1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2012 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2014 Toomas Soome <tsoome@me.com> 26 */ 27 28 #include <stdio.h> 29 #include <stdlib.h> 30 #include <errno.h> 31 #include <strings.h> 32 #include <unistd.h> 33 #include <uuid/uuid.h> 34 #include <libintl.h> 35 #include <sys/types.h> 36 #include <sys/dkio.h> 37 #include <sys/vtoc.h> 38 #include <sys/mhd.h> 39 #include <sys/param.h> 40 #include <sys/dktp/fdisk.h> 41 #include <sys/efi_partition.h> 42 #include <sys/byteorder.h> 43 #include <sys/ddi.h> 44 45 static struct uuid_to_ptag { 46 struct uuid uuid; 47 } conversion_array[] = { 48 { EFI_UNUSED }, 49 { EFI_BOOT }, 50 { EFI_ROOT }, 51 { EFI_SWAP }, 52 { EFI_USR }, 53 { EFI_BACKUP }, 54 { 0 }, /* STAND is never used */ 55 { EFI_VAR }, 56 { EFI_HOME }, 57 { EFI_ALTSCTR }, 58 { 0 }, /* CACHE (cachefs) is never used */ 59 { EFI_RESERVED }, 60 { EFI_SYSTEM }, 61 { EFI_LEGACY_MBR }, 62 { EFI_SYMC_PUB }, 63 { EFI_SYMC_CDS }, 64 { EFI_MSFT_RESV }, 65 { EFI_DELL_BASIC }, 66 { EFI_DELL_RAID }, 67 { EFI_DELL_SWAP }, 68 { EFI_DELL_LVM }, 69 { EFI_DELL_RESV }, 70 { EFI_AAPL_HFS }, 71 { EFI_AAPL_UFS }, 72 { EFI_BIOS_BOOT }, 73 { EFI_FREEBSD_BOOT }, 74 { EFI_FREEBSD_SWAP }, 75 { EFI_FREEBSD_UFS }, 76 { EFI_FREEBSD_VINUM }, 77 { EFI_FREEBSD_ZFS } 78 }; 79 80 /* 81 * Default vtoc information for non-SVr4 partitions 82 */ 83 struct dk_map2 default_vtoc_map[NDKMAP] = { 84 { V_ROOT, 0 }, /* a - 0 */ 85 { V_SWAP, V_UNMNT }, /* b - 1 */ 86 { V_BACKUP, V_UNMNT }, /* c - 2 */ 87 { V_UNASSIGNED, 0 }, /* d - 3 */ 88 { V_UNASSIGNED, 0 }, /* e - 4 */ 89 { V_UNASSIGNED, 0 }, /* f - 5 */ 90 { V_USR, 0 }, /* g - 6 */ 91 { V_UNASSIGNED, 0 }, /* h - 7 */ 92 93 #if defined(_SUNOS_VTOC_16) 94 95 #if defined(i386) || defined(__amd64) 96 { V_BOOT, V_UNMNT }, /* i - 8 */ 97 { V_ALTSCTR, 0 }, /* j - 9 */ 98 99 #else 100 #error No VTOC format defined. 101 #endif /* defined(i386) */ 102 103 { V_UNASSIGNED, 0 }, /* k - 10 */ 104 { V_UNASSIGNED, 0 }, /* l - 11 */ 105 { V_UNASSIGNED, 0 }, /* m - 12 */ 106 { V_UNASSIGNED, 0 }, /* n - 13 */ 107 { V_UNASSIGNED, 0 }, /* o - 14 */ 108 { V_UNASSIGNED, 0 }, /* p - 15 */ 109 #endif /* defined(_SUNOS_VTOC_16) */ 110 }; 111 112 #ifdef DEBUG 113 int efi_debug = 1; 114 #else 115 int efi_debug = 0; 116 #endif 117 118 extern unsigned int efi_crc32(const unsigned char *, unsigned int); 119 static int efi_read(int, struct dk_gpt *); 120 121 static int 122 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize) 123 { 124 struct dk_minfo disk_info; 125 126 if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1) 127 return (errno); 128 *capacity = disk_info.dki_capacity; 129 *lbsize = disk_info.dki_lbsize; 130 return (0); 131 } 132 133 /* 134 * the number of blocks the EFI label takes up (round up to nearest 135 * block) 136 */ 137 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \ 138 ((l) - 1)) / (l))) 139 /* number of partitions -- limited by what we can malloc */ 140 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \ 141 sizeof (struct dk_part)) 142 143 int 144 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc) 145 { 146 diskaddr_t capacity; 147 uint_t lbsize; 148 uint_t nblocks; 149 size_t length; 150 struct dk_gpt *vptr; 151 struct uuid uuid; 152 153 if (read_disk_info(fd, &capacity, &lbsize) != 0) { 154 if (efi_debug) 155 (void) fprintf(stderr, 156 "couldn't read disk information\n"); 157 return (-1); 158 } 159 160 nblocks = NBLOCKS(nparts, lbsize); 