1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved. 27 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/utsname.h> 32 #include <sys/sysmacros.h> 33 #include <sys/proc.h> 34 35 #include <alloca.h> 36 #include <rtld_db.h> 37 #include <libgen.h> 38 #include <limits.h> 39 #include <string.h> 40 #include <stdlib.h> 41 #include <unistd.h> 42 #include <errno.h> 43 #include <gelf.h> 44 #include <stddef.h> 45 #include <signal.h> 46 47 #include "libproc.h" 48 #include "Pcontrol.h" 49 #include "P32ton.h" 50 #include "Putil.h" 51 52 /* 53 * Pcore.c - Code to initialize a ps_prochandle from a core dump. We 54 * allocate an additional structure to hold information from the core 55 * file, and attach this to the standard ps_prochandle in place of the 56 * ability to examine /proc/<pid>/ files. 57 */ 58 59 /* 60 * Basic i/o function for reading and writing from the process address space 61 * stored in the core file and associated shared libraries. We compute the 62 * appropriate fd and offsets, and let the provided prw function do the rest. 63 */ 64 static ssize_t 65 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr, 66 ssize_t (*prw)(int, void *, size_t, off64_t)) 67 { 68 ssize_t resid = n; 69 70 while (resid != 0) { 71 map_info_t *mp = Paddr2mptr(P, addr); 72 73 uintptr_t mapoff; 74 ssize_t len; 75 off64_t off; 76 int fd; 77 78 if (mp == NULL) 79 break; /* No mapping for this address */ 80 81 if (mp->map_pmap.pr_mflags & MA_RESERVED1) { 82 if (mp->map_file == NULL || mp->map_file->file_fd < 0) 83 break; /* No file or file not open */ 84 85 fd = mp->map_file->file_fd; 86 } else 87 fd = P->asfd; 88 89 mapoff = addr - mp->map_pmap.pr_vaddr; 90 len = MIN(resid, mp->map_pmap.pr_size - mapoff); 91 off = mp->map_offset + mapoff; 92 93 if ((len = prw(fd, buf, len, off)) <= 0) 94 break; 95 96 resid -= len; 97 addr += len; 98 buf = (char *)buf + len; 99 } 100 101 /* 102 * Important: Be consistent with the behavior of i/o on the as file: 103 * writing to an invalid address yields EIO; reading from an invalid 104 * address falls through to returning success and zero bytes. 105 */ 106 if (resid == n && n != 0 && prw != pread64) { 107 errno = EIO; 108 return (-1); 109 } 110 111 return (n - resid); 112 } 113 114 static ssize_t 115 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr) 116 { 117 return (core_rw(P, buf, n, addr, pread64)); 118 } 119 120 static ssize_t 121 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr) 122 { 123 return (core_rw(P, (void *)buf, n, addr, 124 (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64)); 125 } 126 127 static const ps_rwops_t P_core_ops = { Pread_core, Pwrite_core }; 128 129 /* 130 * Return the lwp_info_t for the given lwpid. If no such lwpid has been 131 * encountered yet, allocate a new structure and return a pointer to it. 132 * Create a list of lwp_info_t structures sorted in decreasing lwp_id order. 133 */ 134 static lwp_info_t * 135 lwpid2info(struct ps_prochandle *P, lwpid_t id) 136 { 137 lwp_info_t *lwp = list_next(&P->core->core_lwp_head); 138 lwp_info_t *next; 139 uint_t i; 140 141 for (i = 0; i < P->core->core_nlwp; i++, lwp = list_next(lwp)) { 142 if (lwp->lwp_id == id) { 143 P->core->core_lwp = lwp; 144 return (lwp); 145 } 146 if (lwp->lwp_id < id) { 147 break; 148 } 149 } 150 151 next = lwp; 152 if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL) 153 return (NULL); 154 155 list_link(lwp, next); 156 lwp->lwp_id = id; 157 158 P->core->core_lwp = lwp; 159 P->core->core_nlwp++; 160 161 return (lwp); 162 } 163 164 /* 165 * The core file itself contains a series of NOTE segments containing saved 166 * structures from /proc at the time the process died. For each note we 167 * comprehend, we define a function to read it in from the core file, 168 * convert it to our native data model if necessary, and store it inside 169 * the ps_prochandle. Each function is invoked by Pfgrab_core() with the 170 * seek pointer on P->asfd positioned appropriately. We populate a table 171 * of pointers to these note functions below. 172 */ 173 174 static int 175 note_pstatus(struct ps_prochandle *P, size_t nbytes) 176 { 177 #ifdef _LP64 178 if (P->core->core_dmodel == PR_MODEL_ILP32) { 179 pstatus32_t ps32; 180 181 if (nbytes < sizeof (pstatus32_t) || 182 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32)) 183 goto err; 184 185 pstatus_32_to_n(&ps32, &P->status); 186 187 } else 188 #endif 189 if (nbytes < sizeof (pstatus_t) || 190 read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t)) 191 goto err; 192 193 P->orig_status = P->status; 194 P->pid = P->status.pr_pid; 195 196 return (0); 197 198 err: 199 dprintf("Pgrab_core: failed to read NT_PSTATUS\n"); 200 return (-1); 201 } 202 203 static int 204 note_lwpstatus(struct ps_prochandle *P, size_t nbytes) 205 { 206 lwp_info_t *lwp; 207 lwpstatus_t lps; 208 209 #ifdef _LP64 210 if (P->core->core_dmodel == PR_MODEL_ILP32) { 211 lwpstatus32_t l32; 212 213 if (nbytes < sizeof (lwpstatus32_t) || 214 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32)) 215 goto err; 216 217 lwpstatus_32_to_n(&l32, &lps); 218 } else 219 #endif 220 if (nbytes < sizeof (lwpstatus_t) || 221 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps)) 222 goto err; 223 224 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) { 225 dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n"); 226 return (-1); 227 } 228 229 /* 230 * Erase a useless and confusing artifact of the kernel implementation: 231 * the lwps which did *not* create the core will show SIGKILL. We can 232 * be assured this is bogus because SIGKILL can't produce core files. 233 */ 234 if (lps.pr_cursig == SIGKILL) 235 lps.pr_cursig = 0; 236 237 (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps)); 238 return (0); 239 240 err: 241 dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n"); 242 return (-1); 243 } 244 245 static int 246 note_psinfo(struct ps_prochandle *P, size_t nbytes) 247 { 248 #ifdef _LP64 249 if (P->core->core_dmodel == PR_MODEL_ILP32) { 250 psinfo32_t ps32; 251 252 if (nbytes < sizeof (psinfo32_t) || 253 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32)) 254 goto err; 255 256 psinfo_32_to_n(&ps32, &P->psinfo); 257 } else 258 #endif 259 if (nbytes < sizeof (psinfo_t) || 260 read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t)) 261 goto err; 262 263 dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname); 264 dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs); 265 dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat); 266 267 return (0); 268 269 err: 270 dprintf("Pgrab_core: failed to read NT_PSINFO\n"); 271 return (-1); 272 } 273 274 static int 275 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes) 276 { 277 lwp_info_t *lwp; 278 lwpsinfo_t lps; 279 280 #ifdef _LP64 281 if (P->core->core_dmodel == PR_MODEL_ILP32) { 282 lwpsinfo32_t l32; 283 284 if (nbytes < sizeof (lwpsinfo32_t) || 285 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32)) 286 goto err; 287 288 lwpsinfo_32_to_n(&l32, &lps); 289 } else 290 #endif 291 if (nbytes < sizeof (lwpsinfo_t) || 292 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps)) 293 goto err; 294 295 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) { 296 dprintf("Pgrab_core: failed to add NT_LWPSINFO\n"); 297 return (-1); 298 } 299 300 (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps)); 301 return (0); 302 303 err: 304 dprintf("Pgrab_core: failed to read NT_LWPSINFO\n"); 305 return (-1); 306 } 307 308 static int 309 note_fdinfo(struct ps_prochandle *P, size_t nbytes) 310 { 311 prfdinfo_t prfd; 312 fd_info_t *fip; 313 314 if ((nbytes < sizeof (prfd)) || 315 (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) { 316 dprintf("Pgrab_core: failed to read NT_FDINFO\n"); 317 return (-1); 318 } 319 320 if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) { 321 dprintf("Pgrab_core: failed to add NT_FDINFO\n"); 322 return (-1); 323 } 324 (void) memcpy(&fip->fd_info, &prfd, sizeof (prfd)); 325 return (0); 326 } 327 328 static int 329 note_platform(struct ps_prochandle *P, size_t nbytes) 330 { 331 char *plat; 332 333 if (P->core->core_platform != NULL) 334 return (0); /* Already seen */ 335 336 if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) { 337 if (read(P->asfd, plat, nbytes) != nbytes) { 338 