1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 23 */ 24 /* 25 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 26 * Use is subject to license terms. 27 */ 28 29 #include "libm.h" /* __k_atan2l */ 30 #include "complex_wrapper.h" 31 32 #if defined(__sparc) 33 #define HALF(x) ((int *) &x)[3] = 0; ((int *) &x)[2] &= 0xfe000000 34 #elif defined(__x86) 35 #define HALF(x) ((int *) &x)[0] = 0 36 #endif 37 38 /* 39 * long double __k_atan2l(long double y, long double x, long double *e) 40 * 41 * Compute atan2l with error terms. 42 * 43 * Important formula: 44 * 3 5 45 * x x 46 * atan(x) = x - ----- + ----- - ... (for x <= 1) 47 * 3 5 48 * 49 * pi 1 1 50 * = --- - --- + --- - ... (for x > 1) 51 * 3 52 * 2 x 3x 53 * 54 * Arg(x + y i) = sign(y) * atan2(|y|, x) 55 * = sign(y) * atan(|y|/x) (for x > 0) 56 * sign(y) * (PI - atan(|y|/|x|)) (for x < 0) 57 * Thus if x >> y (IEEE double: EXP(x) - EXP(y) >= 60): 58 * 1. (x > 0): atan2(y,x) ~ y/x 59 * 2. (x < 0): atan2(y,x) ~ sign(y) (PI - |y/x|)) 60 * Otherwise if x << y: 61 * atan2(y,x) ~ sign(y)*PI/2 - x/y 62 * 63 * __k_atan2l call static functions mx_polyl, mx_atanl 64 */ 65 66 67 /* 68 * (void) mx_polyl (long double *z, long double *a, long double *e, int n) 69 * return 70 * e = a + z*(a + z*(a + ... z*(a + e)...)) 71 * 0 2 4 2n 72 * Note: 73 * 1. e and coefficient ai are represented by two long double numbers. 74 * For e, the first one contain the leading 53 bits (30 for x86 exteneded) 75 * and the second one contain the remaining 113 bits (64 for x86 extended). 76 * For ai, the first one contian the leading 53 bits (or 30 for x86) 77 * rounded, and the second is the remaining 113 bits (or 64 for x86). 78 * 2. z is an array of three doubles. 79 * z[0] : the rounded value of Z (the intended value of z) 80 * z[1] : the leading 32 (or 56) bits of Z rounded 81 * z[2] : the remaining 113 (or 64) bits of Z 82 * Note that z[0] = z[1]+z[2] rounded. 83 * 84 */ 85 86 static void 87 mx_polyl(const long double *z, const long double *a, long double *e, int n) { 88 long double r, s, t, p_h, p_l, z_h, z_l, p, w; 89 int i; 90 n = n + n; 91 p = e[0] + a[n]; 92 p_l = a[n + 1]; 93 w = p; HALF(w); 94 p_h = w; 95 p = a[n - 2] + z[0] * p; 96 z_h = z[1]; z_l = z[2]; 97 p_l += e[0] - (p_h - a[n]); 98 99 for (i = n - 2; i >= 2; i -= 2) { 100 101 /* compute p = ai + z * p */ 102 t = z_h * p_h; 103 s = z[0] * p_l + p_h * z_l; 104 w = p; HALF(w); 105 p_h = w; 106 s += a[i + 1]; 107 r = t - (p_h - a[i]); 108 p = a[i - 2] + z[0] * p; 109 p_l = r + s; 110 } 111 w = p; HALF(w); 112 e[0] = w; 113 t = z_h * p_h; 114 s = z[0] * p_l + p_h * z_l; 115 r = t - (e[0] - a[0]); 116 e[1] = r + s; 117 } 118 119 /* 120 * Table of constants for atan from 0.125 to 8 121 * 0.125 -- 0x3ffc0000 --- (increment at bit 12) 122 * 0x3ffc1000 123 * 0x3ffc2000 124 * ... ... 125 * 0x4001f000 126 * 8.000 -- 0x40020000 (total: 97) 127 */ 128 129 static const long double TBL_atan_hil[] = { 130 #if defined(__sparc) 131 1.2435499454676143503135484916387102416568e-01L, 132 1.3203976161463874927468440652656953226250e-01L, 133 1.3970887428916364518336777673909505681607e-01L, 134 1.4736148108865163560980276039684551821066e-01L, 135 1.5499674192394098230371437493349219133371e-01L, 136 1.6261382859794857537364156376155780062019e-01L, 137 1.7021192528547440449049660709976171369543e-01L, 138 1.7779022899267607079662479921582468899456e-01L, 139 1.8534794999569476488602596122854464667261e-01L, 140 1.9288431225797466419705871069022730349878e-01L, 141 2.0039855382587851465394578503437838446153e-01L, 142 2.0788992720226299360533498310299432475629e-01L, 143 2.1535769969773804802445962716648964165745e-01L, 144 2.2280115375939451577103212214043255525024e-01L, 145 2.3021958727684373024017095967980299065551e-01L, 146 2.3761231386547125247388363432563777919892e-01L, 147 2.4497866312686415417208248121127580641959e-01L, 148 2.5962962940825753102994644318397190560106e-01L, 149 2.7416745111965879759937189834217578592444e-01L, 150 2.8858736189407739562361141995821834504332e-01L, 151 3.0288486837497140556055609450555821812277e-01L, 152 3.1705575320914700980901557667446732975852e-01L, 153 3.3109607670413209494433878775694455421259e-01L, 