xref: /illumos-gate/usr/src/lib/libm/common/complex/catanl.c (revision a33595abb743c413156e63834db73f4df0fdc485)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma weak __catanl = catanl
31 
32 /* INDENT OFF */
33 /*
34  * ldcomplex catanl(ldcomplex z);
35  *
36  * Atan(z) return A + Bi where,
37  *            1
38  *	A = --- * atan2(2x, 1-x*x-y*y)
39  *            2
40  *
41  *            1      [ x*x + (y+1)*(y+1) ]   1               4y
42  *       B = --- log [ ----------------- ] = - log (1+ -----------------)
43  *            4      [ x*x + (y-1)*(y-1) ]   4         x*x + (y-1)*(y-1)
44  *
45  *                 2    16  3                         y
46  *         = t - 2t   + -- t  - ..., where t = -----------------
47  *                      3                      x*x + (y-1)*(y-1)
48  * Proof:
49  * Let w = atan(z=x+yi) = A + B i. Then tan(w) = z.
50  * Since sin(w) = (exp(iw)-exp(-iw))/(2i), cos(w)=(exp(iw)+exp(-iw))/(2),
51  * Let p = exp(iw), then z = tan(w) = ((p-1/p)/(p+1/p))/i, or
52  * iz = (p*p-1)/(p*p+1), or, after simplification,
53  *	p*p = (1+iz)/(1-iz)			            ... (1)
54  * LHS of (1) = exp(2iw) = exp(2i(A+Bi)) = exp(-2B)*exp(2iA)
55  *            = exp(-2B)*(cos(2A)+i*sin(2A))	            ... (2)
56  *              1-y+ix   (1-y+ix)*(1+y+ix)   1-x*x-y*y + 2xi
57  * RHS of (1) = ------ = ----------------- = --------------- ... (3)
58  *              1+y-ix    (1+y)**2 + x**2    (1+y)**2 + x**2
59  *
60  * Comparing the real and imaginary parts of (2) and (3), we have:
61  * 	cos(2A) : 1-x*x-y*y = sin(2A) : 2x
62  * and hence
63  *	tan(2A) = 2x/(1-x*x-y*y), or
64  *	A = 0.5 * atan2(2x, 1-x*x-y*y)	                    ... (4)
65  *
66  * For the imaginary part B, Note that |p*p| = exp(-2B), and
67  *	|1+iz|   |i-z|   hypot(x,(y-1))
68  *       |----| = |---| = --------------
69  *	|1-iz|   |i+z|   hypot(x,(y+1))
70  * Thus
71  *                 x*x + (y+1)*(y+1)
72  *	exp(4B) = -----------------, or
73  *                 x*x + (y-1)*(y-1)
74  *
75  *            1     [x^2+(y+1)^2]   1             4y
76  *       B =  - log [-----------] = - log(1+ -------------)  ... (5)
77  *            4     [x^2+(y-1)^2]   4         x^2+(y-1)^2
78  *
79  * QED.
80  *
81  * Note that: if catan( x, y) = ( u, v), then
82  *               catan(-x, y) = (-u, v)
83  *               catan( x,-y) = ( u,-v)
84  *
85  * Also,   catan(x,y) = -i*catanh(-y,x), or
86  *        catanh(x,y) =  i*catan(-y,x)
87  * So, if catanh(y,x) = (v,u), then catan(x,y) = -i*(-v,u) = (u,v), i.e.,
88  *         catan(x,y) = (u,v)
89  *
90  * EXCEPTION CASES (conform to ISO/IEC 9899:1999(E)):
91  *    catan( 0  , 0   ) =  (0    ,  0   )
92  *    catan( NaN, 0   ) =  (NaN  ,  0   )
93  *    catan( 0  , 1   ) =  (0    ,  +inf) with divide-by-zero
94  *    catan( inf, y   ) =  (pi/2 ,  0   ) for finite +y
95  *    catan( NaN, y   ) =  (NaN  ,  NaN ) with invalid for finite y != 0
96  *    catan( x  , inf ) =  (pi/2 ,  0   ) for finite +x
97  *    catan( inf, inf ) =  (pi/2 ,  0   )
98  *    catan( NaN, inf ) =  (NaN  ,  0   )
99  *    catan( x  , NaN ) =  (NaN  ,  NaN ) with invalid for finite x
100  *    catan( inf, NaN ) =  (pi/2 ,  +-0 )
101  */
102 /* INDENT ON */
103 
104 #include "libm.h"	/* atan2l/atanl/fabsl/isinfl/iszerol/log1pl/logl */
105 #include "complex_wrapper.h"
106 #include "longdouble.h"
107 
108 /* INDENT OFF */
109 static const long double
110 zero = 0.0L,
111 one = 1.0L,
112 two = 2.0L,
113 half = 0.5L,
114 ln2 = 6.931471805599453094172321214581765680755e-0001L,