dprintf("Pgrab_core: failed to read NT_PLATFORM\n"); 339 free(plat); 340 return (-1); 341 } 342 plat[nbytes - 1] = '\0'; 343 P->core->core_platform = plat; 344 } 345 346 return (0); 347 } 348 349 static int 350 note_utsname(struct ps_prochandle *P, size_t nbytes) 351 { 352 size_t ubytes = sizeof (struct utsname); 353 struct utsname *utsp; 354 355 if (P->core->core_uts != NULL || nbytes < ubytes) 356 return (0); /* Already seen or bad size */ 357 358 if ((utsp = malloc(ubytes)) == NULL) 359 return (-1); 360 361 if (read(P->asfd, utsp, ubytes) != ubytes) { 362 dprintf("Pgrab_core: failed to read NT_UTSNAME\n"); 363 free(utsp); 364 return (-1); 365 } 366 367 if (_libproc_debug) { 368 dprintf("uts.sysname = \"%s\"\n", utsp->sysname); 369 dprintf("uts.nodename = \"%s\"\n", utsp->nodename); 370 dprintf("uts.release = \"%s\"\n", utsp->release); 371 dprintf("uts.version = \"%s\"\n", utsp->version); 372 dprintf("uts.machine = \"%s\"\n", utsp->machine); 373 } 374 375 P->core->core_uts = utsp; 376 return (0); 377 } 378 379 static int 380 note_content(struct ps_prochandle *P, size_t nbytes) 381 { 382 core_content_t content; 383 384 if (sizeof (P->core->core_content) != nbytes) 385 return (-1); 386 387 if (read(P->asfd, &content, sizeof (content)) != sizeof (content)) 388 return (-1); 389 390 P->core->core_content = content; 391 392 dprintf("core content = %llx\n", content); 393 394 return (0); 395 } 396 397 static int 398 note_cred(struct ps_prochandle *P, size_t nbytes) 399 { 400 prcred_t *pcrp; 401 int ngroups; 402 const size_t min_size = sizeof (prcred_t) - sizeof (gid_t); 403 404 /* 405 * We allow for prcred_t notes that are actually smaller than a 406 * prcred_t since the last member isn't essential if there are 407 * no group memberships. This allows for more flexibility when it 408 * comes to slightly malformed -- but still valid -- notes. 409 */ 410 if (P->core->core_cred != NULL || nbytes < min_size) 411 return (0); /* Already seen or bad size */ 412 413 ngroups = (nbytes - min_size) / sizeof (gid_t); 414 nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t); 415 416 if ((pcrp = malloc(nbytes)) == NULL) 417 return (-1); 418 419 if (read(P->asfd, pcrp, nbytes) != nbytes) { 420 dprintf("Pgrab_core: failed to read NT_PRCRED\n"); 421 free(pcrp); 422 return (-1); 423 } 424 425 if (pcrp->pr_ngroups > ngroups) { 426 dprintf("pr_ngroups = %d; resetting to %d based on note size\n", 427 pcrp->pr_ngroups, ngroups); 428 pcrp->pr_ngroups = ngroups; 429 } 430 431 P->core->core_cred = pcrp; 432 return (0); 433 } 434 435 #if defined(__i386) || defined(__amd64) 436 static int 437 note_ldt(struct ps_prochandle *P, size_t nbytes) 438 { 439 struct ssd *pldt; 440 uint_t nldt; 441 442 if (P->core->core_ldt != NULL || nbytes < sizeof (struct ssd)) 443 return (0); /* Already seen or bad size */ 444 445 nldt = nbytes / sizeof (struct ssd); 446 nbytes = nldt * sizeof (struct ssd); 447 448 if ((pldt = malloc(nbytes)) == NULL) 449 return (-1); 450 451 if (read(P->asfd, pldt, nbytes) != nbytes) { 452 dprintf("Pgrab_core: failed to read NT_LDT\n"); 453 free(pldt); 454 return (-1); 455 } 456 457 P->core->core_ldt = pldt; 458 P->core->core_nldt = nldt; 459 return (0); 460 } 461 #endif /* __i386 */ 462 463 static int 464 note_priv(struct ps_prochandle *P, size_t nbytes) 465 { 466 prpriv_t *pprvp; 467 468 if (P->core->core_priv != NULL || nbytes < sizeof (prpriv_t)) 469 return (0); /* Already seen or bad size */ 470 471 if ((pprvp = malloc(nbytes)) == NULL) 472 return (-1); 473 474 if (read(P->asfd, pprvp, nbytes) != nbytes) { 475 dprintf("Pgrab_core: failed to read NT_PRPRIV\n"); 476 free(pprvp); 477 return (-1); 478 } 479 480 P->core->core_priv = pprvp; 481 P->core->core_priv_size = nbytes; 482 return (0); 483 } 484 485 static int 486 note_priv_info(struct ps_prochandle *P, size_t nbytes) 487 { 488 extern void *__priv_parse_info(); 489 priv_impl_info_t *ppii; 490 491 if (P->core->core_privinfo != NULL || 492 nbytes < sizeof (priv_impl_info_t)) 493 return (0); /* Already seen or bad size */ 494 495 if ((ppii = malloc(nbytes)) == NULL) 496 return (-1); 497 498 if (read(P->asfd, ppii, nbytes) != nbytes || 499 PRIV_IMPL_INFO_SIZE(ppii) != nbytes) { 500 dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n"); 501 free(ppii); 502 return (-1); 503 } 504 505 P->core->core_privinfo = __priv_parse_info(ppii); 506 P->core->core_ppii = ppii; 507 return (0); 508 } 509 510 static int 511 note_zonename(struct ps_prochandle *P, size_t nbytes) 512 { 513 char *zonename; 514 515 if (P->core->core_zonename != NULL) 516 return (0); /* Already seen */ 517 518 if (nbytes != 0) { 519 if ((zonename = malloc(nbytes)) == NULL) 520 return (-1); 521 if (read(P->asfd, zonename, nbytes) != nbytes) { 522 dprintf("Pgrab_core: failed to read NT_ZONENAME\n"); 523 free(zonename); 524 return (-1); 525 } 526 zonename[nbytes - 1] = '\0'; 527 P->core->core_zonename = zonename; 528 } 529 530 return (0); 531 } 532 533 static int 534 note_auxv(struct ps_prochandle *P, size_t nbytes) 535 { 536 size_t n, i; 537 538 #ifdef _LP64 539 if (P->core->core_dmodel == PR_MODEL_ILP32) { 540 auxv32_t *a32; 541 542 n = nbytes / sizeof (auxv32_t); 543 nbytes = n * sizeof (auxv32_t); 544 a32 = alloca(nbytes); 545 546 if (read(P->asfd, a32, nbytes) != nbytes) { 547 dprintf("Pgrab_core: failed to read NT_AUXV\n"); 548 return (-1); 549 } 550 551 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL) 552 return (-1); 553 554 for (i = 0; i < n; i++) 555 auxv_32_to_n(&a32[i], &P->auxv[i]); 556 557 } else { 558 #endif 559 n = nbytes / sizeof (auxv_t); 560 nbytes = n * sizeof (auxv_t); 561 562 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL) 563 return (-1); 564 565 if (read(P->asfd, P->auxv, nbytes) != nbytes) { 566 free(P->auxv); 567 P->auxv = NULL; 568 return (-1); 569 } 570 #ifdef _LP64 571 } 572 #endif 573 574 if (_libproc_debug) { 575 for (i = 0; i < n; i++) { 576 dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i, 577 P->auxv[i].a_type, P->auxv[i].a_un.a_val); 578 } 579 } 580 581 /* 582 * Defensive coding for loops which depend upon the auxv array being 583 * terminated by an AT_NULL element; in each case, we've allocated 584 * P->auxv to have an additional element which we force to be AT_NULL. 585 */ 586 P->auxv[n].a_type = AT_NULL; 587 P->auxv[n].a_un.a_val = 0L; 588 P->nauxv = (int)n; 589 590 return (0); 591 } 592 593 #ifdef __sparc 594 static int 595 note_xreg(struct ps_prochandle *P, size_t nbytes) 596 { 597 lwp_info_t *lwp = P->core->core_lwp; 598 size_t xbytes = sizeof (prxregset_t); 599 prxregset_t *xregs; 600 601 if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes) 602 return (0); /* No lwp yet, already seen, or bad size */ 603 604 if ((xregs = malloc(xbytes)) == NULL) 605 return (-1); 606 607 if (read(P->asfd, xregs, xbytes) != xbytes) { 608 dprintf("Pgrab_core: failed to read NT_PRXREG\n"); 609 free(xregs); 610 return (-1); 611 } 612 613 lwp->lwp_xregs = xregs; 614 return (0); 615 } 616 617 static int 618 note_gwindows(struct ps_prochandle *P, size_t nbytes) 619 { 620 lwp_info_t *lwp = P->core->core_lwp; 621 622 if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0) 623 return (0); /* No lwp yet or already seen or no data */ 624 625 if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL) 626 return (-1); 627 628 /* 629 * Since the amount of gwindows data varies with how many windows were 630 * actually saved, we just read up to the minimum of the note size 631 * and the size of the gwindows_t type. It doesn't matter if the read 632 * fails since we have to zero out gwindows first anyway. 