xref: /illumos-gate/usr/src/lib/libmvec/common/__vrhypotf.c (revision fcdb3229a31dd4ff700c69238814e326aad49098)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #include <sys/isa_defs.h>
31 #include "libm_inlines.h"
32 
33 #ifdef _LITTLE_ENDIAN
34 #define	HI(x)	*(1+(int *)x)
35 #define	LO(x)	*(unsigned *)x
36 #else
37 #define	HI(x)	*(int *)x
38 #define	LO(x)	*(1+(unsigned *)x)
39 #endif
40 
41 #ifdef __RESTRICT
42 #define	restrict _Restrict
43 #else
44 #define	restrict
45 #endif
46 
47 /*
48  * float rhypotf(float x, float y)
49  *
50  * Method :
51  *	1. Special cases:
52  *		for x or y = Inf		=> 0;
53  *		for x or y = NaN		=> QNaN;
54  *		for x and y = 0			=> +Inf + divide-by-zero;
55  *	2. Computes d = x * x + y * y;
56  *	3. Computes reciprocal square root from:
57  *		d = m * 2**n
58  *	Where:
59  *		m = [0.5, 2),
60  *		n = ((exponent + 1) & ~1).
61  *	Then:
62  *		rsqrtf(d) = 1/sqrt( m * 2**n ) = (2 ** (-n/2)) * (1/sqrt(m))
63  *	4. Computes 1/sqrt(m) from:
64  *		1/sqrt(m) = (1/sqrt(m0)) * (1/sqrt(1 + (1/m0)*dm))
65  *	Where:
66  *		m = m0 + dm,
67  *		m0 = 0.5 * (1 + k/64) for m = [0.5, 0.5+127/256), k = [0, 63];
68  *		m0 = 1.0 * (0 + k/64) for m = [0.5+127/256, 1.0+127/128),
69  *		    k = [64, 127];
70  *	Then:
71  *		1/sqrt(m0), 1/m0 are looked up in a table,
72  *		1/sqrt(1 + (1/m0)*dm) is computed using approximation:
73  *			1/sqrt(1 + z) = ((a3 * z + a2) * z + a1) * z + a0
74  *			where z = [-1/64, 1/64].
75  *
76  * Accuracy:
77  *	The maximum relative error for the approximating
78  *	polynomial is 2**(-27.87).
79  *	Maximum error observed: less than 0.535 ulp after 3.000.000.000
80  *	results.
81  */
82 
83 static const double __vlibm_TBL_rhypotf[] __aligned(32) = {
84 /*
85  * i = [0,63]
86  * TBL[2*i+0] = 1.0 / (*(double *)&(0x3ff0000000000000LL + (i << 46)));
87  * TBL[2*i+1] = (double)(0.5/sqrtl(2) / sqrtl(*(double *) &
88  *     (0x3ff0000000000000LL + (i << 46))));
89  * TBL[128+2*i+0] = 1.0 / (*(double*)&(0x3ff0000000000000LL + (i << 46)));
90  * TBL[128+2*i+1] = (double)(0.25 / sqrtl(*(double *) &
91  *     (0x3ff0000000000000LL + (i << 46))));
92  */
93 	1.0000000000000000000e+00, 3.5355339059327378637e-01,
94 	9.8461538461538467004e-01, 3.5082320772281166965e-01,
95 	9.6969696969696972388e-01, 3.4815531191139570399e-01,
96 	9.5522388059701490715e-01, 3.4554737023254405992e-01,
97 	9.4117647058823528106e-01, 3.4299717028501769400e-01,
98 	9.2753623188405798228e-01, 3.4050261230349943009e-01,
99 	9.1428571428571425717e-01, 3.3806170189140660742e-01,
100 	9.0140845070422537244e-01, 3.3567254331867563133e-01,
101 	8.8888888888888883955e-01, 3.3333333333333331483e-01,
102 	8.7671232876712323900e-01, 3.3104235544094717802e-01,
