1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/utsname.h> 28 #include <sys/sysmacros.h> 29 30 #include <alloca.h> 31 #include <rtld_db.h> 32 #include <libgen.h> 33 #include <limits.h> 34 #include <string.h> 35 #include <stdlib.h> 36 #include <unistd.h> 37 #include <errno.h> 38 #include <gelf.h> 39 #include <stddef.h> 40 41 #include "libproc.h" 42 #include "Pcontrol.h" 43 #include "P32ton.h" 44 #include "Putil.h" 45 46 /* 47 * Pcore.c - Code to initialize a ps_prochandle from a core dump. We 48 * allocate an additional structure to hold information from the core 49 * file, and attach this to the standard ps_prochandle in place of the 50 * ability to examine /proc/<pid>/ files. 51 */ 52 53 /* 54 * Basic i/o function for reading and writing from the process address space 55 * stored in the core file and associated shared libraries. We compute the 56 * appropriate fd and offsets, and let the provided prw function do the rest. 57 */ 58 static ssize_t 59 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr, 60 ssize_t (*prw)(int, void *, size_t, off64_t)) 61 { 62 ssize_t resid = n; 63 64 while (resid != 0) { 65 map_info_t *mp = Paddr2mptr(P, addr); 66 67 uintptr_t mapoff; 68 ssize_t len; 69 off64_t off; 70 int fd; 71 72 if (mp == NULL) 73 break; /* No mapping for this address */ 74 75 if (mp->map_pmap.pr_mflags & MA_RESERVED1) { 76 if (mp->map_file == NULL || mp->map_file->file_fd < 0) 77 break; /* No file or file not open */ 78 79 fd = mp->map_file->file_fd; 80 } else 81 fd = P->asfd; 82 83 mapoff = addr - mp->map_pmap.pr_vaddr; 84 len = MIN(resid, mp->map_pmap.pr_size - mapoff); 85 off = mp->map_offset + mapoff; 86 87 if ((len = prw(fd, buf, len, off)) <= 0) 88 break; 89 90 resid -= len; 91 addr += len; 92 buf = (char *)buf + len; 93 } 94 95 /* 96 * Important: Be consistent with the behavior of i/o on the as file: 97 * writing to an invalid address yields EIO; reading from an invalid 98 * address falls through to returning success and zero bytes. 99 */ 100 if (resid == n && n != 0 && prw != pread64) { 101 errno = EIO; 102 return (-1); 103 } 104 105 return (n - resid); 106 } 107 108 static ssize_t 109 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr) 110 { 111 return (core_rw(P, buf, n, addr, pread64)); 112 } 113 114 static ssize_t 115 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr) 116 { 117 return (core_rw(P, (void *)buf, n, addr, 118 (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64)); 119 } 120 121 static const ps_rwops_t P_core_ops = { Pread_core, Pwrite_core }; 122 123 /* 124 * Return the lwp_info_t for the given lwpid. If no such lwpid has been 125 * encountered yet, allocate a new structure and return a pointer to it. 126 * Create a list of lwp_info_t structures sorted in decreasing lwp_id order. 127 */ 128 static lwp_info_t * 129 lwpid2info(struct ps_prochandle *P, lwpid_t id) 130 { 131 lwp_info_t *lwp = list_next(&P->core->core_lwp_head); 132 lwp_info_t *next; 133 uint_t i; 134 135 for (i = 0; i < P->core->core_nlwp; i++, lwp = list_next(lwp)) { 136 if (lwp->lwp_id == id) { 137 P->core->core_lwp = lwp; 138 return (lwp); 139 } 140 if (lwp->lwp_id < id) { 141 break; 142 } 143 } 144 145 next = lwp; 146 if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL) 147 return (NULL); 148 149 list_link(lwp, next); 150 lwp->lwp_id = id; 151 152 P->core->core_lwp = lwp; 153 P->core->core_nlwp++; 154 155 return (lwp); 156 } 157 158 /* 159 * The core file itself contains a series of NOTE segments containing saved 160 * structures from /proc at the time the process died. For each note we 161 * comprehend, we define a function to read it in from the core file, 162 * convert it to our native data model if necessary, and store it inside 163 * the ps_prochandle. Each function is invoked by Pfgrab_core() with the 164 * seek pointer on P->asfd positioned appropriately. We populate a table 165 * of pointers to these note functions below. 166 */ 167 168 static int 169 note_pstatus(struct ps_prochandle *P, size_t nbytes) 170 { 171 #ifdef _LP64 172 if (P->core->core_dmodel == PR_MODEL_ILP32) { 173 pstatus32_t ps32; 174 175 if (nbytes < sizeof (pstatus32_t) || 176 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32)) 177 goto err; 178 179 pstatus_32_to_n(&ps32, &P->status); 180 181 } else 182 #endif 183 if (nbytes < sizeof (pstatus_t) || 184 read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t)) 185 goto err; 186 187 P->orig_status = P->status; 188 P->pid = P->status.pr_pid; 189 190 return (0); 191 192 err: 193 dprintf("Pgrab_core: failed to read NT_PSTATUS\n"); 194 return (-1); 195 } 196 197 static int 198 note_lwpstatus(struct ps_prochandle *P, size_t nbytes) 199 { 200 lwp_info_t *lwp; 201 lwpstatus_t lps; 202 203 #ifdef _LP64 204 if (P->core->core_dmodel == PR_MODEL_ILP32) { 205 lwpstatus32_t l32; 206 207 if (nbytes < sizeof (lwpstatus32_t) || 208 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32)) 209 goto err; 210 211 lwpstatus_32_to_n(&l32, &lps); 212 } else 213 #endif 214 if (nbytes < sizeof (lwpstatus_t) || 215 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps)) 216 goto err; 217 218 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) { 219 dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n"); 220 return (-1); 221 } 222 223 /* 224 * Erase a useless and confusing artifact of the kernel implementation: 225 * the lwps which did *not* create the core will show SIGKILL. We can 226 * be assured this is bogus because SIGKILL can't produce core files. 227 */ 228 if (lps.pr_cursig == SIGKILL) 229 lps.pr_cursig = 0; 230 231 (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps)); 232 return (0); 233 234 err: 235 dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n"); 236 return (-1); 237 } 238 239 static int 240 note_psinfo(struct ps_prochandle *P, size_t nbytes) 241 { 242 #ifdef _LP64 243 if (P->core->core_dmodel == PR_MODEL_ILP32) { 244 psinfo32_t ps32; 245 246 if (nbytes < sizeof (psinfo32_t) || 247 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32)) 248 goto err; 249 250 psinfo_32_to_n(&ps32, &P->psinfo); 251 } else 252 #endif 253 if (nbytes < sizeof (psinfo_t) || 254 read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t)) 255 goto err; 256 257 dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname); 258 dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs); 259 dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat); 260 261 return (0); 262 263 err: 264 dprintf("Pgrab_core: failed to read NT_PSINFO\n"); 265 return (-1); 266 } 267 268 static int 269 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes) 270 { 271 lwp_info_t *lwp; 272 lwpsinfo_t lps; 273 274 #ifdef _LP64 275 if (P->core->core_dmodel == PR_MODEL_ILP32) { 276 lwpsinfo32_t l32; 277 278 if (nbytes < sizeof (lwpsinfo32_t) || 279 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32)) 280 goto err; 281 282 lwpsinfo_32_to_n(&l32, &lps); 283 } else 284 #endif 285 if (nbytes < sizeof (lwpsinfo_t) || 286 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps)) 287 goto err; 288 289 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) { 290 dprintf("Pgrab_core: failed to add NT_LWPSINFO\n"); 291 return (-1); 292 } 293 294 (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps)); 295 return (0); 296 297 err: 298 dprintf("Pgrab_core: failed to read NT_LWPSINFO\n"); 299 return (-1); 300 } 301 302 static int 303 note_platform(struct ps_prochandle *P, size_t nbytes) 304 { 305 char *plat; 306 307 if (P->core->core_platform != NULL) 308 return (0); /* Already seen */ 309 310 if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) { 311 if (read(P->asfd, plat, nbytes) != nbytes) { 312 dprintf("Pgrab_core: failed to read NT_PLATFORM\n"); 313 free(plat); 314 return (-1); 315 } 316 plat[nbytes - 1] = '\0'; 317 P->core->core_platform = plat; 318 } 319 320 return (0); 321 } 322 323 static int 324 