xref: /illumos-gate/usr/src/lib/libm/common/m9x/frexp.c (revision a38ee58261c5aa81028a4329e73da4016006aa99)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma weak frexp = __frexp
31 
32 /*
33  * frexp(x, exp) returns the normalized significand of x and sets
34  * *exp so that x = r*2^(*exp) where r is the return value.  If x
35  * is finite and nonzero, 1/2 <= |r| < 1.
36  *
37  * If x is zero, infinite or NaN, frexp returns x and sets *exp = 0.
38  * (The relevant standards do not specify *exp when x is infinite or
39  * NaN, but this code sets it anyway.)
40  *
41  * If x is a signaling NaN, this code returns x without attempting
42  * to raise the invalid operation exception.  If x is subnormal,
43  * this code treats it as nonzero regardless of nonstandard mode.
44  */
45 
46 #include "libm.h"
47 
48 double
49 __frexp(double x, int *exp) {
50 	union {
51 		unsigned i[2];
52 		double d;
53 	} xx, yy;
54 	double t;
55 	unsigned hx;
56 	int e;
57 
58 	xx.d = x;
59 	hx = xx.i[HIWORD] & ~0x80000000;
60 
61 	if (hx >= 0x7ff00000) { /* x is infinite or NaN */
62 		*exp = 0;
63 		return (x);
64 	}
65 
66 	e = 0;
67 	if (hx < 0x00100000) { /* x is subnormal or zero */
68 		if ((hx | xx.i[LOWORD]) == 0) {
69 			*exp = 0;
70 			return (x);
71 		}
72 
73 		/*
74 		 * normalize x by regarding it as an integer
75 		 *
76 		 * Here we use 32-bit integer arithmetic to avoid trapping
77 		 * or emulating 64-bit arithmetic.  If 64-bit arithmetic is
78 		 * available (e.g., in SPARC V9), do this instead:
79 		 *
80 		 *  long lx = ((long) hx << 32) | xx.i[LOWORD];
81 		 *  xx.d = (xx.i[HIWORD] < 0)? -lx : lx;
82 		 *
83 		 * If subnormal arithmetic doesn't trap, just multiply x by
84 		 * a power of two.
85 		 */
86 		yy.i[HIWORD] = 0x43300000 | hx;
87 		yy.i[LOWORD] = xx.i[LOWORD];
88 		t = yy.d;
89 		yy.i[HIWORD] = 0x43300000;
90 		yy.i[LOWORD] = 0;
91 		t -= yy.d; /* t = |x| scaled */
92 		xx.d = ((int)xx.i[HIWORD] < 0)? -t : t;
93 		hx = xx.i[HIWORD] & ~0x80000000;
94 		e = -1074;
95 	}
96 
97 	/* now xx.d is normal */
98 	xx.i[HIWORD] = (xx.i[HIWORD] & ~0x7ff00000) | 0x3fe00000;
99 	*exp = e + (hx >> 20) - 0x3fe;
100 	return (xx.d);
101 }
102