xref: /illumos-gate/usr/src/lib/libproc/amd64/Pisadep.c (revision 4f364e7c95ee7fd9d5bbeddc1940e92405bb0e72)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/stack.h>
27 #include <sys/regset.h>
28 #include <sys/frame.h>
29 #include <sys/sysmacros.h>
30 #include <sys/trap.h>
31 #include <sys/machelf.h>
32 
33 #include <stdlib.h>
34 #include <unistd.h>
35 #include <sys/types.h>
36 #include <errno.h>
37 #include <string.h>
38 
39 #include <saveargs.h>
40 #include "Pcontrol.h"
41 #include "Pstack.h"
42 
43 static uchar_t int_syscall_instr[] = { 0xCD, T_SYSCALLINT };
44 static uchar_t syscall_instr[] = { 0x0f, 0x05 };
45 
46 const char *
47 Ppltdest(struct ps_prochandle *P, uintptr_t pltaddr)
48 {
49 	map_info_t *mp = Paddr2mptr(P, pltaddr);
50 	file_info_t *fp;
51 	size_t i;
52 	uintptr_t r_addr;
53 
54 	if (mp == NULL || (fp = mp->map_file) == NULL ||
55 	    fp->file_plt_base == 0 ||
56 	    pltaddr - fp->file_plt_base >= fp->file_plt_size) {
57 		errno = EINVAL;
58 		return (NULL);
59 	}
60 
61 	i = (pltaddr - fp->file_plt_base) / M_PLT_ENTSIZE - M_PLT_XNumber;
62 
63 	if (P->status.pr_dmodel == PR_MODEL_LP64) {
64 		Elf64_Rela r;
65 
66 		r_addr = fp->file_jmp_rel + i * sizeof (r);
67 
68 		if (Pread(P, &r, sizeof (r), r_addr) == sizeof (r) &&
69 		    (i = ELF64_R_SYM(r.r_info)) < fp->file_dynsym.sym_symn) {
70 			Elf_Data *data = fp->file_dynsym.sym_data_pri;
71 			Elf64_Sym *symp = &(((Elf64_Sym *)data->d_buf)[i]);
72 
73 			return (fp->file_dynsym.sym_strs + symp->st_name);
74 		}
75 	} else {
76 		Elf32_Rel r;
77 
78 		r_addr = fp->file_jmp_rel + i * sizeof (r);
79 
80 		if (Pread(P, &r, sizeof (r), r_addr) == sizeof (r) &&
81 		    (i = ELF32_R_SYM(r.r_info)) < fp->file_dynsym.sym_symn) {
82 			Elf_Data *data = fp->file_dynsym.sym_data_pri;
83 			Elf32_Sym *symp = &(((Elf32_Sym *)data->d_buf)[i]);
84 
85 			return (fp->file_dynsym.sym_strs + symp->st_name);
86 		}
87 	}
88 
89 	return (NULL);
90 }
91 
92 int
93 Pissyscall(struct ps_prochandle *P, uintptr_t addr)
94 {
95 	uchar_t instr[16];
96 
97 	if (P->status.pr_dmodel == PR_MODEL_LP64) {
98 		if (Pread(P, instr, sizeof (syscall_instr), addr) !=
99 		    sizeof (syscall_instr) ||
100 		    memcmp(instr, syscall_instr, sizeof (syscall_instr)) != 0)
101 			return (0);
102 		else
103 			return (1);
104 	}
105 
106 	if (Pread(P, instr, sizeof (int_syscall_instr), addr) !=
107 	    sizeof (int_syscall_instr))
108 		return (0);
109 
110 	if (memcmp(instr, int_syscall_instr, sizeof (int_syscall_instr)) == 0)
111 		return (1);
112 
113 	return (0);
114 }
115 
116 int
117 Pissyscall_prev(struct ps_prochandle *P, uintptr_t addr, uintptr_t *dst)
118 {
119 	int ret;
120 
121 	if (P->status.pr_dmodel == PR_MODEL_LP64) {
122 		if (Pissyscall(P, addr - sizeof (syscall_instr))) {
123 			if (dst)
124 				*dst = addr - sizeof (syscall_instr);
125 			return (1);
126 		}
127 		return (0);
128 	}
129 
130 	if ((ret = Pissyscall(P, addr - sizeof (int_syscall_instr))) != 0) {
131 		if (dst)