103 	8.6486486486486491287e-01, 3.2879797461071458287e-01,
104 	8.5333333333333338810e-01, 3.2659863237109043599e-01,
105 	8.4210526315789469010e-01, 3.2444284226152508843e-01,
106 	8.3116883116883122362e-01, 3.2232918561015211356e-01,
107 	8.2051282051282048435e-01, 3.2025630761017426229e-01,
108 	8.1012658227848100001e-01, 3.1822291367029204023e-01,
109 	8.0000000000000004441e-01, 3.1622776601683794118e-01,
110 	7.9012345679012341293e-01, 3.1426968052735443360e-01,
111 	7.8048780487804880757e-01, 3.1234752377721214378e-01,
112 	7.7108433734939763049e-01, 3.1046021028253312224e-01,
113 	7.6190476190476186247e-01, 3.0860669992418382490e-01,
114 	7.5294117647058822484e-01, 3.0678599553894819740e-01,
115 	7.4418604651162789665e-01, 3.0499714066520933198e-01,
116 	7.3563218390804596680e-01, 3.0323921743156134756e-01,
117 	7.2727272727272729291e-01, 3.0151134457776362918e-01,
118 	7.1910112359550559802e-01, 2.9981267559834456904e-01,
119 	7.1111111111111113825e-01, 2.9814239699997197031e-01,
120 	7.0329670329670335160e-01, 2.9649972666444046610e-01,
121 	6.9565217391304345895e-01, 2.9488391230979427160e-01,
122 	6.8817204301075274309e-01, 2.9329423004270660513e-01,
123 	6.8085106382978721751e-01, 2.9172998299578911663e-01,
124 	6.7368421052631577428e-01, 2.9019050004400465115e-01,
125 	6.6666666666666662966e-01, 2.8867513459481286553e-01,
126 	6.5979381443298967813e-01, 2.8718326344709527165e-01,
127 	6.5306122448979586625e-01, 2.8571428571428569843e-01,
128 	6.4646464646464651960e-01, 2.8426762180748055275e-01,
129 	6.4000000000000001332e-01, 2.8284271247461900689e-01,
130 	6.3366336633663367106e-01, 2.8143901789211672737e-01,
131 	6.2745098039215685404e-01, 2.8005601680560193723e-01,
132 	6.2135922330097081989e-01, 2.7869320571664707442e-01,
133 	6.1538461538461541878e-01, 2.7735009811261457369e-01,
134 	6.0952380952380957879e-01, 2.7602622373694168934e-01,
135 	6.0377358490566035432e-01, 2.7472112789737807015e-01,
136 	5.9813084112149528249e-01, 2.7343437080986532361e-01,
137 	5.9259259259259255970e-01, 2.7216552697590867815e-01,
138 	5.8715596330275232617e-01, 2.7091418459143856712e-01,
139 	5.8181818181818178992e-01, 2.6967994498529684888e-01,
140 	5.7657657657657657158e-01, 2.6846242208560971987e-01,
141 	5.7142857142857139685e-01, 2.6726124191242439654e-01,
142 	5.6637168141592919568e-01, 2.6607604209509572168e-01,
143 	5.6140350877192979340e-01, 2.6490647141300877054e-01,
144 	5.5652173913043478937e-01, 2.6375218935831479250e-01,
145 	5.5172413793103447510e-01, 2.6261286571944508772e-01,
146 	5.4700854700854706358e-01, 2.6148818018424535570e-01,
147 	5.4237288135593220151e-01, 2.6037782196164771520e-01,
148 	5.3781512605042014474e-01, 2.5928148942086576278e-01,
149 	5.3333333333333332593e-01, 2.5819888974716115326e-01,