633 */ 634 #ifdef _LP64 635 if (P->core->core_dmodel == PR_MODEL_ILP32) { 636 gwindows32_t g32; 637 638 (void) memset(&g32, 0, sizeof (g32)); 639 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32))); 640 gwindows_32_to_n(&g32, lwp->lwp_gwins); 641 642 } else { 643 #endif 644 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t)); 645 (void) read(P->asfd, lwp->lwp_gwins, 646 MIN(nbytes, sizeof (gwindows_t))); 647 #ifdef _LP64 648 } 649 #endif 650 return (0); 651 } 652 653 #ifdef __sparcv9 654 static int 655 note_asrs(struct ps_prochandle *P, size_t nbytes) 656 { 657 lwp_info_t *lwp = P->core->core_lwp; 658 int64_t *asrs; 659 660 if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t)) 661 return (0); /* No lwp yet, already seen, or bad size */ 662 663 if ((asrs = malloc(sizeof (asrset_t))) == NULL) 664 return (-1); 665 666 if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) { 667 dprintf("Pgrab_core: failed to read NT_ASRS\n"); 668 free(asrs); 669 return (-1); 670 } 671 672 lwp->lwp_asrs = asrs; 673 return (0); 674 } 675 #endif /* __sparcv9 */ 676 #endif /* __sparc */ 677 678 static int 679 note_spymaster(struct ps_prochandle *P, size_t nbytes) 680 { 681 #ifdef _LP64 682 if (P->core->core_dmodel == PR_MODEL_ILP32) { 683 psinfo32_t ps32; 684 685 if (nbytes < sizeof (psinfo32_t) || 686 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32)) 687 goto err; 688 689 psinfo_32_to_n(&ps32, &P->spymaster); 690 } else 691 #endif 692 if (nbytes < sizeof (psinfo_t) || read(P->asfd, 693 &P->spymaster, sizeof (psinfo_t)) != sizeof (psinfo_t)) 694 goto err; 695 696 dprintf("spymaster pr_fname = <%s>\n", P->psinfo.pr_fname); 697 dprintf("spymaster pr_psargs = <%s>\n", P->psinfo.pr_psargs); 698 dprintf("spymaster pr_wstat = 0x%x\n", P->psinfo.pr_wstat); 699 700 return (0); 701 702 err: 703 dprintf("Pgrab_core: failed to read NT_SPYMASTER\n"); 704 return (-1); 705 } 706 707 /*ARGSUSED*/ 708 static int 709 note_notsup(struct ps_prochandle *P, size_t nbytes) 710 { 711 dprintf("skipping unsupported note type\n"); 712 return (0); 713 } 714 715 /* 716 * Populate a table of function pointers indexed by Note type with our 717 * functions to process each type of core file note: 718 */ 719 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = { 720 note_notsup, /* 0 unassigned */ 721 note_notsup, /* 1 NT_PRSTATUS (old) */ 722 note_notsup, /* 2 NT_PRFPREG (old) */ 723 note_notsup, /* 3 NT_PRPSINFO (old) */ 724 #ifdef __sparc 725 note_xreg, /* 4 NT_PRXREG */ 726 #else 727 note_notsup, /* 4 NT_PRXREG */ 728 #endif 729 note_platform, /* 5 NT_PLATFORM */ 730 note_auxv, /* 6 NT_AUXV */ 731 #ifdef __sparc 732 note_gwindows, /* 7 NT_GWINDOWS */ 733 #ifdef __sparcv9 734 note_asrs, /* 8 NT_ASRS */ 735 #else 736 note_notsup, /* 8 NT_ASRS */ 737 #endif 738 #else 739 note_notsup, /* 7 NT_GWINDOWS */ 740 note_notsup, /* 8 NT_ASRS */ 741 #endif 742 #if defined(__i386) || defined(__amd64) 743 note_ldt, /* 9 NT_LDT */ 744 #else 745 note_notsup, /* 9 NT_LDT */ 746 #endif 747 note_pstatus, /* 10 NT_PSTATUS */ 748 note_notsup, /* 11 unassigned */ 749 note_notsup, /* 12 unassigned */ 750 note_psinfo, /* 13 NT_PSINFO */ 751 note_cred, /* 14 NT_PRCRED */ 752 note_utsname, /* 15 NT_UTSNAME */ 753 note_lwpstatus, /* 16 NT_LWPSTATUS */ 754 note_lwpsinfo, /* 17 NT_LWPSINFO */ 755 note_priv, /* 18 NT_PRPRIV */ 756 note_priv_info, /* 19 NT_PRPRIVINFO */ 757 note_content, /* 20 NT_CONTENT */ 758 note_zonename, /* 21 NT_ZONENAME */ 759 note_fdinfo, /* 22 NT_FDINFO */ 760 note_spymaster, /* 23 NT_SPYMASTER */ 761 }; 762 763 static void 764 core_report_mapping(struct ps_prochandle *P, GElf_Phdr *php) 765 { 766 prkillinfo_t killinfo; 767 siginfo_t *si = &killinfo.prk_info; 768 char signame[SIG2STR_MAX], sig[64], info[64]; 769 void *addr = (void *)(uintptr_t)php->p_vaddr; 770 771 const char *errfmt = "core file data for mapping at %p not saved: %s\n"; 772 const char *incfmt = "core file incomplete due to %s%s\n"; 773 const char *msgfmt = "mappings at and above %p are missing\n"; 774 775 if (!(php->p_flags & PF_SUNW_KILLED)) { 776 int err = 0; 777 778 (void) pread64(P->asfd, &err, 779 sizeof (err), (off64_t)php->p_offset); 780 781 Perror_printf(P, errfmt, addr, strerror(err)); 782 dprintf(errfmt, addr, strerror(err)); 783 return; 784 } 785 786 if (!(php->p_flags & PF_SUNW_SIGINFO)) 787 return; 788 789 (void) memset(&killinfo, 0, sizeof (killinfo)); 790 791 (void) pread64(P->asfd, &killinfo, 792 sizeof (killinfo), (off64_t)php->p_offset); 793 794 /* 795 * While there is (or at least should be) only one segment that has 796 * PF_SUNW_SIGINFO set, the signal information there is globally 797 * useful (even if only to those debugging libproc consumers); we hang 798 * the signal information gleaned here off of the ps_prochandle. 799 */ 800 P->map_missing = php->p_vaddr; 801 P->killinfo = killinfo.prk_info; 802 803 if (sig2str(si->si_signo, signame) == -1) { 804 (void) snprintf(sig, sizeof (sig), 805 "<Unknown signal: 0x%x>, ", si->si_signo); 806 } else { 807 (void) snprintf(sig, sizeof (sig), "SIG%s, ", signame); 808 } 809 810 if (si->si_code == SI_USER || si->si_code == SI_QUEUE) { 811 (void) snprintf(info, sizeof (info), 812 "pid=%d uid=%d zone=%d ctid=%d", 813 si->si_pid, si->si_uid, si->si_zoneid, si->si_ctid); 814 } else { 815 (void) snprintf(info, sizeof (info), 816 "code=%d", si->si_code); 817 } 818 819 Perror_printf(P, incfmt, sig, info); 820 Perror_printf(P, msgfmt, addr); 821 822 dprintf(incfmt, sig, info); 823 dprintf(msgfmt, addr); 824 } 825 826 /* 827 * Add information on the address space mapping described by the given 828 * PT_LOAD program header. We fill in more information on the mapping later. 829 */ 830 static int 831 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php) 832 { 833 prmap_t pmap; 834 835 dprintf("mapping base %llx filesz %llu memsz %llu offset %llu\n", 836 (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz, 837 (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset); 838 839 pmap.pr_vaddr = (uintptr_t)php->p_vaddr; 840 pmap.pr_size = php->p_memsz; 841 842 /* 843 * If Pgcore() or elfcore() fail to write a mapping, they will set 844 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us. 845 */ 846 if (php->p_flags & PF_SUNW_FAILURE) { 847 core_report_mapping(P, php); 848 } else if (php->p_filesz != 0 && php->p_offset >= P->core->core_size) { 849 Perror_printf(P, "core file may be corrupt -- data for mapping " 850 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr); 851 dprintf("core file may be corrupt -- data for mapping " 852 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr); 853 } 854 855 /* 856 * The mapping name and offset will hopefully be filled in 857 * by the librtld_db agent. Unfortunately, if it isn't a 858 * shared library mapping, this information is gone forever. 859 */ 860 pmap.pr_mapname[0] = '\0'; 861 pmap.pr_offset = 0; 862 863 pmap.pr_mflags = 0; 864 if (php->p_flags & PF_R) 865 pmap.pr_mflags |= MA_READ; 866 if (php->p_flags & PF_W) 867 pmap.pr_mflags |= MA_WRITE; 868 if (php->p_flags & PF_X) 869 pmap.pr_mflags |= MA_EXEC; 870 871 if (php->p_filesz == 0) 872 pmap.pr_mflags |= MA_RESERVED1; 873 874 /* 875 * At the time of adding this mapping, we just zero the pagesize. 876 * Once we've processed more of the core file, we'll have the 877 * pagesize from the auxv's AT_PAGESZ element and we can fill this in. 878 */ 879 pmap.pr_pagesize = 0; 880 881 /* 882 * Unfortunately whether or not the mapping was a System V 883 * shared memory segment is lost. We use -1 to mark it as not shm. 884 */ 885 pmap.pr_shmid = -1; 886 887 return (Padd_mapping(P, php->p_offset, NULL, &pmap)); 888 } 889 890 /* 891 * Given a virtual address, name the mapping at that address using the 892 * specified name, and return the map_info_t pointer. 