xref: /illumos-gate/usr/src/lib/libjedec/common/libjedec.h (revision 2d9a5a52c758e1dbaee1569f0d91634a0f5cbe39)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright (c) 2018, Joyent, Inc.
14  * Copyright 2023 Oxide Computer Company
15  */
16 
17 #ifndef _LIBJEDEC_H
18 #define	_LIBJEDEC_H
19 
20 /*
21  * Library routines that support various JEDEC standards:
22  *
23  *  o JEDEC JEP-106 vendor data
24  *  o Temperature range and Measurement Standards for Components and Modules
25  *    (JESD402-1)
26  *  o DDR4 Serial Presence Detect (SPD) decoding
27  *  o DDR5 Serial Presence Detect (SPD) decoding
28  */
29 
30 #include <sys/types.h>
31 #include <stdint.h>
32 #include <libnvpair.h>
33 
34 #ifdef __cplusplus
35 extern "C" {
36 #endif
37 
38 /*
39  * Decode a JEDEC continuation ID (without parity) and a group ID.
40  */
41 extern const char *libjedec_vendor_string(uint_t, uint_t);
42 
43 /*
44  * JEDEC operating temperature ranges. These are defined in JESD402-1A (March
45  * 2022).
46  */
47 typedef enum {
48 	/*
49 	 * Case Operating Temperature Ranges
50 	 */
51 	JEDEC_TEMP_CASE_A1T,
52 	JEDEC_TEMP_CASE_A2T,
53 	JEDEC_TEMP_CASE_A3T,
54 	JEDEC_TEMP_CASE_IT,
55 	JEDEC_TEMP_CASE_ET,
56 	JEDEC_TEMP_CASE_ST,
57 	JEDEC_TEMP_CASE_XT,
58 	JEDEC_TEMP_CASE_NT,
59 	JEDEC_TEMP_CASE_RT,
60 	/*
61 	 * Operating Ambient Temperature Ranges
62 	 */
63 	JEDEC_TEMP_AMB_CT,
64 	JEDEC_TEMP_AMB_IOT,
65 	JEDEC_TEMP_AMB_IPT,
66 	JEDEC_TEMP_AMB_IXT,
67 	JEDEC_TEMP_AMB_AO3T,
68 	JEDEC_TEMP_AMB_AO2T,
69 	JEDEC_TEMP_AMB_AO1T,
70 	/*
71 	 * Storage temperature ranges
72 	 */
73 	JEDEC_TEMP_STOR_2,
74 	JEDEC_TEMP_STOR_1B,
75 	JEDEC_TEMP_STOR_1A,
76 	JEDEC_TEMP_STOR_ST
77 } libjedec_temp_range_t;
78 extern boolean_t libjedec_temp_range(libjedec_temp_range_t, int32_t *,
79     int32_t *);
80 
81 /*
82  * This is a series of error codes that libjedec may produce while trying to
83  * parse the overall SPD data structure. These represent a top-level failure and
84  * have meaning when no nvlist_t is returned.
85  */
86 typedef enum {
87 	/*
88 	 * Indicates that we didn't encounter a fatal error; however, we may
89 	 * have a specific parsing error that relates to a key in the nvlist.
90 	 */
91 	LIBJEDEC_SPD_OK	= 0,
92 	/*
93 	 * Indicates that we did not have enough memory while trying to
94 	 * construct the generated nvlist_t.
95 	 */
96 	LIBJEDEC_SPD_NOMEM,
97 	/*
98 	 * Indicates that the data that we found was insufficient to
99 	 * successfully parse basic information. The required size varies per
100 	 * SPD key byte type.
101 	 */
102 	LIBJEDEC_SPD_TOOSHORT,
103 	/*
104 	 * Indicates that we found an unsupported type of SPD data and therefore
105 	 * cannot parse this.
106 	 */
107 	LIBJEDEC_SPD_UNSUP_TYPE,
108 	/*
109 	 * Indicates that while we found a supported type of SPD data, we do not
110 	 * understand its revision.
111 	 */
112 	LIBJEDEC_SPD_UNSUP_REV
113 } spd_error_t;
114 
115 /*
116  * Decode a binary payload of SPD data, if possible. The returned nvlist is made
117  * up of a series of keys described below. Parsing errors are broken into two
118  * categories. Fatal errors set a value in the spd_error_t below. Non-fatal
119  * errors, such as encountering a value which we don't have a translation for,
120  * are in a nested errors nvlist_t indexed by key.
121  *
122  * The keys are all dot delineated to create a few different top-level
123  * namespaces. These include:
124  *
125  * "meta" -- Which includes information about the SPD, encoding, and things like
126  * the type of module.
127  *
128  * "dram" -- Parameters that are specific to the SDRAM dies present. What one
129  * thinks of as a stick of DRAM consists of several different SDRAM dies on the
130  * PCB. This includes things like the row and columns bits and timing
131  * information.
132  *
133  * "ddr4", "ddr5" -- These include information which is specific to the general
134  * DDR standard. While we have tried to consolidate information between them
135  * where applicable, some things are specific to the standard.
136  *
137  * "module" -- Parameters that are specific to the broader module and PCB
138  * itself. This includes information like the height or devices present.
139  *
140  * "ddr4.rdimm", "ddr4.lrdimm", "ddr5.rdimm", etc. -- These are parameter that
141  * are specific to a module being both the combination of a specific DDR
142  * standard and a specific type of module. Common parameters are often in the
143  * "module" section.
144  *
145  * "mfg" -- Manufacturing related information.
146  *
147  * "errors" -- The key for the errors nvlist_t. See the spd_error_kind_t
148  * definition later on. Each error has both a numeric code and a string message.
149  */
150 extern nvlist_t *libjedec_spd(const uint8_t *, size_t, spd_error_t *);
151 
152 /*
153  * The following are keys in the metadata nvlist_t. The SPD_KEY_NBYTES_TOTAL is
154  * present in DDR4 and DDR5. The SPD_KEY_NBYTES_USED is only present on DDR4
155  * right now. All supported SPD encodings have the raw revision information. If
156  * the values for the total bytes or used bytes are set to undefined, then they
157  * will not be present.
158  *
159  * DDR5 introduces an idea of a public beta level that gets reset between
160  * external releases. It theoretically modifies every scion. DDR5 also
161  * introduces a second revision that is for the module information. This will
162  * not be present on systems prior to DDR5.
163  */
164 #define	SPD_KEY_NBYTES_TOTAL	"meta.total-bytes"	/* uint32_t */
165 #define	SPD_KEY_NBYTES_USED	"meta.used-bytes"	/* uint32_t */
166 #define	SPD_KEY_REV_ENC	"meta.revision-encoding"	/* uint32_t */
167 #define	SPD_KEY_REV_ADD	"meta.revision-additions"	/* uint32_t */
168 #define	SPD_KEY_BETA	"meta.beta-version"		/* uint32_t */
169 #define	SPD_KEY_MOD_REV_ENC	"meta.module-revision-encoding"	/* uint32_t */
170 #define	SPD_KEY_MOD_REV_ADD	"meta.module-revision-additions" /* uint32_t */
171 
172 /*
173  * DRAM Type information. This indicates the standard that the device conforms
174  * to. This enumeration's values match the JEDEC specification's values. This is
175  * present for everything.
