1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 #ifndef _LIBMLRPC_H 27 #define _LIBMLRPC_H 28 29 #include <sys/types.h> 30 #include <sys/uio.h> 31 32 #include <smb/wintypes.h> 33 #include <libmlrpc/ndr.h> 34 35 #ifdef __cplusplus 36 extern "C" { 37 #endif 38 39 /* 40 * An MSRPC compatible implementation of OSF DCE RPC. DCE RPC is derived 41 * from the Apollo Network Computing Architecture (NCA) RPC implementation. 42 * 43 * CAE Specification (1997) 44 * DCE 1.1: Remote Procedure Call 45 * Document Number: C706 46 * The Open Group 47 * ogspecs@opengroup.org 48 * 49 * This implementation is based on the DCE Remote Procedure Call spec with 50 * enhancements to support Unicode strings. The diagram below shows the 51 * DCE RPC layers compared against ONC SUN RPC. 52 * 53 * NDR RPC Layers Sun RPC Layers Remark 54 * +---------------+ +---------------+ +---------------+ 55 * +---------------+ +---------------+ 56 * | Application | | Application | The application 57 * +---------------+ +---------------+ 58 * | Hand coded | | RPCGEN gen'd | Where the real 59 * | client/server | | client/server | work happens 60 * | srvsvc.ndl | | *_svc.c *_clnt| 61 * | srvsvc.c | | | 62 * +---------------+ +---------------+ 63 * | RPC Library | | RPC Library | Calls/Return 64 * | ndr_*.c | | | Binding/PMAP 65 * +---------------+ +---------------+ 66 * | RPC Protocol | | RPC Protocol | Headers, Auth, 67 * | rpcpdu.ndl | | | 68 * +---------------+ +---------------+ 69 * | IDL gen'd | | RPCGEN gen'd | Aggregate 70 * | NDR stubs | | XDR stubs | Composition 71 * | *__ndr.c | | *_xdr.c | 72 * +---------------+ +---------------+ 73 * | NDR Represen | | XDR Represen | Byte order, padding 74 * +---------------+ +---------------+ 75 * | Packet Heaps | | Network Conn | DCERPC does not talk 76 * | ndo_*.c | | clnt_{tcp,udp}| directly to network. 77 * +---------------+ +---------------+ 78 * 79 * There are two major differences between the DCE RPC and ONC RPC: 80 * 81 * 1. NDR RPC only generates or processes packets from buffers. Other 82 * layers must take care of packet transmission and reception. 83 * The packet heaps are managed through a simple interface provided 84 * by the Network Data Representation (NDR) module called ndr_stream_t. 85 * ndo_*.c modules implement the different flavors (operations) of 86 * packet heaps. 87 * 88 * ONC RPC communicates directly with the network. You have to do 89 * something special for the RPC packet to be placed in a buffer 90 * rather than sent to the wire. 91 * 92 * 2. NDR RPC uses application provided heaps to support operations. 93 * A heap is a single, monolithic chunk of memory that NDR RPC manages 94 * as it allocates. When the operation and its result are done, the 95 * heap is disposed of as a single item. The transaction, which 96 * is the anchor of most operations, contains the necessary book- 97 * keeping for the heap. 98 * 99 * ONC RPC uses malloc() liberally throughout its run-time system. 