1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2014 Toomas Soome <tsoome@me.com> 26 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 27 */ 28 29 #include <stdio.h> 30 #include <stdlib.h> 31 #include <errno.h> 32 #include <strings.h> 33 #include <unistd.h> 34 #include <smbios.h> 35 #include <uuid/uuid.h> 36 #include <libintl.h> 37 #include <sys/types.h> 38 #include <sys/dkio.h> 39 #include <sys/vtoc.h> 40 #include <sys/mhd.h> 41 #include <sys/param.h> 42 #include <sys/dktp/fdisk.h> 43 #include <sys/efi_partition.h> 44 #include <sys/byteorder.h> 45 #include <sys/ddi.h> 46 47 static struct uuid_to_ptag { 48 struct uuid uuid; 49 } conversion_array[] = { 50 { EFI_UNUSED }, 51 { EFI_BOOT }, 52 { EFI_ROOT }, 53 { EFI_SWAP }, 54 { EFI_USR }, 55 { EFI_BACKUP }, 56 { 0 }, /* STAND is never used */ 57 { EFI_VAR }, 58 { EFI_HOME }, 59 { EFI_ALTSCTR }, 60 { 0 }, /* CACHE is never used */ 61 { EFI_RESERVED }, 62 { EFI_SYSTEM }, 63 { EFI_LEGACY_MBR }, 64 { EFI_SYMC_PUB }, 65 { EFI_SYMC_CDS }, 66 { EFI_MSFT_RESV }, 67 { EFI_DELL_BASIC }, 68 { EFI_DELL_RAID }, 69 { EFI_DELL_SWAP }, 70 { EFI_DELL_LVM }, 71 { EFI_DELL_RESV }, 72 { EFI_AAPL_HFS }, 73 { EFI_AAPL_UFS }, 74 { EFI_BIOS_BOOT }, 75 { EFI_FREEBSD_BOOT }, 76 { EFI_FREEBSD_SWAP }, 77 { EFI_FREEBSD_UFS }, 78 { EFI_FREEBSD_VINUM }, 79 { EFI_FREEBSD_ZFS } 80 }; 81 82 /* 83 * Default vtoc information for non-SVr4 partitions 84 */ 85 struct dk_map2 default_vtoc_map[NDKMAP] = { 86 { V_ROOT, 0 }, /* a - 0 */ 87 { V_SWAP, V_UNMNT }, /* b - 1 */ 88 { V_BACKUP, V_UNMNT }, /* c - 2 */ 89 { V_UNASSIGNED, 0 }, /* d - 3 */ 90 { V_UNASSIGNED, 0 }, /* e - 4 */ 91 { V_UNASSIGNED, 0 }, /* f - 5 */ 92 { V_USR, 0 }, /* g - 6 */ 93 { V_UNASSIGNED, 0 }, /* h - 7 */ 94 95 #if defined(_SUNOS_VTOC_16) 96 97 #if defined(i386) || defined(__amd64) 98 { V_BOOT, V_UNMNT }, /* i - 8 */ 99 { V_ALTSCTR, 0 }, /* j - 9 */ 100 101 #else 102 #error No VTOC format defined. 103 #endif /* defined(i386) */ 104 105 { V_UNASSIGNED, 0 }, /* k - 10 */ 106 { V_UNASSIGNED, 0 }, /* l - 11 */ 107 { V_UNASSIGNED, 0 }, /* m - 12 */ 108 { V_UNASSIGNED, 0 }, /* n - 13 */ 109 { V_UNASSIGNED, 0 }, /* o - 14 */ 110 { V_UNASSIGNED, 0 }, /* p - 15 */ 111 #endif /* defined(_SUNOS_VTOC_16) */ 112 }; 113 114 #ifdef DEBUG 115 int efi_debug = 1; 116 #else 117 int efi_debug = 0; 118 #endif 119 120 #define EFI_FIXES_DB "/usr/share/hwdata/efi.fixes" 121 122 extern unsigned int efi_crc32(const unsigned char *, unsigned int); 123 static int efi_read(int, struct dk_gpt *); 124 125 static int 126 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize) 127 { 128 struct dk_minfo disk_info; 129 130 if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1) 131 return (errno); 132 *capacity = disk_info.dki_capacity; 133 *lbsize = disk_info.dki_lbsize; 134 return (0); 135 } 136 137 /* 138 * the number of blocks the EFI label takes up (round up to nearest 139 * block) 140 */ 141 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \ 142 ((l) - 1)) / (l))) 143 /* number of partitions -- limited by what we can malloc */ 144 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \ 145 sizeof (struct dk_part)) 146 147 int 148 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc) 149 { 150 diskaddr_t capacity; 151 uint_t lbsize; 152 uint_t nblocks; 153 size_t length; 154 struct dk_gpt *vptr; 155 struct uuid uuid; 156 157 if (read_disk_info(fd, &capacity, &lbsize) != 0) { 158 if (efi_debug) 159 (void) fprintf(stderr, 160 "couldn't read disk information\n"); 161 return (-1); 162 } 163 164 nblocks = NBLOCKS(nparts, lbsize); 165 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) { 166 /* 16K plus one block for the GPT */ 167 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1; 168 } 169 170 if (nparts > MAX_PARTS) { 171 if (efi_debug) { 172 (void) fprintf(stderr, 173 "the maximum number of partitions supported is %lu\n", 174 MAX_PARTS); 175 } 176 return (-1); 177 } 178 179 length = sizeof (struct dk_gpt) + 180 sizeof (struct dk_part) * (nparts - 1); 181 182 if ((*vtoc = calloc(length, 1)) == NULL) 183 return (-1); 184 185 vptr = *vtoc; 186 187 vptr->efi_version = EFI_VERSION_CURRENT; 188 vptr->efi_lbasize = lbsize; 189 vptr->efi_nparts = nparts; 190 /* 191 * add one block here for the PMBR; on disks with a 512 byte 192 * block size and 128 or fewer partitions, efi_first_u_lba 193 * should work out to "34" 194 */ 195 vptr->efi_first_u_lba = nblocks + 1; 196 vptr->efi_last_lba = capacity - 1; 197 vptr->efi_altern_lba = capacity -1; 198 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks; 199 200 (void) uuid_generate((uchar_t *)&uuid); 201 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid); 202 return (0); 203 } 204 205 /* 206 * Read EFI - return partition number upon success. 