176  */
177 typedef enum {
178 	SPD_DT_FAST_PAGE_MODE		= 0x01,
179 	SPD_DT_EDO			= 0x02,
180 	SPD_DT_PIPE_NIBBLE		= 0x03,
181 	SPD_DT_SDRAM			= 0x04,
182 	SPD_DT_ROM			= 0x05,
183 	SPD_DT_DDR_SGRAM		= 0x06,
184 	SPD_DT_DDR_SDRAM		= 0x07,
185 	SPD_DT_DDR2_SDRAM		= 0x08,
186 	SPD_DT_DDR2_SDRAM_FBDIMM	= 0x09,
187 	SPD_DT_DDR2_SDRAM_FDIMM_P	= 0x0a,
188 	SPD_DT_DDR3_SDRAM		= 0x0b,
189 	SPD_DT_DDR4_SDRAM		= 0x0c,
190 	SPD_DT_DDR4E_SDRAM		= 0x0e,
191 	SPD_DT_LPDDR3_SDRAM		= 0x0f,
192 	SPD_DT_LPDDR4_SDRAM		= 0x10,
193 	SPD_DT_LPDDR4X_SDRAM		= 0x11,
194 	SPD_DT_DDR5_SDRAM		= 0x12,
195 	SPD_DT_LPDDR5_SDRAM		= 0x13,
196 	SPD_DT_DDR5_NVDIMM_P		= 0x14,
197 	SPD_DT_LPDDR5X_SDRAM		= 0x15
198 } spd_dram_type_t;
199 #define	SPD_KEY_DRAM_TYPE	"meta.dram-type"	/* uint32_t (enum) */
200 
201 typedef enum {
202 	SPD_MOD_TYPE_RDIMM,
203 	SPD_MOD_TYPE_UDIMM,
204 	SPD_MOD_TYPE_SODIMM,
205 	SPD_MOD_TYPE_LRDIMM,
206 	SPD_MOD_TYPE_MRDIMM,
207 	SPD_MOD_TYPE_DDIMM,
208 	SPD_MOD_TYPE_SOLDER,
209 	SPD_MOD_TYPE_MINI_RDIMM,
210 	SPD_MOD_TYPE_MINI_UDIMM,
211 	SPD_MOD_TYPE_72b_SO_RDIMM,
212 	SPD_MOD_TYPE_72b_SO_UDIMM,
213 	SPD_MOD_TYPE_16b_SO_DIMM,
214 	SPD_MOD_TYPE_32b_SO_DIMM
215 } spd_module_type_t;
216 #define	SPD_KEY_MOD_TYPE	"meta.module-type"	/* uint32_t (enum) */
217 typedef enum {
218 	SPD_MOD_NOT_HYBRID,
219 	SPD_MOD_HYBRID_NVDIMMM
220 } spd_module_hybrid_t;
221 #define	SPD_KEY_MOD_HYBRID_TYPE	"meta.hybrid-type"	/* uint32_t */
222 
223 typedef enum {
224 	SPD_MOD_TYPE_NVDIMM_N,
225 	SPD_MOD_TYPE_NVDIMM_P,
226 	SPD_MOD_TYPE_NVDIMM_H
227 } spd_module_nvdimm_type_t;
228 #define	SPD_KEY_MOD_NVDIMM_TYPE	"meta.nvdimm-type"	/* uint32_t */
229 
230 /*
231  * Different SPD standards have different integrity rules. The regions covered
232  * by the CRCs also vary. We end up with per-spec keys. All data types for these
233  * are uint32_t's so that way we can record the expected CRC. We use a uint32_t
234  * for consistency even though the data only fits in a uint16_t. Note, callers
235  * must check to see if these exist. If there are keys with these names in the
236  * errors object, then the rest of the data should be considered suspect, but we
237  * will have attempted to parse everything we can.
238  */
239 #define	SPD_KEY_CRC_DDR4_BASE	"meta.crc-ddr4-base"	/* uint32_t */
240 #define	SPD_KEY_CRC_DDR4_BLK1	"meta.crc-ddr4-block1"	/* uint32_t */
241 #define	SPD_KEY_CRC_DDR5	"meta.crc-ddr5"		/* uint32_t */
242 
243 /*
244  * DDR5 adds a field in the SPD to describe how data should be hashed to compute
245  * and compare to an attribute certification to authenticate modules. This is
246  * only present in DDR5. We only add a value here if this is actually supported.
247  */
248 typedef enum {
249 	SPD_HASH_SEQ_ALG_1
250 } spd_hash_seq_alg_t;
251 #define	SPD_KEY_HASH_SEQ	"meta.hash-sequence-algorithm"	/* uint32_t */
252 
253 /*
254  * This section contains information related to DRAM technology.
255  */
256 
257 /*
258  * Bank, bank group, row, and column bits. These are all present in both DDR4
259  * and DDR5. DDR4 allows cases where there are no bank groups. If no bits are
260  * used, then this item is empty.
261  */
262 #define	SPD_KEY_NROW_BITS	"dram.num-row-bits"	/* uint32_t */
263 #define	SPD_KEY_NCOL_BITS	"dram.num-column-bits"	/* uint32_t */
264 #define	SPD_KEY_NBANK_BITS	"dram.num-bank-bits"	/* uint32_t */
265 #define	SPD_KEY_NBGRP_BITS	"dram.num-bank-group-bits"	/* uint32_t */
266 #define	SPD_KEY_SEC_NROW_BITS	"dram.sec-num-row-bits"		/* uint32_t */
267 #define	SPD_KEY_SEC_NCOL_BITS	"dram.sec-num-column-bits"	/* uint32_t */
268 #define	SPD_KEY_SEC_NBANK_BITS	"dram.sec-num-bank-bits"	/* uint32_t */
269 #define	SPD_KEY_SEC_NBGRP_BITS	"dram.sec-num-bank-group-bits"	/* uint32_t */
270 
271 /*
272  * Die Density. This is the capacity that each die contains in bits.
273  */
274 #define	SPD_KEY_DIE_SIZE	"dram.die-bit-size"	/* uint64_t */
275 #define	SPD_KEY_SEC_DIE_SIZE	"dram.sec-die-bit-size"	/* uint64_t */
276 
277 /*
278  * Package information. DRAM may be made up of a monolithic package type or
279  * several different types. There is a boolean property present to indicate that
280  * it is not monolithic. For these there is a die count and then a separate
281  * notion of what the signal loading type is. If the property is present then we
282  * will also have the die count and loading type for the secondary. Note, these
283  * loading parameters are considered at the device balls as opposed to specific
284  * signals.
285  */
286 #define	SPD_KEY_PKG_NOT_MONO	"meta.non-monolithic-package"	/* key only */
287 #define	SPD_KEY_PKG_NDIE	"dram.package-die-count"	/* uint32_t */
288 #define	SPD_KEY_SEC_PKG_NDIE	"dram.sec-package-die-count"	/* uint32_t */
289 typedef enum {
290 	SPD_SL_UNSPECIFIED,
291 	SPD_SL_MUTLI_STACK,
292 	SPD_SL_3DS
293 } spd_signal_loading_t;
294 #define	SPD_KEY_PKG_SL		"dram.package-sig-loading"	/* uint32_t */
295 #define	SPD_KEY_SEC_PKG_SL	"dram.sec-package-sig-loading"	/* uint32_t */
296 
297 /*
298  * Post-package Repair. PPR is supported in DDR4 and DDR5. A key is used to
299  * indicate  If PPR is not supported, then this will not be present.
300  */
301 typedef enum {
302 	SPD_PPR_F_HARD_PPR		= 1 << 0,
303 	SPD_PPR_F_SOFT_PPR		= 1 << 2,
304 	SPD_PPR_F_MBIST_PPR		= 1 << 3,
305 	SPD_PPR_F_PPR_UNDO		= 1 << 4
306 } spd_ppr_flags_t;
307 
308 typedef enum {
309 	SPD_PPR_GRAN_BANK_GROUP,
310 	SPD_PPR_GRAN_BANK
311 } spd_ppr_gran_t;
312 #define	SPD_KEY_PPR		"dram.ppr-flags"	/* uint32_t (enum) */
313 #define	SPD_KEY_PPR_GRAN	"dram.ppr-gran"		/* uint32_t (enum) */
314 
315 /*
316  * Voltages in mV. This is an array of nominal voltages that are supported. DDR3
317  * defines multiple voltages, but DDR4 and DDR5 only have a single voltage
318  * (specific to the supply). DDR3 and DDR4 only defined V~DD~ in SPD. While
319  * V~DQ~ and V~PP~ are defined in DDR5.
