #endif 1604 1605 switch (core.e_hdr.e_ident[EI_CLASS]) { 1606 case ELFCLASS32: 1607 P->core->core_dmodel = PR_MODEL_ILP32; 1608 break; 1609 case ELFCLASS64: 1610 P->core->core_dmodel = PR_MODEL_LP64; 1611 break; 1612 default: 1613 *perr = G_FORMAT; 1614 goto err; 1615 } 1616 1617 /* 1618 * Because the core file may be a large file, we can't use libelf to 1619 * read the Phdrs. We use e_phnum and e_phentsize to simplify things. 1620 */ 1621 nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize; 1622 1623 if ((phbuf = malloc(nbytes)) == NULL) { 1624 *perr = G_STRANGE; 1625 goto err; 1626 } 1627 1628 if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) { 1629 *perr = G_STRANGE; 1630 free(phbuf); 1631 goto err; 1632 } 1633 1634 /* 1635 * Iterate through the program headers in the core file. 1636 * We're interested in two types of Phdrs: PT_NOTE (which 1637 * contains a set of saved /proc structures), and PT_LOAD (which 1638 * represents a memory mapping from the process's address space). 1639 * In the case of PT_NOTE, we're interested in the last PT_NOTE 1640 * in the core file; currently the first PT_NOTE (if present) 1641 * contains /proc structs in the pre-2.6 unstructured /proc format. 1642 */ 1643 for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) { 1644 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64) 1645 (void) memcpy(&phdr, php, sizeof (GElf_Phdr)); 1646 else 1647 core_phdr_to_gelf(php, &phdr); 1648 1649 switch (phdr.p_type) { 1650 case PT_NOTE: 1651 note_phdr = phdr; 1652 notes++; 1653 break; 1654 1655 case PT_LOAD: 1656 if (core_add_mapping(P, &phdr) == -1) { 1657 *perr = G_STRANGE; 1658 free(phbuf); 1659 goto err; 1660 } 1661 break; 1662 } 1663 1664 php = (char *)php + core.e_hdr.e_phentsize; 1665 } 1666 1667 free(phbuf); 1668 1669 Psort_mappings(P); 1670 1671 /* 1672 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE 1673 * was present, abort. The core file is either corrupt or too old. 1674 */ 1675 if (notes == 0 || notes == 1) { 1676 *perr = G_NOTE; 1677 goto err; 1678 } 1679 1680 /* 1681 * Advance the seek pointer to the start of the PT_NOTE data 1682 */ 1683 if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) { 1684 dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n"); 1685 *perr = G_STRANGE; 1686 goto err; 1687 } 1688 1689 /* 1690 * Now process the PT_NOTE structures. Each one is preceded by 1691 * an Elf{32/64}_Nhdr structure describing its type and size. 1692 * 1693 * +--------+ 1694 * | header | 1695 * +--------+ 1696 * | name | 1697 * | ... | 1698 * +--------+ 1699 * | desc | 1700 * | ... | 1701 * +--------+ 1702 */ 1703 for (nleft = note_phdr.p_filesz; nleft > 0; ) { 1704 Elf64_Nhdr nhdr; 1705 off64_t off, namesz; 1706 1707 /* 1708 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr 1709 * as different types, they are both of the same content and 1710 * size, so we don't need to worry about 32/64 conversion here. 1711 */ 1712 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) { 1713 dprintf("Pgrab_core: failed to read ELF note header\n"); 1714 *perr = G_NOTE; 1715 goto err; 1716 } 1717 1718 /* 1719 * According to the System V ABI, the amount of padding 1720 * following the name field should align the description 1721 * field on a 4 byte boundary for 32-bit binaries or on an 8 1722 * byte boundary for 64-bit binaries. However, this change 1723 * was not made correctly during the 64-bit port so all 1724 * descriptions can assume only 4-byte alignment. We ignore 1725 * the name field and the padding to 4-byte alignment. 