161 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) { 162 /* 16K plus one block for the GPT */ 163 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1; 164 } 165 166 if (nparts > MAX_PARTS) { 167 if (efi_debug) { 168 (void) fprintf(stderr, 169 "the maximum number of partitions supported is %lu\n", 170 MAX_PARTS); 171 } 172 return (-1); 173 } 174 175 length = sizeof (struct dk_gpt) + 176 sizeof (struct dk_part) * (nparts - 1); 177 178 if ((*vtoc = calloc(length, 1)) == NULL) 179 return (-1); 180 181 vptr = *vtoc; 182 183 vptr->efi_version = EFI_VERSION_CURRENT; 184 vptr->efi_lbasize = lbsize; 185 vptr->efi_nparts = nparts; 186 /* 187 * add one block here for the PMBR; on disks with a 512 byte 188 * block size and 128 or fewer partitions, efi_first_u_lba 189 * should work out to "34" 190 */ 191 vptr->efi_first_u_lba = nblocks + 1; 192 vptr->efi_last_lba = capacity - 1; 193 vptr->efi_altern_lba = capacity -1; 194 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks; 195 196 (void) uuid_generate((uchar_t *)&uuid); 197 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid); 198 return (0); 199 } 200 201 /* 202 * Read EFI - return partition number upon success. 203 */ 204 int 205 efi_alloc_and_read(int fd, struct dk_gpt **vtoc) 206 { 207 int rval; 208 uint32_t nparts; 209 int length; 210 211 /* figure out the number of entries that would fit into 16K */ 212 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t); 213 length = (int) sizeof (struct dk_gpt) + 214 (int) sizeof (struct dk_part) * (nparts - 1); 215 if ((*vtoc = calloc(length, 1)) == NULL) 216 return (VT_ERROR); 217 218 (*vtoc)->efi_nparts = nparts; 219 rval = efi_read(fd, *vtoc); 220 221 if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) { 222 void *tmp; 223 length = (int) sizeof (struct dk_gpt) + 224 (int) sizeof (struct dk_part) * 225 ((*vtoc)->efi_nparts - 1); 226 nparts = (*vtoc)->efi_nparts; 227 if ((tmp = realloc(*vtoc, length)) == NULL) { 228 free (*vtoc); 229 *vtoc = NULL; 230 return (VT_ERROR); 231 } else { 232 *vtoc = tmp; 233 rval = efi_read(fd, *vtoc); 234 } 235 } 236 237 if (rval < 0) { 238 if (efi_debug) { 239 (void) fprintf(stderr, 240 "read of EFI table failed, rval=%d\n", rval); 241 } 242 free (*vtoc); 243 *vtoc = NULL; 244 } 245 246 return (rval); 247 } 248 249 static int 250 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc) 251 { 252 void *data = dk_ioc->dki_data; 253 int error; 254 255 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data; 256 error = ioctl(fd, cmd, (void *)dk_ioc); 257 dk_ioc->dki_data = data; 258 259 return (error); 260 } 261 262 static int 263 check_label(int fd, dk_efi_t *dk_ioc) 264 { 265 efi_gpt_t *efi; 266 uint_t crc; 267 268 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) { 269 switch (errno) { 270 case EIO: 271 return (VT_EIO); 272 default: 273 return (VT_ERROR); 274 } 275 } 276 efi = dk_ioc->dki_data; 277 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) { 278 if (efi_debug) 279 (void) fprintf(stderr, 280 "Bad EFI signature: 0x%llx != 0x%llx\n", 281 (long long)efi->efi_gpt_Signature, 282 (long long)LE_64(EFI_SIGNATURE)); 283 return (VT_EINVAL); 284 } 285 286 /* 287 * check CRC of the header; the size of the header should 288 * never be larger than one block 289 */ 290 crc = efi->efi_gpt_HeaderCRC32; 291 efi->efi_gpt_HeaderCRC32 = 0; 292 293 if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) || 294 crc != LE_32(efi_crc32((unsigned char *)efi, 295 