132 			*dst = addr - sizeof (int_syscall_instr);
133 		return (ret);
134 	}
135 
136 	return (0);
137 }
138 
139 int
140 Pissyscall_text(struct ps_prochandle *P, const void *buf, size_t buflen)
141 {
142 	if (P->status.pr_dmodel == PR_MODEL_LP64) {
143 		if (buflen >= sizeof (syscall_instr) &&
144 		    memcmp(buf, syscall_instr, sizeof (syscall_instr)) == 0)
145 			return (1);
146 		else
147 			return (0);
148 	}
149 
150 	if (buflen < sizeof (int_syscall_instr))
151 		return (0);
152 
153 	if (memcmp(buf, int_syscall_instr, sizeof (int_syscall_instr)) == 0)
154 		return (1);
155 
156 	return (0);
157 }
158 
159 #define	TR_ARG_MAX 6	/* Max args to print, same as SPARC */
160 
161 /*
162  * Given a return address, determine the likely number of arguments
163  * that were pushed on the stack prior to its execution.  We do this by
164  * expecting that a typical call sequence consists of pushing arguments on
165  * the stack, executing a call instruction, and then performing an add
166  * on %esp to restore it to the value prior to pushing the arguments for
167  * the call.  We attempt to detect such an add, and divide the addend
168  * by the size of a word to determine the number of pushed arguments.
169  *
170  * If we do not find such an add, this does not necessarily imply that the
171  * function took no arguments. It is not possible to reliably detect such a
172  * void function because hand-coded assembler does not always perform an add
173  * to %esp immediately after the "call" instruction (eg. _sys_call()).
174  * Because of this, we default to returning MIN(sz, TR_ARG_MAX) instead of 0
175  * in the absence of an add to %esp.
176  */
177 static ulong_t
178 argcount(struct ps_prochandle *P, uint32_t pc, ssize_t sz)
179 {
180 	uchar_t instr[6];
181 	ulong_t count, max;
182 
183 	max = MIN(sz / sizeof (uint32_t), TR_ARG_MAX);
184 
185 	/*
186 	 * Read the instruction at the return location.
187 	 */
188 	if (Pread(P, instr, sizeof (instr), (uintptr_t)pc) != sizeof (instr))
189 		return (max);
190 
191 	if (instr[1] != 0xc4)
192 		return (max);
193 
194 	switch (instr[0]) {
195 	case 0x81:	/* count is a longword */
196 		count = instr[2]+(instr[3]<<8)+(instr[4]<<16)+(instr[5]<<24);
197 		break;
198 	case 0x83:	/* count is a byte */
199 		count = instr[2];
200 		break;
201 	default:
202 		return (max);
203 	}
204 
205 	count /= sizeof (uint32_t);
206 	return (MIN(count, max));
207 }
208 
209 static void
210 ucontext_32_to_prgregs(const ucontext32_t *uc, prgregset_t dst)
211 {
212 	const greg32_t *src = &uc->uc_mcontext.gregs[0];
213 
214 	dst[REG_DS] = (uint16_t)src[DS];
215 	dst[REG_ES] = (uint16_t)src[ES];
216 
217 	dst[REG_GS] = (uint16_t)src[GS];
218 	dst[REG_FS] = (uint16_t)src[FS];
219 	dst[REG_SS] = (uint16_t)src[SS];
220 	dst[REG_RSP] = (uint32_t)src[UESP];
221 	dst[REG_RFL] = src[EFL];
222 	dst[REG_CS] = (uint16_t)src[CS];
223 	dst[REG_RIP] = (uint32_t)src[EIP];
224 	dst[REG_ERR] = (uint32_t)src[ERR];