207 */ 208 int 209 efi_alloc_and_read(int fd, struct dk_gpt **vtoc) 210 { 211 int rval; 212 uint32_t nparts; 213 int length; 214 struct mboot *mbr; 215 struct ipart *ipart; 216 diskaddr_t capacity; 217 uint_t lbsize; 218 int i; 219 220 if (read_disk_info(fd, &capacity, &lbsize) != 0) 221 return (VT_ERROR); 222 223 if ((mbr = calloc(lbsize, 1)) == NULL) 224 return (VT_ERROR); 225 226 if ((ioctl(fd, DKIOCGMBOOT, (caddr_t)mbr)) == -1) { 227 free(mbr); 228 return (VT_ERROR); 229 } 230 231 if (mbr->signature != MBB_MAGIC) { 232 free(mbr); 233 return (VT_EINVAL); 234 } 235 ipart = (struct ipart *)(uintptr_t)mbr->parts; 236 237 /* Check if we have partition with ID EFI_PMBR */ 238 for (i = 0; i < FD_NUMPART; i++) { 239 if (ipart[i].systid == EFI_PMBR) 240 break; 241 } 242 free(mbr); 243 if (i == FD_NUMPART) 244 return (VT_EINVAL); 245 246 /* figure out the number of entries that would fit into 16K */ 247 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t); 248 length = (int) sizeof (struct dk_gpt) + 249 (int) sizeof (struct dk_part) * (nparts - 1); 250 if ((*vtoc = calloc(length, 1)) == NULL) 251 return (VT_ERROR); 252 253 (*vtoc)->efi_nparts = nparts; 254 rval = efi_read(fd, *vtoc); 255 256 if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) { 257 void *tmp; 258 length = (int) sizeof (struct dk_gpt) + 259 (int) sizeof (struct dk_part) * 260 ((*vtoc)->efi_nparts - 1); 261 nparts = (*vtoc)->efi_nparts; 262 if ((tmp = realloc(*vtoc, length)) == NULL) { 263 free (*vtoc); 264 *vtoc = NULL; 265 return (VT_ERROR); 266 } else { 267 *vtoc = tmp; 268 rval = efi_read(fd, *vtoc); 269 } 270 } 271 272 if (rval < 0) { 273 if (efi_debug) { 274 (void) fprintf(stderr, 275 "read of EFI table failed, rval=%d\n", rval); 276 } 277 free (*vtoc); 278 *vtoc = NULL; 279 } 280 281 return (rval); 282 } 283 284 static int 285 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc) 286 { 287 void *data = dk_ioc->dki_data; 288 int error; 289 290 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data; 291 error = ioctl(fd, cmd, (void *)dk_ioc); 292 dk_ioc->dki_data = data; 293 294 return (error); 295 } 296 297 static int 298 check_label(int fd, dk_efi_t *dk_ioc) 299 { 300 efi_gpt_t *efi; 301 uint_t crc; 302 303 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) { 304 switch (errno) { 305 case EIO: 306 return (VT_EIO); 307 default: 308 return (VT_ERROR); 309 } 310 } 311 efi = dk_ioc->dki_data; 312 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) { 313 if (efi_debug) 314 (void) fprintf(stderr, 315 "Bad EFI signature: 0x%llx != 0x%llx\n", 316 (long long)efi->efi_gpt_Signature, 317 (long long)LE_64(EFI_SIGNATURE)); 318 return (VT_EINVAL); 319 } 320 321 /* 322 * check CRC of the header; the size of the header should 323 * never be larger than one block 324 */ 325 crc = efi->efi_gpt_HeaderCRC32; 326 efi->efi_gpt_HeaderCRC32 = 0; 327 328 if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) || 329 crc != LE_32(efi_crc32((unsigned char *)efi, 330 LE_32(efi->efi_gpt_HeaderSize)))) { 331 if (efi_debug) 332 (void) fprintf(stderr, 333 "Bad EFI CRC: 0x%x != 0x%x\n", 334 crc, 335 LE_32(efi_crc32((unsigned char *)efi, 336 sizeof (struct efi_gpt)))); 337 return (VT_EINVAL); 338 } 339 340 return (0); 341 } 342 343 static int 344 efi_read(int fd, struct dk_gpt *vtoc) 345 { 346 int i, j; 347 int label_len; 348 int rval = 0; 349 int vdc_flag = 0; 350 struct dk_minfo disk_info; 351 dk_efi_t dk_ioc; 352 efi_gpt_t *efi; 353 efi_gpe_t *efi_parts; 354 struct dk_cinfo dki_info; 355 uint32_t user_length; 356 boolean_t legacy_label = B_FALSE; 357 358 /* 359 * get the partition number for this file descriptor. 360 */ 361 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { 362 if (efi_debug) { 363 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); 364 } 365 switch (errno) { 366 case EIO: 367 return (VT_EIO); 368 case EINVAL: 369 return (VT_EINVAL); 370 default: 371 return (VT_ERROR); 372 } 373 } 374 375 if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) && 376 (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) { 377 /* 378 * The controller and drive name "vdc" (virtual disk client) 379 * indicates a LDoms virtual disk. 380 */ 381 vdc_flag++; 382 } 383 384 /* get the LBA size */ 385 if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) { 386 if (efi_debug) { 387 (void) fprintf(stderr, 388 "assuming LBA 512 bytes %d\n", 389 errno); 390 } 391 disk_info.dki_lbsize = DEV_BSIZE; 392 } 393 if (disk_info.dki_lbsize == 0) { 394 if (efi_debug) { 395 (void) fprintf(stderr, 396 "efi_read: assuming LBA 512 bytes\n"); 397 } 398 disk_info.dki_lbsize = DEV_BSIZE; 399 } 400 /* 401 * Read the EFI GPT to figure out how many partitions we need 402 * to deal with. 403 */ 404 dk_ioc.dki_lba = 1; 405 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) { 406 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize; 407 } else { 408 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) + 409 disk_info.dki_lbsize; 410 if (label_len % disk_info.dki_lbsize) { 411 /* pad to physical sector size */ 412 label_len += disk_info.dki_lbsize; 413 label_len &= ~(disk_info.dki_lbsize - 1); 414 } 415 } 416 417 if ((dk_ioc.dki_data = calloc(label_len, 1)) == NULL) 418 return (VT_ERROR); 419 420 dk_ioc.dki_length = disk_info.dki_lbsize; 421 user_length = vtoc->efi_nparts; 422 efi = dk_ioc.dki_data; 423 if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) { 424 /* 425 * No valid label here; try the alternate. Note that here 426 * we just read GPT header and save it into dk_ioc.data, 427 * Later, we will read GUID partition entry array if we 428 * can get valid GPT header. 429 */ 430 431 /* 432 * This is a workaround for legacy systems. In the past, the 433 * last sector of SCSI disk was invisible on x86 platform. At 434 * that time, backup label was saved on the next to the last 435 * sector. It is possible for users to move a disk from previous 436 * solaris system to present system. Here, we attempt to search 437 * legacy backup EFI label first. 438 */ 439 dk_ioc.dki_lba = disk_info.dki_capacity - 2; 440 dk_ioc.dki_length = disk_info.dki_lbsize; 441 rval = check_label(fd, &dk_ioc); 442 if (rval == VT_EINVAL) { 443 /* 444 * we didn't find legacy backup EFI label, try to 445 * search backup EFI label in the last block. 446 */ 447 dk_ioc.dki_lba = disk_info.dki_capacity - 1; 448 dk_ioc.dki_length = disk_info.dki_lbsize; 449 rval = check_label(fd, &dk_ioc); 450 if (rval == 0) { 451 legacy_label = B_TRUE; 452 if (efi_debug) 453 (void) fprintf(stderr, 454 "efi_read: primary label corrupt; " 455 "using EFI backup label located on" 456 " the last block\n"); 457 } 458 } else { 459 if ((efi_debug) && (rval == 0)) 460 (void) fprintf(stderr, "efi_read: primary label" 461 " corrupt; using legacy EFI backup label " 462 " located on the next to last block\n"); 463 } 464 465 if (rval == 0) { 466 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); 467 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT; 468 vtoc->efi_nparts = 469 LE_32(efi->efi_gpt_NumberOfPartitionEntries); 470 /* 471 * Partition tables are between backup GPT header 472 * table and ParitionEntryLBA (the starting LBA of 473 * the GUID partition entries array). Now that we 474 * already got valid GPT header and saved it in 475 * dk_ioc.dki_data, we try to get GUID partition 476 * entry array here. 477 */ 478 /* LINTED */ 479 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data 480 + disk_info.dki_lbsize); 481 if (legacy_label) 482 dk_ioc.dki_length = disk_info.dki_capacity - 1 - 483 dk_ioc.dki_lba; 484 else 485 dk_ioc.dki_length = disk_info.dki_capacity - 2 - 486 dk_ioc.dki_lba; 487 dk_ioc.dki_length *= disk_info.dki_lbsize; 488 if (dk_ioc.dki_length > 489 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) { 490 rval = VT_EINVAL; 491 } else { 492 /* 493 * read GUID partition entry array 494 */ 495 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); 496 } 497 } 498 499 } else if (rval == 0) { 500 501 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); 502 /* LINTED */ 503 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data 504 + disk_info.dki_lbsize); 505 dk_ioc.dki_length = label_len - disk_info.dki_lbsize; 506 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); 507 508 } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) { 509 /* 510 * When the device is a LDoms virtual disk, the DKIOCGETEFI 511 * ioctl can fail with EINVAL if the virtual disk backend 512 * is a ZFS volume serviced by a domain running an old version 513 * of Solaris. This is because the DKIOCGETEFI ioctl was 514 * initially incorrectly implemented for a ZFS volume and it 515 * expected the GPT and GPE to be retrieved with a single ioctl. 516 * So we try to read the GPT and the GPE using that old style 517 * ioctl. 