893 */ 894 static map_info_t * 895 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name) 896 { 897 map_info_t *mp = Paddr2mptr(P, addr); 898 899 if (mp != NULL) { 900 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ); 901 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 902 } 903 904 return (mp); 905 } 906 907 /* 908 * libproc uses libelf for all of its symbol table manipulation. This function 909 * takes a symbol table and string table from a core file and places them 910 * in a memory backed elf file. 911 */ 912 static void 913 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr, 914 GElf_Shdr *symtab, GElf_Shdr *strtab) 915 { 916 size_t size; 917 off64_t off, base; 918 map_info_t *mp; 919 file_info_t *fp; 920 Elf_Scn *scn; 921 Elf_Data *data; 922 923 if (symtab->sh_addr == 0 || 924 (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL || 925 (fp = mp->map_file) == NULL) { 926 dprintf("fake_up_symtab: invalid section\n"); 927 return; 928 } 929 930 if (fp->file_symtab.sym_data_pri != NULL) { 931 dprintf("Symbol table already loaded (sh_addr 0x%lx)\n", 932 (long)symtab->sh_addr); 933 return; 934 } 935 936 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 937 struct { 938 Elf32_Ehdr ehdr; 939 Elf32_Shdr shdr[3]; 940 char data[1]; 941 } *b; 942 943 base = sizeof (b->ehdr) + sizeof (b->shdr); 944 size = base + symtab->sh_size + strtab->sh_size; 945 946 if ((b = calloc(1, size)) == NULL) 947 return; 948 949 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident, 950 sizeof (ehdr->e_ident)); 951 b->ehdr.e_type = ehdr->e_type; 952 b->ehdr.e_machine = ehdr->e_machine; 953 b->ehdr.e_version = ehdr->e_version; 954 b->ehdr.e_flags = ehdr->e_flags; 955 b->ehdr.e_ehsize = sizeof (b->ehdr); 956 b->ehdr.e_shoff = sizeof (b->ehdr); 957 b->ehdr.e_shentsize = sizeof (b->shdr[0]); 958 b->ehdr.e_shnum = 3; 959 off = 0; 960 961 b->shdr[1].sh_size = symtab->sh_size; 962 b->shdr[1].sh_type = SHT_SYMTAB; 963 b->shdr[1].sh_offset = off + base; 964 b->shdr[1].sh_entsize = sizeof (Elf32_Sym); 965 b->shdr[1].sh_link = 2; 966 b->shdr[1].sh_info = symtab->sh_info; 967 b->shdr[1].sh_addralign = symtab->sh_addralign; 968 969 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size, 970 symtab->sh_offset) != b->shdr[1].sh_size) { 971 dprintf("fake_up_symtab: pread of symtab[1] failed\n"); 972 free(b); 973 return; 974 } 975 976 off += b->shdr[1].sh_size; 977 978 b->shdr[2].sh_flags = SHF_STRINGS; 979 b->shdr[2].sh_size = strtab->sh_size; 980 b->shdr[2].sh_type = SHT_STRTAB; 981 b->shdr[2].sh_offset = off + base; 982 b->shdr[2].sh_info = strtab->sh_info; 983 b->shdr[2].sh_addralign = 1; 984 985 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size, 986 strtab->sh_offset) != b->shdr[2].sh_size) { 987 dprintf("fake_up_symtab: pread of symtab[2] failed\n"); 988 free(b); 989 return; 990 } 991 992 off += b->shdr[2].sh_size; 993 994 fp->file_symtab.sym_elf = elf_memory((char *)b, size); 995 if (fp->file_symtab.sym_elf == NULL) { 996 free(b); 997 return; 998 } 999 1000 fp->file_symtab.sym_elfmem = b; 1001 #ifdef _LP64 1002 } else { 1003 struct { 1004 Elf64_Ehdr ehdr; 1005 Elf64_Shdr shdr[3]; 1006 char data[1]; 1007 } *b; 1008 1009 base = sizeof (b->ehdr) + sizeof (b->shdr); 1010 size = base + symtab->sh_size + strtab->sh_size; 1011 1012 if ((b = calloc(1, size)) == NULL) 1013 return; 1014 1015 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident, 1016 sizeof (ehdr->e_ident)); 1017 b->ehdr.e_type = ehdr->e_type; 1018 b->ehdr.e_machine = ehdr->e_machine; 1019 b->ehdr.e_version = ehdr->e_version; 1020 b->ehdr.e_flags = ehdr->e_flags; 1021 b->ehdr.e_ehsize = sizeof (b->ehdr); 1022 b->ehdr.e_shoff = sizeof (b->ehdr); 1023 b->ehdr.e_shentsize = sizeof (b->shdr[0]); 1024 b->ehdr.e_shnum = 3; 1025 off = 0; 1026 1027 b->shdr[1].sh_size = symtab->sh_size; 1028 b->shdr[1].sh_type = SHT_SYMTAB; 1029 b->shdr[1].sh_offset = off + base; 1030 b->shdr[1].sh_entsize = sizeof (Elf64_Sym); 1031 b->shdr[1].sh_link = 2; 1032 b->shdr[1].sh_info = symtab->sh_info; 1033 b->shdr[1].sh_addralign = symtab->sh_addralign; 1034 1035 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size, 1036 symtab->sh_offset) != b->shdr[1].sh_size) { 1037 free(b); 1038 return; 1039 } 1040 1041 off += b->shdr[1].sh_size; 1042 1043 b->shdr[2].sh_flags = SHF_STRINGS; 1044 b->shdr[2].sh_size = strtab->sh_size; 1045 b->shdr[2].sh_type = SHT_STRTAB; 1046 b->shdr[2].sh_offset = off + base; 1047 b->shdr[2].sh_info = strtab->sh_info; 1048 b->shdr[2].sh_addralign = 1; 1049 1050 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size, 1051 strtab->sh_offset) != b->shdr[2].sh_size) { 1052 free(b); 1053 return; 1054 } 1055 1056 off += b->shdr[2].sh_size; 1057 1058 fp->file_symtab.sym_elf = elf_memory((char *)b, size); 1059 if (fp->file_symtab.sym_elf == NULL) { 1060 free(b); 1061 return; 1062 } 1063 1064 fp->file_symtab.sym_elfmem = b; 1065 #endif 1066 } 1067 1068 if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL || 1069 (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL || 1070 (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL || 1071 (data = elf_getdata(scn, NULL)) == NULL) { 1072 dprintf("fake_up_symtab: failed to get section data at %p\n", 1073 (void *)scn); 1074 goto err; 1075 } 1076 1077 fp->file_symtab.sym_strs = data->d_buf; 1078 fp->file_symtab.sym_strsz = data->d_size; 1079 fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize; 1080 fp->file_symtab.sym_hdr_pri = *symtab; 1081 fp->file_symtab.sym_strhdr = *strtab; 1082 1083 optimize_symtab(&fp->file_symtab); 1084 1085 return; 1086 err: 1087 (void) elf_end(fp->file_symtab.sym_elf); 1088 free(fp->file_symtab.sym_elfmem); 1089 fp->file_symtab.sym_elf = NULL; 1090 fp->file_symtab.sym_elfmem = NULL; 1091 } 1092 1093 static void 1094 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst) 1095 { 1096 dst->p_type = src->p_type; 1097 dst->p_flags = src->p_flags; 1098 dst->p_offset = (Elf64_Off)src->p_offset; 1099 dst->p_vaddr = (Elf64_Addr)src->p_vaddr; 1100 dst->p_paddr = (Elf64_Addr)src->p_paddr; 1101 dst->p_filesz = (Elf64_Xword)src->p_filesz; 1102 dst->p_memsz = (Elf64_Xword)src->p_memsz; 1103 dst->p_align = (Elf64_Xword)src->p_align; 1104 } 1105 1106 static void 1107 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst) 1108 { 1109 dst->sh_name = src->sh_name; 1110 dst->sh_type = src->sh_type; 1111 dst->sh_flags = (Elf64_Xword)src->sh_flags; 1112 dst->sh_addr = (Elf64_Addr)src->sh_addr; 1113 dst->sh_offset = (Elf64_Off)src->sh_offset; 1114 dst->sh_size = (Elf64_Xword)src->sh_size; 1115 dst->sh_link = src->sh_link; 1116 dst->sh_info = src->sh_info; 1117 dst->sh_addralign = (Elf64_Xword)src->sh_addralign; 1118 dst->sh_entsize = (Elf64_Xword)src->sh_entsize; 1119 } 1120 1121 /* 1122 * Perform elf_begin on efp->e_fd and verify the ELF file's type and class. 1123 */ 1124 static int 1125 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr) 1126 { 1127 #ifdef _BIG_ENDIAN 1128 uchar_t order = ELFDATA2MSB; 1129 #else 1130 uchar_t order = ELFDATA2LSB; 1131 #endif 1132 Elf32_Ehdr e32; 1133 int is_noelf = -1; 1134 int isa_err = 0; 1135 1136 /* 1137 * Because 32-bit libelf cannot deal with large files, we need to read, 1138 * check, and convert the file header manually in case type == ET_CORE. 1139 */ 1140 if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) { 1141 if (perr != NULL) 1142 *perr = G_FORMAT; 1143 goto err; 1144 } 1145 if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 || 1146 e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) || 1147 e32.e_version != EV_CURRENT) { 1148 if (perr != NULL) { 1149 if (is_noelf == 0 && isa_err) { 1150 *perr = G_ISAINVAL; 1151 } else { 1152 *perr = G_FORMAT; 1153 } 1154 } 1155 goto err; 1156 } 1157 1158 /* 1159 * If the file is 64-bit and we are 32-bit, fail with G_LP64. If the 1160 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr, 1161 * and convert it to a elf_file_header_t. Otherwise, the file is 1162 * 32-bit, so convert e32 to a elf_file_header_t. 1163 */ 1164 if (e32.e_ident[EI_CLASS] == ELFCLASS64) { 1165 #ifdef _LP64 1166 Elf64_Ehdr e64; 1167 1168 if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) { 1169 if (perr != NULL) 1170 *perr = G_FORMAT; 1171 goto err; 1172 } 1173 1174 (void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT); 1175 efp->e_hdr.e_type = e64.e_type; 1176 efp->e_hdr.e_machine = e64.e_machine; 1177 efp->e_hdr.e_version = e64.e_version; 1178 efp->e_hdr.e_entry = e64.e_entry; 1179 efp->e_hdr.e_phoff = e64.e_phoff; 1180 efp->e_hdr.e_shoff = e64.e_shoff; 1181 efp->e_hdr.e_flags = e64.e_flags; 1182 efp->e_hdr.e_ehsize = e64.e_ehsize; 1183 efp->e_hdr.e_phentsize = e64.e_phentsize; 1184 efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum; 1185 efp->e_hdr.e_shentsize = e64.e_shentsize; 1186 efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum; 1187 efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx; 1188 #else /* _LP64 */ 1189 if (perr != NULL) 1190 *perr = G_LP64; 1191 goto err; 1192 #endif /* _LP64 */ 1193 } else { 1194 (void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT); 1195 efp->e_hdr.e_type = e32.e_type; 1196 efp->e_hdr.e_machine = e32.e_machine; 1197 efp->e_hdr.e_version = e32.e_version; 1198 efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry; 1199 efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff; 1200 efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff; 1201 efp->e_hdr.e_flags = e32.e_flags; 1202 efp->e_hdr.e_ehsize = e32.e_ehsize; 1203 efp->e_hdr.e_phentsize = e32.e_phentsize; 