154 3.4500217720710510886768128690005168408290e-01L, 155 3.5877067027057222039592006392646052215363e-01L, 156 3.7239844667675422192365503828370182641413e-01L, 157 3.8588266939807377589769548460723139638186e-01L, 158 3.9922076957525256561471669615886476491104e-01L, 159 4.1241044159738730689979128966712694260920e-01L, 160 4.2544963737004228954226360518079233013817e-01L, 161 4.3833655985795780544561604921477130895882e-01L, 162 4.5106965598852347637563925728219344073798e-01L, 163 4.6364760900080611621425623146121439713344e-01L, 164 4.8833395105640552386716496074706484459644e-01L, 165 5.1238946031073770666660102058425923805558e-01L, 166 5.3581123796046370026908506870769144698471e-01L, 167 5.5859931534356243597150821640166122875873e-01L, 168 5.8075635356767039920327447500150082375122e-01L, 169 6.0228734613496418168212269420423291922459e-01L, 170 6.2319932993406593099247534906037459367793e-01L, 171 6.4350110879328438680280922871732260447265e-01L, 172 6.6320299270609325536325431023827583417226e-01L, 173 6.8231655487474807825642998171115298784729e-01L, 174 7.0085440788445017245795128178675127318623e-01L, 175 7.1882999962162450541701415152590469891043e-01L, 176 7.3625742898142813174283527108914662479274e-01L, 177 7.5315128096219438952473937026902888600575e-01L, 178 7.6952648040565826040682003598565401726598e-01L, 179 7.8539816339744830961566084581987569936977e-01L, 180 8.1569192331622341102146083874564582672284e-01L, 181 8.4415398611317100251784414827164746738632e-01L, 182 8.7090345707565295314017311259781407291650e-01L, 183 8.9605538457134395617480071802993779546602e-01L, 184 9.1971960535041681722860345482108940969311e-01L, 185 9.4200004037946366473793717053459362115891e-01L, 186 9.6299433068093620181519583599709989677298e-01L, 187 9.8279372324732906798571061101466603762572e-01L, 188 1.0014831356942347329183295953014374896343e+00L, 189 1.0191413442663497346383429170230636212354e+00L, 190 1.0358412530088001765846944703254440735476e+00L, 191 1.0516502125483736674598673120862999026920e+00L, 192 1.0666303653157435630791763474202799086015e+00L, 193 1.0808390005411683108871567292171997859003e+00L, 194 1.0943289073211899198927883146102352763033e+00L, 195 1.1071487177940905030170654601785370497543e+00L, 196 1.1309537439791604464709335155363277560026e+00L, 197 1.1525719972156675180401498626127514672834e+00L, 198 1.1722738811284763866005949441337046006865e+00L, 199 1.1902899496825317329277337748293182803384e+00L, 200 1.2068173702852525303955115800565576625682e+00L, 201 1.2220253232109896370417417439225704120294e+00L, 202 1.2360594894780819419094519711090786146210e+00L, 203 1.2490457723982544258299170772810900483550e+00L, 204 1.2610933822524404193139408812473357640124e+00L, 205 1.2722973952087173412961937498224805746463e+00L, 206 1.2827408797442707473628852511364955164072e+00L, 207 1.2924966677897852679030914214070816723528e+00L, 208 1.3016288340091961438047858503666855024453e+00L, 209 1.3101939350475556342564376891719053437537e+00L, 210 1.3182420510168370498593302023271363040427e+00L, 211 1.3258176636680324650592392104284756886164e+00L, 212 1.3397056595989995393283037525895557850243e+00L, 213 1.3521273809209546571891479413898127598774e+00L, 214 1.3633001003596939542892985278250991560269e+00L, 215 1.3734007669450158608612719264449610604836e+00L, 216 1.3825748214901258580599674177685685163955e+00L, 217 1.3909428270024183486427686943836432395486e+00L, 218 1.3986055122719575950126700816114282727858e+00L, 219 1.4056476493802697809521934019958080664406e+00L, 220 1.4121410646084952153676136718584890852820e+00L, 221 1.4181469983996314594038603039700988632607e+00L, 222 1.4237179714064941189018190466107297108905e+00L, 223 1.4288992721907326964184700745371984001389e+00L, 224 1.4337301524847089866404719096698873880264e+00L, 225 1.4382447944982225979614042479354816039669e+00L, 226 1.4424730991091018200252920599377291810352e+00L, 227 1.4464413322481351841999668424758803866109e+00L, 228 #elif defined(__x86) 229 1.243549945356789976358413696289e-01L, 1.320397615781985223293304443359e-01L, 230 1.397088742814958095550537109375e-01L, 1.473614810383878648281097412109e-01L, 231 