note_utsname(struct ps_prochandle *P, size_t nbytes) 325 { 326 size_t ubytes = sizeof (struct utsname); 327 struct utsname *utsp; 328 329 if (P->core->core_uts != NULL || nbytes < ubytes) 330 return (0); /* Already seen or bad size */ 331 332 if ((utsp = malloc(ubytes)) == NULL) 333 return (-1); 334 335 if (read(P->asfd, utsp, ubytes) != ubytes) { 336 dprintf("Pgrab_core: failed to read NT_UTSNAME\n"); 337 free(utsp); 338 return (-1); 339 } 340 341 if (_libproc_debug) { 342 dprintf("uts.sysname = \"%s\"\n", utsp->sysname); 343 dprintf("uts.nodename = \"%s\"\n", utsp->nodename); 344 dprintf("uts.release = \"%s\"\n", utsp->release); 345 dprintf("uts.version = \"%s\"\n", utsp->version); 346 dprintf("uts.machine = \"%s\"\n", utsp->machine); 347 } 348 349 P->core->core_uts = utsp; 350 return (0); 351 } 352 353 static int 354 note_content(struct ps_prochandle *P, size_t nbytes) 355 { 356 core_content_t content; 357 358 if (sizeof (P->core->core_content) != nbytes) 359 return (-1); 360 361 if (read(P->asfd, &content, sizeof (content)) != sizeof (content)) 362 return (-1); 363 364 P->core->core_content = content; 365 366 dprintf("core content = %llx\n", content); 367 368 return (0); 369 } 370 371 static int 372 note_cred(struct ps_prochandle *P, size_t nbytes) 373 { 374 prcred_t *pcrp; 375 int ngroups; 376 const size_t min_size = sizeof (prcred_t) - sizeof (gid_t); 377 378 /* 379 * We allow for prcred_t notes that are actually smaller than a 380 * prcred_t since the last member isn't essential if there are 381 * no group memberships. This allows for more flexibility when it 382 * comes to slightly malformed -- but still valid -- notes. 383 */ 384 if (P->core->core_cred != NULL || nbytes < min_size) 385 return (0); /* Already seen or bad size */ 386 387 ngroups = (nbytes - min_size) / sizeof (gid_t); 388 nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t); 389 390 if ((pcrp = malloc(nbytes)) == NULL) 391 return (-1); 392 393 if (read(P->asfd, pcrp, nbytes) != nbytes) { 394 dprintf("Pgrab_core: failed to read NT_PRCRED\n"); 395 free(pcrp); 396 return (-1); 397 } 398 399 if (pcrp->pr_ngroups > ngroups) { 400 dprintf("pr_ngroups = %d; resetting to %d based on note size\n", 401 pcrp->pr_ngroups, ngroups); 402 pcrp->pr_ngroups = ngroups; 403 } 404 405 P->core->core_cred = pcrp; 406 return (0); 407 } 408 409 #if defined(__i386) || defined(__amd64) 410 static int 411 note_ldt(struct ps_prochandle *P, size_t nbytes) 412 { 413 struct ssd *pldt; 414 uint_t nldt; 415 416 if (P->core->core_ldt != NULL || nbytes < sizeof (struct ssd)) 417 return (0); /* Already seen or bad size */ 418 419 nldt = nbytes / sizeof (struct ssd); 420 nbytes = nldt * sizeof (struct ssd); 421 422 if ((pldt = malloc(nbytes)) == NULL) 423 return (-1); 424 425 if (read(P->asfd, pldt, nbytes) != nbytes) { 426 dprintf("Pgrab_core: failed to read NT_LDT\n"); 427 free(pldt); 428 return (-1); 429 } 430 431 P->core->core_ldt = pldt; 432 P->core->core_nldt = nldt; 433 return (0); 434 } 435 #endif /* __i386 */ 436 437 static int 438 note_priv(struct ps_prochandle *P, size_t nbytes) 439 { 440 prpriv_t *pprvp; 441 442 if (P->core->core_priv != NULL || nbytes < sizeof (prpriv_t)) 443 return (0); /* Already seen or bad size */ 444 445 if ((pprvp = malloc(nbytes)) == NULL) 446 return (-1); 447 448 if (read(P->asfd, pprvp, nbytes) != nbytes) { 449 dprintf("Pgrab_core: failed to read NT_PRPRIV\n"); 450 free(pprvp); 451 return (-1); 452 } 453 454 P->core->core_priv = pprvp; 455 P->core->core_priv_size = nbytes; 456 return (0); 457 } 458 459 static int 460 note_priv_info(struct ps_prochandle *P, size_t nbytes) 461 { 462 extern void *__priv_parse_info(); 463 priv_impl_info_t *ppii; 464 465 if (P->core->core_privinfo != NULL || 466 nbytes < sizeof (priv_impl_info_t)) 467 return (0); /* Already seen or bad size */ 468 469 if ((ppii = malloc(nbytes)) == NULL) 470 return (-1); 471 472 if (read(P->asfd, ppii, nbytes) != nbytes || 473 PRIV_IMPL_INFO_SIZE(ppii) != nbytes) { 474 dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n"); 475 free(ppii); 476 return (-1); 477 } 478 479 P->core->core_privinfo = __priv_parse_info(ppii); 480 P->core->core_ppii = ppii; 481 return (0); 482 } 483 484 static int 485 note_zonename(struct ps_prochandle *P, size_t nbytes) 486 { 487 char *zonename; 488 489 if (P->core->core_zonename != NULL) 490 return (0); /* Already seen */ 491 492 if (nbytes != 0) { 493 if ((zonename = malloc(nbytes)) == NULL) 494 return (-1); 495 if (read(P->asfd, zonename, nbytes) != nbytes) { 496 dprintf("Pgrab_core: failed to read NT_ZONENAME\n"); 497 free(zonename); 498 return (-1); 499 } 500 zonename[nbytes - 1] = '\0'; 501 P->core->core_zonename = zonename; 502 } 503 504 return (0); 505 } 506 507 static int 508 note_auxv(struct ps_prochandle *P, size_t nbytes) 509 { 510 size_t n, i; 511 512 #ifdef _LP64 513 if (P->core->core_dmodel == PR_MODEL_ILP32) { 514 auxv32_t *a32; 515 516 n = nbytes / sizeof (auxv32_t); 517 nbytes = n * sizeof (auxv32_t); 518 a32 = alloca(nbytes); 519 520 if (read(P->asfd, a32, nbytes) != nbytes) { 521 dprintf("Pgrab_core: failed to read NT_AUXV\n"); 522 return (-1); 523 } 524 525 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL) 526 return (-1); 527 528 for (i = 0; i < n; i++) 529 auxv_32_to_n(&a32[i], &P->auxv[i]); 530 531 } else { 532 #endif 533 n = nbytes / sizeof (auxv_t); 534 nbytes = n * sizeof (auxv_t); 535 536 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL) 537 return (-1); 538 539 if (read(P->asfd, P->auxv, nbytes) != nbytes) { 540 free(P->auxv); 541 P->auxv = NULL; 542 return (-1); 543 } 544 #ifdef _LP64 545 } 546 #endif 547 548 if (_libproc_debug) { 549 for (i = 0; i < n; i++) { 550 dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i, 551 P->auxv[i].a_type, P->auxv[i].a_un.a_val); 552 } 553 } 554 555 /* 556 * Defensive coding for loops which depend upon the auxv array being 557 * terminated by an AT_NULL element; in each case, we've allocated 558 * P->auxv to have an additional element which we force to be AT_NULL. 559 */ 560 P->auxv[n].a_type = AT_NULL; 561 P->auxv[n].a_un.a_val = 0L; 562 P->nauxv = (int)n; 563 564 return (0); 565 } 566 567 #ifdef __sparc 568 static int 569 note_xreg(struct ps_prochandle *P, size_t nbytes) 570 { 571 lwp_info_t *lwp = P->core->core_lwp; 572 size_t xbytes = sizeof (prxregset_t); 573 prxregset_t *xregs; 574 575 if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes) 576 return (0); /* No lwp yet, already seen, or bad size */ 577 578 if ((xregs = malloc(xbytes)) == NULL) 579 return (-1); 580 581 if (read(P->asfd, xregs, xbytes) != xbytes) { 582 dprintf("Pgrab_core: failed to read NT_PRXREG\n"); 583 free(xregs); 584 return (-1); 585 } 586 587 lwp->lwp_xregs = xregs; 588 return (0); 589 } 590 591 static int 592 note_gwindows(struct ps_prochandle *P, size_t nbytes) 593 { 594 lwp_info_t *lwp = P->core->core_lwp; 595 596 if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0) 597 return (0); /* No lwp yet or already seen or no data */ 598 599 if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL) 600 return (-1); 601 602 /* 603 * Since the amount of gwindows data varies with how many windows were 604 * actually saved, we just read up to the minimum of the note size 605 * and the size of the gwindows_t type. It doesn't matter if the read 606 * fails since we have to zero out gwindows first anyway. 