100 * To free results, ONC RPC supports an XDR_FREE operation that 101 * traverses data structures freeing memory as it goes, whether 102 * it was malloc'd or not. 103 */ 104 105 /* 106 * Dispatch Return Code (DRC) 107 * 108 * 0x8000 15:01 Set to indicate a fault, clear indicates status 109 * 0x7F00 08:07 Status/Fault specific 110 * 0x00FF 00:08 PTYPE_... of PDU, 0xFF for header 111 */ 112 #define NDR_DRC_OK 0x0000 113 #define NDR_DRC_MASK_FAULT 0x8000 114 #define NDR_DRC_MASK_SPECIFIER 0xFF00 115 #define NDR_DRC_MASK_PTYPE 0x00FF 116 117 /* Fake PTYPE DRC discriminators */ 118 #define NDR_DRC_PTYPE_RPCHDR(DRC) ((DRC) | 0x00FF) 119 #define NDR_DRC_PTYPE_API(DRC) ((DRC) | 0x00AA) 120 121 /* DRC Recognizers */ 122 #define NDR_DRC_IS_OK(DRC) (((DRC) & NDR_DRC_MASK_SPECIFIER) == 0) 123 #define NDR_DRC_IS_FAULT(DRC) (((DRC) & NDR_DRC_MASK_FAULT) != 0) 124 125 /* 126 * (Un)Marshalling category specifiers 127 */ 128 #define NDR_DRC_FAULT_MODE_MISMATCH 0x8100 129 #define NDR_DRC_RECEIVED 0x0200 130 #define NDR_DRC_FAULT_RECEIVED_RUNT 0x8300 131 #define NDR_DRC_FAULT_RECEIVED_MALFORMED 0x8400 132 #define NDR_DRC_DECODED 0x0500 133 #define NDR_DRC_FAULT_DECODE_FAILED 0x8600 134 #define NDR_DRC_ENCODED 0x0700 135 #define NDR_DRC_FAULT_ENCODE_FAILED 0x8800 136 #define NDR_DRC_FAULT_ENCODE_TOO_BIG 0x8900 137 #define NDR_DRC_SENT 0x0A00 138 #define NDR_DRC_FAULT_SEND_FAILED 0x8B00 139 140 /* 141 * Resource category specifier 142 */ 143 #define NDR_DRC_FAULT_RESOURCE_1 0x9100 144 #define NDR_DRC_FAULT_RESOURCE_2 0x9200 145 146 /* 147 * Parameters. Usually #define'd with useful alias 148 */ 149 #define NDR_DRC_FAULT_PARAM_0_INVALID 0xC000 150 #define NDR_DRC_FAULT_PARAM_0_UNIMPLEMENTED 0xD000 151 #define NDR_DRC_FAULT_PARAM_1_INVALID 0xC100 152 #define NDR_DRC_FAULT_PARAM_1_UNIMPLEMENTED 0xD100 153 #define NDR_DRC_FAULT_PARAM_2_INVALID 0xC200 154 #define NDR_DRC_FAULT_PARAM_2_UNIMPLEMENTED 0xD200 155 #define NDR_DRC_FAULT_PARAM_3_INVALID 0xC300 156 #define NDR_DRC_FAULT_PARAM_3_UNIMPLEMENTED 0xD300 157 158 #define NDR_DRC_FAULT_OUT_OF_MEMORY 0xF000 159 160 /* RPCHDR */ 161 #define NDR_DRC_FAULT_RPCHDR_MODE_MISMATCH 0x81FF 162 #define NDR_DRC_FAULT_RPCHDR_RECEIVED_RUNT 0x83FF 163 #define NDR_DRC_FAULT_RPCHDR_DECODE_FAILED 0x86FF 164 #define NDR_DRC_FAULT_RPCHDR_PTYPE_INVALID 0xC0FF /* PARAM_0_INVALID */ 165 #define NDR_DRC_FAULT_RPCHDR_PTYPE_UNIMPLEMENTED 0xD0FF /* PARAM_0_UNIMP */ 166 167 /* Request */ 168 #define NDR_DRC_FAULT_REQUEST_PCONT_INVALID 0xC000 /* PARAM_0_INVALID */ 169 #define NDR_DRC_FAULT_REQUEST_OPNUM_INVALID 0xC100 /* PARAM_1_INVALID */ 170 171 /* Bind */ 172 #define NDR_DRC_BINDING_MADE 0x000B /* OK */ 173 #define NDR_DRC_FAULT_BIND_PCONT_BUSY 0xC00B /* PARAM_0_INVALID */ 174 #define NDR_DRC_FAULT_BIND_UNKNOWN_SERVICE 0xC10B /* PARAM_1_INVALID */ 175 #define NDR_DRC_FAULT_BIND_NO_SLOTS 0x910B /* RESOURCE_1 */ 176 177 /* API */ 178 #define NDR_DRC_FAULT_API_SERVICE_INVALID 0xC0AA /* PARAM_0_INVALID */ 179 #define NDR_DRC_FAULT_API_BIND_NO_SLOTS 0x91AA /* RESOURCE_1 */ 180 #define NDR_DRC_FAULT_API_OPNUM_INVALID 0xC1AA /* PARAM_1_INVALID */ 181 182 struct ndr_xa; 183 struct ndr_client; 184 185 typedef struct ndr_stub_table { 186 int (*func)(void *, struct ndr_xa *); 187 unsigned short opnum; 188 } ndr_stub_table_t; 189 190 typedef struct ndr_service { 191 char *name; 192 char *desc; 193 char *endpoint; 194 char *sec_addr_port; 195 char *abstract_syntax_uuid; 196 int abstract_syntax_version; 197 char *transfer_syntax_uuid; 198 int transfer_syntax_version; 199 