150 	5.2892561983471075848e-01, 2.5712973861329002645e-01,
151 	5.2459016393442625681e-01, 2.5607375986579195004e-01,
152 	5.2032520325203257539e-01, 2.5503068522533534068e-01,
153 	5.1612903225806450180e-01, 2.5400025400038100942e-01,
154 	5.1200000000000001066e-01, 2.5298221281347033074e-01,
155 	5.0793650793650790831e-01, 2.5197631533948483540e-01,
156 	5.0393700787401574104e-01, 2.5098232205526344041e-01,
157 	1.0000000000000000000e+00, 2.5000000000000000000e-01,
158 	9.8461538461538467004e-01, 2.4806946917841690703e-01,
159 	9.6969696969696972388e-01, 2.4618298195866547551e-01,
160 	9.5522388059701490715e-01, 2.4433888871261044695e-01,
161 	9.4117647058823528106e-01, 2.4253562503633296910e-01,
162 	9.2753623188405798228e-01, 2.4077170617153839660e-01,
163 	9.1428571428571425717e-01, 2.3904572186687872426e-01,
164 	9.0140845070422537244e-01, 2.3735633163877067897e-01,
165 	8.8888888888888883955e-01, 2.3570226039551583908e-01,
166 	8.7671232876712323900e-01, 2.3408229439226113655e-01,
167 	8.6486486486486491287e-01, 2.3249527748763856860e-01,
168 	8.5333333333333338810e-01, 2.3094010767585029797e-01,
169 	8.4210526315789469010e-01, 2.2941573387056177213e-01,
170 	8.3116883116883122362e-01, 2.2792115291927589338e-01,
171 	8.2051282051282048435e-01, 2.2645540682891915352e-01,
172 	8.1012658227848100001e-01, 2.2501758018520479077e-01,
173 	8.0000000000000004441e-01, 2.2360679774997896385e-01,
174 	7.9012345679012341293e-01, 2.2222222222222220989e-01,
175 	7.8048780487804880757e-01, 2.2086305214969309541e-01,
176 	7.7108433734939763049e-01, 2.1952851997938069295e-01,
177 	7.6190476190476186247e-01, 2.1821789023599238999e-01,
178 	7.5294117647058822484e-01, 2.1693045781865616384e-01,
179 	7.4418604651162789665e-01, 2.1566554640687682354e-01,
180 	7.3563218390804596680e-01, 2.1442250696755896233e-01,
181 	7.2727272727272729291e-01, 2.1320071635561044232e-01,
182 	7.1910112359550559802e-01, 2.1199957600127200541e-01,
183 	7.1111111111111113825e-01, 2.1081851067789195153e-01,
184 	7.0329670329670335160e-01, 2.0965696734438366011e-01,
185 	6.9565217391304345895e-01, 2.0851441405707477061e-01,
186 	6.8817204301075274309e-01, 2.0739033894608505104e-01,
187 	6.8085106382978721751e-01, 2.0628424925175867233e-01,
188 	6.7368421052631577428e-01, 2.0519567041703082322e-01,
189 	6.6666666666666662966e-01, 2.0412414523193150862e-01,
190 	6.5979381443298967813e-01, 2.0306923302672380549e-01,
191 	6.5306122448979586625e-01, 2.0203050891044216364e-01,
192 	6.4646464646464651960e-01, 2.0100756305184241945e-01,
193 	6.4000000000000001332e-01, 2.0000000000000001110e-01,
194 	6.3366336633663367106e-01, 1.9900743804199783060e-01,
195 	6.2745098039215685404e-01, 1.9802950859533485772e-01,