1204 efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum; 1205 efp->e_hdr.e_shentsize = e32.e_shentsize; 1206 efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum; 1207 efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx; 1208 } 1209 1210 /* 1211 * If the number of section headers or program headers or the section 1212 * header string table index would overflow their respective fields 1213 * in the ELF header, they're stored in the section header at index 1214 * zero. To simplify use elsewhere, we look for those sentinel values 1215 * here. 1216 */ 1217 if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) || 1218 efp->e_hdr.e_shstrndx == SHN_XINDEX || 1219 efp->e_hdr.e_phnum == PN_XNUM) { 1220 GElf_Shdr shdr; 1221 1222 dprintf("extended ELF header\n"); 1223 1224 if (efp->e_hdr.e_shoff == 0) { 1225 if (perr != NULL) 1226 *perr = G_FORMAT; 1227 goto err; 1228 } 1229 1230 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) { 1231 Elf32_Shdr shdr32; 1232 1233 if (pread64(efp->e_fd, &shdr32, sizeof (shdr32), 1234 efp->e_hdr.e_shoff) != sizeof (shdr32)) { 1235 if (perr != NULL) 1236 *perr = G_FORMAT; 1237 goto err; 1238 } 1239 1240 core_shdr_to_gelf(&shdr32, &shdr); 1241 } else { 1242 if (pread64(efp->e_fd, &shdr, sizeof (shdr), 1243 efp->e_hdr.e_shoff) != sizeof (shdr)) { 1244 if (perr != NULL) 1245 *perr = G_FORMAT; 1246 goto err; 1247 } 1248 } 1249 1250 if (efp->e_hdr.e_shnum == 0) { 1251 efp->e_hdr.e_shnum = shdr.sh_size; 1252 dprintf("section header count %lu\n", 1253 (ulong_t)shdr.sh_size); 1254 } 1255 1256 if (efp->e_hdr.e_shstrndx == SHN_XINDEX) { 1257 efp->e_hdr.e_shstrndx = shdr.sh_link; 1258 dprintf("section string index %u\n", shdr.sh_link); 1259 } 1260 1261 if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) { 1262 efp->e_hdr.e_phnum = shdr.sh_info; 1263 dprintf("program header count %u\n", shdr.sh_info); 1264 } 1265 1266 } else if (efp->e_hdr.e_phoff != 0) { 1267 GElf_Phdr phdr; 1268 uint64_t phnum; 1269 1270 /* 1271 * It's possible this core file came from a system that 1272 * accidentally truncated the e_phnum field without correctly 1273 * using the extended format in the section header at index 1274 * zero. We try to detect and correct that specific type of 1275 * corruption by using the knowledge that the core dump 1276 * routines usually place the data referenced by the first 1277 * program header immediately after the last header element. 1278 */ 1279 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) { 1280 Elf32_Phdr phdr32; 1281 1282 if (pread64(efp->e_fd, &phdr32, sizeof (phdr32), 1283 efp->e_hdr.e_phoff) != sizeof (phdr32)) { 1284 if (perr != NULL) 1285 *perr = G_FORMAT; 1286 goto err; 1287 } 1288 1289 core_phdr_to_gelf(&phdr32, &phdr); 1290 } else { 1291 if (pread64(efp->e_fd, &phdr, sizeof (phdr), 1292 efp->e_hdr.e_phoff) != sizeof (phdr)) { 1293 if (perr != NULL) 1294 *perr = G_FORMAT; 1295 goto err; 1296 } 1297 } 1298 1299 phnum = phdr.p_offset - efp->e_hdr.e_ehsize - 1300 (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize; 1301 phnum /= efp->e_hdr.e_phentsize; 1302 1303 if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) { 1304 dprintf("suspicious program header count %u %u\n", 1305 (uint_t)phnum, efp->e_hdr.e_phnum); 1306 1307 /* 1308 * If the new program header count we computed doesn't 1309 * jive with count in the ELF header, we'll use the 1310 * data that's there and hope for the best. 1311 * 1312 * If it does, it's also possible that the section 1313 * header offset is incorrect; we'll check that and 1314 * possibly try to fix it. 1315 */ 1316 if (phnum <= INT_MAX && 1317 (uint16_t)phnum == efp->e_hdr.e_phnum) { 1318 1319 if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff + 1320 efp->e_hdr.e_phentsize * 1321 (uint_t)efp->e_hdr.e_phnum) { 1322 efp->e_hdr.e_shoff = 1323 efp->e_hdr.e_phoff + 1324 efp->e_hdr.e_phentsize * phnum; 1325 } 1326 1327 efp->e_hdr.e_phnum = (Elf64_Word)phnum; 1328 dprintf("using new program header count\n"); 1329 } else { 1330 dprintf("inconsistent program header count\n"); 1331 } 1332 } 1333 } 1334 1335 /* 1336 * The libelf implementation was never ported to be large-file aware. 1337 * This is typically not a problem for your average executable or 1338 * shared library, but a large 32-bit core file can exceed 2GB in size. 1339 * So if type is ET_CORE, we don't bother doing elf_begin; the code 1340 * in Pfgrab_core() below will do its own i/o and struct conversion. 1341 */ 1342 1343 if (type == ET_CORE) { 1344 efp->e_elf = NULL; 1345 return (0); 1346 } 1347 1348 if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) { 1349 if (perr != NULL) 1350 *perr = G_ELF; 1351 goto err; 1352 } 1353 1354 return (0); 1355 1356 err: 1357 efp->e_elf = NULL; 1358 return (-1); 1359 } 1360 1361 /* 1362 * Open the specified file and then do a core_elf_fdopen on it. 1363 */ 1364 static int 1365 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr) 1366 { 1367 (void) memset(efp, 0, sizeof (elf_file_t)); 1368 1369 if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) { 1370 if (core_elf_fdopen(efp, type, perr) == 0) 1371 return (0); 1372 1373 (void) close(efp->e_fd); 1374 efp->e_fd = -1; 1375 } 1376 1377 return (-1); 1378 } 1379 1380 /* 1381 * Close the ELF handle and file descriptor. 1382 */ 1383 static void 1384 core_elf_close(elf_file_t *efp) 1385 { 1386 if (efp->e_elf != NULL) { 1387 (void) elf_end(efp->e_elf); 1388 efp->e_elf = NULL; 1389 } 1390 1391 if (efp->e_fd != -1) { 1392 (void) close(efp->e_fd); 1393 efp->e_fd = -1; 1394 } 1395 } 1396 1397 /* 1398 * Given an ELF file for a statically linked executable, locate the likely 1399 * primary text section and fill in rl_base with its virtual address. 1400 */ 1401 static map_info_t * 1402 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp) 1403 { 1404 GElf_Phdr phdr; 1405 uint_t i; 1406 size_t nphdrs; 1407 1408 if (elf_getphdrnum(elf, &nphdrs) == -1) 1409 return (NULL); 1410 1411 for (i = 0; i < nphdrs; i++) { 1412 if (gelf_getphdr(elf, i, &phdr) != NULL && 1413 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) { 1414 rlp->rl_base = phdr.p_vaddr; 1415 return (Paddr2mptr(P, rlp->rl_base)); 1416 } 1417 } 1418 1419 return (NULL); 1420 } 1421 1422 /* 1423 * Given an ELF file and the librtld_db structure corresponding to its primary 1424 * text mapping, deduce where its data segment was loaded and fill in 1425 * rl_data_base and prmap_t.pr_offset accordingly. 1426 */ 1427 static map_info_t * 1428 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp) 1429 { 1430 GElf_Ehdr ehdr; 1431 GElf_Phdr phdr; 1432 map_info_t *mp; 1433 uint_t i, pagemask; 1434 size_t nphdrs; 1435 1436 rlp->rl_data_base = NULL; 1437 1438 /* 1439 * Find the first loadable, writeable Phdr and compute rl_data_base 1440 * as the virtual address at which is was loaded. 1441 */ 1442 if (gelf_getehdr(elf, &ehdr) == NULL || 1443 elf_getphdrnum(elf, &nphdrs) == -1) 1444 return (NULL); 1445 1446 for (i = 0; i < nphdrs; i++) { 1447 if (gelf_getphdr(elf, i, &phdr) != NULL && 1448 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) { 1449 rlp->rl_data_base = phdr.p_vaddr; 1450 if (ehdr.e_type == ET_DYN) 1451 rlp->rl_data_base += rlp->rl_base; 1452 break; 1453 } 1454 } 1455 1456 /* 1457 * If we didn't find an appropriate phdr or if the address we 1458 * computed has no mapping, return NULL. 1459 */ 1460 if (rlp->rl_data_base == NULL || 1461 (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL) 1462 return (NULL); 1463 1464 /* 1465 * It wouldn't be procfs-related code if we didn't make use of 1466 * unclean knowledge of segvn, even in userland ... the prmap_t's 1467 * pr_offset field will be the segvn offset from mmap(2)ing the 1468 * data section, which will be the file offset & PAGEMASK. 1469 */ 1470 pagemask = ~(mp->map_pmap.pr_pagesize - 1); 1471 mp->map_pmap.pr_offset = phdr.p_offset & pagemask; 1472 1473 return (mp); 1474 } 1475 1476 /* 1477 * Librtld_db agent callback for iterating over load object mappings. 1478 * For each load object, we allocate a new file_info_t, perform naming, 1479 * and attempt to construct a symbol table for the load object. 