320  */
321 #define	SPD_KEY_NOM_VDD		"dram.nominal-vdd"	/* uint32_t[] */
322 #define	SPD_KEY_NOM_VDDQ	"dram.nominal-vddq"	/* uint32_t[] */
323 #define	SPD_KEY_NOM_VPP		"dram.nominal-vpp"	/* uint32_t[] */
324 
325 /*
326  * DRAM module organization. This describes the number of ranks that exist on
327  * the device. In DDR5 this refers to the sub-channel. In DDR4, it refers to the
328  * entire channel. The rank mix may be symmetrical or asymmetrical. A key will
329  * be set if that's the case.
330  */
331 #define	SPD_KEY_RANK_ASYM	"dram.asymmetrical-ranks"	/* key */
332 #define	SPD_KEY_NRANKS		"dram.num-ranks"	/* uint32_t */
333 
334 /*
335  * DRAM and Module widths. The module width is what we think of of when we think
336  * of an entire stick, e.g. the DDR4 72-bit (64-bit data, 8-bit ECC) bus.
337  * Separately the individual DRAM dies themselves have a width which is
338  * SPD_KEY_DRAM_WIDTH. The main bus width is split between the primary data size
339  * and the ecc data size. In DDR4 and earlier this is the entire channel. In
340  * DDR5 this is duplicated for each sub-channel.
341  */
342 #define	SPD_KEY_DRAM_WIDTH	"dram.width"		/* uint32_t */
343 #define	SPD_KEY_SEC_DRAM_WIDTH	"dram.sec-width"	/* uint32_t */
344 #define	SPD_KEY_NSUBCHAN	"module.num-subchan"	/* uint32_t */
345 #define	SPD_KEY_DATA_WIDTH	"module.data-width"	/* uint32_t */
346 #define	SPD_KEY_ECC_WIDTH	"module.ecc-width"	/* uint32_t */
347 
348 /*
349  * DDR3 and DDR4 specify specific timebases in the SPD data. DDR5 just requires
350  * a specific timebase. In the case of DDR5 we just set both values to be the
351  * same. This like all other time values is explicitly in ps.
352  */
353 #define	SPD_KEY_MTB	"dram.median-time-base"		/* uint32_t */
354 #define	SPD_KEY_FTB	"dram.fine-time-base"		/* uint32_t */
355 
356 /*
357  * Supported CAS Latencies. This is an array of integers to indicate which index
358  * CAS latencies are possible.
359  */
360 #define	SPD_KEY_CAS	"dram.cas-latencies"		/* uint32_t [] */
361 
362 /*
363  * Time parameters. These are all in picoseconds. All values are uint64_t.
364  */
365 #define	SPD_KEY_TCKAVG_MIN	"dram.t~CKAVG~min"
366 #define	SPD_KEY_TCKAVG_MAX	"dram.t~CKAVG~max"
367 #define	SPD_KEY_TAA_MIN		"dram.t~AA~min"
368 #define	SPD_KEY_TRCD_MIN	"dram.t~RCD~min"
369 #define	SPD_KEY_TRP_MIN		"dram.t~RP~min"
370 #define	SPD_KEY_TRAS_MIN	"dram.t~RAS~min"
371 #define	SPD_KEY_TRC_MIN		"dram.t~RC~min"
372 #define	SPD_KEY_TRFC1_MIN	"dram.t~RFC1~min"
373 #define	SPD_KEY_TRFC2_MIN	"dram.t~RFC2~min"
374 #define	SPD_KEY_TFAW		"dram.t~FAW~"
375 #define	SPD_KEY_TRRD_L_MIN	"dram.t~RRD_S~min"
376 #define	SPD_KEY_TCCD_L_MIN	"dram.t~CCD_S~min"
377 #define	SPD_KEY_TWR_MIN		"dram.t~WR~min"
378 
379 /*
380  * The following time are only used in DDR4. While some of the DDR4 and DDR5
381  * write to read or write to write parameters are similar, because they use
382  * different names for times, we distinguish them as different values.
383  */
384 #define	SPD_KEY_TRFC4_MIN	"dram.t~RFC4~min"
385 #define	SPD_KEY_TRRD_S_MIN	"dram.t~RRD_S~min"
386 #define	SPD_KEY_TWTRS_MIN	"dram.t~WTR_S~min"
387 #define	SPD_KEY_TWTRL_MIN	"dram.t~WTR_L~min"
388 
389 /*
390  * The following times are specific to DDR5. t~CCD_L_WTR~ in DDR5 is the
391  * equivalent to t~WTRS_L~min, same with t~CCD_S_WTR~.
392  */
393 #define	SPD_KEY_TCCDLWR		"dram.t~CCD_L_WR"
394 #define	SPD_KEY_TCCDLWR2	"dram.t~CCD_L_WR2"
395 #define	SPD_KEY_TCCDLWTR	"dram.t~CCD_L_WTR"
396 #define	SPD_KEY_TCCDSWTR	"dram.t~CCD_S_WTR"
397 #define	SPD_KEY_TRTP		"dram.t~RTP~"
398 
399 /*
400  * While prior DDR standards did have minimum clock times for certain
401  * activities, these were first added to the SPD data in DDR5. All values for
402  * these are uint32_t's and are in clock cycles.
403  */
404 #define	SPD_KEY_TRRDL_NCK	"dram.t~RRD_L~nCK"
405 #define	SPD_KEY_TCCDL_NCK	"dram.t~CCD_L~nCK"
406 #define	SPD_KEY_TCCDLWR_NCK	"dram.t~CCD_L_WR~nCK"
407 #define	SPD_KEY_TCCDLWR2_NCK	"dram.t~CCD_L_WR2~nCK"
408 #define	SPD_KEY_TFAW_NCK	"dram.t~FAW~nCK"
409 #define	SPD_KEY_TCCDLWTR_NCK	"dram.t~CCD_L_WTR~nCK"
410 #define	SPD_KEY_TCCDSWTR_NCK	"dram.t~CCD_S_WTR~nCK"
411 #define	SPD_KEY_TRTP_NCK	"dram.t~RTP~nCK"
412 
413 /*
414  * The following times are only used in DDR5. The RFCx_dlr values are for 3DS
415  * RDIMMs.
416  */
417 #define	SPD_KEY_TRFCSB		"dram.t~RFCsb~"
418 #define	SPD_KEY_TRFC1_DLR	"dram.3ds-t~RFC1_dlr~"
419 #define	SPD_KEY_TRFC2_DLR	"dram.3ds-t~RFC2_dlr~"
420 #define	SPD_KEY_TRFCSB_DLR	"dram.3ds-t~RFCsb_dlr~"
421 
422 /*
423  * The following are DDR4 specific properties, so they are prefixed with "ddr4".
424  * These refer to the maximum activate window and the maximum activate count. In
425  * cases where the MAC is unknown no key will be present.
426  */
427 #define	SPD_KEY_DDR4_MAW	"ddr4.maw"		/* uint32_t */
428 #define	SPD_KEY_DDR4_MAC	"ddr4.mac"		/* uint32_t */
429 #define	SPD_KEY_DDR4_MAC_UNLIMITED	UINT32_MAX
430 
431 /*
432  * The following are DDR5 specific properties. BL32 indicates whether burst
433  * length 32 mode is supported, which is a key. Along with the partial array
434  * self refresh. The Duty Cycle Adjustor is an enumeration because there are
435  * multiple modes. The wide temperature sensing is another DDR5 bit represented
436  * as a key as well as an enum of fault handling.