518 */ 519 dk_ioc.dki_lba = 1; 520 dk_ioc.dki_length = label_len; 521 rval = check_label(fd, &dk_ioc); 522 } 523 524 if (rval < 0) { 525 free(efi); 526 return (rval); 527 } 528 529 /* LINTED -- always longlong aligned */ 530 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize); 531 532 /* 533 * Assemble this into a "dk_gpt" struct for easier 534 * digestibility by applications. 535 */ 536 vtoc->efi_version = LE_32(efi->efi_gpt_Revision); 537 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries); 538 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry); 539 vtoc->efi_lbasize = disk_info.dki_lbsize; 540 vtoc->efi_last_lba = disk_info.dki_capacity - 1; 541 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA); 542 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA); 543 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA); 544 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID); 545 546 /* 547 * If the array the user passed in is too small, set the length 548 * to what it needs to be and return 549 */ 550 if (user_length < vtoc->efi_nparts) { 551 return (VT_EINVAL); 552 } 553 554 for (i = 0; i < vtoc->efi_nparts; i++) { 555 556 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid, 557 efi_parts[i].efi_gpe_PartitionTypeGUID); 558 559 for (j = 0; 560 j < sizeof (conversion_array) 561 / sizeof (struct uuid_to_ptag); j++) { 562 563 if (bcmp(&vtoc->efi_parts[i].p_guid, 564 &conversion_array[j].uuid, 565 sizeof (struct uuid)) == 0) { 566 vtoc->efi_parts[i].p_tag = j; 567 break; 568 } 569 } 570 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) 571 continue; 572 vtoc->efi_parts[i].p_flag = 573 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs); 574 vtoc->efi_parts[i].p_start = 575 LE_64(efi_parts[i].efi_gpe_StartingLBA); 576 vtoc->efi_parts[i].p_size = 577 LE_64(efi_parts[i].efi_gpe_EndingLBA) - 578 vtoc->efi_parts[i].p_start + 1; 579 for (j = 0; j < EFI_PART_NAME_LEN; j++) { 580 vtoc->efi_parts[i].p_name[j] = 581 (uchar_t)LE_16( 582 efi_parts[i].efi_gpe_PartitionName[j]); 583 } 584 585 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid, 586 efi_parts[i].efi_gpe_UniquePartitionGUID); 587 } 588 free(efi); 589 590 return (dki_info.dki_partition); 591 } 592 593 static void 594 hardware_workarounds(int *slot, int *active) 595 { 596 smbios_struct_t s_sys, s_mb; 597 smbios_info_t sys, mb; 598 smbios_hdl_t *shp; 599 char buf[0x400]; 600 FILE *fp; 601 int err; 602 603 if ((fp = fopen(EFI_FIXES_DB, "rF")) == NULL) 604 return; 605 606 if ((shp = smbios_open(NULL, SMB_VERSION, 0, &err)) == NULL) { 607 if (efi_debug) 608 (void) fprintf(stderr, 609 "libefi failed to load SMBIOS: %s\n", 610 smbios_errmsg(err)); 611 (void) fclose(fp); 612 return; 613 } 614 615 if (smbios_lookup_type(shp, SMB_TYPE_SYSTEM, &s_sys) == SMB_ERR || 616 smbios_info_common(shp, s_sys.smbstr_id, &sys) == SMB_ERR) 617 (void) memset(&sys, '\0', sizeof (sys)); 618 if (smbios_lookup_type(shp, SMB_TYPE_BASEBOARD, &s_mb) == SMB_ERR || 619 smbios_info_common(shp, s_mb.smbstr_id, &mb) == SMB_ERR) 620 (void) memset(&mb, '\0', sizeof (mb)); 621 622 while (fgets(buf, sizeof (buf), fp) != NULL) { 623 char *tok, *val, *end; 624 625 tok = buf + strspn(buf, " \t"); 626 if (*tok == '#') 627 continue; 628 while (*tok != '\0') { 629 tok += strspn(tok, " \t"); 630 if ((val = strchr(tok, '=')) == NULL) 631 break; 632 *val++ = '\0'; 633 if (*val == '"') 634 end = strchr(++val, '"'); 635 else 636 end = strpbrk(val, " \t\n"); 637 if (end == NULL) 638 break; 639 *end++ = '\0'; 640 641 if (strcmp(tok, "sys.manufacturer") == 0 && 642 (sys.smbi_manufacturer == NULL || 643 strcasecmp(val, sys.smbi_manufacturer))) 644 break; 645 if (strcmp(tok, "sys.product") == 0 && 646 (sys.smbi_product == NULL || 647 strcasecmp(val, sys.smbi_product))) 648 break; 649 if (strcmp(tok, "sys.version") == 0 && 650 (sys.smbi_version == NULL || 651 strcasecmp(val, sys.smbi_version))) 652 break; 653 if (strcmp(tok, "mb.manufacturer") == 0 && 654 (mb.smbi_manufacturer == NULL || 655 strcasecmp(val, mb.smbi_manufacturer))) 656 break; 657 if (strcmp(tok, "mb.product") == 0 && 658 (mb.smbi_product == NULL || 659 strcasecmp(val, mb.smbi_product))) 660 break; 661 if (strcmp(tok, "mb.version") == 0 && 662 (mb.smbi_version == NULL || 663 strcasecmp(val, mb.smbi_version))) 664 break; 665 666 if (strcmp(tok, "pmbr_slot") == 0) { 667 *slot = atoi(val); 668 if (*slot < 0 || *slot > 3) 669 *slot = 0; 670 if (efi_debug) 671 (void) fprintf(stderr, 672 "Using slot %d\n", *slot); 673 } 674 675 if (strcmp(tok, "pmbr_active") == 0) { 676 *active = atoi(val); 677 if (*active < 0 || *active > 1) 678 *active = 0; 679 if (efi_debug) 680 (void) fprintf(stderr, 