196 	6.2135922330097081989e-01, 1.9706585563285863860e-01,
197 	6.1538461538461541878e-01, 1.9611613513818404453e-01,
198 	6.0952380952380957879e-01, 1.9518001458970662965e-01,
199 	6.0377358490566035432e-01, 1.9425717247145282696e-01,
200 	5.9813084112149528249e-01, 1.9334729780913270658e-01,
201 	5.9259259259259255970e-01, 1.9245008972987526219e-01,
202 	5.8715596330275232617e-01, 1.9156525704423027490e-01,
203 	5.8181818181818178992e-01, 1.9069251784911847580e-01,
204 	5.7657657657657657158e-01, 1.8983159915049979682e-01,
205 	5.7142857142857139685e-01, 1.8898223650461362655e-01,
206 	5.6637168141592919568e-01, 1.8814417367671945613e-01,
207 	5.6140350877192979340e-01, 1.8731716231633879777e-01,
208 	5.5652173913043478937e-01, 1.8650096164806276300e-01,
209 	5.5172413793103447510e-01, 1.8569533817705186074e-01,
210 	5.4700854700854706358e-01, 1.8490006540840969729e-01,
211 	5.4237288135593220151e-01, 1.8411492357966466327e-01,
212 	5.3781512605042014474e-01, 1.8333969940564226464e-01,
213 	5.3333333333333332593e-01, 1.8257418583505535814e-01,
214 	5.2892561983471075848e-01, 1.8181818181818182323e-01,
215 	5.2459016393442625681e-01, 1.8107149208503706128e-01,
216 	5.2032520325203257539e-01, 1.8033392693348646030e-01,
217 	5.1612903225806450180e-01, 1.7960530202677491007e-01,
218 	5.1200000000000001066e-01, 1.7888543819998317663e-01,
219 	5.0793650793650790831e-01, 1.7817416127494958844e-01,
220 	5.0393700787401574104e-01, 1.7747130188322274291e-01,
221 };
222 
223 extern float fabsf(float);
224 
225 static const double
226 	A0 = 9.99999997962321453275e-01,
227 	A1 = -4.99999998166077580600e-01,
228 	A2 = 3.75066768969515586277e-01,
229 	A3 = -3.12560092408808548438e-01;
230 
231 static void
232 __vrhypotf_n(int n, float *restrict px, int stridex, float *restrict py,
233     int stridey, float *restrict pz, int stridez);
234 
235 #define	RETURN(ret)						\
236 {								\
237 	*pz = (ret);						\
238 	pz += stridez;						\
239 	if (n_n == 0)						\
240 	{							\
241 		spx = px;					\
242 		spy = py;					\
243 		spz = pz;					\
244 		ay0 = *(int *)py;				\
245 		continue;					\
246 	}							\
247 	n--;							\
248 	break;							\
249 }
250 
251 
252 void
__vrhypotf(int n,float * restrict px,int stridex,float * restrict py,int stridey,float * restrict pz,int stridez)253 __vrhypotf(int n, float *restrict px, int stridex, float *restrict py,
254     int stridey, float *restrict pz, int stridez)
255 {
256 	float		*spx, *spy, *spz;
257 	int		ax0, ay0, n_n;
258 	float		res, x0, y0;
259 
260 	while (n > 1) {
261 		n_n = 0;
262 		spx = px;
263 		spy = py;
264 		spz = pz;
265 		ax0 = *(int *)px;
266 		ay0 = *(int *)py;
267 		for (; n > 1; n--) {
268 			ax0 &= 0x7fffffff;