607 */ 608 #ifdef _LP64 609 if (P->core->core_dmodel == PR_MODEL_ILP32) { 610 gwindows32_t g32; 611 612 (void) memset(&g32, 0, sizeof (g32)); 613 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32))); 614 gwindows_32_to_n(&g32, lwp->lwp_gwins); 615 616 } else { 617 #endif 618 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t)); 619 (void) read(P->asfd, lwp->lwp_gwins, 620 MIN(nbytes, sizeof (gwindows_t))); 621 #ifdef _LP64 622 } 623 #endif 624 return (0); 625 } 626 627 #ifdef __sparcv9 628 static int 629 note_asrs(struct ps_prochandle *P, size_t nbytes) 630 { 631 lwp_info_t *lwp = P->core->core_lwp; 632 int64_t *asrs; 633 634 if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t)) 635 return (0); /* No lwp yet, already seen, or bad size */ 636 637 if ((asrs = malloc(sizeof (asrset_t))) == NULL) 638 return (-1); 639 640 if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) { 641 dprintf("Pgrab_core: failed to read NT_ASRS\n"); 642 free(asrs); 643 return (-1); 644 } 645 646 lwp->lwp_asrs = asrs; 647 return (0); 648 } 649 #endif /* __sparcv9 */ 650 #endif /* __sparc */ 651 652 /*ARGSUSED*/ 653 static int 654 note_notsup(struct ps_prochandle *P, size_t nbytes) 655 { 656 dprintf("skipping unsupported note type\n"); 657 return (0); 658 } 659 660 /* 661 * Populate a table of function pointers indexed by Note type with our 662 * functions to process each type of core file note: 663 */ 664 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = { 665 note_notsup, /* 0 unassigned */ 666 note_notsup, /* 1 NT_PRSTATUS (old) */ 667 note_notsup, /* 2 NT_PRFPREG (old) */ 668 note_notsup, /* 3 NT_PRPSINFO (old) */ 669 #ifdef __sparc 670 note_xreg, /* 4 NT_PRXREG */ 671 #else 672 note_notsup, /* 4 NT_PRXREG */ 673 #endif 674 note_platform, /* 5 NT_PLATFORM */ 675 note_auxv, /* 6 NT_AUXV */ 676 #ifdef __sparc 677 note_gwindows, /* 7 NT_GWINDOWS */ 678 #ifdef __sparcv9 679 note_asrs, /* 8 NT_ASRS */ 680 #else 681 note_notsup, /* 8 NT_ASRS */ 682 #endif 683 #else 684 note_notsup, /* 7 NT_GWINDOWS */ 685 note_notsup, /* 8 NT_ASRS */ 686 #endif 687 #if defined(__i386) || defined(__amd64) 688 note_ldt, /* 9 NT_LDT */ 689 #else 690 note_notsup, /* 9 NT_LDT */ 691 #endif 692 note_pstatus, /* 10 NT_PSTATUS */ 693 note_notsup, /* 11 unassigned */ 694 note_notsup, /* 12 unassigned */ 695 note_psinfo, /* 13 NT_PSINFO */ 696 note_cred, /* 14 NT_PRCRED */ 697 note_utsname, /* 15 NT_UTSNAME */ 698 note_lwpstatus, /* 16 NT_LWPSTATUS */ 699 note_lwpsinfo, /* 17 NT_LWPSINFO */ 700 note_priv, /* 18 NT_PRPRIV */ 701 note_priv_info, /* 19 NT_PRPRIVINFO */ 702 note_content, /* 20 NT_CONTENT */ 703 note_zonename, /* 21 NT_ZONENAME */ 704 }; 705 706 /* 707 * Add information on the address space mapping described by the given 708 * PT_LOAD program header. We fill in more information on the mapping later. 709 */ 710 static int 711 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php) 712 { 713 int err = 0; 714 prmap_t pmap; 715 716 dprintf("mapping base %llx filesz %llu memsz %llu offset %llu\n", 717 (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz, 718 (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset); 719 720 pmap.pr_vaddr = (uintptr_t)php->p_vaddr; 721 pmap.pr_size = php->p_memsz; 722 723 /* 724 * If Pgcore() or elfcore() fail to write a mapping, they will set 725 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us. 726 */ 727 if (php->p_flags & PF_SUNW_FAILURE) { 728 (void) pread64(P->asfd, &err, 729 sizeof (err), (off64_t)php->p_offset); 730 731 Perror_printf(P, "core file data for mapping at %p not saved: " 732 "%s\n", (void *)(uintptr_t)php->p_vaddr, strerror(err)); 733 dprintf("core file data for mapping at %p not saved: %s\n", 734 (void *)(uintptr_t)php->p_vaddr, strerror(err)); 735 736 } else if (php->p_filesz != 0 && php->p_offset >= P->core->core_size) { 737 Perror_printf(P, "core file may be corrupt -- data for mapping " 738 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr); 739 dprintf("core file may be corrupt -- data for mapping " 740 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr); 741 } 742 743 /* 744 * The mapping name and offset will hopefully be filled in 745 * by the librtld_db agent. Unfortunately, if it isn't a 746 * shared library mapping, this information is gone forever. 747 */ 748 pmap.pr_mapname[0] = '\0'; 749 pmap.pr_offset = 0; 750 751 pmap.pr_mflags = 0; 752 if (php->p_flags & PF_R) 753 pmap.pr_mflags |= MA_READ; 754 if (php->p_flags & PF_W) 755 pmap.pr_mflags |= MA_WRITE; 756 if (php->p_flags & PF_X) 757 pmap.pr_mflags |= MA_EXEC; 758 759 if (php->p_filesz == 0) 760 pmap.pr_mflags |= MA_RESERVED1; 761 762 /* 763 * At the time of adding this mapping, we just zero the pagesize. 764 * Once we've processed more of the core file, we'll have the 765 * pagesize from the auxv's AT_PAGESZ element and we can fill this in. 766 */ 767 pmap.pr_pagesize = 0; 768 769 /* 770 * Unfortunately whether or not the mapping was a System V 771 * shared memory segment is lost. We use -1 to mark it as not shm. 772 */ 773 pmap.pr_shmid = -1; 774 775 return (Padd_mapping(P, php->p_offset, NULL, &pmap)); 776 } 777 778 /* 779 * Given a virtual address, name the mapping at that address using the 780 * specified name, and return the map_info_t pointer. 781 */ 782 static map_info_t * 783 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name) 784 { 785 map_info_t *mp = Paddr2mptr(P, addr); 786 787 if (mp != NULL) { 788 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ); 789 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 790 } 791 792 return (mp); 793 } 794 795 /* 796 * libproc uses libelf for all of its symbol table manipulation. This function 797 * takes a symbol table and string table from a core file and places them 798 * in a memory backed elf file. 799 */ 800 static void 801 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr, 802 GElf_Shdr *symtab, GElf_Shdr *strtab) 803 { 804 size_t size; 805 off64_t off, base; 806 map_info_t *mp; 807 file_info_t *fp; 808 Elf_Scn *scn; 809 Elf_Data *data; 810 811 if (symtab->sh_addr == 0 || 812 (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL || 813 (fp = mp->map_file) == NULL || 814 fp->file_symtab.sym_data_pri != NULL) { 815 dprintf("fake_up_symtab: invalid section\n"); 816 return; 817 } 818 819 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 820 struct { 821 Elf32_Ehdr ehdr; 822 Elf32_Shdr shdr[3]; 823 char data[1]; 824 } *b; 825 826 base = sizeof (b->ehdr) + sizeof (b->shdr); 827 size = base + symtab->sh_size + strtab->sh_size; 828 829 if ((b = calloc(1, size)) == NULL) 830 return; 831 832 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident, 833 sizeof (ehdr->e_ident)); 834 b->ehdr.e_type = ehdr->e_type; 835 b->ehdr.e_machine = ehdr->e_machine; 836 b->ehdr.e_version = ehdr->e_version; 837 b->ehdr.e_flags = ehdr->e_flags; 838 b->ehdr.e_ehsize = sizeof (b->ehdr); 839 b->ehdr.e_shoff = sizeof (b->ehdr); 840 b->ehdr.e_shentsize = sizeof (b->shdr[0]); 841 b->ehdr.e_shnum = 3; 842 off = 0; 843 844 b->shdr[1].sh_size = symtab->sh_size; 845 b->shdr[1].sh_type = SHT_SYMTAB; 846 b->shdr[1].sh_offset = off + base; 847 b->shdr[1].sh_entsize = sizeof (Elf32_Sym); 848 b->shdr[1].sh_link = 2; 849 b->shdr[1].sh_info = symtab->sh_info; 850 b->shdr[1].sh_addralign = symtab->sh_addralign; 851 852 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size, 853 symtab->sh_offset) != b->shdr[1].sh_size) { 854 dprintf("fake_up_symtab: pread of symtab[1] failed\n"); 855 free(b); 856 return; 857 } 858 859 off += b->shdr[1].sh_size; 860 861 b->shdr[2].sh_flags = SHF_STRINGS; 862 b->shdr[2].sh_size = strtab->sh_size; 863 b->shdr[2].sh_type = SHT_STRTAB; 864 b->shdr[2].sh_offset = off + base; 865 b->shdr[2].sh_info = strtab->sh_info; 866 b->shdr[2].sh_addralign = 1; 867 868 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size, 869 strtab->sh_offset) != b->shdr[2].sh_size) { 870 dprintf("fake_up_symtab: pread of symtab[2] failed\n"); 871 free(b); 872 return; 873 } 874 875 off += b->shdr[2].sh_size; 876 877 fp->file_symtab.sym_elf = elf_memory((char *)b, size); 878 if (fp->file_symtab.sym_elf == NULL) { 879 free(b); 880 return; 881 } 882 883 fp->file_symtab.sym_elfmem = b; 884 #ifdef _LP64 885 } else { 886 struct { 887 Elf64_Ehdr ehdr; 888 Elf64_Shdr shdr[3]; 889 char data[1]; 890 } *b; 891 892 base = sizeof (b->ehdr) + sizeof (b->shdr); 893 size = base + symtab->sh_size + strtab->sh_size; 894 895 if ((b = calloc(1, size)) == NULL) 896 return; 897 898 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident, 899 sizeof (ehdr->e_ident)); 900 b->ehdr.e_type = ehdr->e_type; 901 b->ehdr.e_machine = ehdr->e_machine; 902 b->ehdr.e_version = ehdr->e_version; 903 b->ehdr.e_flags = ehdr->e_flags; 904 b->ehdr.e_ehsize = sizeof (b->ehdr); 905 b->ehdr.e_shoff = sizeof (b->ehdr); 906 b->ehdr.e_shentsize = sizeof (b->shdr[0]); 907 b->ehdr.e_shnum = 3; 908 off = 0; 909 910 b->shdr[1].sh_size = symtab->sh_size; 911 b->shdr[1].sh_type = SHT_SYMTAB; 912 b->shdr[1].sh_offset = off + base; 913 b->shdr[1].sh_entsize = sizeof (Elf64_Sym); 914 b->shdr[1].sh_link = 2; 915 b->shdr[1].sh_info = symtab->sh_info; 916 b->shdr[1].sh_addralign = symtab->sh_addralign; 917 918 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size, 919 symtab->sh_offset) != b->shdr[1].sh_size) { 920 free(b); 921 return; 922 } 923 924 off += b->shdr[1].sh_size; 925 926 b->shdr[2].sh_flags = SHF_STRINGS; 927 b->shdr[2].sh_size = strtab->sh_size; 928 b->shdr[2].sh_type = SHT_STRTAB; 929 b->shdr[2].sh_offset = off + base; 930 b->shdr[2].sh_info = strtab->sh_info; 931 b->shdr[2].sh_addralign = 1; 932 933 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size, 934 strtab->sh_offset) != b->shdr[2].sh_size) { 935 free(b); 936 return; 937 } 938 939 off += b->shdr[2].sh_size; 940 941 fp->file_symtab.sym_elf = elf_memory((char *)b, size); 942 if (fp->file_symtab.sym_elf == NULL) { 943 free(b); 944 return; 945 } 946 947 fp->file_symtab.sym_elfmem = b; 948 #endif 949 } 950 951 if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL || 952 (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL || 953 (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL || 954 (data = elf_getdata(scn, NULL)) == NULL) { 955 dprintf("fake_up_symtab: failed to get section data at %p\n", 956 (void *)scn); 957 goto err; 958 } 959 960 fp->file_symtab.sym_strs = data->d_buf; 961 fp->file_symtab.sym_strsz = data->d_size; 962 fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize; 963 fp->file_symtab.sym_hdr_pri = *symtab; 964 fp->file_symtab.sym_strhdr = *strtab; 965 966 optimize_symtab(&fp->file_symtab); 967 968 return; 969 err: 970 (void) elf_end(fp->file_symtab.sym_elf); 971 free(fp->file_symtab.sym_elfmem); 972 fp->file_symtab.sym_elf = NULL; 973 fp->file_symtab.sym_elfmem = NULL; 974 } 975 976 static void 977 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst) 978 { 979 dst->p_type = src->p_type; 980 dst->p_flags = src->p_flags; 981 dst->p_offset = (Elf64_Off)src->p_offset; 982 dst->p_vaddr = (Elf64_Addr)src->p_vaddr; 983 dst->p_paddr = (Elf64_Addr)src->p_paddr; 984 dst->p_filesz = (Elf64_Xword)src->p_filesz; 985 dst->p_memsz = (Elf64_Xword)src->p_memsz; 986 dst->p_align = (Elf64_Xword)src->p_align; 987 } 988 989 static void 990 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst) 991 { 992 dst->sh_name = src->sh_name; 993 dst->sh_type = src->sh_type; 994 dst->sh_flags = (Elf64_Xword)src->sh_flags; 995 dst->sh_addr = (Elf64_Addr)src->sh_addr; 996 dst->sh_offset = (Elf64_Off)src->sh_offset; 997 dst->sh_size = (Elf64_Xword)src->sh_size; 998 dst->sh_link = src->sh_link; 999 dst->sh_info = src->sh_info; 1000 dst->sh_addralign = (Elf64_Xword)src->sh_addralign; 1001 dst->sh_entsize = (Elf64_Xword)src->sh_entsize; 1002 } 1003 1004 /* 1005 * Perform elf_begin on efp->e_fd and verify the ELF file's type and class. 1006 */ 1007 static int 1008 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr) 1009 { 1010 #ifdef _BIG_ENDIAN 1011 uchar_t order = ELFDATA2MSB; 1012 #else 1013 uchar_t order = ELFDATA2LSB; 1014 #endif 1015 Elf32_Ehdr e32; 1016 int is_noelf = -1; 1017 int isa_err = 0; 1018 1019 /* 1020 * Because 32-bit libelf cannot deal with large files, we need to read, 1021 * check, and convert the file header manually in case type == ET_CORE. 1022 */ 1023 if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) { 1024 if (perr != NULL) 1025 *perr = G_FORMAT; 1026 goto err; 1027 } 1028 if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 || 1029 e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) || 1030 e32.e_version != EV_CURRENT) { 1031 if (perr != NULL) { 1032 if (is_noelf == 0 && isa_err) { 1033 *perr = G_ISAINVAL; 1034 } else { 1035 *perr = G_FORMAT; 1036 } 1037 } 1038 goto err; 1039 } 1040 1041 /* 1042 * If the file is 64-bit and we are 32-bit, fail with G_LP64. If the 1043 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr, 1044 * and convert it to a elf_file_header_t. Otherwise, the file is 1045 * 32-bit, so convert e32 to a elf_file_header_t. 1046 */ 1047 if (e32.e_ident[EI_CLASS] == ELFCLASS64) { 1048 #ifdef _LP64 1049 Elf64_Ehdr e64; 1050 1051 if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) { 1052 if (perr != NULL) 1053 *perr = G_FORMAT; 1054 goto err; 1055 } 1056 1057 (void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT); 1058 efp->e_hdr.e_type = e64.e_type; 1059 efp->e_hdr.e_machine = e64.e_machine; 1060 efp->e_hdr.e_version = e64.e_version; 1061 efp->e_hdr.e_entry = e64.e_entry; 1062 efp->e_hdr.e_phoff = e64.e_phoff; 1063 efp->e_hdr.e_shoff = e64.e_shoff; 1064 efp->e_hdr.e_flags = e64.e_flags; 1065 efp->e_hdr.e_ehsize = e64.e_ehsize; 1066 efp->e_hdr.e_phentsize = e64.e_phentsize; 1067 efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum; 1068 efp->e_hdr.e_shentsize = e64.e_shentsize; 1069 efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum; 1070 efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx; 1071 #else /* _LP64 */ 1072 if (perr != NULL) 1073 *perr = G_LP64; 1074 goto err; 1075 #endif /* _LP64 */ 1076 } else { 1077 (void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT); 1078 efp->e_hdr.e_type = e32.e_type; 1079 efp->e_hdr.e_machine = e32.e_machine; 1080 efp->e_hdr.e_version = e32.e_version; 1081 efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry; 1082 efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff; 1083 efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff; 1084 efp->e_hdr.e_flags = e32.e_flags; 1085 efp->e_hdr.e_ehsize = e32.e_ehsize; 1086 efp->e_hdr.e_phentsize = e32.e_phentsize; 1087 efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum; 1088 efp->e_hdr.e_shentsize = e32.e_shentsize; 1089 efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum; 1090 efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx; 1091 } 1092 1093 /* 1094 * If the number of section headers or program headers or the section 1095 * header string table index would overflow their respective fields 1096 * in the ELF header, they're stored in the section header at index 1097 * zero. To simplify use elsewhere, we look for those sentinel values 1098 * here. 1099 */ 1100 if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) || 1101 efp->e_hdr.e_shstrndx == SHN_XINDEX || 1102 efp->e_hdr.e_phnum == PN_XNUM) { 1103 GElf_Shdr shdr; 1104 1105 dprintf("extended ELF header\n"); 1106 1107 if (efp->e_hdr.e_shoff == 0) { 1108 if (perr != NULL) 1109 *perr = G_FORMAT; 1110 goto err; 1111 } 1112 1113 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) { 1114 Elf32_Shdr shdr32; 1115 1116 if (pread64(efp->e_fd, &shdr32, sizeof (shdr32), 1117 efp->e_hdr.e_shoff) != sizeof (shdr32)) { 1118 if (perr != NULL) 1119 *perr = G_FORMAT; 1120 goto err; 1121 } 1122 1123 core_shdr_to_gelf(&shdr32, &shdr); 1124 } else { 1125 if (pread64(efp->e_fd, &shdr, sizeof (shdr), 1126 efp->e_hdr.e_shoff) != sizeof (shdr)) { 1127 if (perr != NULL) 1128 *perr = G_FORMAT; 1129 goto err; 1130 } 1131 } 1132 1133 if (efp->e_hdr.e_shnum == 0) { 1134 efp->e_hdr.e_shnum = shdr.sh_size; 1135 dprintf("section header count %lu\n", 1136 (ulong_t)shdr.sh_size); 1137 } 1138 1139 if (efp->e_hdr.e_shstrndx == SHN_XINDEX) { 1140 efp->e_hdr.e_shstrndx = shdr.sh_link; 1141 dprintf("section string index %u\n", shdr.sh_link); 1142 } 1143 1144 if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) { 1145 efp->e_hdr.e_phnum = shdr.sh_info; 1146 dprintf("program header count %u\n", shdr.sh_info); 1147 } 1148 1149 } else if (efp->e_hdr.e_phoff != 0) { 1150 GElf_Phdr phdr; 1151 uint64_t phnum; 1152 1153 /* 1154 * It's possible this core file came from a system that 1155 * accidentally truncated the e_phnum field without correctly 1156 * using the extended format in the section header at index 1157 * zero. We try to detect and correct that specific type of 1158 * corruption by using the knowledge that the core dump 1159 * routines usually place the data referenced by the first 1160 * program header immediately after the last header element. 