1.549967419123277068138122558594e-01L, 1.626138285500928759574890136719e-01L, 232 1.702119252295233309268951416016e-01L, 1.777902289759367704391479492188e-01L, 233 1.853479499695822596549987792969e-01L, 1.928843122441321611404418945312e-01L, 234 2.003985538030974566936492919922e-01L, 2.078899272019043564796447753906e-01L, 235 2.153576996643096208572387695312e-01L, 2.228011537226848304271697998047e-01L, 236 2.302195872762240469455718994141e-01L, 2.376123138237744569778442382812e-01L, 237 2.449786631041206419467926025391e-01L, 2.596296293195337057113647460938e-01L, 238 2.741674510762095451354980468750e-01L, 2.885873618070036172866821289062e-01L, 239 3.028848683461546897888183593750e-01L, 3.170557531993836164474487304688e-01L, 240 3.310960766393691301345825195312e-01L, 3.450021771714091300964355468750e-01L, 241 3.587706702528521418571472167969e-01L, 3.723984466632828116416931152344e-01L, 242 3.858826693613082170486450195312e-01L, 3.992207695264369249343872070312e-01L, 243 4.124104415532201528549194335938e-01L, 4.254496373469009995460510253906e-01L, 244 4.383365598041564226150512695312e-01L, 4.510696559445932507514953613281e-01L, 245 4.636476089945062994956970214844e-01L, 4.883339509833604097366333007812e-01L, 246 5.123894601128995418548583984375e-01L, 5.358112377580255270004272460938e-01L, 247 5.585993151180446147918701171875e-01L, 5.807563534472137689590454101562e-01L, 248 6.022873460315167903900146484375e-01L, 6.231993297114968299865722656250e-01L, 249 6.435011087451130151748657226562e-01L, 6.632029926404356956481933593750e-01L, 250 6.823165547102689743041992187500e-01L, 7.008544078562408685684204101562e-01L, 251 7.188299994450062513351440429688e-01L, 7.362574287690222263336181640625e-01L, 252 7.531512808054685592651367187500e-01L, 7.695264802314341068267822265625e-01L, 253 7.853981633670628070831298828125e-01L, 8.156919232569634914398193359375e-01L, 254 8.441539860796183347702026367188e-01L, 8.709034570492804050445556640625e-01L, 255 8.960553845390677452087402343750e-01L, 9.197196052409708499908447265625e-01L, 256 9.420000403188169002532958984375e-01L, 9.629943305626511573791503906250e-01L, 257 9.827937232330441474914550781250e-01L, 1.001483135391026735305786132812e+00L, 258 1.019141343887895345687866210938e+00L, 1.035841252654790878295898437500e+00L, 259 1.051650212146341800689697265625e+00L, 1.066630364861339330673217773438e+00L, 260 1.080839000176638364791870117188e+00L, 1.094328907318413257598876953125e+00L, 261 1.107148717623203992843627929688e+00L, 1.130953743588179349899291992188e+00L, 262 1.152571997139602899551391601562e+00L, 1.172273880802094936370849609375e+00L, 263 1.190289949532598257064819335938e+00L, 1.206817369908094406127929687500e+00L, 264 1.222025323193520307540893554688e+00L, 1.236059489194303750991821289062e+00L, 265 1.249045772012323141098022460938e+00L, 1.261093381792306900024414062500e+00L, 266 1.272297394927591085433959960938e+00L, 1.282740879338234663009643554688e+00L, 267 1.292496667709201574325561523438e+00L, 1.301628833636641502380371093750e+00L, 268 1.310193934943526983261108398438e+00L, 1.318242050707340240478515625000e+00L, 269 1.325817663222551345825195312500e+00L, 1.339705659542232751846313476562e+00L, 270 1.352127380669116973876953125000e+00L, 1.363300099968910217285156250000e+00L, 271 1.373400766868144273757934570312e+00L, 1.382574821356683969497680664062e+00L, 272 1.390942826867103576660156250000e+00L, 1.398605511989444494247436523438e+00L, 273 1.405647648964077234268188476562e+00L, 1.412141064181923866271972656250e+00L, 274 1.418146998155862092971801757812e+00L, 1.423717970959842205047607421875e+00L, 275 1.428899271879345178604125976562e+00L, 1.433730152435600757598876953125e+00L, 276 1.438244794495403766632080078125e+00L, 1.442473099101334810256958007812e+00L, 277 1.446441331878304481506347656250e+00L, 278 #endif 279 }; 280 static const long double TBL_atan_lol[] = { 281 #if defined(__sparc) 282 1.4074869197628063802317202820414310039556e-36L, 283 -4.9596961594739925555730439437999675295505e-36L, 284 8.9527745625194648873931213446361849472788e-36L, 285 1.1880437423207895718180765843544965589427e-35L, 286 -2.7810278112045145378425375128234365381448e-37L, 287 