xref: /illumos-gate/usr/src/lib/libfakekernel/common/taskq.c (revision 471b551f6042e421bfe941f593337a8a5b2a7a7d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2012 Garrett D'Amore <garrett@damore.org>.  All rights reserved.
27  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
28  * Copyright 2017 RackTop Systems.
29  */
30 
31 #include <sys/taskq_impl.h>
32 
33 #include <sys/class.h>
34 #include <sys/debug.h>
35 #include <sys/ksynch.h>
36 #include <sys/kmem.h>
37 #include <sys/time.h>
38 #include <sys/systm.h>
39 #include <sys/sysmacros.h>
40 #include <sys/unistd.h>
41 
42 /* avoid <sys/disp.h> */
43 #define	maxclsyspri	99
44 
45 /* avoid <unistd.h> */
46 extern long sysconf(int);
47 
48 /* avoiding <thread.h> */
49 typedef unsigned int thread_t;
50 typedef unsigned int thread_key_t;
51 
52 extern int thr_create(void *, size_t, void *(*)(void *), void *, long,
53 			thread_t *);
54 extern int thr_join(thread_t, thread_t *, void **);
55 
56 /*
57  * POSIX.1c Note:
58  * THR_BOUND is defined same as PTHREAD_SCOPE_SYSTEM in <pthread.h>
59  * THR_DETACHED is defined same as PTHREAD_CREATE_DETACHED in <pthread.h>
60  * Any changes in these definitions should be reflected in <pthread.h>
61  */
62 #define	THR_BOUND		0x00000001	/* = PTHREAD_SCOPE_SYSTEM */
63 #define	THR_NEW_LWP		0x00000002
64 #define	THR_DETACHED		0x00000040	/* = PTHREAD_CREATE_DETACHED */
65 #define	THR_SUSPENDED		0x00000080
66 #define	THR_DAEMON		0x00000100
67 
68 
69 int taskq_now;
70 taskq_t *system_taskq;
71 
72 #define	TASKQ_ACTIVE	0x00010000
73 
74 struct taskq {
75 	kmutex_t	tq_lock;
76 	krwlock_t	tq_threadlock;
77 	kcondvar_t	tq_dispatch_cv;
78 	kcondvar_t	tq_wait_cv;
79 	thread_t	*tq_threadlist;
80 	int		tq_flags;
81 	int		tq_active;
82 	int		tq_nthreads;
83 	int		tq_nalloc;
84 	int		tq_minalloc;
85 	int		tq_maxalloc;
86 	kcondvar_t	tq_maxalloc_cv;
87 	int		tq_maxalloc_wait;
88 	taskq_ent_t	*tq_freelist;
89 	taskq_ent_t	tq_task;
90 };
91 
92 static taskq_ent_t *
93 task_alloc(taskq_t *tq, int tqflags)
94 {
95 	taskq_ent_t *t;
96 	int rv;
97 
98 again:	if ((t = tq->tq_freelist) != NULL && tq->tq_nalloc >= tq->tq_minalloc) {
99 		tq->tq_freelist = t->tqent_next;
100 	} else {
101 		if (tq->tq_nalloc >= tq->tq_maxalloc) {
102 			if (!(tqflags & KM_SLEEP))
103 				return (NULL);
104 
105 			/*
106 			 * We don't want to exceed tq_maxalloc, but we can't
107 			 * wait for other tasks to complete (and thus free up
108 			 * task structures) without risking deadlock with
109 			 * the caller.  So, we just delay for one second
110 			 * to throttle the allocation rate. If we have tasks
111 			 * complete before one second timeout expires then
112 			 * taskq_ent_free will signal us and we will
113 			 * immediately retry the allocation.