1161 */ 1162 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) { 1163 Elf32_Phdr phdr32; 1164 1165 if (pread64(efp->e_fd, &phdr32, sizeof (phdr32), 1166 efp->e_hdr.e_phoff) != sizeof (phdr32)) { 1167 if (perr != NULL) 1168 *perr = G_FORMAT; 1169 goto err; 1170 } 1171 1172 core_phdr_to_gelf(&phdr32, &phdr); 1173 } else { 1174 if (pread64(efp->e_fd, &phdr, sizeof (phdr), 1175 efp->e_hdr.e_phoff) != sizeof (phdr)) { 1176 if (perr != NULL) 1177 *perr = G_FORMAT; 1178 goto err; 1179 } 1180 } 1181 1182 phnum = phdr.p_offset - efp->e_hdr.e_ehsize - 1183 (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize; 1184 phnum /= efp->e_hdr.e_phentsize; 1185 1186 if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) { 1187 dprintf("suspicious program header count %u %u\n", 1188 (uint_t)phnum, efp->e_hdr.e_phnum); 1189 1190 /* 1191 * If the new program header count we computed doesn't 1192 * jive with count in the ELF header, we'll use the 1193 * data that's there and hope for the best. 1194 * 1195 * If it does, it's also possible that the section 1196 * header offset is incorrect; we'll check that and 1197 * possibly try to fix it. 1198 */ 1199 if (phnum <= INT_MAX && 1200 (uint16_t)phnum == efp->e_hdr.e_phnum) { 1201 1202 if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff + 1203 efp->e_hdr.e_phentsize * 1204 (uint_t)efp->e_hdr.e_phnum) { 1205 efp->e_hdr.e_shoff = 1206 efp->e_hdr.e_phoff + 1207 efp->e_hdr.e_phentsize * phnum; 1208 } 1209 1210 efp->e_hdr.e_phnum = (Elf64_Word)phnum; 1211 dprintf("using new program header count\n"); 1212 } else { 1213 dprintf("inconsistent program header count\n"); 1214 } 1215 } 1216 } 1217 1218 /* 1219 * The libelf implementation was never ported to be large-file aware. 1220 * This is typically not a problem for your average executable or 1221 * shared library, but a large 32-bit core file can exceed 2GB in size. 1222 * So if type is ET_CORE, we don't bother doing elf_begin; the code 1223 * in Pfgrab_core() below will do its own i/o and struct conversion. 1224 */ 1225 1226 if (type == ET_CORE) { 1227 efp->e_elf = NULL; 1228 return (0); 1229 } 1230 1231 if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) { 1232 if (perr != NULL) 1233 *perr = G_ELF; 1234 goto err; 1235 } 1236 1237 return (0); 1238 1239 err: 1240 efp->e_elf = NULL; 1241 return (-1); 1242 } 1243 1244 /* 1245 * Open the specified file and then do a core_elf_fdopen on it. 1246 */ 1247 static int 1248 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr) 1249 { 1250 (void) memset(efp, 0, sizeof (elf_file_t)); 1251 1252 if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) { 1253 if (core_elf_fdopen(efp, type, perr) == 0) 1254 return (0); 1255 1256 (void) close(efp->e_fd); 1257 efp->e_fd = -1; 1258 } 1259 1260 return (-1); 1261 } 1262 1263 /* 1264 * Close the ELF handle and file descriptor. 1265 */ 1266 static void 1267 core_elf_close(elf_file_t *efp) 1268 { 1269 if (efp->e_elf != NULL) { 1270 (void) elf_end(efp->e_elf); 1271 efp->e_elf = NULL; 1272 } 1273 1274 if (efp->e_fd != -1) { 1275 (void) close(efp->e_fd); 1276 efp->e_fd = -1; 1277 } 1278 } 1279 1280 /* 1281 * Given an ELF file for a statically linked executable, locate the likely 1282 * primary text section and fill in rl_base with its virtual address. 1283 */ 1284 static map_info_t * 1285 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp) 1286 { 1287 GElf_Phdr phdr; 1288 uint_t i; 1289 size_t nphdrs; 1290 1291 if (elf_getphdrnum(elf, &nphdrs) == -1) 1292 return (NULL); 1293 1294 for (i = 0; i < nphdrs; i++) { 1295 if (gelf_getphdr(elf, i, &phdr) != NULL && 1296 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) { 1297 rlp->rl_base = phdr.p_vaddr; 1298 return (Paddr2mptr(P, rlp->rl_base)); 1299 } 1300 } 1301 1302 return (NULL); 1303 } 1304 1305 /* 1306 * Given an ELF file and the librtld_db structure corresponding to its primary 1307 * text mapping, deduce where its data segment was loaded and fill in 1308 * rl_data_base and prmap_t.pr_offset accordingly. 1309 */ 1310 static map_info_t * 1311 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp) 1312 { 1313 GElf_Ehdr ehdr; 1314 GElf_Phdr phdr; 1315 map_info_t *mp; 1316 uint_t i, pagemask; 1317 size_t nphdrs; 1318 1319 rlp->rl_data_base = NULL; 1320 1321 /* 1322 * Find the first loadable, writeable Phdr and compute rl_data_base 1323 * as the virtual address at which is was loaded. 1324 */ 1325 if (gelf_getehdr(elf, &ehdr) == NULL || 1326 elf_getphdrnum(elf, &nphdrs) == -1) 1327 return (NULL); 1328 1329 for (i = 0; i < nphdrs; i++) { 1330 if (gelf_getphdr(elf, i, &phdr) != NULL && 1331 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) { 1332 rlp->rl_data_base = phdr.p_vaddr; 1333 if (ehdr.e_type == ET_DYN) 1334 rlp->rl_data_base += rlp->rl_base; 1335 break; 1336 } 1337 } 1338 1339 /* 1340 * If we didn't find an appropriate phdr or if the address we 1341 * computed has no mapping, return NULL. 1342 */ 1343 if (rlp->rl_data_base == NULL || 1344 (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL) 1345 return (NULL); 1346 1347 /* 1348 * It wouldn't be procfs-related code if we didn't make use of 1349 * unclean knowledge of segvn, even in userland ... the prmap_t's 1350 * pr_offset field will be the segvn offset from mmap(2)ing the 1351 * data section, which will be the file offset & PAGEMASK. 1352 */ 1353 pagemask = ~(mp->map_pmap.pr_pagesize - 1); 1354 mp->map_pmap.pr_offset = phdr.p_offset & pagemask; 1355 1356 return (mp); 1357 } 1358 1359 /* 1360 * Librtld_db agent callback for iterating over load object mappings. 1361 * For each load object, we allocate a new file_info_t, perform naming, 1362 * and attempt to construct a symbol table for the load object. 1363 */ 1364 static int 1365 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P) 1366 { 1367 char lname[PATH_MAX], buf[PATH_MAX]; 1368 file_info_t *fp; 1369 map_info_t *mp; 1370 1371 if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) { 1372 dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr); 1373 return (1); /* Keep going; forget this if we can't get a name */ 1374 } 1375 1376 dprintf("rd_loadobj name = \"%s\" rl_base = %p\n", 1377 lname, (void *)rlp->rl_base); 1378 1379 if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) { 1380 dprintf("no mapping for %p\n", (void *)rlp->rl_base); 1381 return (1); /* No mapping; advance to next mapping */ 1382 } 1383 1384 /* 1385 * Create a new file_info_t for this mapping, and therefore for 1386 * this load object. 1387 * 1388 * If there's an ELF header at the beginning of this mapping, 1389 * file_info_new() will try to use its section headers to 1390 * identify any other mappings that belong to this load object. 1391 */ 1392 if ((fp = mp->map_file) == NULL && 1393 (fp = file_info_new(P, mp)) == NULL) { 1394 P->core->core_errno = errno; 1395 dprintf("failed to malloc mapping data\n"); 1396 return (0); /* Abort */ 1397 } 1398 fp->file_map = mp; 1399 1400 /* Create a local copy of the load object representation */ 1401 if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) { 1402 P->core->core_errno = errno; 1403 dprintf("failed to malloc mapping data\n"); 1404 return (0); /* Abort */ 1405 } 1406 *fp->file_lo = *rlp; 1407 1408 if (lname[0] != '\0') { 1409 /* 1410 * Naming dance part 1: if we got a name from librtld_db, then 1411 * copy this name to the prmap_t if it is unnamed. If the 1412 * file_info_t is unnamed, name it after the lname. 