437  */
438 #define	SPD_KEY_DDR5_BL32	"ddr5.bl32"		/* key */
439 #define	SPD_KEY_DDR5_PASR	"ddr5.pasr"		/* key */
440 typedef enum {
441 	SPD_DCA_UNSPPORTED,
442 	SPD_DCA_1_OR_2_PHASE,
443 	SPD_DCA_4_PHASE
444 } spd_dca_t;
445 #define	SPD_KEY_DDR5_DCA	"ddr5.dca"		/* uint32_t */
446 #define	SPD_KEY_DDR5_WIDE_TS	"ddr5.wide-temp-sense"	/* key */
447 typedef enum {
448 	SPD_FLT_BOUNDED		= 1 << 0,
449 	SPD_FLT_WRSUP_MR9	= 1 << 1,
450 	SPD_FLT_WRSUP_MR15	= 1 << 2
451 } spd_fault_t;
452 #define	SPD_KEY_DDR5_FLT	"ddr5.fault-handling"	/* uint32_t */
453 
454 /*
455  * DDR5 allows for non-standard core timing options. This is indicated by a
456  * single key that acts as a flag.
457  */
458 #define	SPD_KEY_DDR5_NONSTD_TIME	"ddr5.non-standard-timing" /* key */
459 
460 /*
461  * DDR5 adds information about refresh management. This is split into
462  * information about general refresh management and then optional adaptive
463  * refresh management. There are three levels of adaptive refresh management
464  * titled A, B, and C. Both the general refresh management and the adaptive
465  * refresh management exist for both the primary and secondary types in
466  * asymmetrical modules. All values here are uint32_t's.
467  */
468 typedef enum {
469 	SPD_RFM_F_REQUIRED	= 1 << 0,
470 	SPD_RFM_F_DRFM_SUP	= 1 << 1,
471 } spd_rfm_flags_t;
472 #define	SPD_KEY_DDR5_RFM_FLAGS_PRI	"ddr5.rfm.flags"
473 #define	SPD_KEY_DDR5_RFM_RAAIMT_PRI	"ddr5.rfm.raaimt"
474 #define	SPD_KEY_DDR5_RFM_RAAIMT_FGR_PRI	"ddr5.rfm.raaimt-fgr"
475 #define	SPD_KEY_DDR5_RFM_RAAMMT_PRI	"ddr5.rfm.raammt"
476 #define	SPD_KEY_DDR5_RFM_RAAMMT_FGR_PRI	"ddr5.rfm.raammt-fgr"
477 #define	SPD_KEY_DDR5_RFM_BRC_CFG_PRI	"ddr5.rfm.brc-config"
478 
479 typedef enum {
480 	SPD_BRC_F_LVL_2		= 1 << 0,
481 	SPD_BRC_F_LVL_3		= 1 << 1,
482 	SPD_BRC_F_LVL_4		= 1 << 2
483 } spd_brc_flags_t;
484 #define	SPD_KEY_DDR5_RFM_BRC_SUP_PRI	"ddr5.rfm.brc-level"
485 #define	SPD_KEY_DDR5_RFM_RAA_DEC_PRI	"ddr5.rfm.raa-dec"
486 #define	SPD_KEY_DDR5_RFM_FLAGS_SEC	"ddr5.rfm.sec-flags"
487 #define	SPD_KEY_DDR5_RFM_RAAIMT_SEC	"ddr5.rfm.sec-raaimt"
488 #define	SPD_KEY_DDR5_RFM_RAAIMT_FGR_SEC	"ddr5.rfm.sec-raaimt-fgr"
489 #define	SPD_KEY_DDR5_RFM_RAAMMT_SEC	"ddr5.rfm.sec-raammt"
490 #define	SPD_KEY_DDR5_RFM_RAAMMT_FGR_SEC	"ddr5.rfm.sec-raammt-fgr"
491 #define	SPD_KEY_DDR5_RFM_BRC_CFG_SEC	"ddr5.rfm.sec-brc-config"
492 #define	SPD_KEY_DDR5_RFM_BRC_SUP_SEC	"ddr5.rfm.sec-brc-level"
493 #define	SPD_KEY_DDR5_RFM_RAA_DEC_SEC	"ddr5.rfm.sec-raa-dec"
494 
495 #define	SPD_KEY_DDR5_ARFMA_FLAGS_PRI		"ddr5.arfm-a.flags"
496 #define	SPD_KEY_DDR5_ARFMA_RAAIMT_PRI		"ddr5.arfm-a.raaimt"
497 #define	SPD_KEY_DDR5_ARFMA_RAAIMT_FGR_PRI	"ddr5.arfm-a.raaimt-fgr"
498 #define	SPD_KEY_DDR5_ARFMA_RAAMMT_PRI		"ddr5.arfm-a.raammt"
499 #define	SPD_KEY_DDR5_ARFMA_RAAMMT_FGR_PRI	"ddr5.arfm-a.raammt-fgr"
500 #define	SPD_KEY_DDR5_ARFMA_BRC_CFG_PRI		"ddr5.arfm-a.brc-config"
501 #define	SPD_KEY_DDR5_ARFMA_BRC_SUP_PRI		"ddr5.arfm-a.brc-level"
502 #define	SPD_KEY_DDR5_ARFMA_RAA_DEC_PRI		"ddr5.arfm-a.raa-dec"
503 #define	SPD_KEY_DDR5_ARFMA_FLAGS_SEC		"ddr5.arfm-a.sec-flags"
504 #define	SPD_KEY_DDR5_ARFMA_RAAIMT_SEC		"ddr5.arfm-a.sec-raaimt"
505 #define	SPD_KEY_DDR5_ARFMA_RAAIMT_FGR_SEC	"ddr5.arfm-a.sec-raaimt-fgr"
506 #define	SPD_KEY_DDR5_ARFMA_RAAMMT_SEC		"ddr5.arfm-a.sec-raammt"
507 #define	SPD_KEY_DDR5_ARFMA_RAAMMT_FGR_SEC	"ddr5.arfm-a.sec-raammt-fgr"
508 #define	SPD_KEY_DDR5_ARFMA_BRC_CFG_SEC		"ddr5.arfm-a.sec-brc-config"
509 #define	SPD_KEY_DDR5_ARFMA_BRC_SUP_SEC		"ddr5.arfm-a.sec-brc-level"
510 #define	SPD_KEY_DDR5_ARFMA_RAA_DEC_SEC		"ddr5.arfm-a.sec-raa-dec"
511 
512 #define	SPD_KEY_DDR5_ARFMB_FLAGS_PRI		"ddr5.arfm-b.flags"
513 #define	SPD_KEY_DDR5_ARFMB_RAAIMT_PRI		"ddr5.arfm-b.raaimt"
514 #define	SPD_KEY_DDR5_ARFMB_RAAIMT_FGR_PRI	"ddr5.arfm-b.raaimt-fgr"
515 #define	SPD_KEY_DDR5_ARFMB_RAAMMT_PRI		"ddr5.arfm-b.raammt"
516 #define	SPD_KEY_DDR5_ARFMB_RAAMMT_FGR_PRI	"ddr5.arfm-b.raammt-fgr"
517 #define	SPD_KEY_DDR5_ARFMB_BRC_CFG_PRI		"ddr5.arfm-b.brc-config"
518 #define	SPD_KEY_DDR5_ARFMB_BRC_SUP_PRI		"ddr5.arfm-b.brc-level"
519 #define	SPD_KEY_DDR5_ARFMB_RAA_DEC_PRI		"ddr5.arfm-b.raa-dec"
520 #define	SPD_KEY_DDR5_ARFMB_FLAGS_SEC		"ddr5.arfm-b.sec-flags"
521 #define	SPD_KEY_DDR5_ARFMB_RAAIMT_SEC		"ddr5.arfm-b.sec-raaimt"
522 #define	SPD_KEY_DDR5_ARFMB_RAAIMT_FGR_SEC	"ddr5.arfm-b.sec-raaimt-fgr"
523 #define	SPD_KEY_DDR5_ARFMB_RAAMMT_SEC		"ddr5.arfm-b.sec-raammt"
524 #define	SPD_KEY_DDR5_ARFMB_RAAMMT_FGR_SEC	"ddr5.arfm-b.sec-raammt-fgr"
525 #define	SPD_KEY_DDR5_ARFMB_BRC_CFG_SEC		"ddr5.arfm-b.sec-brc-config"
526 #define	SPD_KEY_DDR5_ARFMB_BRC_SUP_SEC		"ddr5.arfm-b.sec-brc-level"
527 #define	SPD_KEY_DDR5_ARFMB_RAA_DEC_SEC		"ddr5.arfm-b.sec-raa-dec"
528 
529 #define	SPD_KEY_DDR5_ARFMC_FLAGS_PRI		"ddr5.arfm-c.flags"