1480 */ 1481 static int 1482 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P) 1483 { 1484 char lname[PATH_MAX], buf[PATH_MAX]; 1485 file_info_t *fp; 1486 map_info_t *mp; 1487 1488 if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) { 1489 dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr); 1490 return (1); /* Keep going; forget this if we can't get a name */ 1491 } 1492 1493 dprintf("rd_loadobj name = \"%s\" rl_base = %p\n", 1494 lname, (void *)rlp->rl_base); 1495 1496 if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) { 1497 dprintf("no mapping for %p\n", (void *)rlp->rl_base); 1498 return (1); /* No mapping; advance to next mapping */ 1499 } 1500 1501 /* 1502 * Create a new file_info_t for this mapping, and therefore for 1503 * this load object. 1504 * 1505 * If there's an ELF header at the beginning of this mapping, 1506 * file_info_new() will try to use its section headers to 1507 * identify any other mappings that belong to this load object. 1508 */ 1509 if ((fp = mp->map_file) == NULL && 1510 (fp = file_info_new(P, mp)) == NULL) { 1511 P->core->core_errno = errno; 1512 dprintf("failed to malloc mapping data\n"); 1513 return (0); /* Abort */ 1514 } 1515 fp->file_map = mp; 1516 1517 /* Create a local copy of the load object representation */ 1518 if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) { 1519 P->core->core_errno = errno; 1520 dprintf("failed to malloc mapping data\n"); 1521 return (0); /* Abort */ 1522 } 1523 *fp->file_lo = *rlp; 1524 1525 if (lname[0] != '\0') { 1526 /* 1527 * Naming dance part 1: if we got a name from librtld_db, then 1528 * copy this name to the prmap_t if it is unnamed. If the 1529 * file_info_t is unnamed, name it after the lname. 1530 */ 1531 if (mp->map_pmap.pr_mapname[0] == '\0') { 1532 (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ); 1533 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 1534 } 1535 1536 if (fp->file_lname == NULL) 1537 fp->file_lname = strdup(lname); 1538 1539 } else if (fp->file_lname == NULL && 1540 mp->map_pmap.pr_mapname[0] != '\0') { 1541 /* 1542 * Naming dance part 2: if the mapping is named and the 1543 * file_info_t is not, name the file after the mapping. 1544 */ 1545 fp->file_lname = strdup(mp->map_pmap.pr_mapname); 1546 } 1547 1548 if ((fp->file_rname == NULL) && 1549 (Pfindmap(P, mp, buf, sizeof (buf)) != NULL)) 1550 fp->file_rname = strdup(buf); 1551 1552 if (fp->file_lname != NULL) 1553 fp->file_lbase = basename(fp->file_lname); 1554 if (fp->file_rname != NULL) 1555 fp->file_rbase = basename(fp->file_rname); 1556 1557 /* Associate the file and the mapping. */ 1558 (void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ); 1559 fp->file_pname[PRMAPSZ - 1] = '\0'; 1560 1561 /* 1562 * If no section headers were available then we'll have to 1563 * identify this load object's other mappings with what we've 1564 * got: the start and end of the object's corresponding 1565 * address space. 1566 */ 1567 if (fp->file_saddrs == NULL) { 1568 for (mp = fp->file_map + 1; mp < P->mappings + P->map_count && 1569 mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) { 1570 1571 if (mp->map_file == NULL) { 1572 dprintf("core_iter_mapping %s: associating " 1573 "segment at %p\n", 1574 fp->file_pname, 1575 (void *)mp->map_pmap.pr_vaddr); 1576 mp->map_file = fp; 1577 fp->file_ref++; 1578 } else { 1579 dprintf("core_iter_mapping %s: segment at " 1580 "%p already associated with %s\n", 1581 fp->file_pname, 1582 (void *)mp->map_pmap.pr_vaddr, 1583 (mp == fp->file_map ? "this file" : 1584 mp->map_file->file_pname)); 1585 } 1586 } 1587 } 1588 1589 /* Ensure that all this file's mappings are named. */ 1590 for (mp = fp->file_map; mp < P->mappings + P->map_count && 1591 mp->map_file == fp; mp++) { 1592 if (mp->map_pmap.pr_mapname[0] == '\0' && 1593 !(mp->map_pmap.pr_mflags & MA_BREAK)) { 1594 (void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname, 1595 PRMAPSZ); 1596 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 1597 } 1598 } 1599 1600 /* Attempt to build a symbol table for this file. */ 1601 Pbuild_file_symtab(P, fp); 1602 if (fp->file_elf == NULL) 1603 dprintf("core_iter_mapping: no symtab for %s\n", 1604 fp->file_pname); 1605 1606 /* Locate the start of a data segment associated with this file. */ 1607 if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) { 1608 dprintf("found data for %s at %p (pr_offset 0x%llx)\n", 1609 fp->file_pname, (void *)fp->file_lo->rl_data_base, 1610 mp->map_pmap.pr_offset); 1611 } else { 1612 dprintf("core_iter_mapping: no data found for %s\n", 1613 fp->file_pname); 1614 } 1615 1616 return (1); /* Advance to next mapping */ 1617 } 1618 1619 /* 1620 * Callback function for Pfindexec(). In order to confirm a given pathname, 1621 * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN. 1622 */ 1623 static int 1624 core_exec_open(const char *path, void *efp) 1625 { 1626 if (core_elf_open(efp, path, ET_EXEC, NULL) == 0) 1627 return (1); 1628 if (core_elf_open(efp, path, ET_DYN, NULL) == 0) 1629 return (1); 1630 return (0); 1631 } 1632 1633 /* 1634 * Attempt to load any section headers found in the core file. If present, 1635 * this will refer to non-loadable data added to the core file by the kernel 1636 * based on coreadm(1M) settings, including CTF data and the symbol table. 1637 */ 1638 static void 1639 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp) 1640 { 1641 GElf_Shdr *shp, *shdrs = NULL; 1642 char *shstrtab = NULL; 1643 ulong_t shstrtabsz; 1644 const char *name; 1645 map_info_t *mp; 1646 1647 size_t nbytes; 1648 void *buf; 1649 int i; 1650 1651 if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) { 1652 dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n", 1653 efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum); 1654 return; 1655 } 1656 1657 /* 1658 * Read the section header table from the core file and then iterate 1659 * over the section headers, converting each to a GElf_Shdr. 1660 */ 1661 if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) { 1662 dprintf("failed to malloc %u section headers: %s\n", 1663 (uint_t)efp->e_hdr.e_shnum, strerror(errno)); 1664 return; 1665 } 1666 1667 nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize; 1668 if ((buf = malloc(nbytes)) == NULL) { 1669 dprintf("failed to malloc %d bytes: %s\n", (int)nbytes, 1670 strerror(errno)); 1671 free(shdrs); 1672 goto out; 1673 } 1674 1675 if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) { 1676 dprintf("failed to read section headers at off %lld: %s\n", 1677 (longlong_t)efp->e_hdr.e_shoff, strerror(errno)); 1678 free(buf); 1679 goto out; 1680 } 1681 1682 for (i = 0; i < efp->e_hdr.e_shnum; i++) { 1683 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i; 1684 1685 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) 1686 core_shdr_to_gelf(p, &shdrs[i]); 1687 else 1688 (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr)); 1689 } 1690 1691 free(buf); 1692 buf = NULL; 1693 1694 /* 1695 * Read the .shstrtab section from the core file, terminating it with 1696 * an extra \0 so that a corrupt section will not cause us to die. 1697 */ 1698 shp = &shdrs[efp->e_hdr.e_shstrndx]; 1699 shstrtabsz = shp->sh_size; 1700 1701 if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) { 1702 dprintf("failed to allocate %lu bytes for shstrtab\n", 1703 (ulong_t)shstrtabsz); 1704 goto out; 1705 } 1706 1707 if (pread64(efp->e_fd, shstrtab, shstrtabsz, 1708 shp->sh_offset) != shstrtabsz) { 1709 dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n", 1710 shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno)); 1711 goto out; 1712 } 1713 1714 shstrtab[shstrtabsz] = '\0'; 1715 1716 /* 1717 * Now iterate over each section in the section header table, locating 1718 * sections of interest and initializing more of the ps_prochandle. 