xref: /illumos-gate/usr/src/lib/libm/common/C/__rem_pio2m.c (revision a6bde1a23b60f140c7ed78df979c2e22b1ed9b2c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
23  */
24 /*
25  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28 
29 /*
30  * int __rem_pio2m(x,y,e0,nx,prec,ipio2)
31  * double x[],y[]; int e0,nx,prec; const int ipio2[];
32  *
33  * __rem_pio2m return the last three digits of N with
34  *		y = x - N*pi/2
35  * so that |y| < pi/4.
36  *
37  * The method is to compute the integer (mod 8) and fraction parts of
38  * (2/pi)*x without doing the full multiplication. In general we
39  * skip the part of the product that are known to be a huge integer (
40  * more accurately, = 0 mod 8 ). Thus the number of operations are
41  * independent of the exponent of the input.
42  *
43  * (2/PI) is represented by an array of 24-bit integers in ipio2[].
44  * Here PI could as well be a machine value pi.
45  *
46  * Input parameters:
47  * 	x[]	The input value (must be positive) is broken into nx
48  *		pieces of 24-bit integers in double precision format.
49  *		x[i] will be the i-th 24 bit of x. The scaled exponent
50  *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
51  *		match x's up to 24 bits.
52  *
53  *		Example of breaking a double z into x[0]+x[1]+x[2]:
54  *			e0 = ilogb(z)-23
55  *			z  = scalbn(z,-e0)
56  *		for i = 0,1,2
57  *			x[i] =  floor(z)
58  *			z    = (z-x[i])*2**24
59  *
60  *
61  *	y[]	ouput result in an array of double precision numbers.
62  *		The dimension of y[] is:
63  *			24-bit  precision	1
64  *			53-bit  precision	2
65  *			64-bit  precision	2
66  *			113-bit precision	3
67  *		The actual value is the sum of them. Thus for 113-bit
68  *		precsion, one may have to do something like:
69  *
70  *		long double t,w,r_head, r_tail;
71  *		t = (long double)y[2] + (long double)y[1];
72  *		w = (long double)y[0];
73  *		r_head = t+w;
74  *		r_tail = w - (r_head - t);
75  *
76  *	e0	The exponent of x[0]
77  *
78  *	nx	dimension of x[]
79  *
80  *  	prec	an interger indicating the precision:
81  *			0	24  bits (single)
82  *			1	53  bits (double)
83  *			2	64  bits (extended)
84  *			3	113 bits (quad)
85  *
86  *	ipio2[]
87  *		integer array, contains the (24*i)-th to (24*i+23)-th
88  *		bit of 2/pi or 2/PI after binary point. The corresponding
89  *		floating value is
90  *
91  *			ipio2[i] * 2^(-24(i+1)).
92  *
93  * External function:
94  *	double scalbn( ), floor( );
95  *
96  *
97  * Here is the description of some local variables:
98  *
99  * 	jk	jk+1 is the initial number of terms of ipio2[] needed
100  *		in the computation. The recommended value is 3,4,4,
101  *		6 for single, double, extended,and quad.
102  *
103  * 	jz	local integer variable indicating the number of
104  *		terms of ipio2[] used.
105  *
106  *	jx	nx - 1
107  *
108  *	jv	index for pointing to the suitable ipio2[] for the
109  *		computation. In general, we want
110  *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
111  *		is an integer. Thus
112  *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
113  *		Hence jv = max(0,(e0-3)/24).
114  *
115  *	jp	jp+1 is the number of terms in pio2[] needed, jp = jk.
116  *
117  * 	q[]	double array with integral value, representing the
118  *		24-bits chunk of the product of x and 2/pi.
119  *
120  *	q0	the corresponding exponent of q[0]. Note that the
121  *		exponent for q[i] would be q0-24*i.
122  *
123  *	pio2[]	double precision array, obtained by cutting pi/2
124  *		into 24 bits chunks.
125  *
126  *	f[]	ipio2[] in floating point
127  *
128  *	iq[]	integer array by breaking up q[] in 24-bits chunk.