1726 */ 1727 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4); 1728 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) { 1729 dprintf("failed to seek past name and padding\n"); 1730 *perr = G_STRANGE; 1731 goto err; 1732 } 1733 1734 dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n", 1735 nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz); 1736 1737 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR); 1738 1739 /* 1740 * Invoke the note handler function from our table 1741 */ 1742 if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) { 1743 if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) { 1744 *perr = G_NOTE; 1745 goto err; 1746 } 1747 } else 1748 (void) note_notsup(P, nhdr.n_descsz); 1749 1750 /* 1751 * Seek past the current note data to the next Elf_Nhdr 1752 */ 1753 if (lseek64(P->asfd, off + nhdr.n_descsz, 1754 SEEK_SET) == (off64_t)-1) { 1755 dprintf("Pgrab_core: failed to seek to next nhdr\n"); 1756 *perr = G_STRANGE; 1757 goto err; 1758 } 1759 1760 /* 1761 * Subtract the size of the header and its data from what 1762 * we have left to process. 1763 */ 1764 nleft -= sizeof (nhdr) + namesz + nhdr.n_descsz; 1765 } 1766 1767 if (nleft != 0) { 1768 dprintf("Pgrab_core: note section malformed\n"); 1769 *perr = G_STRANGE; 1770 goto err; 1771 } 1772 1773 if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) { 1774 pagesize = getpagesize(); 1775 dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize); 1776 } 1777 1778 /* 1779 * Locate and label the mappings corresponding to the end of the 1780 * heap (MA_BREAK) and the base of the stack (MA_STACK). 1781 */ 1782 if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) && 1783 (brk_mp = Paddr2mptr(P, P->status.pr_brkbase + 1784 P->status.pr_brksize - 1)) != NULL) 1785 brk_mp->map_pmap.pr_mflags |= MA_BREAK; 1786 else 1787 brk_mp = NULL; 1788 1789 if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL) 1790 stk_mp->map_pmap.pr_mflags |= MA_STACK; 1791 1792 /* 1793 * At this point, we have enough information to look for the 1794 * executable and open it: we have access to the auxv, a psinfo_t, 1795 * and the ability to read from mappings provided by the core file. 1796 */ 1797 (void) Pfindexec(P, aout_path, core_exec_open, &aout); 1798 dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL"); 1799 execname = P->execname ? P->execname : "a.out"; 1800 1801 /* 1802 * Iterate through the sections, looking for the .dynamic and .interp 1803 * sections. If we encounter them, remember their section pointers. 1804 */ 1805 for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) { 1806 char *sname; 1807 1808 if ((gelf_getshdr(scn, &shdr) == NULL) || 1809 (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx, 1810 (size_t)shdr.sh_name)) == NULL) 1811 continue; 1812 1813 if (strcmp(sname, ".interp") == 0) 1814 intp_scn = scn; 1815 } 1816 1817 /* 1818 * Get the AT_BASE auxv element. If this is missing (-1), then 1819 * we assume this is a statically-linked executable. 1820 */ 1821 base_addr = Pgetauxval(P, AT_BASE); 1822 1823 /* 1824 * In order to get librtld_db initialized, we'll need to identify 1825 * and name the mapping corresponding to the run-time linker. The 1826 * AT_BASE auxv element tells us the address where it was mapped, 1827 * and the .interp section of the executable tells us its path. 1828 * If for some reason that doesn't pan out, just use ld.so.1. 1829 */ 1830 if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL && 1831 dp->d_size != 0) { 1832 dprintf(".interp = <%s>\n", (char *)dp->d_buf); 1833 interp = dp->d_buf; 1834 1835 } else if (base_addr != (uintptr_t)-1L) { 1836 if (P->core->core_dmodel == PR_MODEL_LP64) 1837 interp = "/usr/lib/64/ld.so.1"; 1838 else 1839 interp = "/usr/lib/ld.so.1"; 1840 1841 dprintf(".interp section is missing or could not be read; " 1842 "defaulting to %s\n", interp); 1843 } else 1844 dprintf("detected statically linked executable\n"); 1845 1846 /* 1847 * If we have an AT_BASE element, name the mapping at that address 1848 * using the interpreter pathname. Name the corresponding data 1849 * mapping after the interpreter as well. 1850 */ 1851 if (base_addr != (uintptr_t)-1L) { 1852 elf_file_t intf; 1853 1854 P->map_ldso = core_name_mapping(P, base_addr, interp); 1855 1856 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) { 1857 rd_loadobj_t rl; 1858 map_info_t *dmp; 1859 1860 rl.rl_base = base_addr; 1861 dmp = core_find_data(P, intf.e_elf, &rl); 1862 1863 if (dmp != NULL) { 1864 dprintf("renamed data at %p to %s\n", 1865 (void *)rl.rl_data_base, interp); 1866 (void) strncpy(dmp->map_pmap.pr_mapname, 1867 interp, PRMAPSZ); 1868 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 1869 } 1870 } 1871 1872 core_elf_close(&intf); 1873 } 1874 1875 /* 1876 * If we have an AT_ENTRY element, name the mapping at that address 1877 * using the special name "a.out" just like /proc does. 1878 */ 1879 if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L) 1880 P->map_exec = core_name_mapping(P, addr, "a.out"); 1881 1882 /* 1883 * If we're a statically linked executable, then just locate the 1884 * executable's text and data and name them after the executable. 