225 	dst[REG_TRAPNO] = (uint32_t)src[TRAPNO];
226 	dst[REG_RAX] = (uint32_t)src[EAX];
227 	dst[REG_RCX] = (uint32_t)src[ECX];
228 	dst[REG_RDX] = (uint32_t)src[EDX];
229 	dst[REG_RBX] = (uint32_t)src[EBX];
230 	dst[REG_RBP] = (uint32_t)src[EBP];
231 	dst[REG_RSI] = (uint32_t)src[ESI];
232 	dst[REG_RDI] = (uint32_t)src[EDI];
233 }
234 
235 static int
236 Pstack_iter32(struct ps_prochandle *P, const prgregset_t regs,
237     proc_stack_f *func, void *arg)
238 {
239 	prgreg_t *prevfp = NULL;
240 	uint_t pfpsize = 0;
241 	int nfp = 0;
242 	struct {
243 		prgreg32_t fp;
244 		prgreg32_t pc;
245 		prgreg32_t args[32];
246 	} frame;
247 	uint_t argc;
248 	ssize_t sz;
249 	prgregset_t gregs;
250 	uint32_t fp, pfp, pc;
251 	long args[32];
252 	int rv;
253 	int i;
254 
255 	/*
256 	 * Type definition for a structure corresponding to an IA32
257 	 * signal frame.  Refer to the comments in Pstack.c for more info
258 	 */
259 	typedef struct {
260 		prgreg32_t fp;
261 		prgreg32_t pc;
262 		int signo;
263 		caddr32_t ucp;
264 		caddr32_t sip;
265 	} sf_t;
266 
267 	uclist_t ucl;
268 	ucontext32_t uc;
269 	uintptr_t uc_addr;
270 
271 	init_uclist(&ucl, P);
272 	(void) memcpy(gregs, regs, sizeof (gregs));
273 
274 	fp = regs[R_FP];
275 	pc = regs[R_PC];
276 
277 	while (fp != 0 || pc != 0) {
278 		if (stack_loop(fp, &prevfp, &nfp, &pfpsize))
279 			break;
280 
281 		if (fp != 0 &&
282 		    (sz = Pread(P, &frame, sizeof (frame), (uintptr_t)fp)
283 		    >= (ssize_t)(2* sizeof (uint32_t)))) {
284 			/*
285 			 * One more trick for signal frames: the kernel sets
286 			 * the return pc of the signal frame to 0xffffffff on
287 			 * Intel IA32, so argcount won't work.
288 			 */
289 			if (frame.pc != -1L) {
290 				sz -= 2* sizeof (uint32_t);
291 				argc = argcount(P, (uint32_t)frame.pc, sz);
292 			} else
293 				argc = 3; /* sighandler(signo, sip, ucp) */
294 		} else {
295 			(void) memset(&frame, 0, sizeof (frame));
296 			argc = 0;
297 		}
298 
299 		gregs[R_FP] = fp;
300 		gregs[R_PC] = pc;
301 
302 		for (i = 0; i < argc; i++)
303 			args[i] = (uint32_t)frame.args[i];
304 
305 		if ((rv = func(arg, gregs, argc, args)) != 0)
306 			break;
307 
308 		/*
309 		 * In order to allow iteration over java frames (which can have
310 		 * their own frame pointers), we allow the iterator to change
311 		 * the contents of gregs.  If we detect a change, then we assume
312 		 * that the new values point to the next frame.
313 		 */
314 		if (gregs[R_FP] != fp || gregs[R_PC] != pc) {
315 			fp = gregs[R_FP];
316 			pc = gregs[R_PC];
317 			continue;
318 		}
319 
320 		pfp = fp;
321 		fp = frame.fp;
322 		pc = frame.pc;
323 
324 		if (find_uclink(&ucl, pfp + sizeof (sf_t)))
325 			uc_addr = pfp + sizeof (sf_t);
326 		else
327 			uc_addr = NULL;
328 
329 		if (uc_addr != NULL &&
330 		    Pread(P, &uc, sizeof (uc), uc_addr) == sizeof (uc)) {
331 			ucontext_32_to_prgregs(&uc, gregs);
332 			fp = gregs[R_FP];
333 			pc = gregs[R_PC];
334 		}
335 	}
336 
337 	if (prevfp)