1.4797220377023800327295536234315147262387e-36L, 288 -4.2169561400548198732870384801849639863829e-36L, 289 7.2431229666913484649930323656316023494680e-36L, 290 -2.1573430089839170299895679353790663182462e-36L, 291 -9.9515745405126723554452367298128605186305e-36L, 292 -3.9065558992324838181617569730397882363067e-36L, 293 5.5260292271793726813211980664661124518807e-36L, 294 8.8415722215914321807682254318036452043689e-36L, 295 -8.1767728791586179254193323628285599800711e-36L, 296 -1.3344123034656142243797113823028330070762e-36L, 297 -4.4927331207813382908930733924681325892188e-36L, 298 4.4945511471812490393201824336762495687730e-36L, 299 -1.6688081504279223555776724459648440567274e-35L, 300 1.5629757586107955769461086568937329684113e-35L, 301 -2.2389835563308078552507970385331510848109e-35L, 302 -4.8312321745547311551870450671182151367050e-36L, 303 -1.4336172352905832876958926610980698844309e-35L, 304 -8.7440181998899932802989174170960593316080e-36L, 305 5.9284636008529837445780360785464550143016e-36L, 306 -2.2376651248436241276061055295043514993630e-35L, 307 6.0745837599336105414280310756677442136480e-36L, 308 1.5372187110451949677792344762029967023093e-35L, 309 2.0976068056751156241657121582478790247159e-35L, 310 -5.5623956405495438060726862202622807523700e-36L, 311 1.9697366707832471841858411934897351901523e-35L, 312 2.1070311964479488509034733639424887543697e-35L, 313 -2.3027356362982001602256518510854229844561e-35L, 314 4.8950964225733349266861843522029764772843e-36L, 315 -7.2380143477794458213872723050820253166391e-36L, 316 1.6365648865703614031637443396049568858105e-35L, 317 -3.9885811958234530793729129919803234197399e-35L, 318 4.1587722120912613510417783923227421336929e-35L, 319 3.8347421454556472153684687377337135027394e-35L, 320 -9.2251178933638721723515896465489002497864e-36L, 321 1.4094619690455989526175736741854656192178e-36L, 322 3.3568857805472235270612851425810803679451e-35L, 323 3.9090991055522552395018106803232118803401e-35L, 324 5.2956416979654208140521862707297033857956e-36L, 325 -5.0960846819945514367847063923662507136721e-36L, 326 -4.4959014425277615858329680393918315204998e-35L, 327 3.8039226544551634266566857615962609653834e-35L, 328 -4.4056522872895512108308642196611689657618e-36L, 329 1.6025024192482161076223807753425619076948e-36L, 330 2.1679525325309452561992610065108380635264e-35L, 331 1.9844038013515422125715362925736754104066e-35L, 332 3.9139619471799746834505227353568432457241e-35L, 333 2.1113443807975453505518453436799561854730e-35L, 334 3.1558557277444692755039816944392770185432e-35L, 335 1.6295044520355461408265585619500238335614e-35L, 336 -3.5087245209270305856151230356171213582305e-35L, 337 2.9041041864282855679591055270946117300088e-35L, 338 -2.3128843453818356590931995209806627233282e-35L, 339 -7.7124923181471578439967973820714857839953e-35L, 340 2.7539027829886922429092063590445808781462e-35L, 341 -9.4500899453181308951084545990839335972452e-35L, 342 -7.3061755302032092337594946001641651543473e-35L, 343 -4.1736144813953752193952770157406952602798e-35L, 344 3.4369948356256407045344855262863733571105e-35L, 345 -6.3790243492298090907302084924276831116460e-35L, 346 -9.6842943816353261291004127866079538980649e-36L, 347 4.8746757539138870909275958326700072821615e-35L, 348 -8.7533886477084190884511601368582548254655e-35L, 349 1.4284743992327918892692551138086727754845e-35L, 350 5.7262776211073389542565625693479173445042e-35L, 351 -3.2254883148780411245594822270747948565684e-35L, 352 7.8853548190609877325965525252380833808405e-35L, 353 8.4081736739037194097515038365370730251333e-35L, 354 7.4722870357563683815078242981933587273670e-35L, 355 7.9977202825793435289434813600890494256112e-36L, 356 -8.0577840773362139054848492346292673645405e-35L, 357 1.4217746753670583065490040209048757624336e-35L, 358 1.2232486914221205004109743560319090913328e-35L, 359 8.9696055070830036447361957217943988339065e-35L, 360 -3.1480394435081884410686066739846269858951e-35L, 361 -5.0927146040715345013240642517608928352977e-35L, 362 -5.7431997715924136568133859432702789493569e-35L, 363 -4.3920451405083770279099766080476485439987e-35L, 364 9.1106753984907715563018666776308759323326e-35L, 