115 pi_2 = 1.570796326794896619231321691639751442098584699687552910487472L,
116 #if defined(__x86)
117 E = 2.910383045673370361328125000000000000000e-11L,	/* 2**-35 */
118 Einv = 3.435973836800000000000000000000000000000e+10L;	/* 2**+35 */
119 #else
120 E = 8.673617379884035472059622406959533691406e-19L,	/* 2**-60 */
121 Einv = 1.152921504606846976000000000000000000000e18L;	/* 2**+60 */
122 #endif
123 /* INDENT ON */
124 
125 ldcomplex
126 catanl(ldcomplex z) {
127 	ldcomplex ans;
128 	long double x, y, t1, ax, ay, t;
129 	int hx, hy, ix, iy;
130 
131 	x = LD_RE(z);
132 	y = LD_IM(z);
133 	ax = fabsl(x);
134 	ay = fabsl(y);
135 	hx = HI_XWORD(x);
136 	hy = HI_XWORD(y);
137 	ix = hx & 0x7fffffff;
138 	iy = hy & 0x7fffffff;
139 
140 	/* x is inf or NaN */
141 	if (ix >= 0x7fff0000) {
142 		if (isinfl(x)) {
143 			LD_RE(ans) = pi_2;
144 			LD_IM(ans) = zero;
145 		} else {
146 			LD_RE(ans) = x + x;
147 			if (iszerol(y) || (isinfl(y)))
148 				LD_IM(ans) = zero;
149 			else
150 				LD_IM(ans) = (fabsl(y) - ay) / (fabsl(y) - ay);
151 		}
152 	} else if (iy >= 0x7fff0000) {
153 		/* y is inf or NaN */
154 		if (isinfl(y)) {
155 			LD_RE(ans) = pi_2;
156 			LD_IM(ans) = zero;
157 		} else {
158 			LD_RE(ans) = (fabsl(x) - ax) / (fabsl(x) - ax);
159 			LD_IM(ans) = y;
160 		}
161 	} else if (iszerol(x)) {
162 		/* INDENT OFF */
163 		/*
164 		 * x = 0
165 		 *      1                            1
166 		 * A = --- * atan2(2x, 1-x*x-y*y) = --- atan2(0,1-|y|)
167 		 *      2                            2
168 		 *
169 		 *     1     [ (y+1)*(y+1) ]   1          2      1         2y
170 		 * B = - log [ ----------- ] = - log (1+ ---) or - log(1+ ----)
171 		 *     4     [ (y-1)*(y-1) ]   2         y-1     2         1-y
172 		 */
173 		/* INDENT ON */
174 		t = one - ay;
175 		if (ay == one) {
176 			/* y=1: catan(0,1)=(0,+inf) with 1/0 signal */
177 			LD_IM(ans) = ay / ax;
178 			LD_RE(ans) = zero;
179 		} else if (ay > one) {	/* y>1 */
180 			LD_IM(ans) = half * log1pl(two / (-t));
181 			LD_RE(ans) = pi_2;
182 		} else {		/* y<1 */
183 			LD_IM(ans) = half * log1pl((ay + ay) / t);
184 			LD_RE(ans) = zero;
185 		}
186 	} else if (ay < E * (one + ax)) {
187 		/* INDENT OFF */
188 		/*
189 		 * Tiny y (relative to 1+|x|)
190 		 *     |y| < E*(1+|x|)
191 		 * where E=2**-29, -35, -60 for double, extended, quad precision
192 		 *
193 		 *     1                         [x<=1:   atan(x)
194 		 * A = - * atan2(2x,1-x*x-y*y) ~ [      1                 1+x
195 		 *     2                         [x>=1: - atan2(2,(1-x)*(-----))
196 		 *                                      2                  x
197 		 *
198 		 *                               y/x
199 		 * B ~ t*(1-2t), where t = ----------------- is tiny
200 		 *                         x + (y-1)*(y-1)/x
201 		 *
202 		 *                           y
203 		 * (when x < 2**-60, t = ----------- )
204 		 *                       (y-1)*(y-1)
205 		 */
206 		/* INDENT ON */
207 		if (ay == zero)
208 			LD_IM(ans) = ay;
209 		else {
210 			t1 = ay - one;
211 			if (ix < 0x3fc30000)
212 				t = ay / (t1 * t1);
213 			else if (ix > 0x403b0000)
214 				t = (ay / ax) / ax;
215 			else
216 				t = ay / (ax * ax + t1 * t1);
217 			LD_IM(ans) = t * (one - two * t);
218 		}
219 		if (ix < 0x3fff0000)
220 			LD_RE(ans) = atanl(ax);
221 		else
222 			LD_RE(ans) = half * atan2l(two, (one - ax) * (one +
223 				one / ax));
224 
225 	} else if (ay > Einv * (one + ax)) {
226 		/* INDENT OFF */
227 		/*