1885 */ 1886 if (base_addr == (uintptr_t)-1L) { 1887 map_info_t *tmp, *dmp; 1888 file_info_t *fp; 1889 rd_loadobj_t rl; 1890 1891 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL && 1892 (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) { 1893 (void) strncpy(tmp->map_pmap.pr_mapname, 1894 execname, PRMAPSZ); 1895 tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 1896 (void) strncpy(dmp->map_pmap.pr_mapname, 1897 execname, PRMAPSZ); 1898 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 1899 } 1900 1901 if ((P->map_exec = tmp) != NULL && 1902 (fp = malloc(sizeof (file_info_t))) != NULL) { 1903 1904 (void) memset(fp, 0, sizeof (file_info_t)); 1905 1906 list_link(fp, &P->file_head); 1907 tmp->map_file = fp; 1908 P->num_files++; 1909 1910 fp->file_ref = 1; 1911 fp->file_fd = -1; 1912 1913 fp->file_lo = malloc(sizeof (rd_loadobj_t)); 1914 fp->file_lname = strdup(execname); 1915 1916 if (fp->file_lo) 1917 *fp->file_lo = rl; 1918 if (fp->file_lname) 1919 fp->file_lbase = basename(fp->file_lname); 1920 1921 (void) strcpy(fp->file_pname, 1922 P->mappings[0].map_pmap.pr_mapname); 1923 fp->file_map = tmp; 1924 1925 Pbuild_file_symtab(P, fp); 1926 1927 if (dmp != NULL) { 1928 dmp->map_file = fp; 1929 fp->file_ref++; 1930 } 1931 } 1932 } 1933 1934 core_elf_close(&aout); 1935 1936 /* 1937 * We now have enough information to initialize librtld_db. 1938 * After it warms up, we can iterate through the load object chain 1939 * in the core, which will allow us to construct the file info 1940 * we need to provide symbol information for the other shared 1941 * libraries, and also to fill in the missing mapping names. 1942 */ 1943 rd_log(_libproc_debug); 1944 1945 if ((P->rap = rd_new(P)) != NULL) { 1946 (void) rd_loadobj_iter(P->rap, (rl_iter_f *) 1947 core_iter_mapping, P); 1948 1949 if (P->core->core_errno != 0) { 1950 errno = P->core->core_errno; 1951 *perr = G_STRANGE; 1952 goto err; 1953 } 1954 } else 1955 dprintf("failed to initialize rtld_db agent\n"); 1956 1957 /* 1958 * If there are sections, load them and process the data from any 1959 * sections that we can use to annotate the file_info_t's. 1960 */ 1961 core_load_shdrs(P, &core); 1962 1963 /* 1964 * If we previously located a stack or break mapping, and they are 1965 * still anonymous, we now assume that they were MAP_ANON mappings. 1966 * If brk_mp turns out to now have a name, then the heap is still 1967 * sitting at the end of the executable's data+bss mapping: remove 1968 * the previous MA_BREAK setting to be consistent with /proc. 1969 */ 1970 if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0') 1971 stk_mp->map_pmap.pr_mflags |= MA_ANON; 1972 if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0') 1973 brk_mp->map_pmap.pr_mflags |= MA_ANON; 1974 else if (brk_mp != NULL) 1975 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK; 1976 1977 *perr = 0; 1978 return (P); 1979 1980 err: 1981 Pfree(P); 1982 core_elf_close(&aout); 1983 return (NULL); 1984 } 1985 1986 /* 1987 * Grab a core file using a pathname. We just open it and call Pfgrab_core(). 1988 */ 1989 struct ps_prochandle * 1990 Pgrab_core(const char *core, const char *aout, int gflag, int *perr) 1991 { 1992 int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR; 1993 1994 if ((fd = open64(core, oflag)) >= 0) 1995 return (Pfgrab_core(fd, aout, perr)); 1996 1997 if (errno != ENOENT) 1998 *perr = G_STRANGE; 1999 else 2000 *perr = G_NOCORE; 2001 2002 return (NULL); 2003 } 2004