338 		free(prevfp);
339 
340 	free_uclist(&ucl);
341 	return (rv);
342 }
343 
344 static void
345 ucontext_n_to_prgregs(const ucontext_t *src, prgregset_t dst)
346 {
347 	(void) memcpy(dst, src->uc_mcontext.gregs, sizeof (gregset_t));
348 }
349 
350 /*
351  * Read arguments from the frame indicated by regs into args, return the
352  * number of arguments successfully read
353  */
354 static int
355 read_args(struct ps_prochandle *P, uintptr_t fp, uintptr_t pc, prgreg_t *args,
356     size_t argsize)
357 {
358 	GElf_Sym sym;
359 	ctf_file_t *ctfp = NULL;
360 	ctf_funcinfo_t finfo;
361 	prsyminfo_t si = {0};
362 	uint8_t ins[SAVEARGS_INSN_SEQ_LEN];
363 	size_t insnsize;
364 	int argc = 0;
365 	int rettype = 0;
366 	int start_index = 0;
367 	int args_style = 0;
368 	int i;
369 	ctf_id_t args_types[5];
370 
371 	if (Pxlookup_by_addr(P, pc, NULL, 0, &sym, &si) != 0)
372 		return (0);
373 
374 	if ((ctfp = Paddr_to_ctf(P, pc)) == NULL)
375 		return (0);
376 
377 	if (ctf_func_info(ctfp, si.prs_id, &finfo) == CTF_ERR)
378 		return (0);
379 
380 	argc = finfo.ctc_argc;
381 
382 	if (argc == 0)
383 		return (0);
384 
385 	rettype = ctf_type_kind(ctfp, finfo.ctc_return);
386 
387 	/*
388 	 * If the function returns a structure or union greater than 16 bytes
389 	 * in size %rdi contains the address in which to store the return
390 	 * value rather than for an argument.
391 	 */
392 	if (((rettype == CTF_K_STRUCT) || (rettype == CTF_K_UNION)) &&
393 	    ctf_type_size(ctfp, finfo.ctc_return) > 16)
394 		start_index = 1;
395 	else
396 		start_index = 0;
397 
398 	/*
399 	 * If any of the first 5 arguments are a structure less than 16 bytes
400 	 * in size, it will be passed spread across two argument registers,
401 	 * and we will not cope.
402 	 */
403 	if (ctf_func_args(ctfp, si.prs_id, 5, args_types) == CTF_ERR)
404 		return (0);
405 
406 	for (i = 0; i < MIN(5, finfo.ctc_argc); i++) {
407 		int t = ctf_type_kind(ctfp, args_types[i]);
408 
409 		if (((t == CTF_K_STRUCT) || (t == CTF_K_UNION)) &&
410 		    ctf_type_size(ctfp, args_types[i]) <= 16)
411 			return (0);
412 	}
413 
414 	/*
415 	 * The number of instructions to search for argument saving is limited
416 	 * such that only instructions prior to %pc are considered and we
417 	 * never read arguments from a function where the saving code has not
418 	 * in fact yet executed.
419 	 */
420 	insnsize = MIN(MIN(sym.st_size, SAVEARGS_INSN_SEQ_LEN),
421 	    pc - sym.st_value);
422 
423 	if (Pread(P, ins, insnsize, sym.st_value) != insnsize)
424 		return (0);
425 
426 	if ((argc != 0) &&
427 	    ((args_style = saveargs_has_args(ins, insnsize, argc,
428 	    start_index)) != SAVEARGS_NO_ARGS)) {
429 		int regargs = MIN((6 - start_index), argc);
430 		size_t size = regargs * sizeof (long);
431 		int i;
432 
433 		/*
434 		 * If Studio pushed a structure return address as an argument,
435 		 * we need to read one more argument than actually exists (the
436 		 * addr) to make everything line up.