681 "Using active %d\n", *active); 682 } 683 684 tok = end; 685 } 686 } 687 (void) fclose(fp); 688 smbios_close(shp); 689 } 690 691 /* writes a "protective" MBR */ 692 static int 693 write_pmbr(int fd, struct dk_gpt *vtoc) 694 { 695 dk_efi_t dk_ioc; 696 struct mboot mb; 697 uchar_t *cp; 698 diskaddr_t size_in_lba; 699 uchar_t *buf; 700 int len, slot, active; 701 702 slot = active = 0; 703 704 hardware_workarounds(&slot, &active); 705 706 len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize; 707 buf = calloc(len, 1); 708 709 /* 710 * Preserve any boot code and disk signature if the first block is 711 * already an MBR. 712 */ 713 dk_ioc.dki_lba = 0; 714 dk_ioc.dki_length = len; 715 /* LINTED -- always longlong aligned */ 716 dk_ioc.dki_data = (efi_gpt_t *)buf; 717 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) { 718 (void) memcpy(&mb, buf, sizeof (mb)); 719 bzero(&mb, sizeof (mb)); 720 mb.signature = LE_16(MBB_MAGIC); 721 } else { 722 (void) memcpy(&mb, buf, sizeof (mb)); 723 if (mb.signature != LE_16(MBB_MAGIC)) { 724 bzero(&mb, sizeof (mb)); 725 mb.signature = LE_16(MBB_MAGIC); 726 } 727 } 728 729 bzero(&mb.parts, sizeof (mb.parts)); 730 cp = (uchar_t *)&mb.parts[slot * sizeof (struct ipart)]; 731 /* bootable or not */ 732 *cp++ = active ? ACTIVE : NOTACTIVE; 733 /* beginning CHS; 0xffffff if not representable */ 734 *cp++ = 0xff; 735 *cp++ = 0xff; 736 *cp++ = 0xff; 737 /* OS type */ 738 *cp++ = EFI_PMBR; 739 /* ending CHS; 0xffffff if not representable */ 740 *cp++ = 0xff; 741 *cp++ = 0xff; 742 *cp++ = 0xff; 743 /* starting LBA: 1 (little endian format) by EFI definition */ 744 *cp++ = 0x01; 745 *cp++ = 0x00; 746 *cp++ = 0x00; 747 *cp++ = 0x00; 748 /* ending LBA: last block on the disk (little endian format) */ 749 size_in_lba = vtoc->efi_last_lba; 750 if (size_in_lba < 0xffffffff) { 751 *cp++ = (size_in_lba & 0x000000ff); 752 *cp++ = (size_in_lba & 0x0000ff00) >> 8; 753 *cp++ = (size_in_lba & 0x00ff0000) >> 16; 754 *cp++ = (size_in_lba & 0xff000000) >> 24; 755 } else { 756 *cp++ = 0xff; 757 *cp++ = 0xff; 758 *cp++ = 0xff; 759 *cp++ = 0xff; 760 } 761 762 (void) memcpy(buf, &mb, sizeof (mb)); 763 /* LINTED -- always longlong aligned */ 764 dk_ioc.dki_data = (efi_gpt_t *)buf; 765 dk_ioc.dki_lba = 0; 766 dk_ioc.dki_length = len; 767 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 768 free(buf); 769 switch (errno) { 770 case EIO: 771 return (VT_EIO); 772 case EINVAL: 773 return (VT_EINVAL); 774 default: 775 return (VT_ERROR); 776 } 777 } 778 free(buf); 779 return (0); 780 } 781 782 /* make sure the user specified something reasonable */ 783 static int 784 check_input(struct dk_gpt *vtoc) 785 { 786 int resv_part = -1; 787 int i, j; 788 diskaddr_t istart, jstart, isize, jsize, endsect; 789 790 /* 791 * Sanity-check the input (make sure no partitions overlap) 792 */ 793 for (i = 0; i < vtoc->efi_nparts; i++) { 794 /* It can't be unassigned and have an actual size */ 795 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && 796 (vtoc->efi_parts[i].p_size != 0)) { 797 if (efi_debug) { 798 (void) fprintf(stderr, 799 "partition %d is \"unassigned\" but has a size of %llu", 800 i, 801 vtoc->efi_parts[i].p_size); 802 } 803 return (VT_EINVAL); 804 } 805 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { 806 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid)) 807 continue; 808 /* we have encountered an unknown uuid */ 809 vtoc->efi_parts[i].p_tag = 0xff; 810 } 811 if (vtoc->efi_parts[i].p_tag == V_RESERVED) { 812 if (resv_part != -1) { 813 if (efi_debug) { 814 (void) fprintf(stderr, 815 "found duplicate reserved partition at %d\n", 816 i); 817 } 818 return (VT_EINVAL); 819 } 820 resv_part = i; 821 } 822 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || 823 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { 824 if (efi_debug) { 825 (void) fprintf(stderr, 826 "Partition %d starts at %llu. ", 827 i, 828 vtoc->efi_parts[i].p_start); 829 (void) fprintf(stderr, 830 "It must be between %llu and %llu.\n", 831 vtoc->efi_first_u_lba, 832 vtoc->efi_last_u_lba); 833 } 834 return (VT_EINVAL); 835 } 836 if ((vtoc->efi_parts[i].p_start + 837 vtoc->efi_parts[i].p_size < 838 vtoc->efi_first_u_lba) || 839 (vtoc->efi_parts[i].p_start + 840 vtoc->efi_parts[i].p_size > 841 vtoc->efi_last_u_lba + 1)) { 842 if (efi_debug) { 843 (void) fprintf(stderr, 844 "Partition %d ends at %llu. ", 845 i, 846 vtoc->efi_parts[i].p_start + 847 vtoc->efi_parts[i].p_size); 848 (void) fprintf(stderr, 849 "It must be between %llu and %llu.