228 		 * Huge y relative to 1+|x|
229 		 *     |y| > Einv*(1+|x|), where Einv~2**(prec/2+3),
230 		 *      1
231 		 * A ~ --- * atan2(2x, -y*y) ~ pi/2
232 		 *      2
233 		 *                               y
234 		 * B ~ t*(1-2t), where t = --------------- is tiny
235 		 *                          (y-1)*(y-1)
236 		 */
237 		/* INDENT ON */
238 		LD_RE(ans) = pi_2;
239 		t = (ay / (ay - one)) / (ay - one);
240 		LD_IM(ans) = t * (one - (t + t));
241 	} else if (ay == one) {
242 		/* INDENT OFF */
243 		/*
244 		 * y=1
245 		 *     1                      1
246 		 * A = - * atan2(2x, -x*x) = --- atan2(2,-x)
247 		 *     2                      2
248 		 *
249 		 *     1     [ x*x+4]   1          4     [ 0.5(log2-logx) if
250 		 * B = - log [ -----] = - log (1+ ---) = [ |x|<E, else 0.25*
251 		 *     4     [  x*x ]   4         x*x    [ log1p((2/x)*(2/x))
252 		 */
253 		/* INDENT ON */
254 		LD_RE(ans) = half * atan2l(two, -ax);
255 		if (ax < E)
256 			LD_IM(ans) = half * (ln2 - logl(ax));
257 		else {
258 			t = two / ax;
259 			LD_IM(ans) = 0.25L * log1pl(t * t);
260 		}
261 	} else if (ax > Einv * Einv) {
262 		/* INDENT OFF */
263 		/*
264 		 * Huge x:
265 		 * when |x| > 1/E^2,
266 		 *      1                           pi
267 		 * A ~ --- * atan2(2x, -x*x-y*y) ~ ---
268 		 *      2                           2
269 		 *                               y                 y/x
270 		 * B ~ t*(1-2t), where t = --------------- = (-------------- )/x
271 		 *                         x*x+(y-1)*(y-1)     1+((y-1)/x)^2
272 		 */
273 		/* INDENT ON */
274 		LD_RE(ans) = pi_2;
275 		t = ((ay / ax) / (one + ((ay - one) / ax) * ((ay - one) /
276 			ax))) / ax;
277 		LD_IM(ans) = t * (one - (t + t));
278 	} else if (ax < E * E * E * E) {
279 		/* INDENT OFF */
280 		/*
281 		 * Tiny x:
282 		 * when |x| < E^4,  (note that y != 1)
283 		 *      1                            1
284 		 * A = --- * atan2(2x, 1-x*x-y*y) ~ --- * atan2(2x,1-y*y)
285 		 *      2                            2
286 		 *
287 		 *     1     [ (y+1)*(y+1) ]   1          2      1         2y
288 		 * B = - log [ ----------- ] = - log (1+ ---) or - log(1+ ----)
289 		 *     4     [ (y-1)*(y-1) ]   2         y-1     2         1-y
290 		 */
291 		/* INDENT ON */
292 		LD_RE(ans) = half * atan2l(ax + ax, (one - ay) * (one + ay));
293 		if (ay > one)	/* y>1 */
294 			LD_IM(ans) = half * log1pl(two / (ay - one));
295 		else		/* y<1 */
296 			LD_IM(ans) = half * log1pl((ay + ay) / (one - ay));
297 	} else {
298 		/* INDENT OFF */
299 		/*
300 		 * normal x,y
301 		 *      1
302 		 * A = --- * atan2(2x, 1-x*x-y*y)
303 		 *      2
304 		 *
305 		 *     1     [ x*x+(y+1)*(y+1) ]   1               4y
306 		 * B = - log [ --------------- ] = - log (1+ -----------------)
307 		 *     4     [ x*x+(y-1)*(y-1) ]   4         x*x + (y-1)*(y-1)
308 		 */
309 		/* INDENT ON */
310 		t = one - ay;
311 		if (iy >= 0x3ffe0000 && iy < 0x40000000) {
312 			/* y close to 1 */
313 			LD_RE(ans) = half * (atan2l((ax + ax), (t * (one +
314 				ay) - ax * ax)));
315 		} else if (ix >= 0x3ffe0000 && ix < 0x40000000) {
316 			/* x close to 1 */
317 			LD_RE(ans) = half * atan2l((ax + ax), ((one - ax) *
318 				(one + ax) - ay * ay));
319 		} else
320 			LD_RE(ans) = half * atan2l((ax + ax), ((one - ax *
321 				ax) - ay * ay));
322 		LD_IM(ans) = 0.25L * log1pl((4.0L * ay) / (ax * ax + t * t));
323 	}
324 	if (hx < 0)
325 		LD_RE(ans) = -LD_RE(ans);
326 	if (hy < 0)
327 		LD_IM(ans) = -LD_IM(ans);
328 	return (ans);
329 }
330