114 			 */
115 			tq->tq_maxalloc_wait++;
116 			rv = cv_timedwait(&tq->tq_maxalloc_cv,
117 			    &tq->tq_lock, ddi_get_lbolt() + hz);
118 			tq->tq_maxalloc_wait--;
119 			if (rv > 0)
120 				goto again;		/* signaled */
121 		}
122 		mutex_exit(&tq->tq_lock);
123 
124 		t = kmem_alloc(sizeof (taskq_ent_t), tqflags);
125 
126 		mutex_enter(&tq->tq_lock);
127 		if (t != NULL)
128 			tq->tq_nalloc++;
129 	}
130 	return (t);
131 }
132 
133 static void
134 task_free(taskq_t *tq, taskq_ent_t *t)
135 {
136 	if (tq->tq_nalloc <= tq->tq_minalloc) {
137 		t->tqent_next = tq->tq_freelist;
138 		tq->tq_freelist = t;
139 	} else {
140 		tq->tq_nalloc--;
141 		mutex_exit(&tq->tq_lock);
142 		kmem_free(t, sizeof (taskq_ent_t));
143 		mutex_enter(&tq->tq_lock);
144 	}
145 
146 	if (tq->tq_maxalloc_wait)
147 		cv_signal(&tq->tq_maxalloc_cv);
148 }
149 
150 taskqid_t
151 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t tqflags)
152 {
153 	taskq_ent_t *t;
154 
155 	if (taskq_now) {
156 		func(arg);
157 		return (1);
158 	}
159 
160 	mutex_enter(&tq->tq_lock);
161 	ASSERT(tq->tq_flags & TASKQ_ACTIVE);
162 	if ((t = task_alloc(tq, tqflags)) == NULL) {
163 		mutex_exit(&tq->tq_lock);
164 		return (0);
165 	}
166 	if (tqflags & TQ_FRONT) {
167 		t->tqent_next = tq->tq_task.tqent_next;
168 		t->tqent_prev = &tq->tq_task;
169 	} else {
170 		t->tqent_next = &tq->tq_task;
171 		t->tqent_prev = tq->tq_task.tqent_prev;
172 	}
173 	t->tqent_next->tqent_prev = t;
174 	t->tqent_prev->tqent_next = t;
175 	t->tqent_func = func;
176 	t->tqent_arg = arg;
177 	t->tqent_flags = 0;
178 	cv_signal(&tq->tq_dispatch_cv);
179 	mutex_exit(&tq->tq_lock);
180 	return (1);
181 }
182 
183 void
184 taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
185     taskq_ent_t *t)
186 {
187 	ASSERT(func != NULL);
188 	ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
189 
190 	/*
191 	 * Mark it as a prealloc'd task.  This is important
192 	 * to ensure that we don't free it later.
193 	 */
194 	t->tqent_flags |= TQENT_FLAG_PREALLOC;
195 	/*
196 	 * Enqueue the task to the underlying queue.
197 	 */
198 	mutex_enter(&tq->tq_lock);
199 
200 	if (flags & TQ_FRONT) {
201 		t->tqent_next = tq->tq_task.tqent_next;
202 		t->tqent_prev = &tq->tq_task;
203 	} else {
204 		t->tqent_next = &tq->tq_task;
205 		t->tqent_prev = tq->tq_task.tqent_prev;
206 	}
207 	t->tqent_next->tqent_prev = t;
208 	t->tqent_prev->tqent_next = t;
209 	t->tqent_func = func;
210 	t->tqent_arg = arg;
211 	cv_signal(&tq->tq_dispatch_cv);
212 	mutex_exit(&tq->tq_lock);
213 }
214 
215 void
216 taskq_wait(taskq_t *tq)
217 {
218 	mutex_enter(&tq->tq_lock);
219 	while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0)
220 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
221 	mutex_exit(&tq->tq_lock);
222 }
223 
224 static void *
225 taskq_thread(void *arg)
226 {
227 	taskq_t *tq = arg;
228 	taskq_ent_t *t;
229 	boolean_t prealloc;
230 
231 	mutex_enter(&tq->tq_lock);
232 	while (tq->tq_flags & TASKQ_ACTIVE) {
233 		if ((t = tq->tq_task.tqent_next) == &tq->tq_task) {
234 			if (--tq->tq_active == 0)
235 				cv_broadcast(&tq->tq_wait_cv);
236 			cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
237 			tq->tq_active++;
238 			continue;
239 		}
240 		t->tqent_prev->tqent_next = t->tqent_next;
241 		t->tqent_next->tqent_prev = t->tqent_prev;
242 		t->tqent_next = NULL;
243 		t->tqent_prev = NULL;
244 		prealloc = t->tqent_flags & TQENT_FLAG_PREALLOC;
245 		mutex_exit(&tq->tq_lock);
246 
247 		rw_enter(&tq->tq_threadlock, RW_READER);
248 		t->tqent_func(t->tqent_arg);
249 		rw_exit(&tq->tq_threadlock);
250 
251 		mutex_enter(&tq->tq_lock);
252 		if (!prealloc)
253 			task_free(tq, t);
254 	}
255 	tq->tq_nthreads--;