\n", 850 vtoc->efi_first_u_lba, 851 vtoc->efi_last_u_lba); 852 } 853 return (VT_EINVAL); 854 } 855 856 for (j = 0; j < vtoc->efi_nparts; j++) { 857 isize = vtoc->efi_parts[i].p_size; 858 jsize = vtoc->efi_parts[j].p_size; 859 istart = vtoc->efi_parts[i].p_start; 860 jstart = vtoc->efi_parts[j].p_start; 861 if ((i != j) && (isize != 0) && (jsize != 0)) { 862 endsect = jstart + jsize -1; 863 if ((jstart <= istart) && 864 (istart <= endsect)) { 865 if (efi_debug) { 866 (void) fprintf(stderr, 867 "Partition %d overlaps partition %d.", 868 i, j); 869 } 870 return (VT_EINVAL); 871 } 872 } 873 } 874 } 875 /* just a warning for now */ 876 if ((resv_part == -1) && efi_debug) { 877 (void) fprintf(stderr, 878 "no reserved partition found\n"); 879 } 880 return (0); 881 } 882 883 /* 884 * add all the unallocated space to the current label 885 */ 886 int 887 efi_use_whole_disk(int fd) 888 { 889 struct dk_gpt *efi_label; 890 int rval; 891 int i; 892 uint_t phy_last_slice = 0; 893 diskaddr_t pl_start = 0; 894 diskaddr_t pl_size; 895 896 rval = efi_alloc_and_read(fd, &efi_label); 897 if (rval < 0) { 898 return (rval); 899 } 900 901 /* find the last physically non-zero partition */ 902 for (i = 0; i < efi_label->efi_nparts - 2; i ++) { 903 if (pl_start < efi_label->efi_parts[i].p_start) { 904 pl_start = efi_label->efi_parts[i].p_start; 905 phy_last_slice = i; 906 } 907 } 908 pl_size = efi_label->efi_parts[phy_last_slice].p_size; 909 910 /* 911 * If alter_lba is 1, we are using the backup label. 912 * Since we can locate the backup label by disk capacity, 913 * there must be no unallocated space. 914 */ 915 if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba 916 >= efi_label->efi_last_lba)) { 917 if (efi_debug) { 918 (void) fprintf(stderr, 919 "efi_use_whole_disk: requested space not found\n"); 920 } 921 efi_free(efi_label); 922 return (VT_ENOSPC); 923 } 924 925 /* 926 * If there is space between the last physically non-zero partition 927 * and the reserved partition, just add the unallocated space to this 928 * area. Otherwise, the unallocated space is added to the last 929 * physically non-zero partition. 930 */ 931 if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba - 932 EFI_MIN_RESV_SIZE) { 933 efi_label->efi_parts[phy_last_slice].p_size += 934 efi_label->efi_last_lba - efi_label->efi_altern_lba; 935 } 936 937 /* 938 * Move the reserved partition. There is currently no data in 939 * here except fabricated devids (which get generated via 940 * efi_write()). So there is no need to copy data. 941 */ 942 efi_label->efi_parts[efi_label->efi_nparts - 1].p_start += 943 efi_label->efi_last_lba - efi_label->efi_altern_lba; 944 efi_label->efi_last_u_lba += efi_label->efi_last_lba 945 - efi_label->efi_altern_lba; 946 947 rval = efi_write(fd, efi_label); 948 if (rval < 0) { 949 if (efi_debug) { 950 (void) fprintf(stderr, 951 "efi_use_whole_disk:fail to write label, rval=%d\n", 952 rval); 953 } 954 efi_free(efi_label); 955 return (rval); 956 } 957 958 efi_free(efi_label); 959 return (0); 960 } 961 962 963 /* 964 * write EFI label and backup label 965 */ 966 int 967 efi_write(int fd, struct dk_gpt *vtoc) 968 { 969 dk_efi_t dk_ioc; 970 efi_gpt_t *efi; 971 efi_gpe_t *efi_parts; 972 int i, j; 973 struct dk_cinfo dki_info; 974 int nblocks; 975 diskaddr_t lba_backup_gpt_hdr; 976 977 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { 978 if (efi_debug) 979 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); 980 switch (errno) { 981 case EIO: 982 return (VT_EIO); 983 case EINVAL: 984 return (VT_EINVAL); 985 default: 986 return (VT_ERROR); 987 } 988 } 989 990 if (check_input(vtoc)) 991 return (VT_EINVAL); 992 993 dk_ioc.dki_lba = 1; 994 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) { 995 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize; 996 } else { 997 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts, 998 vtoc->efi_lbasize) * 999 vtoc->efi_lbasize; 1000 } 1001 1002 /* 1003 * the number of blocks occupied by GUID partition entry array 1004 */ 1005 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1; 1006 1007 /* 1008 * Backup GPT header is located on the block after GUID 1009 * partition entry array. Here, we calculate the address 1010 * for backup GPT header. 