530 #define	SPD_KEY_DDR5_ARFMC_RAAIMT_PRI		"ddr5.arfm-c.raaimt"
531 #define	SPD_KEY_DDR5_ARFMC_RAAIMT_FGR_PRI	"ddr5.arfm-c.raaimt-fgr"
532 #define	SPD_KEY_DDR5_ARFMC_RAAMMT_PRI		"ddr5.arfm-c.raammt"
533 #define	SPD_KEY_DDR5_ARFMC_RAAMMT_FGR_PRI	"ddr5.arfm-c.raammt-fgr"
534 #define	SPD_KEY_DDR5_ARFMC_BRC_CFG_PRI		"ddr5.arfm-c.brc-config"
535 #define	SPD_KEY_DDR5_ARFMC_BRC_SUP_PRI		"ddr5.arfm-c.brc-level"
536 #define	SPD_KEY_DDR5_ARFMC_RAA_DEC_PRI		"ddr5.arfm-c.raa-dec"
537 #define	SPD_KEY_DDR5_ARFMC_FLAGS_SEC		"ddr5.arfm-c.sec-flags"
538 #define	SPD_KEY_DDR5_ARFMC_RAAIMT_SEC		"ddr5.arfm-c.sec-raaimt"
539 #define	SPD_KEY_DDR5_ARFMC_RAAIMT_FGR_SEC	"ddr5.arfm-c.sec-raaimt-fgr"
540 #define	SPD_KEY_DDR5_ARFMC_RAAMMT_SEC		"ddr5.arfm-c.sec-raammt"
541 #define	SPD_KEY_DDR5_ARFMC_RAAMMT_FGR_SEC	"ddr5.arfm-c.sec-raammt-fgr"
542 #define	SPD_KEY_DDR5_ARFMC_BRC_CFG_SEC		"ddr5.arfm-c.sec-brc-config"
543 #define	SPD_KEY_DDR5_ARFMC_BRC_SUP_SEC		"ddr5.arfm-c.sec-brc-level"
544 #define	SPD_KEY_DDR5_ARFMC_RAA_DEC_SEC		"ddr5.arfm-c.sec-raa-dec"
545 /*
546  * Module-type specific keys and values. These are often the intersection of
547  * both the DDR standard and the module type. That is, a DDR4 and DDR5 RDIMM
548  * expose some information that isn't quite the same. These often contain things
549  * that are drive strengths and slew rates. These kinds of items fall into two
550  * categories. Ones where there is a fixed resistance and one where there is a
551  * qualitative range that depends on things like the specific parts present.
552  */
553 typedef enum {
554 	SPD_DRIVE_LIGHT,
555 	SPD_DRIVE_MODERATE,
556 	SPD_DRIVE_STRONG,
557 	SPD_DRIVE_VERY_STRONG
558 } spd_drive_t;
559 
560 typedef enum {
561 	SPD_SLEW_SLOW,
562 	SPD_SLEW_MODERATE,
563 	SPD_SLEW_FAST
564 } spd_slew_t;
565 
566 /*
567  * DDR4 RDIMM drive strengths. These all use the spd_drive_t. These are all on
568  * the RCD. There is also a key for whether or not slew-control is supported.
569  */
570 #define	SPD_KEY_DDR4_RCD_SLEW	"ddr4.rdimm.rcd-slew-control"	/* key */
571 #define	SPD_KEY_DDR4_RCD_DS_CKE	"ddr4.rdimm.cke-drive-strength"
572 #define	SPD_KEY_DDR4_RCD_DS_ODT	"ddr4.rdimm.odt-drive-strength"
573 #define	SPD_KEY_DDR4_RCD_DS_CA	"ddr4.rdimm.ca-drive-strength"
574 #define	SPD_KEY_DDR4_RCD_DS_CS	"ddr4.rdimm.cs-drive-strength"
575 #define	SPD_KEY_DDR4_RCD_DS_Y0	"ddr4.rdimm.y0-drive-strength"
576 #define	SPD_KEY_DDR4_RCD_DS_Y1	"ddr4.rdimm.y1-drive-strength"
577 #define	SPD_KEY_DDR4_RCD_DS_BCOM	"ddr4.lrdimm.bcom-drive-strength"
578 #define	SPD_KEY_DDR4_RCD_DS_BCK	"ddr4.lrdimm.bck-drive-strength"
579 
580 /*
581  * DDR4 LRDIMMs specify the VrefDQ for each package rank. These are communicated
582  * in terms of the DDR4 spec which specifies them as a percentage of the actual
583  * voltage. This is always phrased in the spec as AB.CD%, so for example 60.25%.
584  * We treat this percentage as a four digit unsigned value rather than trying to
585  * play games with whether or not the value can be represented in floating
586  * point. Divide the value by 100 to get the percentage. That is, 47.60% will be
587  * encoded as 4760. All of these values are a uint32_t.
588  */
589 #define	SPD_KEY_DDR4_VREFDQ_R0	"ddr4.lrdimm.VrefDQ-rank0"
590 #define	SPD_KEY_DDR4_VREFDQ_R1	"ddr4.lrdimm.VrefDQ-rank1"
591 #define	SPD_KEY_DDR4_VREFDQ_R2	"ddr4.lrdimm.VrefDQ-rank2"
592 #define	SPD_KEY_DDR4_VREFDQ_R3	"ddr4.lrdimm.VrefDQ-rank3"
593 #define	SPD_KEY_DDR4_VREFDQ_DB	"ddr4.lrdimm.VrefDQ-db"
594 
595 /*
596  * DDR4 LRDIMMs define the data buffer drive strength and termination in terms
597  * of various data rate ranges. Specifically (0, 1866], (1866, 2400], and (2400,
598  * 3200]. All of these values are measured in terms of Ohms. As such, all of
599  * these values are an array of three uint32_t's whose values correspond to each
600  * of those ranges. We define a few additional values for these to represent
601  * cases where they are disabled or high-impedance.
602  */
603 #define	SPD_KEY_DDR4_TERM_DISABLED	0
604 #define	SPD_KEY_DDR4_TERM_HIZ		UINT32_MAX
605 #define	SPD_KEY_DDR4_MDQ_RTT	"ddr4.lrdimm.mdq-read-termination"
606 #define	SPD_KEY_DDR4_MDQ_DS	"ddr4.lrdimm.mdq-drive-strength"
607 #define	SPD_KEY_DDR4_DRAM_DS	"ddr4.lrdimm.dram-drive-strength"
608 #define	SPD_KEY_DDR4_RTT_WR	"ddr4.lrdimm.odt-read-termination-wr"
609 #define	SPD_KEY_DDR4_RTT_NOM	"ddr4.lrdimm.odt-read-termination-nom"
610 #define	SPD_KEY_DDR4_RTT_PARK_R0	"ddr4.lrdimm.odt-r0_1-rtt-park"
611 #define	SPD_KEY_DDR4_RTT_PARK_R2	"ddr4.lrdimm.odt-r2_3-rtt-park"
612 
613 /*
614  * The last DDR4 LRDIMM specific component is whether or not the data buffer's
615  * gain and decision feedback equalization are supported. These both are keys.