LE_32(efi->efi_gpt_HeaderSize)))) { 296 if (efi_debug) 297 (void) fprintf(stderr, 298 "Bad EFI CRC: 0x%x != 0x%x\n", 299 crc, 300 LE_32(efi_crc32((unsigned char *)efi, 301 sizeof (struct efi_gpt)))); 302 return (VT_EINVAL); 303 } 304 305 return (0); 306 } 307 308 static int 309 efi_read(int fd, struct dk_gpt *vtoc) 310 { 311 int i, j; 312 int label_len; 313 int rval = 0; 314 int md_flag = 0; 315 int vdc_flag = 0; 316 struct dk_minfo disk_info; 317 dk_efi_t dk_ioc; 318 efi_gpt_t *efi; 319 efi_gpe_t *efi_parts; 320 struct dk_cinfo dki_info; 321 uint32_t user_length; 322 boolean_t legacy_label = B_FALSE; 323 324 /* 325 * get the partition number for this file descriptor. 326 */ 327 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { 328 if (efi_debug) { 329 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); 330 } 331 switch (errno) { 332 case EIO: 333 return (VT_EIO); 334 case EINVAL: 335 return (VT_EINVAL); 336 default: 337 return (VT_ERROR); 338 } 339 } 340 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) && 341 (strncmp(dki_info.dki_dname, "md", 3) == 0)) { 342 md_flag++; 343 } else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) && 344 (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) { 345 /* 346 * The controller and drive name "vdc" (virtual disk client) 347 * indicates a LDoms virtual disk. 348 */ 349 vdc_flag++; 350 } 351 352 /* get the LBA size */ 353 if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) { 354 if (efi_debug) { 355 (void) fprintf(stderr, 356 "assuming LBA 512 bytes %d\n", 357 errno); 358 } 359 disk_info.dki_lbsize = DEV_BSIZE; 360 } 361 if (disk_info.dki_lbsize == 0) { 362 if (efi_debug) { 363 (void) fprintf(stderr, 364 "efi_read: assuming LBA 512 bytes\n"); 365 } 366 disk_info.dki_lbsize = DEV_BSIZE; 367 } 368 /* 369 * Read the EFI GPT to figure out how many partitions we need 370 * to deal with. 371 */ 372 dk_ioc.dki_lba = 1; 373 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) { 374 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize; 375 } else { 376 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) + 377 disk_info.dki_lbsize; 378 if (label_len % disk_info.dki_lbsize) { 379 /* pad to physical sector size */ 380 label_len += disk_info.dki_lbsize; 381 label_len &= ~(disk_info.dki_lbsize - 1); 382 } 383 } 384 385 if ((dk_ioc.dki_data = calloc(label_len, 1)) == NULL) 386 return (VT_ERROR); 387 388 dk_ioc.dki_length = disk_info.dki_lbsize; 389 user_length = vtoc->efi_nparts; 390 efi = dk_ioc.dki_data; 391 if (md_flag) { 392 dk_ioc.dki_length = label_len; 393 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) { 394 switch (errno) { 395 case EIO: 396 return (VT_EIO); 397 default: 398 return (VT_ERROR); 399 } 400 } 401 } else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) { 402 /* 403 * No valid label here; try the alternate. Note that here 404 * we just read GPT header and save it into dk_ioc.data, 405 * Later, we will read GUID partition entry array if we 406 * can get valid GPT header. 407 */ 408 409 /* 410 * This is a workaround for legacy systems. In the past, the 411 * last sector of SCSI disk was invisible on x86 platform. At 412 * that time, backup label was saved on the next to the last 413 * sector. It is possible for users to move a disk from previous 414 * solaris system to present system. Here, we attempt to search 415 * legacy backup EFI label first. 