xref: /illumos-gate/usr/src/lib/libm/common/Q/sinl.c (revision ddc0e0b53c661f6e439e3b7072b3ef353eadb4af)
125c28e83SPiotr Jasiukajtis /*
225c28e83SPiotr Jasiukajtis  * CDDL HEADER START
325c28e83SPiotr Jasiukajtis  *
425c28e83SPiotr Jasiukajtis  * The contents of this file are subject to the terms of the
525c28e83SPiotr Jasiukajtis  * Common Development and Distribution License (the "License").
625c28e83SPiotr Jasiukajtis  * You may not use this file except in compliance with the License.
725c28e83SPiotr Jasiukajtis  *
825c28e83SPiotr Jasiukajtis  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
925c28e83SPiotr Jasiukajtis  * or http://www.opensolaris.org/os/licensing.
1025c28e83SPiotr Jasiukajtis  * See the License for the specific language governing permissions
1125c28e83SPiotr Jasiukajtis  * and limitations under the License.
1225c28e83SPiotr Jasiukajtis  *
1325c28e83SPiotr Jasiukajtis  * When distributing Covered Code, include this CDDL HEADER in each
1425c28e83SPiotr Jasiukajtis  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
1525c28e83SPiotr Jasiukajtis  * If applicable, add the following below this CDDL HEADER, with the
1625c28e83SPiotr Jasiukajtis  * fields enclosed by brackets "[]" replaced with your own identifying
1725c28e83SPiotr Jasiukajtis  * information: Portions Copyright [yyyy] [name of copyright owner]
1825c28e83SPiotr Jasiukajtis  *
1925c28e83SPiotr Jasiukajtis  * CDDL HEADER END
2025c28e83SPiotr Jasiukajtis  */
2125c28e83SPiotr Jasiukajtis 
2225c28e83SPiotr Jasiukajtis /*
2325c28e83SPiotr Jasiukajtis  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
2425c28e83SPiotr Jasiukajtis  */
2525c28e83SPiotr Jasiukajtis /*
2625c28e83SPiotr Jasiukajtis  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
2725c28e83SPiotr Jasiukajtis  * Use is subject to license terms.
2825c28e83SPiotr Jasiukajtis  */
2925c28e83SPiotr Jasiukajtis 
3025c28e83SPiotr Jasiukajtis /*
3125c28e83SPiotr Jasiukajtis  * sinl(x)
3225c28e83SPiotr Jasiukajtis  * Table look-up algorithm by K.C. Ng, November, 1989.
3325c28e83SPiotr Jasiukajtis  *
3425c28e83SPiotr Jasiukajtis  * kernel function:
3525c28e83SPiotr Jasiukajtis  *	__k_sinl		... sin function on [-pi/4,pi/4]
3625c28e83SPiotr Jasiukajtis  *	__k_cosl		... cos function on [-pi/4,pi/4]
3725c28e83SPiotr Jasiukajtis  *	__rem_pio2l	... argument reduction routine
3825c28e83SPiotr Jasiukajtis  *
3925c28e83SPiotr Jasiukajtis  * Method.
4025c28e83SPiotr Jasiukajtis  *      Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
4125c28e83SPiotr Jasiukajtis  *      1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
4225c28e83SPiotr Jasiukajtis  *	   [-pi/2 , +pi/2], and let n = k mod 4.
4325c28e83SPiotr Jasiukajtis  *	2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
4425c28e83SPiotr Jasiukajtis  *
4525c28e83SPiotr Jasiukajtis  *          n        sin(x)      cos(x)        tan(x)
4625c28e83SPiotr Jasiukajtis  *     ----------------------------------------------------------
4725c28e83SPiotr Jasiukajtis  *	    0	       S	   C		 S/C
4825c28e83SPiotr Jasiukajtis  *	    1	       C	  -S		-C/S
4925c28e83SPiotr Jasiukajtis  *	    2	      -S	  -C		 S/C
5025c28e83SPiotr Jasiukajtis  *	    3	      -C	   S		-C/S
5125c28e83SPiotr Jasiukajtis  *     ----------------------------------------------------------
5225c28e83SPiotr Jasiukajtis  *
5325c28e83SPiotr Jasiukajtis  * Special cases:
5425c28e83SPiotr Jasiukajtis  *      Let trig be any of sin, cos, or tan.
5525c28e83SPiotr Jasiukajtis  *      trig(+-INF)  is NaN, with signals;
5625c28e83SPiotr Jasiukajtis  *      trig(NaN)    is that NaN;
5725c28e83SPiotr Jasiukajtis  *
5825c28e83SPiotr Jasiukajtis  * Accuracy:
5925c28e83SPiotr Jasiukajtis  *	computer TRIG(x) returns trig(x) nearly rounded.
6025c28e83SPiotr Jasiukajtis  */
6125c28e83SPiotr Jasiukajtis 
62*ddc0e0b5SRichard Lowe #pragma weak __sinl = sinl
6325c28e83SPiotr Jasiukajtis 
6425c28e83SPiotr Jasiukajtis #include "libm.h"
6525c28e83SPiotr Jasiukajtis #include "longdouble.h"
6625c28e83SPiotr Jasiukajtis 
6725c28e83SPiotr Jasiukajtis long double
sinl(long double x)6825c28e83SPiotr Jasiukajtis sinl(long double x) {
6925c28e83SPiotr Jasiukajtis 	long double y[2], z = 0.0L;
7025c28e83SPiotr Jasiukajtis 	int n, ix;
7125c28e83SPiotr Jasiukajtis 
7225c28e83SPiotr Jasiukajtis 	ix = *(int *) &x;		/* High word of x */
7325c28e83SPiotr Jasiukajtis 	ix &= 0x7fffffff;
7425c28e83SPiotr Jasiukajtis 	if (ix <= 0x3ffe9220)		/* |x| ~< pi/4 */
7525c28e83SPiotr Jasiukajtis 		return (__k_sinl(x, z));
7625c28e83SPiotr Jasiukajtis 	else if (ix >= 0x7fff0000)	/* sin(Inf or NaN) is NaN */
7725c28e83SPiotr Jasiukajtis 		return (x - x);
7825c28e83SPiotr Jasiukajtis 	else {				/* argument reduction needed */
7925c28e83SPiotr Jasiukajtis 		n = __rem_pio2l(x, y);
8025c28e83SPiotr Jasiukajtis 		switch (n & 3) {
8125c28e83SPiotr Jasiukajtis 			case 0:
8225c28e83SPiotr Jasiukajtis 				return (__k_sinl(y[0], y[1]));
8325c28e83SPiotr Jasiukajtis 			case 1:
8425c28e83SPiotr Jasiukajtis 				return (__k_cosl(y[0], y[1]));
8525c28e83SPiotr Jasiukajtis 			case 2:
8625c28e83SPiotr Jasiukajtis 				return (-__k_sinl(y[0], y[1]));
8725c28e83SPiotr Jasiukajtis 			case 3:
8825c28e83SPiotr Jasiukajtis 				return (-__k_cosl(y[0], y[1]));
8925c28e83SPiotr Jasiukajtis 		}
9025c28e83SPiotr Jasiukajtis 	}
9125c28e83SPiotr Jasiukajtis 	/* NOTREACHED */
9225c28e83SPiotr Jasiukajtis     return 0.0L;
9325c28e83SPiotr Jasiukajtis }
94