365 -3.7032569014272841009512400773061537538358e-35L, 366 8.8167419429746714276909825405131416764489e-35L, 367 -3.8389341696028352503752312861740895209678e-36L, 368 -3.3462959341960891546340895508017603408404e-35L, 369 -3.9212626776786074383916188498955828634947e-35L, 370 -7.8340397396377867255864494568594088378648e-35L, 371 7.4681018632456986520600640340627309824469e-35L, 372 8.9110918618956918451135594876165314884113e-35L, 373 3.9418160632271890530431797145664308529115e-35L, 374 -4.1048114088580104820193435638327617443913e-35L, 375 -2.3165419451582153326383944756220900454330e-35L, 376 -1.8428312581525319409399330203703211113843e-35L, 377 7.1477316546709482345411712017906842769961e-35L, 378 2.9914501578435874662153637707016094237004e-35L, 379 #elif defined(__x86) 380 1.108243739551347953496477557317e-11L, 3.644022694535396219063202730280e-11L, 381 7.667835628314065801595065768845e-12L, 5.026377078169301918590803009109e-11L, 382 1.161327548990211907411719105561e-11L, 4.785569941615255008968280209991e-11L, 383 5.595107356360146549819920947848e-11L, 1.673930035747684999707469623769e-11L, 384 2.611250523102718193166964451527e-11L, 1.384250305661681615897729354721e-11L, 385 2.278105796029649304219088055497e-11L, 3.586371256902077123693302823191e-13L, 386 3.342842716722085763523965049902e-11L, 3.670968534386232233574504707347e-11L, 387 6.196832945990602657404893210974e-13L, 4.169679549603939604438777470618e-11L, 388 2.274351222528987867221331091414e-11L, 8.872382531858169709022188891298e-11L, 389 4.344925246387385146717580155420e-11L, 8.707377833692929105196832265348e-11L, 390 2.881671577173773513055821329154e-11L, 9.763393361566846205717315422347e-12L, 391 6.476296480975626822569454546857e-11L, 3.569597877124574002505169001136e-11L, 392 1.772007853877284712958549977698e-11L, 1.347141028196192304932683248872e-11L, 393 3.676555884905046507598141175404e-11L, 4.881564068032948912761478588710e-11L, 394 4.416715404487185607337693704681e-11L, 2.314128999621257979016734983553e-11L, 395 5.380138283056477968352133002913e-11L, 4.393022562414389595406841771063e-11L, 396 6.299816718559209976839402028537e-12L, 7.304511413053165996581483735843e-11L, 397 1.978381648117426221467592544212e-10L, 2.024381732686578226139414070989e-10L, 398 2.255178211796380992141612703464e-10L, 1.204566302442290648452508620986e-10L, 399 1.034473912921080457667329099995e-10L, 2.225691010059030834353745950874e-10L, 400 4.817137162794350606107263804151e-11L, 6.565755971506095086327587326326e-11L, 401 1.644791039522307629611529931429e-10L, 2.820930388953087163050126809014e-11L, 402 1.766182540818701085571546539514e-10L, 2.124059054092171070266466628320e-10L, 403 1.567258302596026515190288816001e-10L, 1.742241535800378094231540188685e-10L, 404 3.038550253253096300737572104929e-11L, 5.925991958164150280814584656688e-11L, 405 3.355266774764151155289750652594e-11L, 2.637254809561744853531409402995e-11L, 406 3.227621096606048365493782702458e-11L, 1.094459672377587282585894259882e-10L, 407 6.064676448464127209709358607166e-11L, 1.182850444360454453720999258140e-10L, 408 1.428492049425553288966601449688e-11L, 3.032079976125434624889374125094e-10L, 409 3.784543889504767060855636487744e-10L, 3.540092982887960328254439790467e-10L, 410 4.020318667701700464612998296302e-10L, 4.544042324059585739827798668654e-10L, 411 3.645299460952866120296998202703e-10L, 2.776662293911361485235212513020e-12L, 412 1.708865101734375304910370400700e-10L, 3.909810965716415233488278047493e-10L, 413 7.606461848875826105025137974947e-11L, 3.263814502297453347587046149712e-10L, 414 1.499334758629144388918183376012e-10L, 3.771581242675818925565576303133e-10L, 415 1.746932950084818923507049088298e-11L, 2.837781909176306820465786987027e-10L, 416 3.859312847318946163435901230778e-10L, 4.601335192895268187473357720101e-10L, 417 2.811262558622337888849804940684e-10L, 4.060360843532416964489955306249e-10L, 418 8.058369357752989796958168458531e-11L, 3.725546414244147566166855921414e-10L, 419 1.040286509953292907344053122733e-10L, 3.094968093808145773271362531155e-10L, 420 4.454811192340438979284756311844e-10L, 5.676678748199027602705574110388e-11L, 421 