129  *
130  *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
131  *
132  *	ih	integer. If >0 it indicats q[] is >= 0.5, hence
133  *		it also indicates the *sign* of the result.
134  *
135  */
136 
137 #include "libm.h"
138 
139 #if defined(__i386) && !defined(__amd64)
140 extern int __swapRP(int);
141 #endif
142 
143 static const int init_jk[] = { 3, 4, 4, 6 }; /* initial value for jk */
144 
145 static const double pio2[] = {
146 	1.57079625129699707031e+00,
147 	7.54978941586159635335e-08,
148 	5.39030252995776476554e-15,
149 	3.28200341580791294123e-22,
150 	1.27065575308067607349e-29,
151 	1.22933308981111328932e-36,
152 	2.73370053816464559624e-44,
153 	2.16741683877804819444e-51,
154 };
155 
156 static const double
157 	zero	= 0.0,
158 	one	= 1.0,
159 	half	= 0.5,
160 	eight	= 8.0,
161 	eighth	= 0.125,
162 	two24	= 16777216.0,
163 	twon24	= 5.960464477539062500E-8;
164 
165 int
166 __rem_pio2m(double *x, double *y, int e0, int nx, int prec, const int *ipio2)
167 {
168 	int	jz, jx, jv, jp, jk, carry, n, iq[20];
169 	int	i, j, k, m, q0, ih;
170 	double	z, fw, f[20], fq[20], q[20];
171 #if defined(__i386) && !defined(__amd64)
172 	int	rp;
173 
174 	rp = __swapRP(fp_extended);
175 #endif
176 
177 	/* initialize jk */
178 	jp = jk = init_jk[prec];
179 
180 	/* determine jx,jv,q0, note that 3>q0 */
181 	jx = nx - 1;
182 	jv = (e0 - 3) / 24;
183 	if (jv < 0)
184 		jv = 0;
185 	q0 = e0 - 24 * (jv + 1);
186 
187 	/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
188 	j = jv - jx;
189 	m = jx + jk;
190 	for (i = 0; i <= m; i++, j++)
191 		f[i] = (j < 0)? zero : (double)ipio2[j];
192 
193 	/* compute q[0],q[1],...q[jk] */
194 	for (i = 0; i <= jk; i++) {
195 		for (j = 0, fw = zero; j <= jx; j++)
196 			fw += x[j] * f[jx+i-j];
197 		q[i] = fw;
198 	}
199 
200 	jz = jk;
201 recompute:
202 	/* distill q[] into iq[] reversingly */
203 	for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) {
204 		fw = (double)((int)(twon24 * z));
205 		iq[i] = (int)(z - two24 * fw);
206 		z = q[j-1] + fw;
207 	}
208 
209 	/* compute n */
210 	z = scalbn(z, q0);		/* actual value of z */
211 	z -= eight * floor(z * eighth);	/* trim off integer >= 8 */
212 	n = (int)z;
213 	z -= (double)n;
214 	ih = 0;
215 	if (q0 > 0) {			/* need iq[jz-1] to determine n */
216 		i = (iq[jz-1] >> (24 - q0));
217 		n += i;
218 		iq[jz-1] -= i << (24 - q0);
219 		ih = iq[jz-1] >> (23 - q0);
220 	} else if (q0 == 0) {
221 		ih = iq[jz-1] >> 23;
222 	} else if (z >= half) {
223 		ih = 2;
224 	}
225 
226 	if (ih > 0) {	/* q > 0.5 */
227 		n += 1;
228 		carry = 0;
229 		for (i = 0; i < jz; i++) {	/* compute 1-q */
230 			j = iq[i];
231 			if (carry == 0) {
232 				if (j != 0) {
233 					carry = 1;
234 					iq[i] = 0x1000000 - j;
235 				}
236 			} else {
237 				iq[i] = 0xffffff - j;