269 			ay0 &= 0x7fffffff;
270 
271 			px += stridex;
272 
273 			if (ax0 >= 0x7f800000 || ay0 >= 0x7f800000) {
274 				/* X or Y = NaN or Inf	*/
275 				x0 = *(px - stridex);
276 				y0 = *py;
277 				res = fabsf(x0) + fabsf(y0);
278 				if (ax0 == 0x7f800000) res = 0.0f;
279 				else if (ay0 == 0x7f800000) res = 0.0f;
280 				ax0 = *(int *)px;
281 				py += stridey;
282 				RETURN(res)
283 			}
284 			ax0 = *(int *)px;
285 			py += stridey;
286 			if (ay0 == 0) {		/* Y = 0	*/
287 				int tx = *(int *)(px - stridex) & 0x7fffffff;
288 				if (tx == 0)	/* X = 0	*/
289 				{
290 					RETURN(1.0f / 0.0f)
291 				}
292 			}
293 			pz += stridez;
294 			n_n++;
295 			ay0 = *(int *)py;
296 		}
297 		if (n_n > 0)
298 			__vrhypotf_n(n_n, spx, stridex, spy, stridey, spz,
299 			    stridez);
300 	}
301 	if (n > 0) {
302 		ax0 = *(int *)px;
303 		ay0 = *(int *)py;
304 		x0 = *px;
305 		y0 = *py;
306 
307 		ax0 &= 0x7fffffff;
308 		ay0 &= 0x7fffffff;
309 
310 		if (ax0 >= 0x7f800000 || ay0 >= 0x7f800000) {
311 			/* X or Y = NaN or Inf	*/
312 			res = fabsf(x0) + fabsf(y0);
313 			if (ax0 == 0x7f800000) res = 0.0f;
314 			else if (ay0 == 0x7f800000) res = 0.0f;
315 			*pz = res;
316 		} else if (ax0 == 0 && ay0 == 0) {	/* X and Y = 0	*/
317 			*pz = 1.0f / 0.0f;
318 		} else {
319 			double		xx0, res0, hyp0, h_hi0 = 0, dbase0 = 0;
320 			int		ibase0, si0, hyp0h;
321 
322 			hyp0 = x0 * (double)x0 + y0 * (double)y0;
323 
324 			ibase0 = HI(&hyp0);
325 
326 			HI(&dbase0) =
327 			    (0x60000000 - ((ibase0 & 0x7fe00000) >> 1));
328 
329 			hyp0h = (ibase0 & 0x000fffff) | 0x3ff00000;
330 			HI(&hyp0) = hyp0h;
331 			HI(&h_hi0) = hyp0h & 0x7fffc000;
332 
333 			ibase0 >>= 10;
334 			si0 = ibase0 & 0x7f0;
335 			xx0 = ((double *)((char *)
336 			    __vlibm_TBL_rhypotf + si0))[0];
337 
338 			xx0 = (hyp0 - h_hi0) * xx0;
339 			res0 = ((double *)((char *)
340 			    __vlibm_TBL_rhypotf + si0))[1];
341 			res0 *= (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
342 			res0 *= dbase0;
343 			*pz = res0;
344 		}
345 	}
346 }
347 
348 static void
__vrhypotf_n(int n,float * restrict px,int stridex,float * restrict py,int stridey,float * restrict pz,int stridez)349 __vrhypotf_n(int n, float *restrict px, int stridex, float *restrict py,
350     int stridey, float *restrict pz, int stridez)
351 {
352 	double		xx0, res0, hyp0, h_hi0 = 0, dbase0 = 0;
353 	double		xx1, res1, hyp1, h_hi1 = 0, dbase1 = 0;
354 	double		xx2, res2, hyp2, h_hi2 = 0, dbase2 = 0;
355 	float		x0, y0;
356 	float		x1, y1;
357 	float		x2, y2;
358 	int		ibase0, si0, hyp0h;
359 	int		ibase1, si1, hyp1h;
360 	int		ibase2, si2, hyp2h;
361 
362 	for (; n > 2; n -= 3) {
363 		x0 = *px;
364 		px += stridex;
365 		x1 = *px;