1413 */ 1414 if (mp->map_pmap.pr_mapname[0] == '\0') { 1415 (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ); 1416 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 1417 } 1418 1419 if (fp->file_lname == NULL) 1420 fp->file_lname = strdup(lname); 1421 1422 } else if (fp->file_lname == NULL && 1423 mp->map_pmap.pr_mapname[0] != '\0') { 1424 /* 1425 * Naming dance part 2: if the mapping is named and the 1426 * file_info_t is not, name the file after the mapping. 1427 */ 1428 fp->file_lname = strdup(mp->map_pmap.pr_mapname); 1429 } 1430 1431 if ((fp->file_rname == NULL) && 1432 (Pfindmap(P, mp, buf, sizeof (buf)) != NULL)) 1433 fp->file_rname = strdup(buf); 1434 1435 if (fp->file_lname != NULL) 1436 fp->file_lbase = basename(fp->file_lname); 1437 if (fp->file_rname != NULL) 1438 fp->file_rbase = basename(fp->file_rname); 1439 1440 /* Associate the file and the mapping. */ 1441 (void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ); 1442 fp->file_pname[PRMAPSZ - 1] = '\0'; 1443 1444 /* 1445 * If no section headers were available then we'll have to 1446 * identify this load object's other mappings with what we've 1447 * got: the start and end of the object's corresponding 1448 * address space. 1449 */ 1450 if (fp->file_saddrs == NULL) { 1451 for (mp = fp->file_map + 1; mp < P->mappings + P->map_count && 1452 mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) { 1453 1454 if (mp->map_file == NULL) { 1455 dprintf("core_iter_mapping %s: associating " 1456 "segment at %p\n", 1457 fp->file_pname, 1458 (void *)mp->map_pmap.pr_vaddr); 1459 mp->map_file = fp; 1460 fp->file_ref++; 1461 } else { 1462 dprintf("core_iter_mapping %s: segment at " 1463 "%p already associated with %s\n", 1464 fp->file_pname, 1465 (void *)mp->map_pmap.pr_vaddr, 1466 (mp == fp->file_map ? "this file" : 1467 mp->map_file->file_pname)); 1468 } 1469 } 1470 } 1471 1472 /* Ensure that all this file's mappings are named. */ 1473 for (mp = fp->file_map; mp < P->mappings + P->map_count && 1474 mp->map_file == fp; mp++) { 1475 if (mp->map_pmap.pr_mapname[0] == '\0' && 1476 !(mp->map_pmap.pr_mflags & MA_BREAK)) { 1477 (void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname, 1478 PRMAPSZ); 1479 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 1480 } 1481 } 1482 1483 /* Attempt to build a symbol table for this file. */ 1484 Pbuild_file_symtab(P, fp); 1485 if (fp->file_elf == NULL) 1486 dprintf("core_iter_mapping: no symtab for %s\n", 1487 fp->file_pname); 1488 1489 /* Locate the start of a data segment associated with this file. */ 1490 if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) { 1491 dprintf("found data for %s at %p (pr_offset 0x%llx)\n", 1492 fp->file_pname, (void *)fp->file_lo->rl_data_base, 1493 mp->map_pmap.pr_offset); 1494 } else { 1495 dprintf("core_iter_mapping: no data found for %s\n", 1496 fp->file_pname); 1497 } 1498 1499 return (1); /* Advance to next mapping */ 1500 } 1501 1502 /* 1503 * Callback function for Pfindexec(). In order to confirm a given pathname, 1504 * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN. 1505 */ 1506 static int 1507 core_exec_open(const char *path, void *efp) 1508 { 1509 if (core_elf_open(efp, path, ET_EXEC, NULL) == 0) 1510 return (1); 1511 if (core_elf_open(efp, path, ET_DYN, NULL) == 0) 1512 return (1); 1513 return (0); 1514 } 1515 1516 /* 1517 * Attempt to load any section headers found in the core file. If present, 1518 * this will refer to non-loadable data added to the core file by the kernel 1519 * based on coreadm(1M) settings, including CTF data and the symbol table. 1520 */ 1521 static void 1522 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp) 1523 { 1524 GElf_Shdr *shp, *shdrs = NULL; 1525 char *shstrtab = NULL; 1526 ulong_t shstrtabsz; 1527 const char *name; 1528 map_info_t *mp; 1529 1530 size_t nbytes; 1531 void *buf; 1532 int i; 1533 1534 if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) { 1535 dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n", 1536 efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum); 1537 return; 1538 } 1539 1540 /* 1541 * Read the section header table from the core file and then iterate 1542 * over the section headers, converting each to a GElf_Shdr. 1543 */ 1544 if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) { 1545 dprintf("failed to malloc %u section headers: %s\n", 1546 (uint_t)efp->e_hdr.e_shnum, strerror(errno)); 1547 return; 1548 } 1549 1550 nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize; 1551 if ((buf = malloc(nbytes)) == NULL) { 1552 dprintf("failed to malloc %d bytes: %s\n", (int)nbytes, 1553 strerror(errno)); 1554 free(shdrs); 1555 goto out; 1556 } 1557 1558 if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) { 1559 dprintf("failed to read section headers at off %lld: %s\n", 1560 (longlong_t)efp->e_hdr.e_shoff, strerror(errno)); 1561 free(buf); 1562 goto out; 1563 } 1564 1565 for (i = 0; i < efp->e_hdr.e_shnum; i++) { 1566 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i; 1567 1568 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) 1569 core_shdr_to_gelf(p, &shdrs[i]); 1570 else 1571 (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr)); 1572 } 1573 1574 free(buf); 1575 buf = NULL; 1576 1577 /* 1578 * Read the .shstrtab section from the core file, terminating it with 1579 * an extra \0 so that a corrupt section will not cause us to die. 1580 */ 1581 shp = &shdrs[efp->e_hdr.e_shstrndx]; 1582 shstrtabsz = shp->sh_size; 1583 1584 if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) { 1585 dprintf("failed to allocate %lu bytes for shstrtab\n", 1586 (ulong_t)shstrtabsz); 1587 goto out; 1588 } 1589 1590 if (pread64(efp->e_fd, shstrtab, shstrtabsz, 1591 shp->sh_offset) != shstrtabsz) { 1592 dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n", 1593 shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno)); 1594 goto out; 1595 } 1596 1597 shstrtab[shstrtabsz] = '\0'; 1598 1599 /* 1600 * Now iterate over each section in the section header table, locating 1601 * sections of interest and initializing more of the ps_prochandle. 1602 */ 1603 for (i = 0; i < efp->e_hdr.e_shnum; i++) { 1604 shp = &shdrs[i]; 1605 name = shstrtab + shp->sh_name; 1606 1607 if (shp->sh_name >= shstrtabsz) { 1608 dprintf("skipping section [%d]: corrupt sh_name\n", i); 1609 continue; 1610 } 1611 1612 if (shp->sh_link >= efp->e_hdr.e_shnum) { 1613 dprintf("skipping section [%d]: corrupt sh_link\n", i); 1614 continue; 1615 } 1616 1617 dprintf("found section header %s (sh_addr 0x%llx)\n", 1618 name, (u_longlong_t)shp->sh_addr); 1619 1620 if (strcmp(name, ".SUNW_ctf") == 0) { 1621 if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) { 1622 dprintf("no map at addr 0x%llx for %s [%d]\n", 1623 (u_longlong_t)shp->sh_addr, name, i); 1624 continue; 1625 } 1626 1627 if (mp->map_file == NULL || 1628 mp->map_file->file_ctf_buf != NULL) { 1629 dprintf("no mapping file or duplicate buffer " 1630 "for %s [%d]\n", name, i); 1631 continue; 1632 } 1633 1634 if ((buf = malloc(shp->sh_size)) == NULL || 1635 pread64(efp->e_fd, buf, shp->sh_size, 1636 shp->sh_offset) != shp->sh_size) { 1637 dprintf("skipping section %s [%d]: %s\n", 1638 name, i, strerror(errno)); 1639 free(buf); 1640 continue; 1641 } 1642 1643 mp->map_file->file_ctf_size = shp->sh_size; 1644 mp->map_file->file_ctf_buf = buf; 1645 1646 if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM) 1647 mp->map_file->file_ctf_dyn = 1; 1648 1649 } else if (strcmp(name, ".symtab") == 0) { 1650 fake_up_symtab(P, &efp->e_hdr, 1651 shp, &shdrs[shp->sh_link]); 1652 } 1653 } 1654 out: 1655 free(shstrtab); 1656 free(shdrs); 1657 } 1658 1659 /* 1660 * Main engine for core file initialization: given an fd for the core file 1661 * and an optional pathname, construct the ps_prochandle. The aout_path can 1662 * either be a suggested executable pathname, or a suggested directory to 1663 * use as a possible current working directory. 