416 */ 417 dk_ioc.dki_lba = disk_info.dki_capacity - 2; 418 dk_ioc.dki_length = disk_info.dki_lbsize; 419 rval = check_label(fd, &dk_ioc); 420 if (rval == VT_EINVAL) { 421 /* 422 * we didn't find legacy backup EFI label, try to 423 * search backup EFI label in the last block. 424 */ 425 dk_ioc.dki_lba = disk_info.dki_capacity - 1; 426 dk_ioc.dki_length = disk_info.dki_lbsize; 427 rval = check_label(fd, &dk_ioc); 428 if (rval == 0) { 429 legacy_label = B_TRUE; 430 if (efi_debug) 431 (void) fprintf(stderr, 432 "efi_read: primary label corrupt; " 433 "using EFI backup label located on" 434 " the last block\n"); 435 } 436 } else { 437 if ((efi_debug) && (rval == 0)) 438 (void) fprintf(stderr, "efi_read: primary label" 439 " corrupt; using legacy EFI backup label " 440 " located on the next to last block\n"); 441 } 442 443 if (rval == 0) { 444 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); 445 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT; 446 vtoc->efi_nparts = 447 LE_32(efi->efi_gpt_NumberOfPartitionEntries); 448 /* 449 * Partition tables are between backup GPT header 450 * table and ParitionEntryLBA (the starting LBA of 451 * the GUID partition entries array). Now that we 452 * already got valid GPT header and saved it in 453 * dk_ioc.dki_data, we try to get GUID partition 454 * entry array here. 455 */ 456 /* LINTED */ 457 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data 458 + disk_info.dki_lbsize); 459 if (legacy_label) 460 dk_ioc.dki_length = disk_info.dki_capacity - 1 - 461 dk_ioc.dki_lba; 462 else 463 dk_ioc.dki_length = disk_info.dki_capacity - 2 - 464 dk_ioc.dki_lba; 465 dk_ioc.dki_length *= disk_info.dki_lbsize; 466 if (dk_ioc.dki_length > 467 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) { 468 rval = VT_EINVAL; 469 } else { 470 /* 471 * read GUID partition entry array 472 */ 473 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); 474 } 475 } 476 477 } else if (rval == 0) { 478 479 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); 480 /* LINTED */ 481 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data 482 + disk_info.dki_lbsize); 483 dk_ioc.dki_length = label_len - disk_info.dki_lbsize; 484 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); 485 486 } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) { 487 /* 488 * When the device is a LDoms virtual disk, the DKIOCGETEFI 489 * ioctl can fail with EINVAL if the virtual disk backend 490 * is a ZFS volume serviced by a domain running an old version 491 * of Solaris. This is because the DKIOCGETEFI ioctl was 492 * initially incorrectly implemented for a ZFS volume and it 493 * expected the GPT and GPE to be retrieved with a single ioctl. 494 * So we try to read the GPT and the GPE using that old style 495 * ioctl. 496 */ 497 dk_ioc.dki_lba = 1; 498 dk_ioc.dki_length = label_len; 499 rval = check_label(fd, &dk_ioc); 500 } 501 502 if (rval < 0) { 503 free(efi); 504 return (rval); 505 } 506 507 /* LINTED -- always longlong aligned */ 508 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize); 509 510 /* 511 * Assemble this into a "dk_gpt" struct for easier 512 * digestibility by applications. 