xref: /illumos-gate/usr/src/lib/libm/common/Q/__tanl.c (revision 9498083eeaed1aacdde41369b7fa6f3b84870791)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 /*
31  * long double __k_tanl(long double x; long double y, int k);
32  * kernel tan/cotan function on [-pi/4, pi/4], pi/4 ~ 0.785398164
33  * Input x is assumed to be bounded by ~pi/4 in magnitude.
34  * Input y is the tail of x.
35  * Input k indicate -- tan if k=0; else -1/tan
36  *
37  * Table look up algorithm
38  *	1. by tan(-x) = -tan(x), need only to consider positive x
39  *	2. if x < 5/32 = [0x3ffc4000, 0] = 0.15625 , then
40  *	     if x < 2^-57 (hx < 0x3fc40000 0), set w=x with inexact if x !=  0
41  *	     else
42  *		z = x*x;
43  *		w = x + (y+(x*z)*(t1+z*(t2+z*(t3+z*(t4+z*(t5+z*t6))))))
44  *	   return (k == 0)? w: 1/w;
45  *	3. else
46  *		ht = (hx + 0x400)&0x7ffff800	(round x to a break point t)
47  *		lt = 0
48  *		i  = (hy-0x3ffc4000)>>11;	(i<=64)
49  *		x' = (x - t)+y 			(|x'| ~<= 2^-7)
50  *	   By
51  *		tan(t+x')
52  *		  = (tan(t)+tan(x'))/(1-tan(x')tan(t))
53  *	   We have
54  *		             sin(x')+tan(t)*(tan(t)*sin(x'))
55  *		  = tan(t) + -------------------------------	for k=0
56  *			        cos(x') - tan(t)*sin(x')
57  *
58  *		             cos(x') - tan(t)*sin(x')
59  *		  = - --------------------------------------	for k=1
60  *		       tan(t) + tan(t)*(cos(x')-1) + sin(x')
61  *
62  *
63  *	   where 	tan(t) is from the table,
64  *			sin(x') = x + pp1*x^3 + ...+ pp5*x^11
65  *			cos(x') = 1 + qq1*x^2 + ...+ qq5*x^10
66  */
67 
68 #include "libm.h"
69 
70 extern const long double _TBL_tanl_hi[], _TBL_tanl_lo[];
71 static const long double
72 	one	= 1.0L,
73 /*
74  *                   3           11       -122.32
75  * |sin(x) - (x+pp1*x +...+ pp5*x  )| <= 2        for |x|<1/64
76  */
77 	pp1	= -1.666666666666666666666666666586782940810e-0001L,
78 	pp2	= +8.333333333333333333333003723660929317540e-0003L,
79 	pp3	= -1.984126984126984076045903483778337804470e-0004L,
80 	pp4	= +2.755731922361906641319723106210900949413e-0006L,
81 	pp5	= -2.505198398570947019093998469135012057673e-0008L,
82 /*
83  *                   2           10        -123.84
84  * |cos(x) - (1+qq1*x +...+ qq5*x  )| <= 2        for |x|<=1/128
85  */
86 	qq1	= -4.999999999999999999999999999999378373641e-0001L,
87 	qq2	= +4.166666666666666666666665478399327703130e-0002L,
88 	qq3	= -1.388888888888888888058211230618051613494e-0003L,
89 	qq4	= +2.480158730156105377771585658905303111866e-0005L,
90 	qq5	= -2.755728099762526325736488376695157008736e-0007L,
91 /*
92  * |tan(x) - (x+t1*x^3+...+t6*x^13)|
93  * |------------------------------ | <= 2^-59.73 for |x|<0.15625
94  * |                x              |
95  */
96 	t1	= +3.333333333333333333333333333333423342490e-0001L,
97 	t2	= +1.333333333333333333333333333093838744537e-0001L,
98 	t3	= +5.396825396825396825396827906318682662250e-0002L,
99 	t4	= +2.186948853615520282185576976994418486911e-0002L,
100 	t5	= +8.863235529902196573354554519991152936246e-0003L,
101 	t6	= +3.592128036572480064652191427543994878790e-0003L,
102 	t7	= +1.455834387051455257856833807581901305474e-0003L,
103 	t8	= +5.900274409318599857829983256201725587477e-0004L,
104 	t9	= +2.391291152117265181501116961901122362937e-0004L,
105 	t10	= +9.691533169382729742394024173194981882375e-0005L,
106 	t11	= +3.927994733186415603228178184225780859951e-0005L,
107 	t12	= +1.588300018848323824227640064883334101288e-0005L,
108 	t13	= +6.916271223396808311166202285131722231723e-0006L;
109 
110 #define	i0	0
111 
112 long double
113 __k_tanl(long double x, long double y, int k) {
114 	long double a, t, z, w = 0, s, c;
115 	int *pt = (int *) &t, *px = (int *) &x;
116 	int i, j, hx, ix;
117 
118 	t = 1.0L;
119 	hx = px[i0];
120 	ix = hx & 0x7fffffff;
121 	if (ix < 0x3ffc4000) {
122 		*(3 - i0 + (int *) &t) = 1;	/* make t = one+ulp */
123 		if (ix < 0x3fc60000) {
124 			if (((int) (x * t)) < 1)	/* generate inexact */
125 				w = x;	/* generate underflow if subnormal */
126 		} else {
127 			z = x * x;
128 			if (ix < 0x3ff30000)	/* 2**-12 */
129 				t = z * (t1 + z * (t2 + z * (t3 + z * t4)));
130 			else
131 				t = z * (t1 + z * (t2 + z * (t3 + z * (t4 +
132 					z * (t5 + z * (t6 + z * (t7 + z * (t8 +
133 					z * (t9 + z * (t10 + z * (t11 +
134 					z * (t12 + z * t13))))))))))));
135 			t = y + x * t;
136 			w = x + t;
137 		}
138 		return (k == 0 ? w : -one / w);
139 	}
140 	j = (ix + 0x400) & 0x7ffff800;
141 	i = (j - 0x3ffc4000) >> 11;
142 	pt[i0] = j;
143 	if (hx > 0)
144 		x = y - (t - x);
145 	else
146 		x = (-y) - (t + x);
147 	a = _TBL_tanl_hi[i];
148 	z = x * x;
149 	/* cos(x)-1 */
150 	t = z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
151 	/* sin(x) */
152 	s = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z * pp5)))));
153 	if (k == 0) {
154 		w = a * s;
155 		t = _TBL_tanl_lo[i] + (s + a * w) / (one - (w - t));
156 		return (hx < 0 ? -a - t : a + t);
157 	} else {
158 		w = s + a * t;
159 		c = w + _TBL_tanl_lo[i];
160 		z = one - (a * s - t);
161 		return (hx >= 0 ? z / (-a - c) : z / (a + c));
162 	}
163 }
164