256 	cv_broadcast(&tq->tq_wait_cv);
257 	mutex_exit(&tq->tq_lock);
258 	return (NULL);
259 }
260 
261 /*ARGSUSED*/
262 taskq_t *
263 taskq_create(const char *name, int nthr, pri_t pri, int minalloc,
264     int maxalloc, uint_t flags)
265 {
266 	return (taskq_create_proc(name, nthr, pri,
267 	    minalloc, maxalloc, NULL, flags));
268 }
269 
270 /*ARGSUSED*/
271 taskq_t *
272 taskq_create_sysdc(const char *name, int nthr, int minalloc,
273     int maxalloc, proc_t *proc, uint_t dc, uint_t flags)
274 {
275 	return (taskq_create_proc(name, nthr, maxclsyspri,
276 	    minalloc, maxalloc, proc, flags));
277 }
278 
279 /*ARGSUSED*/
280 taskq_t *
281 taskq_create_proc(const char *name, int nthreads, pri_t pri,
282     int minalloc, int maxalloc, proc_t *proc, uint_t flags)
283 {
284 	taskq_t *tq = kmem_zalloc(sizeof (taskq_t), KM_SLEEP);
285 	int t;
286 
287 	if (flags & TASKQ_THREADS_CPU_PCT) {
288 		int pct;
289 		ASSERT3S(nthreads, >=, 0);
290 		ASSERT3S(nthreads, <=, 100);
291 		pct = MIN(nthreads, 100);
292 		pct = MAX(pct, 0);
293 
294 		nthreads = (sysconf(_SC_NPROCESSORS_ONLN) * pct) / 100;
295 		nthreads = MAX(nthreads, 1);	/* need at least 1 thread */
296 	} else {
297 		ASSERT3S(nthreads, >=, 1);
298 	}
299 
300 	rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
301 	mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
302 	cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
303 	cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
304 	cv_init(&tq->tq_maxalloc_cv, NULL, CV_DEFAULT, NULL);
305 	tq->tq_flags = flags | TASKQ_ACTIVE;
306 	tq->tq_active = nthreads;
307 	tq->tq_nthreads = nthreads;
308 	tq->tq_minalloc = minalloc;
309 	tq->tq_maxalloc = maxalloc;
310 	tq->tq_task.tqent_next = &tq->tq_task;
311 	tq->tq_task.tqent_prev = &tq->tq_task;
312 	tq->tq_threadlist = kmem_alloc(nthreads * sizeof (thread_t), KM_SLEEP);
313 
314 	if (flags & TASKQ_PREPOPULATE) {
315 		mutex_enter(&tq->tq_lock);
316 		while (minalloc-- > 0)
317 			task_free(tq, task_alloc(tq, KM_SLEEP));
318 		mutex_exit(&tq->tq_lock);
319 	}
320 
321 	for (t = 0; t < nthreads; t++)
322 		(void) thr_create(0, 0, taskq_thread,
323 		    tq, THR_BOUND, &tq->tq_threadlist[t]);
324 
325 	return (tq);
326 }
327 
328 void
329 taskq_destroy(taskq_t *tq)
330 {
331 	int t;
332 	int nthreads = tq->tq_nthreads;
333 
334 	taskq_wait(tq);
335 
336 	mutex_enter(&tq->tq_lock);
337 
338 	tq->tq_flags &= ~TASKQ_ACTIVE;
339 	cv_broadcast(&tq->tq_dispatch_cv);
340 
341 	while (tq->tq_nthreads != 0)
342 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
343 
344 	tq->tq_minalloc = 0;
345 	while (tq->tq_nalloc != 0) {
346 		ASSERT(tq->tq_freelist != NULL);
347 		task_free(tq, task_alloc(tq, KM_SLEEP));
348 	}
349 
350 	mutex_exit(&tq->tq_lock);
351 
352 	for (t = 0; t < nthreads; t++)
353 		(void) thr_join(tq->tq_threadlist[t], NULL, NULL);
354 
355 	kmem_free(tq->tq_threadlist, nthreads * sizeof (thread_t));
356 
357 	rw_destroy(&tq->tq_threadlock);
358 	mutex_destroy(&tq->tq_lock);
359 	cv_destroy(&tq->tq_dispatch_cv);
360 	cv_destroy(&tq->tq_wait_cv);
361 	cv_destroy(&tq->tq_maxalloc_cv);
362 
363 	kmem_free(tq, sizeof (taskq_t));
364 }
365 
366 int
367 taskq_member(taskq_t *tq, struct _kthread *t)
368 {
369 	int i;
370 
371 	if (taskq_now)
372 		return (1);
373 
374 	for (i = 0; i < tq->tq_nthreads; i++)
375 		if (tq->tq_threadlist[i] == (thread_t)(uintptr_t)t)
376 			return (1);
377 
378 	return (0);
379 }
380 
381 void
382 system_taskq_init(void)
383 {
384 	system_taskq = taskq_create("system_taskq", 64, minclsyspri, 4, 512,
385 	    TASKQ_DYNAMIC | TASKQ_PREPOPULATE);
386 }
387 
388 void
389 system_taskq_fini(void)
390 {
391 	taskq_destroy(system_taskq);
392 	system_taskq = NULL; /* defensive */
393 }
394