513 */ 514 vtoc->efi_version = LE_32(efi->efi_gpt_Revision); 515 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries); 516 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry); 517 vtoc->efi_lbasize = disk_info.dki_lbsize; 518 vtoc->efi_last_lba = disk_info.dki_capacity - 1; 519 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA); 520 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA); 521 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA); 522 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID); 523 524 /* 525 * If the array the user passed in is too small, set the length 526 * to what it needs to be and return 527 */ 528 if (user_length < vtoc->efi_nparts) { 529 return (VT_EINVAL); 530 } 531 532 for (i = 0; i < vtoc->efi_nparts; i++) { 533 534 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid, 535 efi_parts[i].efi_gpe_PartitionTypeGUID); 536 537 for (j = 0; 538 j < sizeof (conversion_array) 539 / sizeof (struct uuid_to_ptag); j++) { 540 541 if (bcmp(&vtoc->efi_parts[i].p_guid, 542 &conversion_array[j].uuid, 543 sizeof (struct uuid)) == 0) { 544 vtoc->efi_parts[i].p_tag = j; 545 break; 546 } 547 } 548 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) 549 continue; 550 vtoc->efi_parts[i].p_flag = 551 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs); 552 vtoc->efi_parts[i].p_start = 553 LE_64(efi_parts[i].efi_gpe_StartingLBA); 554 vtoc->efi_parts[i].p_size = 555 LE_64(efi_parts[i].efi_gpe_EndingLBA) - 556 vtoc->efi_parts[i].p_start + 1; 557 for (j = 0; j < EFI_PART_NAME_LEN; j++) { 558 vtoc->efi_parts[i].p_name[j] = 559 (uchar_t)LE_16( 560 efi_parts[i].efi_gpe_PartitionName[j]); 561 } 562 563 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid, 564 efi_parts[i].efi_gpe_UniquePartitionGUID); 565 } 566 free(efi); 567 568 return (dki_info.dki_partition); 569 } 570 571 /* writes a "protective" MBR */ 572 static int 573 write_pmbr(int fd, struct dk_gpt *vtoc) 574 { 575 dk_efi_t dk_ioc; 576 struct mboot mb; 577 uchar_t *cp; 578 diskaddr_t size_in_lba; 579 uchar_t *buf; 580 int len; 581 582 len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize; 583 buf = calloc(len, 1); 584 585 /* 586 * Preserve any boot code and disk signature if the first block is 587 * already an MBR. 588 */ 589 dk_ioc.dki_lba = 0; 590 dk_ioc.dki_length = len; 591 /* LINTED -- always longlong aligned */ 592 dk_ioc.dki_data = (efi_gpt_t *)buf; 593 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) { 594 (void *) memcpy(&mb, buf, sizeof (mb)); 595 bzero(&mb, sizeof (mb)); 596 mb.signature = LE_16(MBB_MAGIC); 597 } else { 598 (void *) memcpy(&mb, buf, sizeof (mb)); 599 if (mb.signature != LE_16(MBB_MAGIC)) { 600 bzero(&mb, sizeof (mb)); 601 mb.signature = LE_16(MBB_MAGIC); 602 } 603 } 604 605 bzero(&mb.parts, sizeof (mb.parts)); 606 cp = (uchar_t *)&mb.parts[0]; 607 /* bootable or not */ 608 *cp++ = 0; 609 /* beginning CHS; 0xffffff if not representable */ 610 *cp++ = 0xff; 611 *cp++ = 0xff; 612 *cp++ = 0xff; 613 /* OS type */ 614 *cp++ = EFI_PMBR; 615 /* ending CHS; 0xffffff if not representable */ 616 *cp++ = 0xff; 617 *cp++ = 0xff; 618 *cp++ = 0xff; 619 /* starting LBA: 1 (little endian format) by EFI definition */ 620 *cp++ = 0x01; 621 *cp++ = 0x00; 622 *cp++ = 0x00; 623 *cp++ = 0x00; 624 /* ending LBA: last block on the disk (little endian format) */ 625 size_in_lba = vtoc->efi_last_lba; 626 if (size_in_lba < 0xffffffff) { 627 *cp++ = (size_in_lba & 0x000000ff); 628 *cp++ = (size_in_lba & 0x0000ff00) >> 8; 629 *cp++ = (size_in_lba & 0x00ff0000) >> 16; 630 *cp++ = (size_in_lba & 0xff000000) >> 24; 631 } else { 632 *cp++ = 0xff; 633 *cp++ = 0xff; 634 *cp++ = 0xff; 635 *cp++ = 0xff; 636 } 637 638 (void *) memcpy(buf, &mb, sizeof (mb)); 639 /* LINTED -- always longlong aligned */ 640 dk_ioc.dki_data = (efi_gpt_t *)buf; 641 dk_ioc.dki_lba = 0; 642 dk_ioc.dki_length = len; 643 