1719 */ 1720 for (i = 0; i < efp->e_hdr.e_shnum; i++) { 1721 shp = &shdrs[i]; 1722 name = shstrtab + shp->sh_name; 1723 1724 if (shp->sh_name >= shstrtabsz) { 1725 dprintf("skipping section [%d]: corrupt sh_name\n", i); 1726 continue; 1727 } 1728 1729 if (shp->sh_link >= efp->e_hdr.e_shnum) { 1730 dprintf("skipping section [%d]: corrupt sh_link\n", i); 1731 continue; 1732 } 1733 1734 dprintf("found section header %s (sh_addr 0x%llx)\n", 1735 name, (u_longlong_t)shp->sh_addr); 1736 1737 if (strcmp(name, ".SUNW_ctf") == 0) { 1738 if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) { 1739 dprintf("no map at addr 0x%llx for %s [%d]\n", 1740 (u_longlong_t)shp->sh_addr, name, i); 1741 continue; 1742 } 1743 1744 if (mp->map_file == NULL || 1745 mp->map_file->file_ctf_buf != NULL) { 1746 dprintf("no mapping file or duplicate buffer " 1747 "for %s [%d]\n", name, i); 1748 continue; 1749 } 1750 1751 if ((buf = malloc(shp->sh_size)) == NULL || 1752 pread64(efp->e_fd, buf, shp->sh_size, 1753 shp->sh_offset) != shp->sh_size) { 1754 dprintf("skipping section %s [%d]: %s\n", 1755 name, i, strerror(errno)); 1756 free(buf); 1757 continue; 1758 } 1759 1760 mp->map_file->file_ctf_size = shp->sh_size; 1761 mp->map_file->file_ctf_buf = buf; 1762 1763 if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM) 1764 mp->map_file->file_ctf_dyn = 1; 1765 1766 } else if (strcmp(name, ".symtab") == 0) { 1767 fake_up_symtab(P, &efp->e_hdr, 1768 shp, &shdrs[shp->sh_link]); 1769 } 1770 } 1771 out: 1772 free(shstrtab); 1773 free(shdrs); 1774 } 1775 1776 /* 1777 * Main engine for core file initialization: given an fd for the core file 1778 * and an optional pathname, construct the ps_prochandle. The aout_path can 1779 * either be a suggested executable pathname, or a suggested directory to 1780 * use as a possible current working directory. 1781 */ 1782 struct ps_prochandle * 1783 Pfgrab_core(int core_fd, const char *aout_path, int *perr) 1784 { 1785 struct ps_prochandle *P; 1786 map_info_t *stk_mp, *brk_mp; 1787 const char *execname; 1788 char *interp; 1789 int i, notes, pagesize; 1790 uintptr_t addr, base_addr; 1791 struct stat64 stbuf; 1792 void *phbuf, *php; 1793 size_t nbytes; 1794 1795 elf_file_t aout; 1796 elf_file_t core; 1797 1798 Elf_Scn *scn, *intp_scn = NULL; 1799 Elf_Data *dp; 1800 1801 GElf_Phdr phdr, note_phdr; 1802 GElf_Shdr shdr; 1803 GElf_Xword nleft; 1804 1805 if (elf_version(EV_CURRENT) == EV_NONE) { 1806 dprintf("libproc ELF version is more recent than libelf\n"); 1807 *perr = G_ELF; 1808 return (NULL); 1809 } 1810 1811 aout.e_elf = NULL; 1812 aout.e_fd = -1; 1813 1814 core.e_elf = NULL; 1815 core.e_fd = core_fd; 1816 1817 /* 1818 * Allocate and initialize a ps_prochandle structure for the core. 1819 * There are several key pieces of initialization here: 1820 * 1821 * 1. The PS_DEAD state flag marks this prochandle as a core file. 1822 * PS_DEAD also thus prevents all operations which require state 1823 * to be PS_STOP from operating on this handle. 1824 * 1825 * 2. We keep the core file fd in P->asfd since the core file contains 1826 * the remnants of the process address space. 1827 * 1828 * 3. We set the P->info_valid bit because all information about the 1829 * core is determined by the end of this function; there is no need 1830 * for proc_update_maps() to reload mappings at any later point. 1831 * 1832 * 4. The read/write ops vector uses our core_rw() function defined 1833 * above to handle i/o requests. 1834 */ 1835 if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) { 1836 *perr = G_STRANGE; 1837 return (NULL); 1838 } 1839 1840 (void) memset(P, 0, sizeof (struct ps_prochandle)); 1841 (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL); 1842 P->state = PS_DEAD; 1843 P->pid = (pid_t)-1; 1844 P->asfd = core.e_fd; 1845 P->ctlfd = -1; 1846 P->statfd = -1; 1847 P->agentctlfd = -1; 1848 P->agentstatfd = -1; 1849 P->zoneroot = NULL; 1850 P->info_valid = 1; 1851 P->ops = &P_core_ops; 1852 1853 Pinitsym(P); 1854 1855 /* 1856 * Fstat and open the core file and make sure it is a valid ELF core. 1857 */ 1858 if (fstat64(P->asfd, &stbuf) == -1) { 1859 *perr = G_STRANGE; 1860 goto err; 1861 } 1862 1863 if (core_elf_fdopen(&core, ET_CORE, perr) == -1) 1864 goto err; 1865 1866 /* 1867 * Allocate and initialize a core_info_t to hang off the ps_prochandle 1868 * structure. We keep all core-specific information in this structure. 1869 */ 1870 if ((P->core = calloc(1, sizeof (core_info_t))) == NULL) { 1871 *perr = G_STRANGE; 1872 goto err; 1873 } 1874 1875 list_link(&P->core->core_lwp_head, NULL); 1876 P->core->core_size = stbuf.st_size; 1877 /* 1878 * In the days before adjustable core file content, this was the 1879 * default core file content. For new core files, this value will 1880 * be overwritten by the NT_CONTENT note section. 1881 */ 1882 P->core->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP | 1883 CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON | 1884 CC_CONTENT_SHANON; 1885 1886 switch (core.e_hdr.e_ident[EI_CLASS]) { 1887 case ELFCLASS32: 1888 P->core->core_dmodel = PR_MODEL_ILP32; 1889 break; 1890 case ELFCLASS64: 1891 P->core->core_dmodel = PR_MODEL_LP64; 1892 break; 1893 default: 1894 *perr = G_FORMAT; 1895 goto err; 1896 } 1897 1898 /* 1899 * Because the core file may be a large file, we can't use libelf to 1900 * read the Phdrs. We use e_phnum and e_phentsize to simplify things. 1901 */ 1902 nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize; 1903 1904 if ((phbuf = malloc(nbytes)) == NULL) { 1905 *perr = G_STRANGE; 1906 goto err; 1907 } 1908 1909 if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) { 1910 *perr = G_STRANGE; 1911 free(phbuf); 1912 goto err; 1913 } 1914 1915 /* 1916 * Iterate through the program headers in the core file. 1917 * We're interested in two types of Phdrs: PT_NOTE (which 1918 * contains a set of saved /proc structures), and PT_LOAD (which 1919 * represents a memory mapping from the process's address space). 1920 * In the case of PT_NOTE, we're interested in the last PT_NOTE 1921 * in the core file; currently the first PT_NOTE (if present) 1922 * contains /proc structs in the pre-2.6 unstructured /proc format. 1923 */ 1924 for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) { 1925 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64) 1926 (void) memcpy(&phdr, php, sizeof (GElf_Phdr)); 1927 else 1928 core_phdr_to_gelf(php, &phdr); 1929 1930 switch (phdr.p_type) { 1931 case PT_NOTE: 1932 note_phdr = phdr; 1933 notes++; 1934 break; 1935 1936 case PT_LOAD: 1937 if (core_add_mapping(P, &phdr) == -1) { 1938 *perr = G_STRANGE; 1939 free(phbuf); 1940 goto err; 1941 } 1942 break; 1943 } 1944 1945 php = (char *)php + core.e_hdr.e_phentsize; 1946 } 1947 1948 free(phbuf); 1949 1950 Psort_mappings(P); 1951 1952 /* 1953 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE 1954 * was present, abort. The core file is either corrupt or too old. 1955 */ 1956 if (notes == 0 || notes == 1) { 1957 *perr = G_NOTE; 1958 goto err; 1959 } 1960 1961 /* 1962 * Advance the seek pointer to the start of the PT_NOTE data 1963 */ 1964 if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) { 1965 dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n"); 1966 *perr = G_STRANGE; 1967 goto err; 1968 } 1969 1970 /* 1971 * Now process the PT_NOTE structures. Each one is preceded by 1972 * an Elf{32/64}_Nhdr structure describing its type and size. 1973 * 1974 * +--------+ 1975 * | header | 1976 * +--------+ 1977 * | name | 1978 * | ... | 1979 * +--------+ 1980 * | desc | 1981 * | ... | 1982 * +--------+ 1983 */ 1984 for (nleft = note_phdr.p_filesz; nleft > 0; ) { 1985 Elf64_Nhdr nhdr; 1986 off64_t off, namesz; 1987 1988 /* 1989 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr 1990 * as different types, they are both of the same content and 1991 * size, so we don't need to worry about 32/64 conversion here. 1992 */ 1993 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) { 1994 dprintf("Pgrab_core: failed to read ELF note header\n"); 1995 *perr = G_NOTE; 1996 goto err; 1997 } 1998 1999 /* 2000 * According to the System V ABI, the amount of padding 2001 * following the name field should align the description 2002 * field on a 4 byte boundary for 32-bit binaries or on an 8 2003 * byte boundary for 64-bit binaries. However, this change 2004 * was not made correctly during the 64-bit port so all 2005 * descriptions can assume only 4-byte alignment. We ignore 2006 * the name field and the padding to 4-byte alignment. 