2.518376833121948163898128509842e-10L, 3.907837370041422778250991189943e-10L, 422 7.687158710333735613246114865100e-11L, 1.334418885622867537060685125566e-10L, 423 1.353147719826124443836432060856e-10L, 2.825131007652335581739282335732e-10L, 424 4.161925466840049254333079881002e-10L, 4.265713490956410156084891599630e-10L, 425 2.437693664320585461575989523716e-10L, 4.466519138542116247357297503086e-10L, 426 3.113875178143440979746983590908e-10L, 4.910822904159495654488736486097e-11L, 427 2.818831329324169810481585538618e-12L, 7.767009768334052125229252512543e-12L, 428 3.698307026936191862258804165254e-10L, 429 #endif 430 }; 431 432 /* 433 * mx_atanl(x, err) 434 * Table look-up algorithm 435 * By K.C. Ng, March 9, 1989 436 * 437 * Algorithm. 438 * 439 * The algorithm is based on atan(x)=atan(y)+atan((x-y)/(1+x*y)). 440 * We use poly1(x) to approximate atan(x) for x in [0,1/8] with 441 * error (relative) 442 * |(atan(x)-poly1(x))/x|<= 2^-140 443 * 444 * and use poly2(x) to approximate atan(x) for x in [0,1/65] with 445 * error 446 * |atan(x)-poly2(x)|<= 2^-143.7 447 * 448 * Here poly1 and poly2 are odd polynomial with the following form: 449 * x + x^3*(a1+x^2*(a2+...)) 450 * 451 * (0). Purge off Inf and NaN and 0 452 * (1). Reduce x to positive by atan(x) = -atan(-x). 453 * (2). For x <= 1/8, use 454 * (2.1) if x < 2^(-prec/2), atan(x) = x with inexact flag raised 455 * (2.2) Otherwise 456 * atan(x) = poly1(x) 457 * (3). For x >= 8 then (prec = 78) 458 * (3.1) if x >= 2^prec, atan(x) = atan(inf) - pio2_lo 459 * (3.2) if x >= 2^(prec/3), atan(x) = atan(inf) - 1/x 460 * (3.3) if x > 65, atan(x) = atan(inf) - poly2(1/x) 461 * (3.4) Otherwise, atan(x) = atan(inf) - poly1(1/x) 462 * 463 * (4). Now x is in (0.125, 8) 464 * Find y that match x to 4.5 bit after binary (easy). 465 * If iy is the high word of y, then 466 * single : j = (iy - 0x3e000000) >> 19 467 * double : j = (iy - 0x3fc00000) >> 16 468 * quad : j = (iy - 0x3ffc0000) >> 12 469 * 470 * Let s = (x-y)/(1+x*y). Then 471 * atan(x) = atan(y) + poly1(s) 472 * = _TBL_atan_hi[j] + (_TBL_atan_lo[j] + poly2(s) ) 473 * 474 * Note. |s| <= 1.5384615385e-02 = 1/65. Maxium occurs at x = 1.03125 475 * 476 */ 477 478 /* 479 * p[0] - p[16] for atan(x) = 480 * x + x^3*(p1+x^2*(p2+...)) 481 */ 482 static const long double pe[] = { 483 1.0L, 484 0.0L, 485 #if defined(__sparc) 486 -0.33333333333333332870740406406184774823L, 487 -4.62592926927148558508441072595508240609e-18L, 488 0.19999999999999999722444243843710864894L, 489 2.77555756156289124602047010782090464486e-18L, 490 -0.14285714285714285615158658515611023176L, 491 -9.91270557700756738621231719241800559409e-19L, 492 #elif defined(__x86) 493 -0.33333333325572311878204345703125L, 494 -7.76102145512898763020833333192787755766644373e-11L, 495 0.19999999995343387126922607421875L, 496 4.65661287307739257812498949613909375938538636e-11L, 497 -0.142857142840512096881866455078125L, 498 -1.66307602609906877787419703858463013035681375e-11L, 499 #endif 500 }; 501 502 static const long double p[] = { /* p[0] - p[16] */ 503 1.0L, 504 -3.33333333333333333333333333333333333319278775586e-0001L, 505 1.99999999999999999999999999999999894961390937601e-0001L, 506 -1.42857142857142857142857142856866970385846301312e-0001L, 507 1.11111111111111111111111110742899094415954427738e-0001L, 508 -9.09090909090909090909087972707015549231951421806e-0002L, 509 7.69230769230769230767699003016385628597359717046e-0002L, 510 -6.66666666666666666113842763495291228025226575259e-0002L, 511 5.88235294117646915706902204947653640091126695962e-0002L, 512 -5.26315789473657016886225044679594035524579379810e-0002L, 513 4.76190476186633969331771169790375592681525481267e-0002L, 514 -4.34782608290146274616081389793141896576997370161e-0002L, 515 3.99999968161267722260103962788865225205057218988e-0002L, 516 -3.70368536844778256320786172745225703228683638328e-0002L, 517 3.44752320396524479494062858284036892703898522150e-0002L, 518 -3.20491216046653214683721787776813360591233428081e-0002L, 519 2.67632651033434456758550618122802167256870856514e-0002L, 520 }; 521 522 /* q[0] - q[9] */ 523 static const long double qe[] = { 524 1.0L, 525 0.0L, 