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 644 free(buf); 645 switch (errno) { 646 case EIO: 647 return (VT_EIO); 648 case EINVAL: 649 return (VT_EINVAL); 650 default: 651 return (VT_ERROR); 652 } 653 } 654 free(buf); 655 return (0); 656 } 657 658 /* make sure the user specified something reasonable */ 659 static int 660 check_input(struct dk_gpt *vtoc) 661 { 662 int resv_part = -1; 663 int i, j; 664 diskaddr_t istart, jstart, isize, jsize, endsect; 665 666 /* 667 * Sanity-check the input (make sure no partitions overlap) 668 */ 669 for (i = 0; i < vtoc->efi_nparts; i++) { 670 /* It can't be unassigned and have an actual size */ 671 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && 672 (vtoc->efi_parts[i].p_size != 0)) { 673 if (efi_debug) { 674 (void) fprintf(stderr, 675 "partition %d is \"unassigned\" but has a size of %llu", 676 i, 677 vtoc->efi_parts[i].p_size); 678 } 679 return (VT_EINVAL); 680 } 681 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { 682 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid)) 683 continue; 684 /* we have encountered an unknown uuid */ 685 vtoc->efi_parts[i].p_tag = 0xff; 686 } 687 if (vtoc->efi_parts[i].p_tag == V_RESERVED) { 688 if (resv_part != -1) { 689 if (efi_debug) { 690 (void) fprintf(stderr, 691 "found duplicate reserved partition at %d\n", 692 i); 693 } 694 return (VT_EINVAL); 695 } 696 resv_part = i; 697 } 698 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || 699 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { 700 if (efi_debug) { 701 (void) fprintf(stderr, 702 "Partition %d starts at %llu. ", 703 i, 704 vtoc->efi_parts[i].p_start); 705 (void) fprintf(stderr, 706 "It must be between %llu and %llu.\n", 707 vtoc->efi_first_u_lba, 708 vtoc->efi_last_u_lba); 709 } 710 return (VT_EINVAL); 711 } 712 if ((vtoc->efi_parts[i].p_start + 713 vtoc->efi_parts[i].p_size < 714 vtoc->efi_first_u_lba) || 715 (vtoc->efi_parts[i].p_start + 716 vtoc->efi_parts[i].p_size > 717 vtoc->efi_last_u_lba + 1)) { 718 if (efi_debug) { 719 (void) fprintf(stderr, 720 "Partition %d ends at %llu. ", 721 i, 722 vtoc->efi_parts[i].p_start + 723 vtoc->efi_parts[i].p_size); 724 (void) fprintf(stderr, 725 "It must be between %llu and %llu.\n", 726 vtoc->efi_first_u_lba, 727 vtoc->efi_last_u_lba); 728 } 729 return (VT_EINVAL); 730 } 731 732 for (j = 0; j < vtoc->efi_nparts; j++) { 733 isize = vtoc->efi_parts[i].p_size; 734 jsize = vtoc->efi_parts[j].p_size; 735 istart = vtoc->efi_parts[i].p_start; 736 jstart = vtoc->efi_parts[j].p_start; 737 if ((i != j) && (isize != 0) && (jsize != 0)) { 738 endsect = jstart + jsize -1; 739 if ((jstart <= istart) && 740 (istart <= endsect)) { 741 if (efi_debug) { 742 (void) fprintf(stderr, 743 "Partition %d overlaps partition %d.", 744 i, j); 745 } 746 return (VT_EINVAL); 747 } 748 } 749 } 750 } 751 /* just a warning for now */ 752 if ((resv_part == -1) && efi_debug) { 753 (void) fprintf(stderr, 754 "no reserved partition found\n"); 755 } 756 return (0); 757 } 758 759 /* 760 * add all the unallocated space to the current label 761 */ 762 int 763 efi_use_whole_disk(int fd) 764 { 765 struct dk_gpt *efi_label; 766 int rval; 767 int i; 768 uint_t phy_last_slice = 0; 769 diskaddr_t pl_start = 0; 770 diskaddr_t pl_size; 771 772 rval = efi_alloc_and_read(fd, &efi_label); 773 if (rval < 0) { 774 return (rval); 775 } 776 777 /* find the last physically non-zero partition */ 778 for (i = 0; i < efi_label->efi_nparts - 2; i ++) { 779 if (pl_start < efi_label->efi_parts[i].p_start) { 780 pl_start = efi_label->efi_parts[i].p_start; 781 phy_last_slice = i; 782 } 783 } 784 pl_size = efi_label->efi_parts[phy_last_slice].p_size; 785 786 /* 787 * If alter_lba is 1, we are using the backup label. 