616  */
617 #define	SPD_KEY_DDR4_DB_GAIN	"ddr4.lrdimm.db-gain-adjustment"
618 #define	SPD_KEY_DDR4_DB_DFE	"ddr4.lrdimm.decision-feedback-eq"
619 
620 /*
621  * DDR5 RDIMMs and LRDIMMs have specific enables for groups of pins. There are
622  * then
623  * differential impedence measurements. These are all in Ohms. Separately there
624  * are slew rates, those use the spd_slew_t. Because these use different units
625  * between DDR4 and DDR5, we treat them as different keys.
626  */
627 #define	SPD_KEY_DDR5_RCD_QACK_EN	"ddr5.rdimm.rcd-qack-enabled"
628 #define	SPD_KEY_DDR5_RCD_QBCK_EN	"ddr5.rdimm.rcd-qbck-enabled"
629 #define	SPD_KEY_DDR5_RCD_QCCK_EN	"ddr5.rdimm.rcd-qcck-enabled"
630 #define	SPD_KEY_DDR5_RCD_QDCK_EN	"ddr5.rdimm.rcd-qdck-enabled"
631 #define	SPD_KEY_DDR5_RCD_BCK_EN		"ddr5.rdimm.rcd-bck-enabled"
632 #define	SPD_KEY_DDR5_RCD_QACA_EN	"ddr5.rdimm.rcd-qaca-enabled"
633 #define	SPD_KEY_DDR5_RCD_QBCA_EN	"ddr5.rdimm.rcd-qbca-enabled"
634 #define	SPD_KEY_DDR5_RCD_DCS1_EN	"ddr5.rdimm.rcd-dcs1-enabled"
635 #define	SPD_KEY_DDR5_RCD_QxCA13_EN	"ddr5.rdimm.rcd-qxca13-enabled"
636 #define	SPD_KEY_DDR5_RCD_QACS_EN	"ddr5.rdimm.rcd-qacs-enabled"
637 #define	SPD_KEY_DDR5_RCD_QBCS_EN	"ddr5.rdimm.rcd-qbcs-enabled"
638 
639 /* Impedence measurements are uint32_t's in Ohms */
640 #define	SPD_KEY_DDR5_RCD_QACK_IMP	"ddr5.rdimm.rcd-qack-impedance"
641 #define	SPD_KEY_DDR5_RCD_QBCK_IMP	"ddr5.rdimm.rcd-qbck-impedance"
642 #define	SPD_KEY_DDR5_RCD_QCCK_IMP	"ddr5.rdimm.rcd-qcck-impedance"
643 #define	SPD_KEY_DDR5_RCD_QDCK_IMP	"ddr5.rdimm.rcd-qdck-impedance"
644 #define	SPD_KEY_DDR5_RCD_CS_IMP		"ddr5.rdimm.rcd-cs-impedance"
645 #define	SPD_KEY_DDR5_RCD_CA_IMP		"ddr5.rdimm.rcd-ca-impedance"
646 
647 /* Slew rates use the spd_rate_t encoded as a uint32_t */
648 #define	SPD_KEY_DDR5_RCD_QCK_SLEW	"ddr5.rdimm.rcd-qck-slew"
649 #define	SPD_KEY_DDR5_RCD_QCA_SLEW	"ddr5.rdimm.rcd-qck-slew"
650 #define	SPD_KEY_DDR5_RCD_QCS_SLEW	"ddr5.rdimm.rcd-qcs-slew"
651 
652 /*
653  * These are all speific to DDR5 LRDIMMs. The values are the same as above. In
654  * particular, the DWS RTT values are also in Ohms. If RTT termination is
655  * disabled then the key will not be present.
656  */
657 #define	SPD_KEY_DDR5_RCD_BCS_EN		"ddr5.lrdimm.rcd-bcs-enabled" /* key */
658 #define	SPD_KEY_DDR5_RCD_BCOM_IMP	"ddr5.lrdimm.rcd-bcom-impedance"
659 #define	SPD_KEY_DDR5_RCD_BCK_IMP	"ddr5.lrdimm.rcd-bck-impedance"
660 #define	SPD_KEY_DDR5_RCD_RTT_TERM	"ddr5.lrdimm.rcd-dqs-rtt"
661 #define	SPD_KEY_DDR5_RCD_BCOM_SLEW	"ddr5.lrdimm.rcd-bcom-slew"
662 #define	SPD_KEY_DDR5_RCD_BCK_SLEW	"ddr5.lrdimm.rcd-bck-slew"
663 
664 
665 /*
666  * Module Properties. These are items that generally relate to the module as a
667  * whole.
668  */
669 
670 /*
671  * Connection Mapping. In DDR4 there is the ability to remap groups of pins from
672  * the connector to the various package SDRAMs. Every 4 bits can be remapped to
673  * either another upper or lower nibble in a package. Separately bits can also
674  * be flipped between packages. These exist for all 64-bits of DQ and 8 bits of
675  * CBs. If mirroring is set, then a key will be added for that pin group. For
676  * each pin group, the mapping to a specific type of rewriting will be done. We
677  * conventionally use 0, 1, 2, and 3 as the lower nibble and 4, 5, 6, 7 as the
678  * upper nibble, though the actual pins will vary based on where they are.
679  */
680 #define	SPD_KEY_DDR4_MAP_DQ0	"module.dq0-map"	/* uint32_t [4] */
681 #define	SPD_KEY_DDR4_MAP_DQ4	"module.dq4-map"	/* uint32_t [4] */
682 #define	SPD_KEY_DDR4_MAP_DQ8	"module.dq8-map"	/* uint32_t [4] */
683 #define	SPD_KEY_DDR4_MAP_DQ12	"module.dq12-map"	/* uint32_t [4] */
684 #define	SPD_KEY_DDR4_MAP_DQ16	"module.dq16-map"	/* uint32_t [4] */
685 #define	SPD_KEY_DDR4_MAP_DQ20	"module.dq20-map"	/* uint32_t [4] */
686 #define	SPD_KEY_DDR4_MAP_DQ24	"module.dq24-map"	/* uint32_t [4] */
687 #define	SPD_KEY_DDR4_MAP_DQ28	"module.dq28-map"	/* uint32_t [4] */
688 #define	SPD_KEY_DDR4_MAP_DQ32	"module.dq32-map"	/* uint32_t [4] */
689 #define	SPD_KEY_DDR4_MAP_DQ36	"module.dq36-map"	/* uint36_t [4] */
690 #define	SPD_KEY_DDR4_MAP_DQ40	"module.dq40-map"	/* uint32_t [4] */
691 #define	SPD_KEY_DDR4_MAP_DQ44	"module.dq44-map"	/* uint32_t [4] */
692 #define	SPD_KEY_DDR4_MAP_DQ48	"module.dq48-map"	/* uint32_t [4] */
693 #define	SPD_KEY_DDR4_MAP_DQ52	"module.dq52-map"	/* uint32_t [4] */
694 #define	SPD_KEY_DDR4_MAP_DQ56	"module.dq56-map"	/* uint32_t [4] */
695 #define	SPD_KEY_DDR4_MAP_DQ60	"module.dq60-map"	/* uint32_t [4] */
696 #define	SPD_KEY_DDR4_MAP_CB0	"module.dq0-map"	/* uint32_t [4] */
697 #define	SPD_KEY_DDR4_MAP_CB4	"module.dq4-map"	/* uint32_t [4] */
698 
699 /*
700  * In addition, there is module level mapping in DDR4 that is used to indicate
701  * that odd ranks are mirrored. This is between the edge connector and the DRAM
702  * itself. We only add a key when it is mirrored.