unsigned bind_instance_size; 200 int (*bind_req)(); 201 int (*unbind_and_close)(); 202 int (*call_stub)(struct ndr_xa *); 203 ndr_typeinfo_t *interface_ti; 204 ndr_stub_table_t *stub_table; 205 } ndr_service_t; 206 207 /* 208 * The list of bindings is anchored at a connection. Nothing in the 209 * RPC mechanism allocates them. Binding elements which have service==0 210 * indicate free elements. When a connection is instantiated, at least 211 * one free binding entry should also be established. Something like 212 * this should suffice for most (all) situations: 213 * 214 * struct connection { 215 * .... 216 * ndr_binding_t *binding_list_head; 217 * ndr_binding_t binding_pool[N_BINDING_POOL]; 218 * .... 219 * }; 220 * 221 * init_connection(struct connection *conn) { 222 * .... 223 * ndr_svc_binding_pool_init(&conn->binding_list_head, 224 * conn->binding_pool, N_BINDING_POOL); 225 */ 226 typedef struct ndr_binding { 227 struct ndr_binding *next; 228 ndr_p_context_id_t p_cont_id; 229 unsigned char which_side; 230 struct ndr_client *clnt; 231 ndr_service_t *service; 232 void *instance_specific; 233 } ndr_binding_t; 234 235 #define NDR_BIND_SIDE_CLIENT 1 236 #define NDR_BIND_SIDE_SERVER 2 237 238 #define NDR_BINDING_TO_SPECIFIC(BINDING, TYPE) \ 239 ((TYPE *) (BINDING)->instance_specific) 240 241 /* 242 * The binding list space must be provided by the application library 243 * for use by the underlying RPC library. We need at least two binding 244 * slots per connection. 245 */ 246 #define NDR_N_BINDING_POOL 2 247 248 typedef struct ndr_pipe { 249 void *np_listener; 250 const char *np_endpoint; 251 struct smb_netuserinfo *np_user; 252 int (*np_send)(struct ndr_pipe *, void *, size_t); 253 int (*np_recv)(struct ndr_pipe *, void *, size_t); 254 int np_fid; 255 uint16_t np_max_xmit_frag; 256 uint16_t np_max_recv_frag; 257 ndr_binding_t *np_binding; 258 ndr_binding_t np_binding_pool[NDR_N_BINDING_POOL]; 259 } ndr_pipe_t; 260 261 /* 262 * Number of bytes required to align SIZE on the next dword/4-byte 263 * boundary. 264 */ 265 #define NDR_ALIGN4(SIZE) ((4 - (SIZE)) & 3); 266 267 /* 268 * DCE RPC strings (CAE section 14.3.4) are represented as varying or varying 269 * and conformant one-dimensional arrays. Characters can be single-byte 270 * or multi-byte as long as all characters conform to a fixed element size, 271 * i.e. UCS-2 is okay but UTF-8 is not a valid DCE RPC string format. The 272 * string is terminated by a null character of the appropriate element size. 273 * 274 * MSRPC strings should always be varying/conformant and not null terminated. 275 * This format uses the size_is, first_is and length_is attributes (CAE 276 * section 4.2.18). 277 * 278 * typedef struct string { 279 * DWORD size_is; 280 * DWORD first_is; 281 * DWORD length_is; 282 * wchar_t string[ANY_SIZE_ARRAY]; 283 * } string_t; 284 * 285 * The size_is attribute is used to specify the number of data elements in 286 * each dimension of an array. 287 * 288 * The first_is attribute is used to define the lower bound for significant 289 * elements in each dimension of an array. For strings this is always 0. 