526 #if defined(__sparc) 527 -0.33333333333333332870740406406184774823486804962158203125L, 528 -4.625929269271485585069345465471207312531868714634217630e-18L, 529 0.19999999999999999722444243843710864894092082977294921875L, 530 2.7755575615628864268260553912956813621977220359134667560e-18L, 531 #elif defined(__x86) 532 -0.33333333325572311878204345703125L, 533 -7.76102145512898763020833333042135150927893e-11L, 534 0.19999999995343387126922607421875L, 535 4.656612873077392578124507576697622106863058e-11L, 536 #endif 537 }; 538 539 static const long double q[] = { /* q[0] - q[9] */ 540 -3.33333333333333333333333333333333333304213515094e-0001L, 541 1.99999999999999999999999999999995075766976221077e-0001L, 542 -1.42857142857142857142857142570379604317921113079e-0001L, 543 1.11111111111111111111102923861900979127978214077e-0001L, 544 -9.09090909090909089586854075816999506863320031460e-0002L, 545 7.69230769230756334929213246003824644696974730368e-0002L, 546 -6.66666666589192433974402013508912138168133579856e-0002L, 547 5.88235013696778007696800252045588307023299350858e-0002L, 548 -5.25754959898164576495303840687699583228444695685e-0002L, 549 }; 550 551 static const long double 552 two8700 = 9.140338438955067659002088492701e+2618L, /* 2^8700 */ 553 twom8700 = 1.094051392821643668051436593760e-2619L, /* 2^-8700 */ 554 one = 1.0L, 555 zero = 0.0L, 556 pi = 3.1415926535897932384626433832795028841971693993751L, 557 pio2 = 1.57079632679489661923132169163975144209858469968755L, 558 pio4 = 0.785398163397448309615660845819875721049292349843776L, 559 pi3o4 = 2.356194490192344928846982537459627163147877049531329L, 560 #if defined(__sparc) 561 pi_lo = 8.67181013012378102479704402604335196876232e-35L, 562 pio2_lo = 4.33590506506189051239852201302167598438116e-35L, 563 pio4_lo = 2.16795253253094525619926100651083799219058e-35L, 564 pi3o4_lo = 6.50385759759283576859778301953251397657174e-35L; 565 #elif defined(__x86) 566 pi_lo = -5.01655761266833202355732708e-20L, 567 pio2_lo = -2.50827880633416601177866354e-20L, 568 pio4_lo = -1.25413940316708300588933177e-20L, 569 pi3o4_lo = -9.18342907192877118770525931e-20L; 570 #endif 571 572 static long double 573 mx_atanl(long double x, long double *err) { 574 long double y, z, r, s, t, w, s_h, s_l, x_h, x_l, zz[3], ee[2], z_h, 575 z_l, r_h, r_l, u, v; 576 int ix, iy, hx, i, j; 577 float fx; 578 579 hx = HI_XWORD(x); 580 ix = hx & (~0x80000000); 581 582 /* for |x| < 1/8 */ 583 if (ix < 0x3ffc0000) { 584 if (ix < 0x3ff30000) { /* when |x| < 2**-12 */ 585 if (ix < 0x3fc60000) { /* if |x| < 2**-prec/2 */ 586 *err = (long double) ((int) x); 587 return (x); 588 } 589 z = x * x; 590 t = q[8]; 591 for (i = 7; i >= 0; i--) t = q[i] + z * t; 592 t *= x * z; 593 r = x + t; 594 *err = t - (r - x); 595 return (r); 596 } 597 z = x * x; 598 599 /* use long double precision at p4 and on */ 600 t = p[16]; 601 for (i = 15; i >= 4; i--) t = p[i] + z * t; 602 ee[0] = z * t; 603 604 x_h = x; HALF(x_h); 605 z_h = z; HALF(z_h); 606 x_l = x - x_h; 607 z_l = (x_h * x_h - z_h); 608 zz[0] = z; 609 zz[1] = z_h; 610 zz[2] = z_l + x_l * (x + x_h); 611 612 /* compute (1+z*(p1+z*(p2+z*(p3+e)))) */ 613 614 mx_polyl(zz, pe, ee, 3); 615 616 /* finally x*(1+z*(p1+...)) */ 617 r = x_h * ee[0]; 618 t = x * ee[1] + x_l * ee[0]; 619 s = t + r; 620 *err = t - (s - r); 621 return (s); 622 } 623 /* for |x| >= 8.0 */ 624 if (ix >= 0x40020000) { /* x >= 8 */ 625 x = fabsl(x); 626 if (ix >= 0x402e0000) { /* x >= 2**47 */ 627 if (ix >= 0x408b0000) { /* x >= 2**140 */ 628 y = -pio2_lo; 629 } else 630 y = one / x - pio2_lo; 631 if (hx >= 0) { 632 t = pio2 - y; 633 *err = -(y - (pio2 - t)); 634 } else { 635 t = y - pio2; 636 *err = y - (pio2 + t); 637 } 638 return (t); 639 } else { 640 /* compute r = 1/x */ 641 r = one / x; 642 z = r * r; 643 x_h = x; HALF(x_h); 644 r_h = r; HALF(r_h); 645 z_h = z; HALF(z_h); 646 r_l = r * ((x_h - x) * r_h - (x_h * r_h - one)); 647 z_l = (r_h * r_h - z_h); 648 zz[0] = z; 649 zz[1] = z_h; 650 zz[2] = z_l + r_l * (r + r_h); 651 if (ix < 0x40050400) { /* 8 < x < 65 */ 652 /* use double precision at p4 and on */ 653 t = p[16]; 654 for (i = 15; i >= 4; i--) t = p[i] + z * t; 