1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 /* 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma weak __tanh = tanh 31 32 /* INDENT OFF */ 33 /* 34 * TANH(X) 35 * RETURN THE HYPERBOLIC TANGENT OF X 36 * code based on 4.3bsd 37 * Modified by K.C. Ng for sun 4.0, Jan 31, 1987 38 * 39 * Method : 40 * 1. reduce x to non-negative by tanh(-x) = - tanh(x). 41 * 2. 42 * 0 < x <= 1.e-10 : tanh(x) := x 43 * -expm1(-2x) 44 * 1.e-10 < x <= 1 : tanh(x) := -------------- 45 * expm1(-2x) + 2 46 * 2 47 * 1 <= x <= 22.0 : tanh(x) := 1 - --------------- 48 * expm1(2x) + 2 49 * 22.0 < x <= INF : tanh(x) := 1. 50 * 51 * Note: 22 was chosen so that fl(1.0+2/(expm1(2*22)+2)) == 1. 52 * 53 * Special cases: 54 * tanh(NaN) is NaN; 55 * only tanh(0)=0 is exact for finite argument. 56 */ 57 58 #include "libm.h" 59 #include "libm_protos.h" 60 #include <math.h> 61 62 static const double 63 one = 1.0, 64 two = 2.0, 65 small = 1.0e-10, 66 big = 1.0e10; 67 /* INDENT ON */ 68 69 double 70 tanh(double x) 71 { 72 double t, y, z; 73 int signx; 74 volatile double dummy __unused; 75 76 if (isnan(x)) 77 return (x * x); /* + -> * for Cheetah */ 78 signx = signbit(x); 79 t = fabs(x); 80 z = one; 81 if (t <= 22.0) { 82 if (t > one) 83 z = one - two / (expm1(t + t) + two); 84 else if (t > small) { 85 y = expm1(-t - t); 86 z = -y / (y + two); 87 } else { 88 /* raise the INEXACT flag for non-zero t */ 89 dummy = t + big; 90 #ifdef lint 91 dummy = dummy; 92 #endif 93 return (x); 94 } 95 } else if (!finite(t)) 96 return (copysign(1.0, x)); 97 else 98 return ((signx != 0) ? -z + small * small : z - small * small); 99 100 return ((signx != 0) ? -z : z); 101 } 102