366 		px += stridex;
367 		x2 = *px;
368 		px += stridex;
369 
370 		y0 = *py;
371 		py += stridey;
372 		y1 = *py;
373 		py += stridey;
374 		y2 = *py;
375 		py += stridey;
376 
377 		hyp0 = x0 * (double)x0 + y0 * (double)y0;
378 		hyp1 = x1 * (double)x1 + y1 * (double)y1;
379 		hyp2 = x2 * (double)x2 + y2 * (double)y2;
380 
381 		ibase0 = HI(&hyp0);
382 		ibase1 = HI(&hyp1);
383 		ibase2 = HI(&hyp2);
384 
385 		HI(&dbase0) = (0x60000000 - ((ibase0 & 0x7fe00000) >> 1));
386 		HI(&dbase1) = (0x60000000 - ((ibase1 & 0x7fe00000) >> 1));
387 		HI(&dbase2) = (0x60000000 - ((ibase2 & 0x7fe00000) >> 1));
388 
389 		hyp0h = (ibase0 & 0x000fffff) | 0x3ff00000;
390 		hyp1h = (ibase1 & 0x000fffff) | 0x3ff00000;
391 		hyp2h = (ibase2 & 0x000fffff) | 0x3ff00000;
392 		HI(&hyp0) = hyp0h;
393 		HI(&hyp1) = hyp1h;
394 		HI(&hyp2) = hyp2h;
395 		HI(&h_hi0) = hyp0h & 0x7fffc000;
396 		HI(&h_hi1) = hyp1h & 0x7fffc000;
397 		HI(&h_hi2) = hyp2h & 0x7fffc000;
398 
399 		ibase0 >>= 10;
400 		ibase1 >>= 10;
401 		ibase2 >>= 10;
402 		si0 = ibase0 & 0x7f0;
403 		si1 = ibase1 & 0x7f0;
404 		si2 = ibase2 & 0x7f0;
405 		xx0 = ((double *)((char *)__vlibm_TBL_rhypotf + si0))[0];
406 		xx1 = ((double *)((char *)__vlibm_TBL_rhypotf + si1))[0];
407 		xx2 = ((double *)((char *)__vlibm_TBL_rhypotf + si2))[0];
408 
409 		xx0 = (hyp0 - h_hi0) * xx0;
410 		xx1 = (hyp1 - h_hi1) * xx1;
411 		xx2 = (hyp2 - h_hi2) * xx2;
412 		res0 = ((double *)((char *)__vlibm_TBL_rhypotf + si0))[1];
413 		res1 = ((double *)((char *)__vlibm_TBL_rhypotf + si1))[1];
414 		res2 = ((double *)((char *)__vlibm_TBL_rhypotf + si2))[1];
415 		res0 *= (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
416 		res1 *= (((A3 * xx1 + A2) * xx1 + A1) * xx1 + A0);
417 		res2 *= (((A3 * xx2 + A2) * xx2 + A1) * xx2 + A0);
418 		res0 *= dbase0;
419 		res1 *= dbase1;
420 		res2 *= dbase2;
421 		*pz = res0;
422 		pz += stridez;
423 		*pz = res1;
424 		pz += stridez;
425 		*pz = res2;
426 		pz += stridez;
427 	}
428 
429 	for (; n > 0; n--) {
430 		x0 = *px;
431 		px += stridex;
432 
433 		y0 = *py;
434 		py += stridey;
435 
436 		hyp0 = x0 * (double)x0 + y0 * (double)y0;
437 
438 		ibase0 = HI(&hyp0);
439 
440 		HI(&dbase0) = (0x60000000 - ((ibase0 & 0x7fe00000) >> 1));
441 
442 		hyp0h = (ibase0 & 0x000fffff) | 0x3ff00000;
443 		HI(&hyp0) = hyp0h;
444 		HI(&h_hi0) = hyp0h & 0x7fffc000;
445 
446 		ibase0 >>= 10;
447 		si0 = ibase0 & 0x7f0;
448 		xx0 = ((double *)((char *)__vlibm_TBL_rhypotf + si0))[0];
449 
450 		xx0 = (hyp0 - h_hi0) * xx0;
451 		res0 = ((double *)((char *)__vlibm_TBL_rhypotf + si0))[1];
452 		res0 *= (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
453 		res0 *= dbase0;
454 		*pz = res0;
455 		pz += stridez;
456 	}
457 }
458