2007 */ 2008 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4); 2009 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) { 2010 dprintf("failed to seek past name and padding\n"); 2011 *perr = G_STRANGE; 2012 goto err; 2013 } 2014 2015 dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n", 2016 nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz); 2017 2018 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR); 2019 2020 /* 2021 * Invoke the note handler function from our table 2022 */ 2023 if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) { 2024 if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) { 2025 *perr = G_NOTE; 2026 goto err; 2027 } 2028 } else 2029 (void) note_notsup(P, nhdr.n_descsz); 2030 2031 /* 2032 * Seek past the current note data to the next Elf_Nhdr 2033 */ 2034 if (lseek64(P->asfd, off + nhdr.n_descsz, 2035 SEEK_SET) == (off64_t)-1) { 2036 dprintf("Pgrab_core: failed to seek to next nhdr\n"); 2037 *perr = G_STRANGE; 2038 goto err; 2039 } 2040 2041 /* 2042 * Subtract the size of the header and its data from what 2043 * we have left to process. 2044 */ 2045 nleft -= sizeof (nhdr) + namesz + nhdr.n_descsz; 2046 } 2047 2048 if (nleft != 0) { 2049 dprintf("Pgrab_core: note section malformed\n"); 2050 *perr = G_STRANGE; 2051 goto err; 2052 } 2053 2054 if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) { 2055 pagesize = getpagesize(); 2056 dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize); 2057 } 2058 2059 /* 2060 * Locate and label the mappings corresponding to the end of the 2061 * heap (MA_BREAK) and the base of the stack (MA_STACK). 2062 */ 2063 if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) && 2064 (brk_mp = Paddr2mptr(P, P->status.pr_brkbase + 2065 P->status.pr_brksize - 1)) != NULL) 2066 brk_mp->map_pmap.pr_mflags |= MA_BREAK; 2067 else 2068 brk_mp = NULL; 2069 2070 if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL) 2071 stk_mp->map_pmap.pr_mflags |= MA_STACK; 2072 2073 /* 2074 * At this point, we have enough information to look for the 2075 * executable and open it: we have access to the auxv, a psinfo_t, 2076 * and the ability to read from mappings provided by the core file. 2077 */ 2078 (void) Pfindexec(P, aout_path, core_exec_open, &aout); 2079 dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL"); 2080 execname = P->execname ? P->execname : "a.out"; 2081 2082 /* 2083 * Iterate through the sections, looking for the .dynamic and .interp 2084 * sections. If we encounter them, remember their section pointers. 2085 */ 2086 for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) { 2087 char *sname; 2088 2089 if ((gelf_getshdr(scn, &shdr) == NULL) || 2090 (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx, 2091 (size_t)shdr.sh_name)) == NULL) 2092 continue; 2093 2094 if (strcmp(sname, ".interp") == 0) 2095 intp_scn = scn; 2096 } 2097 2098 /* 2099 * Get the AT_BASE auxv element. If this is missing (-1), then 2100 * we assume this is a statically-linked executable. 2101 */ 2102 base_addr = Pgetauxval(P, AT_BASE); 2103 2104 /* 2105 * In order to get librtld_db initialized, we'll need to identify 2106 * and name the mapping corresponding to the run-time linker. The 2107 * AT_BASE auxv element tells us the address where it was mapped, 2108 * and the .interp section of the executable tells us its path. 2109 * If for some reason that doesn't pan out, just use ld.so.1. 2110 */ 2111 if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL && 2112 dp->d_size != 0) { 2113 dprintf(".interp = <%s>\n", (char *)dp->d_buf); 2114 interp = dp->d_buf; 2115 2116 } else if (base_addr != (uintptr_t)-1L) { 2117 if (P->core->core_dmodel == PR_MODEL_LP64) 2118 interp = "/usr/lib/64/ld.so.1"; 2119 else 2120 interp = "/usr/lib/ld.so.1"; 2121 2122 dprintf(".interp section is missing or could not be read; " 2123 "defaulting to %s\n", interp); 2124 } else 2125 dprintf("detected statically linked executable\n"); 2126 2127 /* 2128 * If we have an AT_BASE element, name the mapping at that address 2129 * using the interpreter pathname. Name the corresponding data 2130 * mapping after the interpreter as well. 2131 */ 2132 if (base_addr != (uintptr_t)-1L) { 2133 elf_file_t intf; 2134 2135 P->map_ldso = core_name_mapping(P, base_addr, interp); 2136 2137 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) { 2138 rd_loadobj_t rl; 2139 map_info_t *dmp; 2140 2141 rl.rl_base = base_addr; 2142 dmp = core_find_data(P, intf.e_elf, &rl); 2143 2144 if (dmp != NULL) { 2145 dprintf("renamed data at %p to %s\n", 2146 (void *)rl.rl_data_base, interp); 2147 (void) strncpy(dmp->map_pmap.pr_mapname, 2148 interp, PRMAPSZ); 2149 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2150 } 2151 } 2152 2153 core_elf_close(&intf); 2154 } 2155 2156 /* 2157 * If we have an AT_ENTRY element, name the mapping at that address 2158 * using the special name "a.out" just like /proc does. 2159 */ 2160 if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L) 2161 P->map_exec = core_name_mapping(P, addr, "a.out"); 2162 2163 /* 2164 * If we're a statically linked executable, then just locate the 2165 * executable's text and data and name them after the executable. 2166 */ 2167 if (base_addr == (uintptr_t)-1L) { 2168 map_info_t *tmp, *dmp; 2169 file_info_t *fp; 2170 rd_loadobj_t rl; 2171 2172 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL && 2173 (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) { 2174 (void) strncpy(tmp->map_pmap.pr_mapname, 2175 execname, PRMAPSZ); 2176 tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2177 (void) strncpy(dmp->map_pmap.pr_mapname, 2178 execname, PRMAPSZ); 2179 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0'; 2180 } 2181 2182 if ((P->map_exec = tmp) != NULL && 2183 (fp = malloc(sizeof (file_info_t))) != NULL) { 2184 2185 (void) memset(fp, 0, sizeof (file_info_t)); 2186 2187 list_link(fp, &P->file_head); 2188 tmp->map_file = fp; 2189 P->num_files++; 2190 2191 fp->file_ref = 1; 2192 fp->file_fd = -1; 2193 2194 fp->file_lo = malloc(sizeof (rd_loadobj_t)); 2195 fp->file_lname = strdup(execname); 2196 2197 if (fp->file_lo) 2198 *fp->file_lo = rl; 2199 if (fp->file_lname) 2200 fp->file_lbase = basename(fp->file_lname); 2201 if (fp->file_rname) 2202 fp->file_rbase = basename(fp->file_rname); 2203 2204 (void) strcpy(fp->file_pname, 2205 P->mappings[0].map_pmap.pr_mapname); 2206 fp->file_map = tmp; 2207 2208 Pbuild_file_symtab(P, fp); 2209 2210 if (dmp != NULL) { 2211 dmp->map_file = fp; 2212 fp->file_ref++; 2213 } 2214 } 2215 } 2216 2217 core_elf_close(&aout); 2218 2219 /* 2220 * We now have enough information to initialize librtld_db. 2221 * After it warms up, we can iterate through the load object chain 2222 * in the core, which will allow us to construct the file info 2223 * we need to provide symbol information for the other shared 2224 * libraries, and also to fill in the missing mapping names. 2225 */ 2226 rd_log(_libproc_debug); 2227 2228 if ((P->rap = rd_new(P)) != NULL) { 2229 (void) rd_loadobj_iter(P->rap, (rl_iter_f *) 2230 core_iter_mapping, P); 2231 2232 if (P->core->core_errno != 0) { 2233 errno = P->core->core_errno; 2234 *perr = G_STRANGE; 2235 goto err; 2236 } 2237 } else 2238 dprintf("failed to initialize rtld_db agent\n"); 2239 2240 /* 2241 * If there are sections, load them and process the data from any 2242 * sections that we can use to annotate the file_info_t's. 2243 */ 2244 core_load_shdrs(P, &core); 2245 2246 /* 2247 * If we previously located a stack or break mapping, and they are 2248 * still anonymous, we now assume that they were MAP_ANON mappings. 2249 * If brk_mp turns out to now have a name, then the heap is still 2250 * sitting at the end of the executable's data+bss mapping: remove 2251 * the previous MA_BREAK setting to be consistent with /proc. 2252 */ 2253 if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0') 2254 stk_mp->map_pmap.pr_mflags |= MA_ANON; 2255 if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0') 2256 brk_mp->map_pmap.pr_mflags |= MA_ANON; 2257 else if (brk_mp != NULL) 2258 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK; 2259 2260 *perr = 0; 2261 return (P); 2262 2263 err: 2264 Pfree(P); 2265 core_elf_close(&aout); 2266 return (NULL); 2267 } 2268 2269 /* 2270 * Grab a core file using a pathname. We just open it and call Pfgrab_core(). 2271 */ 2272 struct ps_prochandle * 2273 Pgrab_core(const char *core, const char *aout, int gflag, int *perr) 2274 { 2275 int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR; 2276 2277 if ((fd = open64(core, oflag)) >= 0) 2278 return (Pfgrab_core(fd, aout, perr)); 2279 2280 if (errno != ENOENT) 2281 *perr = G_STRANGE; 2282 else 2283 *perr = G_NOCORE; 2284 2285 return (NULL); 2286 } 2287