xref: /illumos-gate/usr/src/lib/libm/common/complex/casinl.c (revision a38ee58261c5aa81028a4329e73da4016006aa99)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma weak __casinl = casinl
31 
32 #include "libm.h"		/* asinl/atanl/fabsl/isinfl/log1pl/logl/sqrtl */
33 #include "complex_wrapper.h"
34 #include "longdouble.h"
35 
36 /* INDENT OFF */
37 static const long double
38 zero = 0.0L,
39 one = 1.0L,
40 Acrossover = 1.5L,
41 Bcrossover = 0.6417L,
42 half = 0.5L,
43 ln2 = 6.931471805599453094172321214581765680755e-0001L,
44 Foursqrtu = 7.3344154702193886624856495681939326638255e-2466L,	/* 2**-8189 */
45 #if defined(__x86)
46 E = 5.4210108624275221700372640043497085571289e-20L,	/* 2**-64 */
47 pi_4 = 0.7853981633974483095739921312272713294078130L,
48 pi_4_l = 4.1668714592604391641479322342670193036704898e-20L,
49 pi_2 = 1.5707963267948966191479842624545426588156260L,
50 pi_2_l = 8.3337429185208783282958644685340386073409796e-20L;
51 
52 #else
53 E = 9.6296497219361792652798897129246365926905e-35L,	/* 2**-113 */
54 pi_4 = 0.7853981633974483096156608458198756993697670L,
55 pi_4_l = 2.1679525325309452561992610065108379921905808e-35L,
56 pi_2 = 1.5707963267948966192313216916397513987395340L,
57 pi_2_l = 4.3359050650618905123985220130216759843811616e-35L;
58 
59 #endif
60 /* INDENT ON */
61 
62 #if defined(__x86)
63 static const int ip1 = 0x40400000;	/* 2**65 */
64 #else
65 static const int ip1 = 0x40710000;	/* 2**114 */
66 #endif
67 
68 ldcomplex
69 casinl(ldcomplex z) {
70 	long double x, y, t, R, S, A, Am1, B, y2, xm1, xp1, Apx;
71 	int ix, iy, hx, hy;
72 	ldcomplex ans;
73 
74 	x = LD_RE(z);
75 	y = LD_IM(z);
76 	hx = HI_XWORD(x);
77 	hy = HI_XWORD(y);
78 	ix = hx & 0x7fffffff;
79 	iy = hy & 0x7fffffff;
80 	x = fabsl(x);
81 	y = fabsl(y);
82 
83 	/* special cases */
84 
85 	/* x is inf or NaN */
86 	if (ix >= 0x7fff0000) {	/* x is inf or NaN */
87 		if (isinfl(x)) {	/* x is INF */
88 			LD_IM(ans) = x;
89 			if (iy >= 0x7fff0000) {
90 				if (isinfl(y))
91 					/* casin(inf + i inf) = pi/4 + i inf */
92 					LD_RE(ans) = pi_4 + pi_4_l;
93 				else	/* casin(inf + i NaN) = NaN + i inf */
94 					LD_RE(ans) = y + y;
95 			} else	/* casin(inf + iy) = pi/2 + i inf */
96 				LD_RE(ans) = pi_2 + pi_2_l;
97 		} else {		/* x is NaN */
98 			if (iy >= 0x7fff0000) {
99 				/* INDENT OFF */
100 				/*
101 				 * casin(NaN + i inf) = NaN  + i inf
102 				 * casin(NaN + i NaN) = NaN  + i NaN
103 				 */
104 				/* INDENT ON */
105 				LD_IM(ans) = y + y;
106 				LD_RE(ans) = x + x;
107 			} else {
108 				/* INDENT OFF */
109 				/* casin(NaN + i y ) = NaN  + i NaN */
110 				/* INDENT ON */
111 				LD_IM(ans) = LD_RE(ans) = x + y;
112 			}
113 		}
114 		if (hx < 0)
115 			LD_RE(ans) = -LD_RE(ans);
116 		if (hy < 0)
117 			LD_IM(ans) = -LD_IM(ans);
118 		return (ans);
119 	}
120 
121 	/* casin(+0 + i 0) = 0 + i 0. */
122 	if (x == zero && y == zero)
123 		return (z);
124 
125 	if (iy >= 0x7fff0000) {	/* y is inf or NaN */
126 		if (isinfl(y)) {	/* casin(x + i inf) = 0 + i inf */
127 			LD_IM(ans) = y;
128 			LD_RE(ans) = zero;
129 		} else {		/* casin(x + i NaN) = NaN + i NaN */
130 			LD_IM(ans) = x + y;
131 			if (x == zero)
