xref: /illumos-gate/usr/src/lib/libm/common/complex/csinh.c (revision 4213c2d8f7d24a0383e863621115570a68fb016c)
1  /*
2   * CDDL HEADER START
3   *
4   * The contents of this file are subject to the terms of the
5   * Common Development and Distribution License (the "License").
6   * You may not use this file except in compliance with the License.
7   *
8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9   * or http://www.opensolaris.org/os/licensing.
10   * See the License for the specific language governing permissions
11   * and limitations under the License.
12   *
13   * When distributing Covered Code, include this CDDL HEADER in each
14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15   * If applicable, add the following below this CDDL HEADER, with the
16   * fields enclosed by brackets "[]" replaced with your own identifying
17   * information: Portions Copyright [yyyy] [name of copyright owner]
18   *
19   * CDDL HEADER END
20   */
21  
22  /*
23   * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24   */
25  /*
26   * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27   * Use is subject to license terms.
28   */
29  
30  #pragma weak __csinh = csinh
31  
32  /* INDENT OFF */
33  /*
34   * dcomplex csinh(dcomplex z);
35   *
36   *             z      -z       x                      -x
37   *            e   -  e        e  (cos(y)+i*sin(y)) - e  (cos(-y)+i*sin(-y))
38   * sinh z = -------------- =  ---------------------------------------------
39   *                2                                2
40   *                     x    -x                x    -x
41   *           cos(y) ( e  - e  )  + i*sin(y) (e  + e   )
42   *        = --------------------------------------------
43   *                               2
44   *
45   *        =  cos(y) sinh(x)  + i sin(y) cosh(x)
46   *
47   * Implementation Note
48   * -------------------
49   *
50   *             |x|    -|x|   |x|        -2|x|       -2|x|    -P-4
51   * Note that  e   +- e    = e   ( 1 +- e     ). If e      < 2     , where
52   *
53   * P stands for the number of significant bits of the machine precision,
54   *                                     |x|
55   * then the result will be rounded to e   . Therefore, we have
56   *
57   *                 z
58   *                e
59   *     sinh z = -----  if |x| >= (P/2 + 2)*ln2
60   *                2
61   *
62   * EXCEPTION (conform to ISO/IEC 9899:1999(E)):
63   *      csinh(0,0)=(0,0)
64   *      csinh(0,inf)=(+-0,NaN)
65   *      csinh(0,NaN)=(+-0,NaN)
66   *      csinh(x,inf) = (NaN,NaN) for finite positive x
67   *      csinh(x,NaN) = (NaN,NaN) for finite non-zero x
68   *      csinh(inf,0) = (inf, 0)
69   *      csinh(inf,y) = (inf*cos(y),inf*sin(y)) for positive finite y
70   *      csinh(inf,inf) = (+-inf,NaN)
71   *      csinh(inf,NaN) = (+-inf,NaN)
72   *      csinh(NaN,0) = (NaN,0)
73   *      csinh(NaN,y) = (NaN,NaN) for non-zero y
74   *      csinh(NaN,NaN) = (NaN,NaN)
75   */
76  /* INDENT ON */
77  
78  #include "libm.h"		/* cosh/exp/fabs/scalbn/sinh/sincos/__k_cexp */
79  #include "complex_wrapper.h"
80  
81  dcomplex
82  csinh(dcomplex z) {
83  	double t, x, y, S, C;
84  	int hx, ix, lx, hy, iy, ly, n;
85  	dcomplex ans;
86  
87  	x = D_RE(z);
88  	y = D_IM(z);
89  	hx = HI_WORD(x);
90  	lx = LO_WORD(x);
91  	ix = hx & 0x7fffffff;
92  	hy = HI_WORD(y);
93  	ly = LO_WORD(y);
94  	iy = hy & 0x7fffffff;
95  	x = fabs(x);
96  	y = fabs(y);
97  
98  	(void) sincos(y, &S, &C);
99  	if (ix >= 0x403c0000) {	/* |x| > 28 = prec/2 (14,28,34,60) */
100  		if (ix >= 0x40862E42) {	/* |x| > 709.78... ~ log(2**1024) */
101  			if (ix >= 0x7ff00000) {	/* |x| is inf or NaN */
102  				if ((iy | ly) == 0) {
103  					D_RE(ans) = x;
104  					D_IM(ans) = y;
105  				} else if (iy >= 0x7ff00000) {
106  					D_RE(ans) = x;
107  					D_IM(ans) = x - y;
108  				} else {
109  					D_RE(ans) = C * x;
110  					D_IM(ans) = S * x;
111  				}
112  			} else {
113  				/* return exp(x)=t*2**n */
114  				t = __k_cexp(x, &n);
115  				D_RE(ans) = scalbn(C * t, n - 1);
116  				D_IM(ans) = scalbn(S * t, n - 1);
117  			}
118  		} else {
119  			t = exp(x) * 0.5;
120  			D_RE(ans) = C * t;
121  			D_IM(ans) = S * t;
122  		}
123  	} else {
124  		if ((ix | lx) == 0) {	/* x = 0, return (0,S) */
125  			D_RE(ans) = 0.0;
126  			D_IM(ans) = S;
127  		} else {
128  			D_RE(ans) = C * sinh(x);
129  			D_IM(ans) = S * cosh(x);
130  		}
131  	}
132  	if (hx < 0)
133  		D_RE(ans) = -D_RE(ans);
134  	if (hy < 0)
135  		D_IM(ans) = -D_IM(ans);
136  	return (ans);
137  }
138