703  */
704 #define	SPD_KEY_DDR4_MIRROR	"module.edge-odd-mirror"	/* key */
705 
706 /*
707  * Present devices. Modules often have multiple additional types of devices
708  * present like temperature sensors, voltage regulators, registers, etc. The
709  * following key indicates what all is present on this DIMM. Depending on the
710  * DDR revision, we will then have additional keys with its ID, revision, name,
711  * and compliant type. In a few cases we will define the type and presence based
712  * on information. For example, DDR4 only allows a single type of temperature
713  * sensor or SPD device. Even though we don't know the manufacturer, we will
714  * still note this.
715  *
716  * Each of these items will have four keys. One for the manufacturer ID, one for
717  * their string name, one for the device type, and one for the revision. Note,
718  * while TS1 and TS2 are both flags in DDR5, they share common manufacturer
719  * information, which is why there is only one entry here.
720  *
721  * For each device type there is a separate enum with supported types of devices
722  * that can be present for these.
723  */
724 typedef enum {
725 	SPD_DEVICE_TEMP_1	= 1 << 0,
726 	SPD_DEVICE_TEMP_2	= 1 << 1,
727 	SPD_DEVICE_HS		= 1 << 2,
728 	SPD_DEVICE_PMIC_0	= 1 << 3,
729 	SPD_DEVICE_PMIC_1	= 1 << 4,
730 	SPD_DEVICE_PMIC_2	= 1 << 5,
731 	SPD_DEVICE_CD		= 1 << 6,
732 	SPD_DEVICE_RCD		= 1 << 7,
733 	SPD_DEVICE_DB		= 1 << 8,
734 	SPD_DEVICE_MRCD		= 1 << 9,
735 	SPD_DEVICE_MDB		= 1 << 10,
736 	SPD_DEVICE_DMB		= 1 << 11,
737 	SPD_DEVICE_SPD		= 1 << 12
738 } spd_device_t;
739 #define	SPD_KEY_DEVS		"module.devices"	/* uint32_t */
740 
741 typedef enum {
742 	/* DDR3 */
743 	SPD_TEMP_T_TSE2002,
744 	/* DDR4 and LPDDR4 */
745 	SPD_TEMP_T_TSE2004av,
746 	/* DDR5 */
747 	SPD_TEMP_T_TS5111,
748 	SPD_TEMP_T_TS5110
749 } spd_temp_type_t;
750 
751 typedef enum {
752 	/* DDR5 */
753 	SPD_PMIC_T_PMIC5000,
754 	SPD_PMIC_T_PMIC5010,
755 	SPD_PMIC_T_PMIC5100
756 } spd_pmic_type_t;
757 
758 typedef enum {
759 	/* DDR5 */
760 	SPD_CD_T_DDR5CK01
761 } spd_cd_type_t;
762 
763 typedef enum {
764 	/* DDR3 */
765 	SPD_RCD_T_SSTE32882,
766 	/* DDR4 */
767 	SPD_RCD_T_DDR4RCD01,
768 	SPD_RCD_T_DDR4RCD02,
769 	/* DDR5 */
770 	SPD_RCD_T_DDR5RCD01,
771 	SPD_RCD_T_DDR5RCD02,
772 	SPD_RCD_T_DDR5RCD03
773 } spd_rcd_type_t;
774 
775 typedef enum {
776 	/* DDR4 */
777 	SPD_DB_T_DDR4DB01,
778 	SPD_DB_T_DDR4DB02,
779 	/* DDR5 */
780 	SPD_DB_T_DDR5DB01,
781 	SPD_DB_T_DDR5DB02
782 } spd_db_type_t;
783 
784 typedef enum {
785 	/* DDR5 */
786 	SPD_MRCD_T_DDR5MRCD01
787 } spd_mrcd_type_t;
788 
789 typedef enum {
790 	/* DDR5 */
791 	SPD_MDB_T_DDR5MDB01
792 } spd_mdb_type_t;
793 
794 typedef enum {
795 	/* DDR5 */
796 	SPD_DMB_T_DMB5011
797 } spd_dmb_type_t;
798 
799 typedef enum {
800 	/* DDR4 */
801 	SPD_SPD_T_EE1004,
802 	/* DDR5 */
803 	SPD_SPD_T_SPD5118,
804 	SPD_SPD_T_ESPD5216
805 } spd_spd_type_t;
806 
807 #define	SPD_KEY_DEV_TEMP_MFG	"module.temp.mfg-id"	/* uint32_t [2] */
808 #define	SPD_KEY_DEV_TEMP_MFG_NAME	"module.temp.mfg-name"	/* string */
809 #define	SPD_KEY_DEV_TEMP_TYPE	"module.temp.type"	/* uint32_t */
810 #define	SPD_KEY_DEV_TEMP_REV	"module.temp.revision"	/* string */
811 
812 #define	SPD_KEY_DEV_PMIC0_MFG	"module.pmic0.mfg-id"	/* uint32_t [2] */
813 #define	SPD_KEY_DEV_PMIC0_MFG_NAME	"module.pmic0.mfg-name"	/* string */
814 #define	SPD_KEY_DEV_PMIC0_TYPE	"module.pmic0.type"	/* uint32_t */
815 #define	SPD_KEY_DEV_PMIC0_REV	"module.pmic0.revision"	/* string */
816 #define	SPD_KEY_DEV_PMIC1_MFG	"module.pmic1.mfg-id"	/* uint32_t [2] */
817 #define	SPD_KEY_DEV_PMIC1_MFG_NAME	"module.pmic1.mfg-name"	/* string */
818 #define	SPD_KEY_DEV_PMIC1_TYPE	"module.pmic1.type"	/* uint32_t */
819 #define	SPD_KEY_DEV_PMIC1_REV	"module.pmic1.revision"	/* string */
820 #define	SPD_KEY_DEV_PMIC2_MFG	"module.pmic2.mfg-id"	/* uint32_t [2] */
821 #define	SPD_KEY_DEV_PMIC2_MFG_NAME	"module.pmic2.mfg-name"	/* string */
822 #define	SPD_KEY_DEV_PMIC2_TYPE	"module.pmic2.type"	/* uint32_t */
823 #define	SPD_KEY_DEV_PMIC2_REV	"module.pmic2.revision"	/* string */
824 
825 #define	SPD_KEY_DEV_CD_MFG	"module.cd.mfg-id"	/* uint32_t [2] */
826 #define	SPD_KEY_DEV_CD_MFG_NAME	"module.cd.mfg-name"	/* string */
827 #define	SPD_KEY_DEV_CD_TYPE	"module.cd.type"	/* uint32_t */
828 #define	SPD_KEY_DEV_CD_REV	"module.cd.revision"	/* string */
829 
830 #define	SPD_KEY_DEV_RCD_MFG	"module.rcd.mfg-id"	/* uint32_t [2] */
831 #define	SPD_KEY_DEV_RCD_MFG_NAME	"module.rcd.mfg-name"	/* string */
832 #define	SPD_KEY_DEV_RCD_TYPE	"module.rcd.type"	/* uint32_t */
833 #define	SPD_KEY_DEV_RCD_REV	"module.rcd.revision"	/* string */
834 
835 #define	SPD_KEY_DEV_DB_MFG	"module.db.mfg-id"	/* uint32_t [2] */
836 #define	SPD_KEY_DEV_DB_MFG_NAME	"module.db.mfg-name"	/* string */
837 #define	SPD_KEY_DEV_DB_TYPE	"module.db.type"	/* uint32_t */
838 #define	SPD_KEY_DEV_DB_REV	"module.db.revision"	/* string */
839 
840 #define	SPD_KEY_DEV_MRCD_MFG	"module.mrcd.mfg-id"	/* uint32_t [2] */
841 #define	SPD_KEY_DEV_MRCD_MFG_NAME	"module.mrcd.mfg-name"	/* string */
842 #define	SPD_KEY_DEV_MRCD_TYPE	"module.mrcd.type"	/* uint32_t */
843 #define	SPD_KEY_DEV_MRCD_REV	"module.mrcd.revision"	/* string */
844 
845 #define	SPD_KEY_DEV_MDB_MFG	"module.mdb.mfg-id"	/* uint32_t [2] */
846 #define	SPD_KEY_DEV_MDB_MFG_NAME	"module.mdb.mfg-name"	/* string */
847 #define	SPD_KEY_DEV_MDB_TYPE	"module.mdb.type"	/* uint32_t */
848 #define	SPD_KEY_DEV_MDB_REV	"module.mdb.revision"	/* string */
849 
850 #define	SPD_KEY_DEV_DMB_MFG	"module.dmb.mfg-id"	/* uint32_t [2] */
851 #define	SPD_KEY_DEV_DMB_MFG_NAME	"module.dmb.mfg-name"	/* string */
852 #define	SPD_KEY_DEV_DMB_TYPE	"module.dmb.type"	/* uint32_t */
853 #define	SPD_KEY_DEV_DMB_REV	"module.dmb.revision"	/* string */
854 
855 #define	SPD_KEY_DEV_SPD_MFG	"module.spd.mfg-id"	/* uint32_t [2] */
856 #define	SPD_KEY_DEV_SPD_MFG_NAME	"module.spd.mfg-name"	/* string */
857 #define	SPD_KEY_DEV_SPD_TYPE	"module.spd.type"	/* uint32_t */
858 #define	SPD_KEY_DEV_SPD_REV	"module.spd.revision"	/* string */
859 
860 /*
861  * Module physical dimensions. DRAM modules provide information about their
862  * height and their front and back thicknesses. All values are in millimeters.