132 				LD_RE(ans) = x;
133 			else
134 				LD_RE(ans) = y;
135 		}
136 		if (hx < 0)
137 			LD_RE(ans) = -LD_RE(ans);
138 		if (hy < 0)
139 			LD_IM(ans) = -LD_IM(ans);
140 		return (ans);
141 	}
142 
143 	if (y == zero) {	/* region 1: y=0 */
144 		if (ix < 0x3fff0000) {	/* |x| < 1 */
145 			LD_RE(ans) = asinl(x);
146 			LD_IM(ans) = zero;
147 		} else {
148 			LD_RE(ans) = pi_2 + pi_2_l;
149 			if (ix >= ip1)	/* |x| >= i386 ? 2**65 : 2**114 */
150 				LD_IM(ans) = ln2 + logl(x);
151 			else if (ix >= 0x3fff8000)	/* x > Acrossover */
152 				LD_IM(ans) = logl(x + sqrtl((x - one) * (x +
153 					one)));
154 			else {
155 				xm1 = x - one;
156 				LD_IM(ans) = log1pl(xm1 + sqrtl(xm1 * (x +
157 					one)));
158 			}
159 		}
160 	} else if (y <= E * fabsl(x - one)) {	/* region 2: y < tiny*|x-1| */
161 		if (ix < 0x3fff0000) {	/* x < 1 */
162 			LD_RE(ans) = asinl(x);
163 			LD_IM(ans) = y / sqrtl((one + x) * (one - x));
164 		} else {
165 			LD_RE(ans) = pi_2 + pi_2_l;
166 			if (ix >= ip1)	/* i386 ? 2**65 : 2**114 */
167 				LD_IM(ans) = ln2 + logl(x);
168 			else if (ix >= 0x3fff8000)	/* x > Acrossover */
169 				LD_IM(ans) = logl(x + sqrtl((x - one) * (x +
170 					one)));
171 			else
172 				LD_IM(ans) = log1pl((x - one) + sqrtl((x -
173 					one) * (x + one)));
174 		}
175 	} else if (y < Foursqrtu) {	/* region 3 */
176 		t = sqrtl(y);
177 		LD_RE(ans) = pi_2 - (t - pi_2_l);
178 		LD_IM(ans) = t;
179 	} else if (E * y - one >= x) {	/* region 4 */
180 		LD_RE(ans) = x / y;	/* need to fix underflow cases */
181 		LD_IM(ans) = ln2 + logl(y);
182 	} else if (ix >= 0x5ffb0000 || iy >= 0x5ffb0000) {
183 		/* region 5: x+1 and y are both (>= sqrt(max)/8) i.e. 2**8188 */
184 		t = x / y;
185 		LD_RE(ans) = atanl(t);
186 		LD_IM(ans) = ln2 + logl(y) + half * log1pl(t * t);
187 	} else if (x < Foursqrtu) {
188 		/* region 6: x is very small, < 4sqrt(min) */
189 		A = sqrtl(one + y * y);
190 		LD_RE(ans) = x / A;	/* may underflow */
191 		if (iy >= 0x3fff8000)	/* if y > Acrossover */
192 			LD_IM(ans) = logl(y + A);
193 		else
194 			LD_IM(ans) = half * log1pl((y + y) * (y + A));
195 	} else {	/* safe region */
196 		y2 = y * y;
197 		xp1 = x + one;
198 		xm1 = x - one;
199 		R = sqrtl(xp1 * xp1 + y2);
200 		S = sqrtl(xm1 * xm1 + y2);
201 		A = half * (R + S);
202 		B = x / A;
203 		if (B <= Bcrossover)
204 			LD_RE(ans) = asinl(B);
205 		else {		/* use atan and an accurate approx to a-x */
206 			Apx = A + x;
207 			if (x <= one)
208 				LD_RE(ans) = atanl(x / sqrtl(half * Apx * (y2 /
209 					(R + xp1) + (S - xm1))));
210 			else
211 				LD_RE(ans) = atanl(x / (y * sqrtl(half * (Apx /
212 					(R + xp1) + Apx / (S + xm1)))));
213 		}
214 		if (A <= Acrossover) {
215 			/* use log1p and an accurate approx to A-1 */
216 			if (x < one)
217 				Am1 = half * (y2 / (R + xp1) + y2 / (S - xm1));
218 			else
219 				Am1 = half * (y2 / (R + xp1) + (S + xm1));
220 			LD_IM(ans) = log1pl(Am1 + sqrtl(Am1 * (A + one)));
221 		} else {
222 			LD_IM(ans) = logl(A + sqrtl(A * A - one));
223 		}
224 	}
225 
226 	if (hx < 0)
227 		LD_RE(ans) = -LD_RE(ans);
228 	if (hy < 0)
229 		LD_IM(ans) = -LD_IM(ans);
230 
231 	return (ans);
232 }
233