1664 */ 1665 struct ps_prochandle * 1666 Pfgrab_core(int core_fd, const char *aout_path, int *perr) 1667 { 1668 struct ps_prochandle *P; 1669 map_info_t *stk_mp, *brk_mp; 1670 const char *execname; 1671 char *interp; 1672 int i, notes, pagesize; 1673 uintptr_t addr, base_addr; 1674 struct stat64 stbuf; 1675 void *phbuf, *php; 1676 size_t nbytes; 1677 1678 elf_file_t aout; 1679 elf_file_t core; 1680 1681 Elf_Scn *scn, *intp_scn = NULL; 1682 Elf_Data *dp; 1683 1684 GElf_Phdr phdr, note_phdr; 1685 GElf_Shdr shdr; 1686 GElf_Xword nleft; 1687 1688 if (elf_version(EV_CURRENT) == EV_NONE) { 1689 dprintf("libproc ELF version is more recent than libelf\n"); 1690 *perr = G_ELF; 1691 return (NULL); 1692 } 1693 1694 aout.e_elf = NULL; 1695 aout.e_fd = -1; 1696 1697 core.e_elf = NULL; 1698 core.e_fd = core_fd; 1699 1700 /* 1701 * Allocate and initialize a ps_prochandle structure for the core. 1702 * There are several key pieces of initialization here: 1703 * 1704 * 1. The PS_DEAD state flag marks this prochandle as a core file. 1705 * PS_DEAD also thus prevents all operations which require state 1706 * to be PS_STOP from operating on this handle. 1707 * 1708 * 2. We keep the core file fd in P->asfd since the core file contains 1709 * the remnants of the process address space. 1710 * 1711 * 3. We set the P->info_valid bit because all information about the 1712 * core is determined by the end of this function; there is no need 1713 * for proc_update_maps() to reload mappings at any later point. 1714 * 1715 * 4. The read/write ops vector uses our core_rw() function defined 1716 * above to handle i/o requests. 1717 */ 1718 if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) { 1719 *perr = G_STRANGE; 1720 return (NULL); 1721 } 1722 1723 (void) memset(P, 0, sizeof (struct ps_prochandle)); 1724 (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL); 1725 P->state = PS_DEAD; 1726 P->pid = (pid_t)-1; 1727 P->asfd = core.e_fd; 1728 P->ctlfd = -1; 1729 P->statfd = -1; 1730 P->agentctlfd = -1; 1731 P->agentstatfd = -1; 1732 P->zoneroot = NULL; 1733 P->info_valid = 1; 1734 P->ops = &P_core_ops; 1735 1736 Pinitsym(P); 1737 1738 /* 1739 * Fstat and open the core file and make sure it is a valid ELF core. 1740 */ 1741 if (fstat64(P->asfd, &stbuf) == -1) { 1742 *perr = G_STRANGE; 1743 goto err; 1744 } 1745 1746 if (core_elf_fdopen(&core, ET_CORE, perr) == -1) 1747 goto err; 1748 1749 /* 1750 * Allocate and initialize a core_info_t to hang off the ps_prochandle 1751 * structure. We keep all core-specific information in this structure. 1752 */ 1753 if ((P->core = calloc(1, sizeof (core_info_t))) == NULL) { 1754 *perr = G_STRANGE; 1755 goto err; 1756 } 1757 1758 list_link(&P->core->core_lwp_head, NULL); 1759 P->core->core_size = stbuf.st_size; 1760 /* 1761 * In the days before adjustable core file content, this was the 1762 * default core file content. For new core files, this value will 1763 * be overwritten by the NT_CONTENT note section. 1764 */ 1765 P->core->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP | 1766 CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON | 1767 CC_CONTENT_SHANON; 1768 1769 switch (core.e_hdr.e_ident[EI_CLASS]) { 1770 case ELFCLASS32: 1771 P->core->core_dmodel = PR_MODEL_ILP32; 1772 break; 1773 case ELFCLASS64: 1774 P->core->core_dmodel = PR_MODEL_LP64; 1775 break; 1776 default: 1777 *perr = G_FORMAT; 1778 goto err; 1779 } 1780 1781 /* 1782 * Because the core file may be a large file, we can't use libelf to 1783 * read the Phdrs. We use e_phnum and e_phentsize to simplify things. 1784 */ 1785 nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize; 1786 1787 if ((phbuf = malloc(nbytes)) == NULL) { 1788 *perr = G_STRANGE; 1789 goto err; 1790 } 1791 1792 if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) { 1793 *perr = G_STRANGE; 1794 free(phbuf); 1795 goto err; 1796 } 1797 1798 /* 1799 * Iterate through the program headers in the core file. 1800 * We're interested in two types of Phdrs: PT_NOTE (which 1801 * contains a set of saved /proc structures), and PT_LOAD (which 1802 * represents a memory mapping from the process's address space). 1803 * In the case of PT_NOTE, we're interested in the last PT_NOTE 1804 * in the core file; currently the first PT_NOTE (if present) 1805 * contains /proc structs in the pre-2.6 unstructured /proc format. 1806 */ 1807 for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) { 1808 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64) 1809 (void) memcpy(&phdr, php, sizeof (GElf_Phdr)); 1810 else 1811 core_phdr_to_gelf(php, &phdr); 1812 1813 switch (phdr.p_type) { 1814 case PT_NOTE: 1815 note_phdr = phdr; 1816 notes++; 1817 break; 1818 1819 case PT_LOAD: 1820 if (core_add_mapping(P, &phdr) == -1) { 1821 *perr = G_STRANGE; 1822 free(phbuf); 1823 goto err; 1824 } 1825 break; 1826 } 1827 1828 php = (char *)php + core.e_hdr.e_phentsize; 1829 } 1830 1831 free(phbuf); 1832 1833 Psort_mappings(P); 1834 1835 /* 1836 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE 1837 * was present, abort. The core file is either corrupt or too old. 1838 */ 1839 if (notes == 0 || notes == 1) { 1840 *perr = G_NOTE; 1841 goto err; 1842 } 1843 1844 /* 1845 * Advance the seek pointer to the start of the PT_NOTE data 1846 */ 1847 if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) { 1848 dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n"); 1849 *perr = G_STRANGE; 1850 goto err; 1851 } 1852 1853 /* 1854 * Now process the PT_NOTE structures. Each one is preceded by 1855 * an Elf{32/64}_Nhdr structure describing its type and size. 1856 * 1857 * +--------+ 1858 * | header | 1859 * +--------+ 1860 * | name | 1861 * | ... | 1862 * +--------+ 1863 * | desc | 1864 * | ... | 1865 * +--------+ 1866 */ 1867 for (nleft = note_phdr.p_filesz; nleft > 0; ) { 1868 Elf64_Nhdr nhdr; 1869 off64_t off, namesz; 1870 1871 /* 1872 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr 1873 * as different types, they are both of the same content and 1874 * size, so we don't need to worry about 32/64 conversion here. 1875 */ 1876 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) { 1877 dprintf("Pgrab_core: failed to read ELF note header\n"); 1878 *perr = G_NOTE; 1879 goto err; 1880 } 1881 1882 /* 1883 * According to the System V ABI, the amount of padding 1884 * following the name field should align the description 1885 * field on a 4 byte boundary for 32-bit binaries or on an 8 1886 * byte boundary for 64-bit binaries. However, this change 1887 * was not made correctly during the 64-bit port so all 1888 * descriptions can assume only 4-byte alignment. We ignore 1889 * the name field and the padding to 4-byte alignment. 1890 */ 1891 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4); 1892 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) { 1893 dprintf("failed to seek past name and padding\n"); 1894 *perr = G_STRANGE; 1895 goto err; 1896 } 1897 1898 dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n", 1899 nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz); 1900 1901 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR); 1902 1903 /* 1904 * Invoke the note handler function from our table 1905 */ 1906 if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) { 1907 if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) { 1908 *perr = G_NOTE; 1909 goto err; 1910 } 1911 } else 1912 (void) note_notsup(P, nhdr.n_descsz); 1913 1914 /* 1915 * Seek past the current note data to the next Elf_Nhdr 1916 */ 1917 if (lseek64(P->asfd, off + nhdr.n_descsz, 1918 SEEK_SET) == (off64_t)-1) { 1919 dprintf("Pgrab_core: failed to seek to next nhdr\n"); 1920 *perr = G_STRANGE; 1921 goto err; 1922 } 1923 1924 /* 1925 * Subtract the size of the header and its data from what 1926 * we have left to process. 