290 * 291 * The length_is attribute is used to define the number of significant 292 * elements in each dimension of an array. For strings this is typically 293 * the same as size_is. Although it might be (size_is - 1) if the string 294 * is null terminated. 295 * 296 * 4 bytes 4 bytes 4 bytes 2bytes 2bytes 2bytes 2bytes 297 * +---------+---------+---------+------+------+------+------+ 298 * |size_is |first_is |length_is| char | char | char | char | 299 * +---------+---------+---------+------+------+------+------+ 300 * 301 * Unfortunately, not all MSRPC Unicode strings are null terminated, which 302 * means that the recipient has to manually null-terminate the string after 303 * it has been unmarshalled. There may be a wide-char pad following a 304 * string, and it may sometimes contains zero, but it's not guaranteed. 305 * 306 * To deal with this, MSRPC sometimes uses an additional wrapper with two 307 * more fields, as shown below. 308 * length: the array length in bytes excluding terminating null bytes 309 * maxlen: the array length in bytes including null terminator bytes 310 * LPTSTR: converted to a string_t by NDR 311 * 312 * typedef struct ms_string { 313 * WORD length; 314 * WORD maxlen; 315 * LPTSTR str; 316 * } ms_string_t; 317 */ 318 typedef struct ndr_mstring { 319 uint16_t length; 320 uint16_t allosize; 321 LPTSTR str; 322 } ndr_mstring_t; 323 324 /* 325 * A number of heap areas are used during marshalling and unmarshalling. 326 * Under some circumstances these areas can be discarded by the library 327 * code, i.e. on the server side before returning to the client and on 328 * completion of a client side bind. In the case of a client side RPC 329 * call, these areas must be preserved after an RPC returns to give the 330 * caller time to take a copy of the data. In this case the client must 331 * call ndr_clnt_free_heap to free the memory. 332 * 333 * The heap management data definition looks a bit like this: 334 * 335 * heap -> +---------------+ +------------+ 336 * | iovec[0].base | --> | data block | 337 * | iovec[0].len | +------------+ 338 * +---------------+ 339 * :: 340 * :: 341 * iov -> +---------------+ +------------+ 342 * | iovec[n].base | --> | data block | 343 * | iovec[n].len | +------------+ 344 * +---------------+ ^ ^ 345 * | | 346 * next ----------------------+ | 347 * top -----------------------------------+ 348 * 349 */ 350 351 /* 352 * Setting MAXIOV to 384 will use ((8 * 384) + 16) = 3088 bytes 353 * of the first heap block. 354 */ 355 #define NDR_HEAP_MAXIOV 384 356 #define NDR_HEAP_BLKSZ 8192 357 358 typedef struct ndr_heap { 359 struct iovec iovec[NDR_HEAP_MAXIOV]; 360 struct iovec *iov; 361 int iovcnt; 362 char *top; 363 char *next; 364 } ndr_heap_t; 365 366 /* 367 * Alternate varying/conformant string definition 368 * - for non-null-terminated strings. 369 */ 370 typedef struct ndr_vcs { 371 /* 372 * size_is (actually a copy of length_is) will 373 * be inserted here by the marshalling library. 374 */ 375 uint32_t vc_first_is; 376 uint32_t vc_length_is; 377 uint16_t buffer[ANY_SIZE_ARRAY]; 378 } ndr_vcs_t; 379 380 typedef struct ndr_vcstr { 381 uint16_t wclen; 382 uint16_t wcsize; 383 ndr_vcs_t *vcs; 384 } ndr_vcstr_t; 385 386 typedef struct ndr_vcb { 387 /* 388 * size_is (actually a copy of length_is) will 389 * be inserted here by the marshalling library. 