1011 */ 1012 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks; 1013 if ((dk_ioc.dki_data = calloc(dk_ioc.dki_length, 1)) == NULL) 1014 return (VT_ERROR); 1015 1016 efi = dk_ioc.dki_data; 1017 1018 /* stuff user's input into EFI struct */ 1019 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE); 1020 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */ 1021 efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt)); 1022 efi->efi_gpt_Reserved1 = 0; 1023 efi->efi_gpt_MyLBA = LE_64(1ULL); 1024 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr); 1025 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba); 1026 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba); 1027 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL); 1028 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts); 1029 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe)); 1030 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid); 1031 1032 /* LINTED -- always longlong aligned */ 1033 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize); 1034 1035 for (i = 0; i < vtoc->efi_nparts; i++) { 1036 for (j = 0; 1037 j < sizeof (conversion_array) / 1038 sizeof (struct uuid_to_ptag); j++) { 1039 1040 if (vtoc->efi_parts[i].p_tag == j) { 1041 UUID_LE_CONVERT( 1042 efi_parts[i].efi_gpe_PartitionTypeGUID, 1043 conversion_array[j].uuid); 1044 break; 1045 } 1046 } 1047 1048 if (j == sizeof (conversion_array) / 1049 sizeof (struct uuid_to_ptag)) { 1050 /* 1051 * If we didn't have a matching uuid match, bail here. 1052 * Don't write a label with unknown uuid. 1053 */ 1054 if (efi_debug) { 1055 (void) fprintf(stderr, 1056 "Unknown uuid for p_tag %d\n", 1057 vtoc->efi_parts[i].p_tag); 1058 } 1059 return (VT_EINVAL); 1060 } 1061 1062 efi_parts[i].efi_gpe_StartingLBA = 1063 LE_64(vtoc->efi_parts[i].p_start); 1064 efi_parts[i].efi_gpe_EndingLBA = 1065 LE_64(vtoc->efi_parts[i].p_start + 1066 vtoc->efi_parts[i].p_size - 1); 1067 efi_parts[i].efi_gpe_Attributes.PartitionAttrs = 1068 LE_16(vtoc->efi_parts[i].p_flag); 1069 for (j = 0; j < EFI_PART_NAME_LEN; j++) { 1070 efi_parts[i].efi_gpe_PartitionName[j] = 1071 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]); 1072 } 1073 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) && 1074 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) { 1075 (void) uuid_generate((uchar_t *) 1076 &vtoc->efi_parts[i].p_uguid); 1077 } 1078 bcopy(&vtoc->efi_parts[i].p_uguid, 1079 &efi_parts[i].efi_gpe_UniquePartitionGUID, 1080 sizeof (uuid_t)); 1081 } 1082 efi->efi_gpt_PartitionEntryArrayCRC32 = 1083 LE_32(efi_crc32((unsigned char *)efi_parts, 1084 vtoc->efi_nparts * (int)sizeof (struct efi_gpe))); 1085 efi->efi_gpt_HeaderCRC32 = 1086 LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt))); 1087 1088 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 1089 free(dk_ioc.dki_data); 1090 switch (errno) { 1091 case EIO: 1092 return (VT_EIO); 1093 case EINVAL: 1094 return (VT_EINVAL); 1095 default: 1096 return (VT_ERROR); 1097 } 1098 } 1099 1100 /* write backup partition array */ 1101 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1; 1102 dk_ioc.dki_length -= vtoc->efi_lbasize; 1103 /* LINTED */ 1104 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data + 1105 vtoc->efi_lbasize); 1106 1107 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 1108 /* 1109 * we wrote the primary label okay, so don't fail 1110 */ 1111 if (efi_debug) { 1112 (void) fprintf(stderr, 1113 "write of backup partitions to block %llu " 1114 "failed, errno %d\n", 1115 vtoc->efi_last_u_lba + 1, 1116 errno); 1117 } 1118 } 1119 /* 1120 * now swap MyLBA and AlternateLBA fields and write backup 1121 * partition table header 1122 */ 1123 dk_ioc.dki_lba = lba_backup_gpt_hdr; 1124 dk_ioc.dki_length = vtoc->efi_lbasize; 1125 /* LINTED */ 1126 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data - 1127 vtoc->efi_lbasize); 1128 efi->efi_gpt_AlternateLBA = LE_64(1ULL); 1129 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr); 1130 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1); 1131 efi->efi_gpt_HeaderCRC32 = 0; 1132 efi->efi_gpt_HeaderCRC32 = 1133 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data, 1134 sizeof (struct efi_gpt))); 1135 1136 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 1137 if (efi_debug) { 1138 (void) fprintf(stderr, 1139 "write of backup header to block %llu failed, " 1140 "errno %d\n", 1141 lba_backup_gpt_hdr, 1142 errno); 1143 } 1144 } 1145 /* write the PMBR */ 1146 (void) write_pmbr(fd, vtoc); 1147 free(dk_ioc.dki_data); 1148 return (0); 1149 } 1150 1151 void 1152 efi_free(struct dk_gpt *ptr) 1153 { 1154 free(ptr); 1155 } 1156 1157 /* 1158 * Input: File descriptor 1159 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR. 1160 * Otherwise 0. 