1927 */ 1928 nleft -= sizeof (nhdr) + namesz + nhdr.n_descsz; 1929 } 1930 1931 if (nleft != 0) { 1932 dprintf("Pgrab_core: note section malformed\n"); 1933 *perr = G_STRANGE; 1934 goto err; 1935 } 1936 1937 if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) { 1938 pagesize = getpagesize(); 1939 dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize); 1940 } 1941 1942 /* 1943 * Locate and label the mappings corresponding to the end of the 1944 * heap (MA_BREAK) and the base of the stack (MA_STACK). 1945 */ 1946 if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) && 1947 (brk_mp = Paddr2mptr(P, P->status.pr_brkbase + 1948 P->status.pr_brksize - 1)) != NULL) 1949 brk_mp->map_pmap.pr_mflags |= MA_BREAK; 1950 else 1951 brk_mp = NULL; 1952 1953 if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL) 1954 stk_mp->map_pmap.pr_mflags |= MA_STACK; 1955 1956 /* 1957 * At this point, we have enough information to look for the 1958 * executable and open it: we have access to the auxv, a psinfo_t, 1959 * and the ability to read from mappings provided by the core file. 1960 */ 1961 (void) Pfindexec(P, aout_path, core_exec_open, &aout); 1962 dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL"); 1963 execname = P->execname ? P->execname : "a.out"; 1964 1965 /* 1966 * Iterate through the sections, looking for the .dynamic and .interp 1967 * sections. If we encounter them, remember their section pointers. 1968 */ 1969 for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) { 1970 char *sname; 1971 1972 if ((gelf_getshdr(scn, &shdr) == NULL) || 1973 (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx, 1974 (size_t)shdr.sh_name)) == NULL) 1975 continue; 1976 1977 if (strcmp(sname, ".interp") == 0) 1978 intp_scn = scn; 1979 } 1980 1981 /* 1982 * Get the AT_BASE auxv element. If this is missing (-1), then 1983 * we assume this is a statically-linked executable. 1984 */ 1985 base_addr = Pgetauxval(P, AT_BASE); 1986 1987 /* 1988 * In order to get librtld_db initialized, we'll need to identify 1989 * and name the mapping corresponding to the run-time linker. The 1990 * AT_BASE auxv element tells us the address where it was mapped, 1991 * and the .interp section of the executable tells us its path. 1992 * If for some reason that doesn't pan out, just use ld.so.1. 1993 */ 1994 if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL && 1995 dp->d_size != 0) { 1996 dprintf(".interp = <%s>\n", (char *)dp->d_buf); 1997 interp = dp->d_buf; 1998 1999 } else if (base_addr != (uintptr_t)-1L) { 2000 if (P->core->core_dmodel == PR_MODEL_LP64) 2001 interp = "/usr/lib/64/ld.so.1"; 2002 else 2003 interp = "/usr/lib/ld.so.1"; 2004 2005 dprintf(".interp section is missing or could not be read; " 2006 "defaulting to %s\n", interp); 2007 } else 2008 dprintf("detected statically linked executable\n"); 2009 2010 /* 2011 * If we have an AT_BASE element, name the mapping at that address 2012 * using the interpreter pathname. Name the corresponding data 2013 * mapping after the interpreter as well. 2014 */ 2015 if (base_addr != (uintptr_t)-1L) { 2016 elf_file_t intf; 2017 2018 P->map_ldso = core_name_mapping(P, base_addr, interp); 2019 2020 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) { 2021 rd_loadobj_t rl; 2022 map_info_t *dmp; 2023 2024 rl.rl_base = base_addr; 2025 dmp = core_find_data(P, intf.e_elf, &rl); 2026 2027 if (dmp != NULL) { 2028 dprintf("renamed data at %p to %s\n", 2029 (void *)rl.rl_data_base, interp); 2030 (void) strncpy(dmp->map_pmap.pr_mapname, 2031 interp, PRMAPSZ); 2032 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2033 } 2034 } 2035 2036 core_elf_close(&intf); 2037 } 2038 2039 /* 2040 * If we have an AT_ENTRY element, name the mapping at that address 2041 * using the special name "a.out" just like /proc does. 2042 */ 2043 if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L) 2044 P->map_exec = core_name_mapping(P, addr, "a.out"); 2045 2046 /* 2047 * If we're a statically linked executable, then just locate the 2048 * executable's text and data and name them after the executable. 2049 */ 2050 if (base_addr == (uintptr_t)-1L) { 2051 map_info_t *tmp, *dmp; 2052 file_info_t *fp; 2053 rd_loadobj_t rl; 2054 2055 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL && 2056 (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) { 2057 (void) strncpy(tmp->map_pmap.pr_mapname, 2058 execname, PRMAPSZ); 2059 tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2060 (void) strncpy(dmp->map_pmap.pr_mapname, 2061 execname, PRMAPSZ); 2062 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2063 } 2064 2065 if ((P->map_exec = tmp) != NULL && 2066 (fp = malloc(sizeof (file_info_t))) != NULL) { 2067 2068 (void) memset(fp, 0, sizeof (file_info_t)); 2069 2070 list_link(fp, &P->file_head); 2071 tmp->map_file = fp; 2072 P->num_files++; 2073 2074 fp->file_ref = 1; 2075 fp->file_fd = -1; 2076 2077 fp->file_lo = malloc(sizeof (rd_loadobj_t)); 2078 fp->file_lname = strdup(execname); 2079 2080 if (fp->file_lo) 2081 *fp->file_lo = rl; 2082 if (fp->file_lname) 2083 fp->file_lbase = basename(fp->file_lname); 2084 if (fp->file_rname) 2085 fp->file_rbase = basename(fp->file_rname); 2086 2087 (void) strcpy(fp->file_pname, 2088 P->mappings[0].map_pmap.pr_mapname); 2089 fp->file_map = tmp; 2090 2091 Pbuild_file_symtab(P, fp); 2092 2093 if (dmp != NULL) { 2094 dmp->map_file = fp; 2095 fp->file_ref++; 2096 } 2097 } 2098 } 2099 2100 core_elf_close(&aout); 2101 2102 /* 2103 * We now have enough information to initialize librtld_db. 2104 * After it warms up, we can iterate through the load object chain 2105 * in the core, which will allow us to construct the file info 2106 * we need to provide symbol information for the other shared 2107 * libraries, and also to fill in the missing mapping names. 2108 */ 2109 rd_log(_libproc_debug); 2110 2111 if ((P->rap = rd_new(P)) != NULL) { 2112 (void) rd_loadobj_iter(P->rap, (rl_iter_f *) 2113 core_iter_mapping, P); 2114 2115 if (P->core->core_errno != 0) { 2116 errno = P->core->core_errno; 2117 *perr = G_STRANGE; 2118 goto err; 2119 } 2120 } else 2121 dprintf("failed to initialize rtld_db agent\n"); 2122 2123 /* 2124 * If there are sections, load them and process the data from any 2125 * sections that we can use to annotate the file_info_t's. 2126 */ 2127 core_load_shdrs(P, &core); 2128 2129 /* 2130 * If we previously located a stack or break mapping, and they are 2131 * still anonymous, we now assume that they were MAP_ANON mappings. 2132 * If brk_mp turns out to now have a name, then the heap is still 2133 * sitting at the end of the executable's data+bss mapping: remove 2134 * the previous MA_BREAK setting to be consistent with /proc. 2135 */ 2136 if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0') 2137 stk_mp->map_pmap.pr_mflags |= MA_ANON; 2138 if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0') 2139 brk_mp->map_pmap.pr_mflags |= MA_ANON; 2140 else if (brk_mp != NULL) 2141 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK; 2142 2143 *perr = 0; 2144 return (P); 2145 2146 err: 2147 Pfree(P); 2148 core_elf_close(&aout); 2149 return (NULL); 2150 } 2151 2152 /* 2153 * Grab a core file using a pathname. We just open it and call Pfgrab_core(). 2154 */ 2155 struct ps_prochandle * 2156 Pgrab_core(const char *core, const char *aout, int gflag, int *perr) 2157 { 2158 int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR; 2159 2160 if ((fd = open64(core, oflag)) >= 0) 2161 return (Pfgrab_core(fd, aout, perr)); 2162 2163 if (errno != ENOENT) 2164 *perr = G_STRANGE; 2165 else 2166 *perr = G_NOCORE; 2167 2168 return (NULL); 2169 } 2170