863  * In general, values are defined as 1 mm ranges in the form such as 18mm <
864  * height <= 19mm or 2mm < thickness <= 3mm. As such in all these ranges we
865  * encode it as the less than or equal to side of the thickness or height.
866  *
867  * However, at the extremes of thickness and height, it can be arbitrary. The
868  * minimum height can be any value <= 15mm and the maximum is just > 45mm.
869  * Similarly the maximum thickness is just any value greater than 15mm. For
870  * these values, we define aliases that can be used to indicate we're in these
871  * conditions for the height and thickness, allowing this to otherwise be the
872  * common well understood value.
873  */
874 #define	SPD_MOD_HEIGHT_LT15MM	15
875 #define	SPD_MOD_HEIGHT_GT45MM	46
876 #define	SPD_KEY_MOD_HEIGHT	"module.height"		/* uint32_t */
877 #define	SPD_MOD_THICK_GT15MM	16
878 #define	SPD_KEY_MOD_FRONT_THICK	"module.front-thickness"	/* uint32_t */
879 #define	SPD_KEY_MOD_BACK_THICK	"module.back-thickness"	/* uint32_t */
880 
881 /*
882  * This is the number of rows of DRAM dies on the module. In addition, DDR4
883  * provides the number of registers present on the device. This is not present
884  * in DDR5.
885  */
886 #define	SPD_KEY_MOD_NROWS	"module.dram-die-rows"		/* uint32_t */
887 #define	SPD_KEY_MOD_NREGS	"module.total-registers"	/* uint32_t */
888 
889 /*
890  * Operating temperature ranges. These ranges are defined by JEDEC. The code can
891  * be translated with libjedec_temp_range() to transform it into a pair of
892  * values.
893  */
894 
895 #define	SPD_KEY_MOD_OPER_TEMP	"module.operating-temperature"	/* uint32_t */
896 
897 /*
898  * Module reference card and design revision. JEDEC provides various reference
899  * designs for modules and revisions of those.
900  */
901 #define	SPD_KEY_MOD_REF_DESIGN	"module.reference-design"	/* string */
902 #define	SPD_KEY_MOD_DESIGN_REV	"module.design-revision"	/* uint32_t */
903 
904 /*
905  * Manufacturing Section. These keys are present if manufacturing related
906  * information is made available. This space is not DIMM-revision specific. All
907  * fields are defined in DDR4 and DDR5. Note, the SPD_KEY_MFG_DRAM_STEP is
908  * optional and therefore an invalid value will result in this not being
909  * present.
910  */
911 #define	SPD_KEY_MFG_MOD_MFG_ID	"mfg.module-mfg-id"	/* uint32[2] */
912 #define	SPD_KEY_MFG_MOD_MFG_NAME	"mfg.module-mfg-name"	/* string */
913 #define	SPD_KEY_MFG_DRAM_MFG_ID	"mfg.dram-mfg-id"	/* uint32[2] */
914 #define	SPD_KEY_MFG_DRAM_MFG_NAME	"mfg.dram-mfg-name"	/* string */
915 #define	SPD_KEY_MFG_MOD_LOC_ID	"mfg.module-loc-id"	/* uint32 */
916 #define	SPD_KEY_MFG_MOD_YEAR	"mfg.module-year"	/* string */
917 #define	SPD_KEY_MFG_MOD_WEEK	"mfg.module-week"	/* string */
918 #define	SPD_KEY_MFG_MOD_PN	"mfg.module-pn"		/* string */
919 #define	SPD_KEY_MFG_MOD_SN	"mfg.module-sn"		/* string */
920 #define	SPD_KEY_MFG_MOD_REV	"mfg.module-rev"	/* string */
921 #define	SPD_KEY_MFG_DRAM_STEP	"mfg.dram-step"		/* string */
922 
923 /*
924  * The errors nvlist_t is designed such that it is a nested nvlist_t in the
925  * returned data. Each key in that nvlist_t corresponds to a key that we would
926  * otherwise produce. Each key is an nvlist_t that has two keys, a 'code' and a
927  * 'message'.
928  *
929  * There is currently an additional top-level special key. This is the
930  * 'incomplete' key. When data is too short to process an entry, rather than
931  * flag every possible missing key (as most times the consumer will know the
932  * amount of data they have), for the time being we will insert a single
933  * incomplete key with a uint32_t whose value indicates the starting offset of
934  * the key that we could not process. Note, this may not be the first byte that
935  * was missing (if we had 100 bytes and a 20 byte key at offset 90, we would
936  * insert 90).
937  */
938 typedef enum {
939 	/*
940 	 * Indicates that the error occurred because we could not translate a
941 	 * given piece of information. For example, a value that we didn't know
942 	 * or a failure to look up something in a string table.
943 	 */
944 	SPD_ERROR_NO_XLATE,
945 	/*
946 	 * This indicates that we encountered an non-ASCII or unprintable
947 	 * character in an SPD string which should not be allowed per se.
948 	 */
949 	SPD_ERROR_UNPRINT,
950 	/*
951 	 * This indicates that there was no data for a given key. For example, a
952 	 * string that was all padded spaces.
953 	 */
954 	SPD_ERROR_NO_DATA,
955 	/*
956 	 * Indicates that some kind of internal error occurred.
957 	 */
958 	SPD_ERROR_INTERNAL,
959 	/*
960 	 * This indicates that there's something suspicious or weird to us about
961 	 * the data in question. The most common case is a bad CRC.
962 	 */
963 	SPD_ERROR_BAD_DATA
964 } spd_error_kind_t;
965 #define	SPD_KEY_INCOMPLETE	"incomplete"	/* uint32_t */
966 #define	SPD_KEY_ERRS		"errors"	/* nvlist_t */
967 #define	SPD_KEY_ERRS_CODE	"code"		/* uint32_t */
968 #define	SPD_KEY_ERRS_MSG	"message"	/* string */
969 
970 #ifdef __cplusplus
971 }
972 #endif
973 
974 #endif /* _LIBJEDEC_H */
975