1161 */ 1162 int 1163 efi_type(int fd) 1164 { 1165 struct vtoc vtoc; 1166 struct extvtoc extvtoc; 1167 1168 if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) { 1169 if (errno == ENOTSUP) 1170 return (1); 1171 else if (errno == ENOTTY) { 1172 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1) 1173 if (errno == ENOTSUP) 1174 return (1); 1175 } 1176 } 1177 return (0); 1178 } 1179 1180 void 1181 efi_err_check(struct dk_gpt *vtoc) 1182 { 1183 int resv_part = -1; 1184 int i, j; 1185 diskaddr_t istart, jstart, isize, jsize, endsect; 1186 int overlap = 0; 1187 1188 /* 1189 * make sure no partitions overlap 1190 */ 1191 for (i = 0; i < vtoc->efi_nparts; i++) { 1192 /* It can't be unassigned and have an actual size */ 1193 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && 1194 (vtoc->efi_parts[i].p_size != 0)) { 1195 (void) fprintf(stderr, 1196 "partition %d is \"unassigned\" but has a size " 1197 "of %llu\n", i, vtoc->efi_parts[i].p_size); 1198 } 1199 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { 1200 continue; 1201 } 1202 if (vtoc->efi_parts[i].p_tag == V_RESERVED) { 1203 if (resv_part != -1) { 1204 (void) fprintf(stderr, 1205 "found duplicate reserved partition at " 1206 "%d\n", i); 1207 } 1208 resv_part = i; 1209 if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE) 1210 (void) fprintf(stderr, 1211 "Warning: reserved partition size must " 1212 "be %d sectors\n", EFI_MIN_RESV_SIZE); 1213 } 1214 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || 1215 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { 1216 (void) fprintf(stderr, 1217 "Partition %d starts at %llu\n", 1218 i, 1219 vtoc->efi_parts[i].p_start); 1220 (void) fprintf(stderr, 1221 "It must be between %llu and %llu.\n", 1222 vtoc->efi_first_u_lba, 1223 vtoc->efi_last_u_lba); 1224 } 1225 if ((vtoc->efi_parts[i].p_start + 1226 vtoc->efi_parts[i].p_size < 1227 vtoc->efi_first_u_lba) || 1228 (vtoc->efi_parts[i].p_start + 1229 vtoc->efi_parts[i].p_size > 1230 vtoc->efi_last_u_lba + 1)) { 1231 (void) fprintf(stderr, 1232 "Partition %d ends at %llu\n", 1233 i, 1234 vtoc->efi_parts[i].p_start + 1235 vtoc->efi_parts[i].p_size); 1236 (void) fprintf(stderr, 1237 "It must be between %llu and %llu.\n", 1238 vtoc->efi_first_u_lba, 1239 vtoc->efi_last_u_lba); 1240 } 1241 1242 for (j = 0; j < vtoc->efi_nparts; j++) { 1243 isize = vtoc->efi_parts[i].p_size; 1244 jsize = vtoc->efi_parts[j].p_size; 1245 istart = vtoc->efi_parts[i].p_start; 1246 jstart = vtoc->efi_parts[j].p_start; 1247 if ((i != j) && (isize != 0) && (jsize != 0)) { 1248 endsect = jstart + jsize -1; 1249 if ((jstart <= istart) && 1250 (istart <= endsect)) { 1251 if (!overlap) { 1252 (void) fprintf(stderr, 1253 "label error: EFI Labels do not " 1254 "support overlapping partitions\n"); 1255 } 1256 (void) fprintf(stderr, 1257 "Partition %d overlaps partition " 1258 "%d.\n", i, j); 1259 overlap = 1; 1260 } 1261 } 1262 } 1263 } 1264 /* make sure there is a reserved partition */ 1265 if (resv_part == -1) { 1266 (void) fprintf(stderr, 1267 "no reserved partition found\n"); 1268 } 1269 } 1270 1271 /* 1272 * We need to get information necessary to construct a *new* efi 1273 * label type 1274 */ 1275 int 1276 efi_auto_sense(int fd, struct dk_gpt **vtoc) 1277 { 1278 1279 int i; 1280 1281 /* 1282 * Now build the default partition table 1283 */ 1284 if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) { 1285 if (efi_debug) { 1286 (void) fprintf(stderr, "efi_alloc_and_init failed.\n"); 1287 } 1288 return (-1); 1289 } 1290 1291 for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) { 1292 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag; 1293 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag; 1294 (*vtoc)->efi_parts[i].p_start = 0; 1295 (*vtoc)->efi_parts[i].p_size = 0; 1296 } 1297 /* 1298 * Make constants first 1299 * and variable partitions later 1300 */ 1301 1302 /* root partition - s0 128 MB */ 1303 (*vtoc)->efi_parts[0].p_start = 34; 1304 (*vtoc)->efi_parts[0].p_size = 262144; 1305 1306 /* partition - s1 128 MB */ 1307 (*vtoc)->efi_parts[1].p_start = 262178; 1308 (*vtoc)->efi_parts[1].p_size = 262144; 1309 1310 /* partition -s2 is NOT the Backup disk */ 1311 (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED; 1312 1313 /* partition -s6 /usr partition - HOG */ 1314 (*vtoc)->efi_parts[6].p_start = 524322; 1315 (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322 1316 - (1024 * 16); 1317 1318 /* efi reserved partition - s9 16K */ 1319 (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16); 1320 (*vtoc)->efi_parts[8].p_size = (1024 * 16); 1321 (*vtoc)->efi_parts[8].p_tag = V_RESERVED; 1322 return (0); 1323 } 1324