390 */ 391 uint32_t vc_first_is; 392 uint32_t vc_length_is; 393 uint8_t buffer[ANY_SIZE_ARRAY]; 394 } ndr_vcb_t; 395 396 typedef struct ndr_vcbuf { 397 uint16_t len; 398 uint16_t size; 399 ndr_vcb_t *vcb; 400 } ndr_vcbuf_t; 401 402 ndr_heap_t *ndr_heap_create(void); 403 void ndr_heap_destroy(ndr_heap_t *); 404 void *ndr_heap_dupmem(ndr_heap_t *, const void *, size_t); 405 void *ndr_heap_malloc(ndr_heap_t *, unsigned); 406 void *ndr_heap_strdup(ndr_heap_t *, const char *); 407 int ndr_heap_mstring(ndr_heap_t *, const char *, ndr_mstring_t *); 408 void ndr_heap_mkvcs(ndr_heap_t *, char *, ndr_vcstr_t *); 409 void ndr_heap_mkvcb(ndr_heap_t *, uint8_t *, uint32_t, ndr_vcbuf_t *); 410 int ndr_heap_used(ndr_heap_t *); 411 int ndr_heap_avail(ndr_heap_t *); 412 413 #define NDR_MALLOC(XA, SZ) ndr_heap_malloc((XA)->heap, SZ) 414 #define NDR_NEW(XA, T) ndr_heap_malloc((XA)->heap, sizeof (T)) 415 #define NDR_NEWN(XA, T, N) ndr_heap_malloc((XA)->heap, sizeof (T)*(N)) 416 #define NDR_STRDUP(XA, S) ndr_heap_strdup((XA)->heap, (S)) 417 #define NDR_MSTRING(XA, S, OUT) ndr_heap_mstring((XA)->heap, (S), (OUT)) 418 #define NDR_SIDDUP(XA, S) ndr_heap_dupmem((XA)->heap, (S), smb_sid_len(S)) 419 420 typedef struct ndr_xa { 421 unsigned short ptype; /* high bits special */ 422 unsigned short opnum; 423 ndr_stream_t recv_nds; 424 ndr_hdr_t recv_hdr; 425 ndr_stream_t send_nds; 426 ndr_hdr_t send_hdr; 427 ndr_binding_t *binding; /* what we're using */ 428 ndr_binding_t *binding_list; /* from connection */ 429 ndr_heap_t *heap; 430 ndr_pipe_t *pipe; 431 } ndr_xa_t; 432 433 /* 434 * 20-byte opaque id used by various RPC services. 435 */ 436 CONTEXT_HANDLE(ndr_hdid) ndr_hdid_t; 437 438 typedef struct ndr_client { 439 /* transport stuff (xa_* members) */ 440 int (*xa_init)(struct ndr_client *, ndr_xa_t *); 441 int (*xa_exchange)(struct ndr_client *, ndr_xa_t *); 442 int (*xa_read)(struct ndr_client *, ndr_xa_t *); 443 void (*xa_preserve)(struct ndr_client *, ndr_xa_t *); 444 void (*xa_destruct)(struct ndr_client *, ndr_xa_t *); 445 void (*xa_release)(struct ndr_client *); 446 void *xa_private; 447 int xa_fd; 448 449 ndr_hdid_t *handle; 450 ndr_binding_t *binding; 451 ndr_binding_t *binding_list; 452 ndr_binding_t binding_pool[NDR_N_BINDING_POOL]; 453 454 boolean_t nonull; 455 boolean_t heap_preserved; 456 ndr_heap_t *heap; 457 ndr_stream_t *recv_nds; 458 ndr_stream_t *send_nds; 459 460 uint32_t next_call_id; 461 unsigned next_p_cont_id; 462 } ndr_client_t; 463 464 typedef struct ndr_handle { 465 ndr_hdid_t nh_id; 466 struct ndr_handle *nh_next; 467 ndr_pipe_t *nh_pipe; 468 const ndr_service_t *nh_svc; 469 ndr_client_t *nh_clnt; 470 void *nh_data; 471 void (*nh_data_free)(void *); 472 } ndr_handle_t; 473 474 #define NDR_PDU_SIZE_HINT_DEFAULT (16*1024) 475 #define NDR_BUF_MAGIC 0x4E425546 /* NBUF */ 476 477 typedef struct ndr_buf { 478 uint32_t nb_magic; 479 ndr_stream_t nb_nds; 480 ndr_heap_t *nb_heap; 481 ndr_typeinfo_t *nb_ti; 482 } ndr_buf_t; 483 484 /* ndr_ops.c */ 485 int nds_initialize(ndr_stream_t *, unsigned, int, ndr_heap_t *); 486 void nds_destruct(ndr_stream_t *); 487 void nds_show_state(ndr_stream_t *); 488 489 /* ndr_client.c */ 490 int ndr_clnt_bind(ndr_client_t *, ndr_service_t *, ndr_binding_t **); 491 int