xref: /illumos-gate/usr/src/lib/libm/common/LD/sincospil.c (revision 6aa4fc89ec1cf2cdf7d7c3b9ec059802ac9abe65)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma weak sincospil = __sincospil
31 
32 /*
33  * void sincospil(long double x, long double *s, long double *c)
34  * *s = sinl(pi*x); *c = cosl(pi*x);
35  *
36  * Algorithm, 10/17/2002, K.C. Ng
37  * ------------------------------
38  * Let y = |4x|, z = floor(y), and n = (int)(z mod 8.0) (displayed in binary).
39  *	1. If y == z, then x is a multiple of pi/4. Return the following values:
40  *             ---------------------------------------------------
41  *               n  x mod 2    sin(x*pi)    cos(x*pi)   tan(x*pi)
42  *             ---------------------------------------------------
43  *              000  0.00       +0 ___       +1 ___      +0
44  *              001  0.25       +\/0.5       +\/0.5      +1
45  *              010  0.50       +1 ___       +0 ___      +inf
46  *              011  0.75       +\/0.5       -\/0.5      -1
47  *              100  1.00       -0 ___       -1 ___      +0
48  *              101  1.25       -\/0.5       -\/0.5      +1
49  *              110  1.50       -1 ___       -0 ___      +inf
50  *              111  1.75       -\/0.5       +\/0.5      -1
51  *             ---------------------------------------------------
52  *      2. Otherwise,
53  *             ---------------------------------------------------
54  *               n     t        sin(x*pi)    cos(x*pi)   tan(x*pi)
55  *             ---------------------------------------------------
56  *              000  (y-z)/4	 sinpi(t)     cospi(t)    tanpi(t)
57  *              001  (z+1-y)/4   cospi(t)     sinpi(t)	  1/tanpi(t)
58  *              010  (y-z)/4	 cospi(t)    -sinpi(t)   -1/tanpi(t)
59  *              011  (z+1-y)/4	 sinpi(t)    -cospi(t)	 -tanpi(t)
60  *              100  (y-z)/4	-sinpi(t)    -cospi(t)    tanpi(t)
61  *              101  (z+1-y)/4	-cospi(t)    -sinpi(t)	  1/tanpi(t)
62  *              110  (y-z)/4	-cospi(t)     sinpi(t)	 -1/tanpi(t)
63  *              111  (z+1-y)/4	-sinpi(t)     cospi(t)	 -tanpi(t)
64  *             ---------------------------------------------------
65  *
66  * NOTE. This program compute sinpi/cospi(t<0.25) by __k_sin/cos(pi*t, 0.0).
67  * This will return a result with error slightly more than one ulp (but less
68  * than 2 ulp). If one wants accurate result,  one may break up pi*t in
69  * high (tpi_h) and low (tpi_l) parts and call __k_sin/cos(tip_h, tip_lo)
70  * instead.