655 ee[0] = z * t; 656 /* compute (1+z*(p1+z*(p2+z*(p3+e)))) */ 657 mx_polyl(zz, pe, ee, 3); 658 } else { /* x < 65 < 2**47 */ 659 /* use long double at q3 and on */ 660 t = q[8]; 661 for (i = 7; i >= 2; i--) t = q[i] + z * t; 662 ee[0] = z * t; 663 /* compute (1+z*(q1+z*(q2+e))) */ 664 mx_polyl(zz, qe, ee, 2); 665 } 666 /* pio2 - r*(1+...) */ 667 v = r_h * ee[0]; 668 t = pio2_lo - (r * ee[1] + r_l * ee[0]); 669 if (hx >= 0) { 670 s = pio2 - v; 671 t -= (v - (pio2 - s)); 672 } else { 673 s = v - pio2; 674 t = -(t - (v - (s + pio2))); 675 } 676 w = s + t; 677 *err = t - (w - s); 678 return (w); 679 } 680 } 681 /* now x is between 1/8 and 8 */ 682 iy = (ix + 0x00000800) & 0x7ffff000; 683 j = (iy - 0x3ffc0000) >> 12; 684 ((int *) &fx)[0] = 0x3e000000 + (j << 19); 685 y = (long double) fx; 686 x = fabsl(x); 687 688 w = (x - y); 689 v = 1.0L / (one + x * y); 690 s = w * v; 691 z = s * s; 692 /* use long double precision at q3 and on */ 693 t = q[8]; 694 for (i = 7; i >= 2; i--) t = q[i] + z * t; 695 ee[0] = z * t; 696 s_h = s; HALF(s_h); 697 z_h = z; HALF(z_h); 698 x_h = x; HALF(x_h); 699 t = one + x * y; HALF(t); 700 r = -((x_h - x) * y - (x_h * y - (t - one))); 701 s_l = -v * (s_h * r - (w - s_h * t)); 702 z_l = (s_h * s_h - z_h); 703 zz[0] = z; 704 zz[1] = z_h; 705 zz[2] = z_l + s_l * (s + s_h); 706 /* compute (1+z*(q1+z*(q2+e))) by call mx_poly */ 707 mx_polyl(zz, qe, ee, 2); 708 v = s_h * ee[0]; 709 t = TBL_atan_lol[j] + (s * ee[1] + s_l * ee[0]); 710 u = TBL_atan_hil[j]; 711 s = u + v; 712 t += (v - (s - u)); 713 w = s + t; 714 *err = t - (w - s); 715 if (hx < 0) { 716 w = -w; 717 *err = -*err; 718 } 719 return (w); 720 } 721 722 long double 723 __k_atan2l(long double y, long double x, long double *w) { 724 long double t, xh, th, t1, t2, w1, w2; 725 int ix, iy, hx, hy; 726 727 hy = HI_XWORD(y); 728 hx = HI_XWORD(x); 729 iy = hy & ~0x80000000; 730 ix = hx & ~0x80000000; 731 732 *w = 0.0; 733 if (ix >= 0x7fff0000 || iy >= 0x7fff0000) { /* ignore inexact */ 734 if (isnanl(x) || isnanl(y)) 735 return (x * y); 736 else if (iy < 0x7fff0000) { 737 if (hx >= 0) { /* ATAN2(+-finite, +inf) is +-0 */ 738 *w *= y; 739 return (*w); 740 } else { /* ATAN2(+-finite, -inf) is +-pi */ 741 *w = copysignl(pi_lo, y); 742 return (copysignl(pi, y)); 743 } 744 } else if (ix < 0x7fff0000) { 745 /* ATAN2(+-inf, finite) is +-pi/2 */ 746 *w = (hy >= 0)? pio2_lo : -pio2_lo; 747 return ((hy >= 0)? pio2 : -pio2); 748 } else if (hx > 0) { /* ATAN2(+-INF,+INF) = +-pi/4 */ 749 *w = (hy >= 0)? pio4_lo : -pio4_lo; 750 return ((hy >= 0)? pio4 : -pio4); 751 } else { /* ATAN2(+-INF,-INF) = +-3pi/4 */ 752 *w = (hy >= 0)? pi3o4_lo : -pi3o4_lo; 753 return ((hy >= 0)? pi3o4 : -pi3o4); 754 } 755 } else if (x == zero || y == zero) { 756 if (y == zero) { 757 if (hx >= 0) /* ATAN2(+-0, +(0 <= x <= inf)) is +-0 */ 758 return (y); 759 else { /* ATAN2(+-0, -(0 <= x <= inf)) is +-pi */ 760 *w = (hy >= 0)? pi_lo : -pi_lo; 761 return ((hy >= 0)? pi : -pi); 762 } 763 } else { /* ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2 */ 764 *w = (hy >= 0)? pio2_lo : -pio2_lo; 765 return ((hy >= 0)? pio2 : -pio2); 766 } 767 } else if (iy - ix > 0x00640000) { /* |x/y| < 2 ** -100 */ 768 *w = (hy >= 0)? pio2_lo : -pio2_lo; 769 return ((hy >= 0)? pio2 : -pio2); 770 } else if (ix - iy > 0x00640000) { /* |y/x| < 2 ** -100 */ 771 if (hx < 0) { 772 *w = (hy >= 0)? pi_lo : -pi_lo; 773 return ((hy >= 0)? pi : -pi); 774 } else { 775 t = y / x; 776 th = t; HALF(th); 777 xh = x; HALF(xh); 778 t1 = (x - xh) * t + xh * (t - th); 779 t2 = y - xh * th; 780 *w = (t2 - t1) / x; 781 return (t); 782 } 783 } else { 784 if (ix >= 0x5fff3000) { 785 x *= twom8700; 786 y *= twom8700; 787 } else if (ix < 0x203d0000) { 788 x *= two8700; 789 y *= two8700; 790 } 791 y = fabsl(y); 792 x = fabsl(x); 793 t = y / x; 794 th = t; HALF(th); 795 xh = x; HALF(xh); 796 t1 = (x - xh) * t + xh * (t - th); 797 t2 = y - xh * th; 798 w1 = mx_atanl(t, &w2); 799 w2 += (t2 - t1) / (x + y * t); 800 if (hx < 0) { 801 t1 = pi - w1; 802 t2 = pi - t1; 803 w2 = (pi_lo - w2) - (w1 - t2); 804 w1 = t1; 805 } 806 *w = (hy >= 0)? w2 : -w2; 807 return ((hy >= 0)? w1 : -w1); 808 } 809 } 810