437 		 */
438 		if (args_style == SAVEARGS_STRUCT_ARGS)
439 			size += sizeof (long);
440 
441 		if (Pread(P, args, size, (fp - size)) != size)
442 			return (0);
443 
444 		for (i = 0; i < (regargs / 2); i++) {
445 			prgreg_t t = args[i];
446 
447 			args[i] = args[regargs - i - 1];
448 			args[regargs - i - 1] = t;
449 		}
450 
451 		if (argc > regargs) {
452 			size = MIN((argc - regargs) * sizeof (long),
453 			    argsize - (regargs * sizeof (long)));
454 
455 			if (Pread(P, &args[regargs], size, fp +
456 			    (sizeof (uintptr_t) * 2)) != size)
457 				return (6);
458 		}
459 
460 		return (argc);
461 	} else {
462 		return (0);
463 	}
464 }
465 
466 int
467 Pstack_iter(struct ps_prochandle *P, const prgregset_t regs,
468 	proc_stack_f *func, void *arg)
469 {
470 	struct {
471 		uintptr_t fp;
472 		uintptr_t pc;
473 	} frame;
474 
475 	uint_t pfpsize = 0;
476 	prgreg_t *prevfp = NULL;
477 	prgreg_t fp, pfp;
478 	prgreg_t pc;
479 
480 	prgregset_t gregs;
481 	int nfp = 0;
482 
483 	uclist_t ucl;
484 	int rv = 0;
485 	int argc;
486 
487 	uintptr_t uc_addr;
488 	ucontext_t uc;
489 
490 	/*
491 	 * Type definition for a structure corresponding to an IA32
492 	 * signal frame.  Refer to the comments in Pstack.c for more info
493 	 */
494 	typedef struct {
495 		prgreg_t fp;
496 		prgreg_t pc;
497 		prgreg_t signo;
498 		siginfo_t *sip;
499 	} sigframe_t;
500 	prgreg_t args[32] = {0};
501 
502 	if (P->status.pr_dmodel != PR_MODEL_LP64)
503 		return (Pstack_iter32(P, regs, func, arg));
504 
505 	init_uclist(&ucl, P);
506 	(void) memcpy(gregs, regs, sizeof (gregs));
507 
508 	fp = gregs[R_FP];
509 	pc = gregs[R_PC];
510 
511 	while (fp != 0 || pc != 0) {
512 
513 		if (stack_loop(fp, &prevfp, &nfp, &pfpsize))
514 			break;
515 
516 		if (fp != 0 &&
517 		    Pread(P, &frame, sizeof (frame), (uintptr_t)fp) ==
518 		    sizeof (frame)) {
519 			if (frame.pc == -1) {
520 				argc = 3;
521 				args[2] = fp + sizeof (sigframe_t);
522 				if (Pread(P, &args, 2 * sizeof (prgreg_t),
523 				    fp + 2 * sizeof (prgreg_t)) !=
524 				    2 * sizeof (prgreg_t))
525 					argc = 0;
526 			} else {
527 				argc = read_args(P, fp, pc, args,
528 				    sizeof (args));
529 			}
530 		} else {
531 			(void) memset(&frame, 0, sizeof (frame));
532 			argc = 0;
533 		}
534 
535 		gregs[R_FP] = fp;
536 		gregs[R_PC] = pc;
537 
538 		if ((rv = func(arg, gregs, argc, args)) != 0)
539 			break;
540 
541 		pfp = fp;
542 		fp = frame.fp;
543 		pc = frame.pc;
544 
545 		if (pc == -1 && find_uclink(&ucl, pfp + sizeof (sigframe_t))) {
546 			uc_addr = pfp + sizeof (sigframe_t);
547 
548 			if (Pread(P, &uc, sizeof (uc), uc_addr)
549 			    == sizeof (uc)) {
550 				ucontext_n_to_prgregs(&uc, gregs);
551 				fp = gregs[R_FP];
552 				pc = gregs[R_PC];
553 			}
554 		}
555 	}
556 
557 	if (prevfp)
558 		free(prevfp);
559 
560 	free_uclist(&ucl);
561 
562 	return (rv);
563 }
564 
565 uintptr_t
566 Psyscall_setup(struct ps_prochandle *P, int nargs, int sysindex, uintptr_t sp)
567 {
568 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
569 		sp -= sizeof (int) * (nargs+2);
570 
571 		P->status.pr_lwp.pr_reg[REG_RAX] = sysindex;
572 		P->status.pr_lwp.pr_reg[REG_RSP] = sp;
573 		P->status.pr_lwp.pr_reg[REG_RIP] = P->sysaddr;
574 	} else {
575 		int pusharg = (nargs > 6) ? nargs - 6: 0;
576 
577 		sp -= sizeof (int64_t) * (pusharg+2);
578 
