xref: /illumos-gate/usr/src/lib/libm/common/m9x/remquol.c (revision cffcfaee1e6b29ef9ceb7d80e4e053ffd029906b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma weak remquol = __remquol
31 
32 #include "libm.h"
33 #include "libm_synonyms.h"
34 #if defined(__SUNPRO_C)
35 #include <sunmath.h>			/* fabsl */
36 #endif
37 /* INDENT OFF */
38 static const int
39 	is = -0x7fffffff - 1,
40 	im = 0x0000ffff,
41 	iu = 0x00010000;
42 
43 static const long double zero = 0.0L, one = 1.0L;
44 /* INDENT ON */
45 
46 #if defined(__sparc)
47 #define	__H0(x)	((int *) &x)[0]
48 #define	__H1(x)	((int *) &x)[1]
49 #define	__H2(x)	((int *) &x)[2]
50 #define	__H3(x)	((int *) &x)[3]
51 #else
52 #error Unsupported architecture
53 #endif
54 
55 /*
56  * On entrance: *quo is initialized to 0, x finite and y non-zero & ordered
57  */
58 static long double
59 fmodquol(long double x, long double y, int *quo) {
60 	long double a, b;
61 	int n, ix, iy, k, sx, sq, m;
62 	int hx;
63 	int x0, y0, z0, carry;
64 	unsigned x1, x2, x3, y1, y2, y3, z1, z2, z3;
65 
66 	hx = __H0(x);
67 	x1 = __H1(x);
68 	x2 = __H2(x);
69 	x3 = __H3(x);
70 	y0 = __H0(y);
71 	y1 = __H1(y);
72 	y2 = __H2(y);
73 	y3 = __H3(y);
74 
75 	sx = hx & is;
76 	sq = (hx ^ y0) & is;
77 	x0 = hx ^ sx;
78 	y0 &= ~0x80000000;
79 
80 	a = fabsl(x);
81 	b = fabsl(y);
82 	if (a <= b) {
83 		if (a < b)
84 			return (x);
85 		else {
86 			*quo = 1 + (sq >> 30);
87 			return (zero * x);
88 		}
89 	}
90 	/* determine ix = ilogbl(x) */
91 	if (x0 < iu) {		/* subnormal x */
92 		ix = 0;
93 		ix = -16382;
94 		while (x0 == 0) {
95 			ix -= 16;
96 			x0 = x1 >> 16;
97 			x1 = (x1 << 16) | (x2 >> 16);
98 			x2 = (x2 << 16) | (x3 >> 16);
99 			x3 = (x3 << 16);
100 		}
101 		while (x0 < iu) {
102 			ix -= 1;
103 			x0 = (x0 << 1) | (x1 >> 31);
104 			x1 = (x1 << 1) | (x2 >> 31);
105 			x2 = (x2 << 1) | (x3 >> 31);
106 			x3 <<= 1;
107 		}
108 	} else {
109 		ix = (x0 >> 16) - 16383;
110 		x0 = iu | (x0 & im);
111 	}
112 
113 	/* determine iy = ilogbl(y) */
114 	if (y0 < iu) {		/* subnormal y */
115 		iy = -16382;
116 		while (y0 == 0) {
117 			iy -= 16;
118 			y0 = y1 >> 16;
119 			y1 = (y1 << 16) | (y2 >> 16);
120 			y2 = (y2 << 16) | (y3 >> 16);
121 			y3 = (y3 << 16);
122 		}
123 		while (y0 < iu) {
124 			iy -= 1;
125 			y0 = (y0 << 1) | (y1 >> 31);
126 			y1 = (y1 << 1) | (y2 >> 31);
127 			y2 = (y2 << 1) | (y3 >> 31);
128 			y3 <<= 1;
129 		}
130 	} else {
131 		iy = (y0 >> 16) - 16383;
132 		y0 = iu | (y0 & im);
133 	}
134 
135 
136 	/* fix point fmod */
137 	n = ix - iy;
138 	m = 0;
139 	while (n--) {
140 		while (x0 == 0 && n >= 16) {
141 			m <<= 16;
142 			n -= 16;
143 			x0 = x1 >> 16;
144 			x1 = (x1 << 16) | (x2 >> 16);
145 			x2 = (x2 << 16) | (x3 >> 16);
146 			x3 = (x3 << 16);
147 		}
148 		while (x0 < iu && n >= 1) {
149 			m += m;
150 			n -= 1;
151 			x0 = (x0 << 1) | (x1 >> 31);
152 			x1 = (x1 << 1) | (x2 >> 31);
153 			x2 = (x2 << 1) | (x3 >> 31);
154 			x3 = (x3 << 1);
155 		}
156 		carry = 0;
157 		z3 = x3 - y3;
158 		carry = z3 > x3;
159 		if (carry == 0) {
160 			z2 = x2 - y2;
161 			carry = z2 > x2;
162 		} else {
163 			z2 = x2 - y2 - 1;
164 			carry = z2 >= x2;
165 		}
166 		if (carry == 0) {
167 			z1 = x1 - y1;
168 			carry = z1 > x1;
169 		} else {
170 			z1 = x1 - y1 - 1;
171 			carry = z1 >= x1;
172 		}
173 		z0 = x0 - y0 - carry;
174 		if (z0 < 0) {	/* double x */
175 			x0 = x0 + x0 + ((x1 & is) != 0);
176 			x1 = x1 + x1 + ((x2 & is) != 0);
177 			x2 = x2 + x2 + ((x3 & is) != 0);
178 			x3 = x3 + x3;
179 			m += m;
180 		} else {
181 			m += 1;
182 			if (z0 == 0) {
183 				if ((z1 | z2 | z3) == 0) {