238 			}
239 		}
240 		if (q0 > 0) {		/* rare case: chance is 1 in 12 */
241 			switch (q0) {
242 			case 1:
243 				iq[jz-1] &= 0x7fffff;
244 				break;
245 			case 2:
246 				iq[jz-1] &= 0x3fffff;
247 				break;
248 			}
249 		}
250 		if (ih == 2) {
251 			z = one - z;
252 			if (carry != 0)
253 				z -= scalbn(one, q0);
254 		}
255 	}
256 
257 	/* check if recomputation is needed */
258 	if (z == zero) {
259 		j = 0;
260 		for (i = jz - 1; i >= jk; i--)
261 			j |= iq[i];
262 		if (j == 0) {	/* need recomputation */
263 			/* set k to no. of terms needed */
264 			for (k = 1; iq[jk-k] == 0; k++)
265 				;
266 
267 			/* add q[jz+1] to q[jz+k] */
268 			for (i = jz + 1; i <= jz + k; i++) {
269 				f[jx+i] = (double)ipio2[jv+i];
270 				for (j = 0, fw = zero; j <= jx; j++)
271 					fw += x[j] * f[jx+i-j];
272 				q[i] = fw;
273 			}
274 			jz += k;
275 			goto recompute;
276 		}
277 	}
278 
279 	/* cut out zero terms */
280 	if (z == zero) {
281 		jz -= 1;
282 		q0 -= 24;
283 		while (iq[jz] == 0) {
284 			jz--;
285 			q0 -= 24;
286 		}
287 	} else {		/* break z into 24-bit if neccessary */
288 		z = scalbn(z, -q0);
289 		if (z >= two24) {
290 			fw = (double)((int)(twon24 * z));
291 			iq[jz] = (int)(z - two24 * fw);
292 			jz += 1;
293 			q0 += 24;
294 			iq[jz] = (int)fw;
295 		} else {
296 			iq[jz] = (int)z;
297 		}
298 	}
299 
300 	/* convert integer "bit" chunk to floating-point value */
301 	fw = scalbn(one, q0);
302 	for (i = jz; i >= 0; i--) {
303 		q[i] = fw * (double)iq[i];
304 		fw *= twon24;
305 	}
306 
307 	/* compute pio2[0,...,jp]*q[jz,...,0] */
308 	for (i = jz; i >= 0; i--) {
309 		for (fw = zero, k = 0; k <= jp && k <= jz - i; k++)
310 			fw += pio2[k] * q[i+k];
311 		fq[jz-i] = fw;
312 	}
313 
314 	/* compress fq[] into y[] */
315 	switch (prec) {
316 	case 0:
317 		fw = zero;
318 		for (i = jz; i >= 0; i--)
319 			fw += fq[i];
320 		y[0] = (ih == 0)? fw : -fw;
321 		break;
322 
323 	case 1:
324 	case 2:
325 		fw = zero;
326 		for (i = jz; i >= 0; i--)
327 			fw += fq[i];
328 		y[0] = (ih == 0)? fw : -fw;
329 		fw = fq[0] - fw;
330 		for (i = 1; i <= jz; i++)
331 			fw += fq[i];
332 		y[1] = (ih == 0)? fw : -fw;
333 		break;
334 
335 	default:
336 		for (i = jz; i > 0; i--) {
337 			fw = fq[i-1] + fq[i];
338 			fq[i] += fq[i-1] - fw;
339 			fq[i-1] = fw;
340 		}
341 		for (i = jz; i > 1; i--) {
342 			fw = fq[i-1] + fq[i];
343 			fq[i] += fq[i-1] - fw;
344 			fq[i-1] = fw;
345 		}
346 		for (fw = zero, i = jz; i >= 2; i--)
347 			fw += fq[i];
348 		if (ih == 0) {
349 			y[0] = fq[0];
350 			y[1] = fq[1];
351 			y[2] = fw;
352 		} else {
353 			y[0] = -fq[0];
354 			y[1] = -fq[1];
355 			y[2] = -fw;
356 		}
357 	}
358 
359 #if defined(__i386) && !defined(__amd64)
360 	(void) __swapRP(rp);
361 #endif
362 	return (n & 7);
363 }
364