71  */
72 
73 #include "libm.h"
74 #include "libm_synonyms.h"
75 #include "longdouble.h"
76 
77 #include <sys/isa_defs.h>
78 
79 #define I(q, m)	((int *) &(q))[m]
80 #define U(q, m)	((unsigned *) &(q))[m]
81 #if defined(__i386) || defined(__amd64)
82 #define LDBL_MOST_SIGNIF_I(ld)	((I(ld, 2) << 16) | (0xffff & (I(ld, 1) >> 15)))
83 #define LDBL_LEAST_SIGNIF_U(ld)	U(ld, 0)
84 #define PREC	64
85 #define PRECM1	63
86 #define PRECM2	62
87 static const long double twoPRECM2 = 9.223372036854775808000000000000000e+18L;
88 #else
89 #define LDBL_MOST_SIGNIF_I(ld)	I(ld, 0)
90 #define LDBL_LEAST_SIGNIF_U(ld)	U(ld, sizeof(long double) / sizeof(int) - 1)
91 #define PREC	113
92 #define PRECM1	112
93 #define PRECM2	111
94 static const long double twoPRECM2 = 5.192296858534827628530496329220096e+33L;
95 #endif
96 
97 static const long double
98 zero	= 0.0L,
99 quater	= 0.25L,
100 one	= 1.0L,
101 pi	= 3.141592653589793238462643383279502884197e+0000L,
102 sqrth	= 0.707106781186547524400844362104849039284835937688474,
103 tiny	= 1.0e-100;
104 
105 void
106 sincospil(long double x, long double *s, long double *c) {
107 	long double y, z, t;
108 	int hx, n, k;
109 	unsigned lx;
110 
111 	hx = LDBL_MOST_SIGNIF_I(x);
112 	lx = LDBL_LEAST_SIGNIF_U(x);
113 	k = ((hx & 0x7fff0000) >> 16) - 0x3fff;
114 	if (k >= PRECM2) {		/* |x| >= 2**(Prec-2) */
115 		if (k >= 16384) {
116 			*s = *c = x - x;
117 		}
118 		else {
119 			if (k >= PREC) {
120 				*s = zero;
121 				*c = one;
122 			}
123 			else if (k == PRECM1) {
124 				if ((lx & 1) == 0) {
125 					*s = zero;
126 					*c = one;
127 				}
128 				else {
129 					*s = -zero;
130 					*c = -one;
131 				}
132 			}
133 			else {	/* k = Prec - 2 */
134 				if ((lx & 1) == 0) {
135 					*s = zero;
136 					*c = one;
137 				}
138 				else {
139 					*s = one;
140 					*c = zero;
141 				}
142 				if ((lx & 2) != 0) {
143 					*s = -*s;
144 					*c = -*c;
145 				}
146 			}
147 		}
148 	}
149 	else if (k < -2) 	/* |x| < 0.25 */
150 		*s = __k_sincosl(pi * fabsl(x), zero, c);
151 	else {
152 		/* y = |4x|, z = floor(y), and n = (int)(z mod 8.0) */
153 		y = 4.0L * fabsl(x);
154 		if (k < PRECM2) {
155 			z = y + twoPRECM2;
156 			n = LDBL_LEAST_SIGNIF_U(z) & 7;	/* 3 LSb of z */
157 			t = z - twoPRECM2;
158 			k = 0;
159 			if (t == y)
160 				k = 1;
161 			else if (t > y) {
162 				n -= 1;
163 				t = quater + (y - t) * quater;
164 			}
165 			else
166 				t = (y - t) * quater;
167 		}
168 		else { 	/* k = Prec-3 */
169 			n = LDBL_LEAST_SIGNIF_U(y) & 7;	/* 3 LSb of z */
170 			k = 1;
171 		}
172 		if (k) {	/* x = N/4 */
173 			if ((n & 1) != 0)
174 				*s = *c = sqrth + tiny;
175 			else
176 				if ((n & 2) == 0) {
177 					*s = zero;
178 					*c = one;
179 				}
180 				else {
181 					*s = one;
182 					*c = zero;
183 				}
184 			if ((n & 4) != 0)
185 				*s = -*s;
186 			if (((n + 1) & 4) != 0)
187 				*c = -*c;
188 		}
189 		else {
190 			if ((n & 1) != 0)
191 				t = quater - t;
192 			if (((n + (n & 1)) & 2) == 0)
193 				*s = __k_sincosl(pi * t, zero, c);
194 			else
195 				*c = __k_sincosl(pi * t, zero, s);
196 			if ((n & 4) != 0)
197 				*s = -*s;
198 			if (((n + 2) & 4) != 0)
199 				*c = -*c;
200 		}
201 	}
202 	if (hx < 0)
203 		*s = -*s;
204 }
205 #undef U
206 #undef LDBL_LEAST_SIGNIF_U
207 #undef I
208 #undef LDBL_MOST_SIGNIF_I
209