184 					/* 0: we are done */
185 					if (n < 31)
186 						m <<= (1 + n);
187 					else
188 						m = 0;
189 					m &= ~0x80000000;
190 					*quo = sq >= 0 ? m : -m;
191 					__H0(a) = hx & is;
192 					__H1(a) = __H2(a) = __H3(a) = 0;
193 					return (a);
194 				}
195 			}
196 			/* x = z << 1 */
197 			z0 = z0 + z0 + ((z1 & is) != 0);
198 			z1 = z1 + z1 + ((z2 & is) != 0);
199 			z2 = z2 + z2 + ((z3 & is) != 0);
200 			z3 = z3 + z3;
201 			x0 = z0;
202 			x1 = z1;
203 			x2 = z2;
204 			x3 = z3;
205 			m += m;
206 		}
207 	}
208 	carry = 0;
209 	z3 = x3 - y3;
210 	carry = z3 > x3;
211 	if (carry == 0) {
212 		z2 = x2 - y2;
213 		carry = z2 > x2;
214 	} else {
215 		z2 = x2 - y2 - 1;
216 		carry = z2 >= x2;
217 	}
218 	if (carry == 0) {
219 		z1 = x1 - y1;
220 		carry = z1 > x1;
221 	} else {
222 		z1 = x1 - y1 - 1;
223 		carry = z1 >= x1;
224 	}
225 	z0 = x0 - y0 - carry;
226 	if (z0 >= 0) {
227 		x0 = z0;
228 		x1 = z1;
229 		x2 = z2;
230 		x3 = z3;
231 		m += 1;
232 	}
233 	m &= ~0x80000000;
234 	*quo = sq >= 0 ? m : -m;
235 
236 	/* convert back to floating value and restore the sign */
237 	if ((x0 | x1 | x2 | x3) == 0) {
238 		__H0(a) = hx & is;
239 		__H1(a) = __H2(a) = __H3(a) = 0;
240 		return (a);
241 	}
242 	while (x0 < iu) {
243 		if (x0 == 0) {
244 			iy -= 16;
245 			x0 = x1 >> 16;
246 			x1 = (x1 << 16) | (x2 >> 16);
247 			x2 = (x2 << 16) | (x3 >> 16);
248 			x3 = (x3 << 16);
249 		} else {
250 			x0 = x0 + x0 + ((x1 & is) != 0);
251 			x1 = x1 + x1 + ((x2 & is) != 0);
252 			x2 = x2 + x2 + ((x3 & is) != 0);
253 			x3 = x3 + x3;
254 			iy -= 1;
255 		}
256 	}
257 
258 	/* normalize output */
259 	if (iy >= -16382) {
260 		__H0(a) = sx | (x0 - iu) | ((iy + 16383) << 16);
261 		__H1(a) = x1;
262 		__H2(a) = x2;
263 		__H3(a) = x3;
264 	} else {		/* subnormal output */
265 		n = -16382 - iy;
266 		k = n & 31;
267 		if (k <= 16) {
268 			x3 = (x2 << (32 - k)) | (x3 >> k);
269 			x2 = (x1 << (32 - k)) | (x2 >> k);
270 			x1 = (x0 << (32 - k)) | (x1 >> k);
271 			x0 >>= k;
272 		} else {
273 			x3 = (x2 << (32 - k)) | (x3 >> k);
274 			x2 = (x1 << (32 - k)) | (x2 >> k);
275 			x1 = (x0 << (32 - k)) | (x1 >> k);
276 			x0 = 0;
277 		}
278 		while (n >= 32) {
279 			n -= 32;
280 			x3 = x2;
281 			x2 = x1;
282 			x1 = x0;
283 			x0 = 0;
284 		}
285 		__H0(a) = x0 | sx;
286 		__H1(a) = x1;
287 		__H2(a) = x2;
288 		__H3(a) = x3;
289 		a *= one;
290 	}
291 	return (a);
292 }
293 
294 long double
295 remquol(long double x, long double y, int *quo) {
296 	int hx, hy, sx, sq;
297 	long double v;
298 
299 	hx = __H0(x);		/* high word of x */
300 	hy = __H0(y);		/* high word of y */
301 	sx = hx & is;		/* sign of x */
302 	sq = (hx ^ hy) & is;	/* sign of x/y */
303 	hx ^= sx;		/* |x| */
304 	hy &= ~0x80000000;
305 
306 	/* purge off exception values */
307 	*quo = 0;
308 	/* y=0, y is NaN, x is NaN or inf */
309 	if (y == 0.0L || y != y || hx >= 0x7fff0000)
310 		return ((x * y) / (x * y));
311 
312 	y = fabsl(y);
313 	x = fabsl(x);
314 	if (hy <= 0x7ffdffff) {
315 		x = fmodquol(x, y + y, quo);
316 		*quo = ((*quo) & 0x3fffffff) << 1;
317 	}
318 	if (hy < 0x00020000) {
319 		if (x + x > y) {
320 			*quo += 1;
321 			if (x == y)
322 				x = zero;
323 			else
324 				x -= y;
325 			if (x + x >= y) {
326 				x -= y;
327 				*quo += 1;
328 			}
329 		}
330 	} else {
331 		v = 0.5L * y;
332 		if (x > v) {
333 			*quo += 1;
334 			if (x == y)
335 				x = zero;
336 			else
337 				x -= y;
338 			if (x >= v) {
339 				x -= y;
340 				*quo += 1;
341 			}
342 		}
343 	}
344 	if (sq != 0)
345 		*quo = -(*quo);
346 	return (sx == 0 ? x : -x);
347 }
348