ndr_clnt_call(ndr_binding_t *, int, void *); 492 void ndr_clnt_free_heap(ndr_client_t *); 493 494 /* ndr_marshal.c */ 495 ndr_buf_t *ndr_buf_init(ndr_typeinfo_t *); 496 void ndr_buf_fini(ndr_buf_t *); 497 int ndr_buf_decode(ndr_buf_t *, unsigned, unsigned, const char *data, size_t, 498 void *); 499 int ndr_decode_call(ndr_xa_t *, void *); 500 int ndr_encode_return(ndr_xa_t *, void *); 501 int ndr_encode_call(ndr_xa_t *, void *); 502 int ndr_decode_return(ndr_xa_t *, void *); 503 int ndr_decode_pdu_hdr(ndr_xa_t *); 504 int ndr_encode_pdu_hdr(ndr_xa_t *); 505 void ndr_decode_frag_hdr(ndr_stream_t *, ndr_common_header_t *); 506 void ndr_remove_frag_hdr(ndr_stream_t *); 507 void ndr_show_hdr(ndr_common_header_t *); 508 unsigned ndr_bind_ack_hdr_size(ndr_xa_t *); 509 unsigned ndr_alter_context_rsp_hdr_size(void); 510 511 /* ndr_server.c */ 512 void ndr_pipe_worker(ndr_pipe_t *); 513 514 int ndr_generic_call_stub(ndr_xa_t *); 515 516 /* ndr_svc.c */ 517 ndr_stub_table_t *ndr_svc_find_stub(ndr_service_t *, int); 518 ndr_service_t *ndr_svc_lookup_name(const char *); 519 ndr_service_t *ndr_svc_lookup_uuid(ndr_uuid_t *, int, ndr_uuid_t *, int); 520 int ndr_svc_register(ndr_service_t *); 521 void ndr_svc_unregister(ndr_service_t *); 522 void ndr_svc_binding_pool_init(ndr_binding_t **, ndr_binding_t pool[], int); 523 ndr_binding_t *ndr_svc_find_binding(ndr_xa_t *, ndr_p_context_id_t); 524 ndr_binding_t *ndr_svc_new_binding(ndr_xa_t *); 525 526 int ndr_uuid_parse(char *, ndr_uuid_t *); 527 void ndr_uuid_unparse(ndr_uuid_t *, char *); 528 529 ndr_hdid_t *ndr_hdalloc(const ndr_xa_t *, const void *); 530 void ndr_hdfree(const ndr_xa_t *, const ndr_hdid_t *); 531 ndr_handle_t *ndr_hdlookup(const ndr_xa_t *, const ndr_hdid_t *); 532 void ndr_hdclose(ndr_pipe_t *); 533 534 ssize_t ndr_uiomove(caddr_t, size_t, enum uio_rw, struct uio *); 535 536 /* 537 * An ndr_client_t is created while binding a client connection to hold 538 * the context for calls made using that connection. 539 * 540 * Handles are RPC call specific and we use an inheritance mechanism to 541 * ensure that each handle has a pointer to the client_t. When the top 542 * level (bind) handle is released, we close the connection. 543 * 544 * There are some places in libmlsvc where the code assumes that the 545 * handle member is first in this struct. careful 546 */ 547 typedef struct mlrpc_handle { 548 ndr_hdid_t handle; /* keep first */ 549 ndr_client_t *clnt; 550 } mlrpc_handle_t; 551 552 int mlrpc_clh_create(mlrpc_handle_t *, void *); 553 uint32_t mlrpc_clh_bind(mlrpc_handle_t *, ndr_service_t *); 554 void mlrpc_clh_unbind(mlrpc_handle_t *); 555 void *mlrpc_clh_free(mlrpc_handle_t *); 556 557 int ndr_rpc_call(mlrpc_handle_t *, int, void *); 558 int ndr_rpc_get_ssnkey(mlrpc_handle_t *, unsigned char *, size_t); 559 void *ndr_rpc_malloc(mlrpc_handle_t *, size_t); 560 ndr_heap_t *ndr_rpc_get_heap(mlrpc_handle_t *); 561 void ndr_rpc_release(mlrpc_handle_t *); 562 void ndr_rpc_set_nonull(mlrpc_handle_t *); 563 564 boolean_t ndr_is_null_handle(mlrpc_handle_t *); 565 boolean_t ndr_is_bind_handle(mlrpc_handle_t *); 566 void ndr_inherit_handle(mlrpc_handle_t *, mlrpc_handle_t *); 567 568 #ifdef __cplusplus 569 } 570 #endif 571 572 #endif /* _LIBMLRPC_H */ 573