579 		P->status.pr_lwp.pr_reg[REG_RAX] = sysindex;
580 		P->status.pr_lwp.pr_reg[REG_RSP] = sp;
581 		P->status.pr_lwp.pr_reg[REG_RIP] = P->sysaddr;
582 	}
583 
584 	return (sp);
585 }
586 
587 int
588 Psyscall_copyinargs(struct ps_prochandle *P, int nargs, argdes_t *argp,
589     uintptr_t ap)
590 {
591 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
592 		int32_t arglist[MAXARGS+2];
593 		int i;
594 		argdes_t *adp;
595 
596 		for (i = 0, adp = argp; i < nargs; i++, adp++)
597 			arglist[1 + i] = (int32_t)adp->arg_value;
598 
599 		arglist[0] = P->status.pr_lwp.pr_reg[REG_RIP];
600 		if (Pwrite(P, &arglist[0], sizeof (int) * (nargs+1),
601 		    (uintptr_t)ap) != sizeof (int) * (nargs+1))
602 			return (-1);
603 	} else {
604 		int64_t arglist[MAXARGS+2];
605 		int i;
606 		argdes_t *adp;
607 		int pusharg = (nargs > 6) ? nargs - 6: 0;
608 
609 		for (i = 0, adp = argp; i < nargs; i++, adp++) {
610 			switch (i) {
611 			case 0:
612 				(void) Pputareg(P, REG_RDI, adp->arg_value);
613 				break;
614 			case 1:
615 				(void) Pputareg(P, REG_RSI, adp->arg_value);
616 				break;
617 			case 2:
618 				(void) Pputareg(P, REG_RDX, adp->arg_value);
619 				break;
620 			case 3:
621 				(void) Pputareg(P, REG_RCX, adp->arg_value);
622 				break;
623 			case 4:
624 				(void) Pputareg(P, REG_R8, adp->arg_value);
625 				break;
626 			case 5:
627 				(void) Pputareg(P, REG_R9, adp->arg_value);
628 				break;
629 			default:
630 				arglist[i - 5] = (uint64_t)adp->arg_value;
631 				break;
632 			}
633 		}
634 
635 		arglist[0] = P->status.pr_lwp.pr_reg[REG_RIP];
636 
637 		if (Pwrite(P, &arglist[0],
638 		    sizeof (int64_t) * (pusharg + 1), ap) !=
639 		    sizeof (int64_t) * (pusharg + 1))
640 			return (-1);
641 	}
642 
643 	return (0);
644 }
645 
646 int
647 Psyscall_copyoutargs(struct ps_prochandle *P, int nargs, argdes_t *argp,
648     uintptr_t ap)
649 {
650 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
651 		uint32_t arglist[MAXARGS + 2];
652 		int i;
653 		argdes_t *adp;
654 
655 		if (Pread(P, &arglist[0], sizeof (int) * (nargs+1),
656 		    (uintptr_t)ap) != sizeof (int) * (nargs+1))
657 			return (-1);
658 
659 		for (i = 0, adp = argp; i < nargs; i++, adp++)
660 			adp->arg_value = arglist[i];
661 	} else {
662 		int pusharg = (nargs > 6) ? nargs - 6: 0;
663 		int64_t arglist[MAXARGS+2];
664 		int i;
665 		argdes_t *adp;
666 
667 		if (pusharg  > 0 &&
668 		    Pread(P, &arglist[0], sizeof (int64_t) * (pusharg + 1),
669 		    ap) != sizeof (int64_t) * (pusharg + 1))
670 			return (-1);
671 
672 		for (i = 0, adp = argp; i < nargs; i++, adp++) {
673 			switch (i) {
674 			case 0:
675 				adp->arg_value =
676 				    P->status.pr_lwp.pr_reg[REG_RDI];
677 				break;
678 			case 1:
679 				adp->arg_value =
680 				    P->status.pr_lwp.pr_reg[REG_RSI];
681 				break;
682 			case 2:
683 				adp->arg_value =
684 				    P->status.pr_lwp.pr_reg[REG_RDX];
685 				break;
686 			case 3:
687 				adp->arg_value =
688 				    P->status.pr_lwp.pr_reg[REG_RCX];
689 				break;
690 			case 4:
691 				adp->arg_value =
692 				    P->status.pr_lwp.pr_reg[REG_R8];
693 				break;
694 			case 5:
695 				adp->arg_value =
696 				    P->status.pr_lwp.pr_reg[REG_R9];
697 				break;
698 			default:
699 				adp->arg_value = arglist[i - 6];
700 				break;
701 			}
702 		}
703 
704 		return (0);
705 	}
706 
707 	return (0);
708 }
709