788 * Since we can locate the backup label by disk capacity, 789 * there must be no unallocated space. 790 */ 791 if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba 792 >= efi_label->efi_last_lba)) { 793 if (efi_debug) { 794 (void) fprintf(stderr, 795 "efi_use_whole_disk: requested space not found\n"); 796 } 797 efi_free(efi_label); 798 return (VT_ENOSPC); 799 } 800 801 /* 802 * If there is space between the last physically non-zero partition 803 * and the reserved partition, just add the unallocated space to this 804 * area. Otherwise, the unallocated space is added to the last 805 * physically non-zero partition. 806 */ 807 if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba - 808 EFI_MIN_RESV_SIZE) { 809 efi_label->efi_parts[phy_last_slice].p_size += 810 efi_label->efi_last_lba - efi_label->efi_altern_lba; 811 } 812 813 /* 814 * Move the reserved partition. There is currently no data in 815 * here except fabricated devids (which get generated via 816 * efi_write()). So there is no need to copy data. 817 */ 818 efi_label->efi_parts[efi_label->efi_nparts - 1].p_start += 819 efi_label->efi_last_lba - efi_label->efi_altern_lba; 820 efi_label->efi_last_u_lba += efi_label->efi_last_lba 821 - efi_label->efi_altern_lba; 822 823 rval = efi_write(fd, efi_label); 824 if (rval < 0) { 825 if (efi_debug) { 826 (void) fprintf(stderr, 827 "efi_use_whole_disk:fail to write label, rval=%d\n", 828 rval); 829 } 830 efi_free(efi_label); 831 return (rval); 832 } 833 834 efi_free(efi_label); 835 return (0); 836 } 837 838 839 /* 840 * write EFI label and backup label 841 */ 842 int 843 efi_write(int fd, struct dk_gpt *vtoc) 844 { 845 dk_efi_t dk_ioc; 846 efi_gpt_t *efi; 847 efi_gpe_t *efi_parts; 848 int i, j; 849 struct dk_cinfo dki_info; 850 int md_flag = 0; 851 int nblocks; 852 diskaddr_t lba_backup_gpt_hdr; 853 854 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { 855 if (efi_debug) 856 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); 857 switch (errno) { 858 case EIO: 859 return (VT_EIO); 860 case EINVAL: 861 return (VT_EINVAL); 862 default: 863 return (VT_ERROR); 864 } 865 } 866 867 /* check if we are dealing wih a metadevice */ 868 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) && 869 (strncmp(dki_info.dki_dname, "md", 3) == 0)) { 870 md_flag = 1; 871 } 872 873 if (check_input(vtoc)) { 874 /* 875 * not valid; if it's a metadevice just pass it down 876 * because SVM will do its own checking 877 */ 878 if (md_flag == 0) { 879 return (VT_EINVAL); 880 } 881 } 882 883 dk_ioc.dki_lba = 1; 884 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) { 885 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize; 886 } else { 887 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts, 888 vtoc->efi_lbasize) * 889 vtoc->efi_lbasize; 890 } 891 892 /* 893 * the number of blocks occupied by GUID partition entry array 894 */ 895 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1; 896 897 /* 898 * Backup GPT header is located on the block after GUID 899 * partition entry array. Here, we calculate the address 900 * for backup GPT header. 901 */ 902 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks; 903 if ((dk_ioc.dki_data = calloc(dk_ioc.dki_length, 1)) == NULL) 904 return (VT_ERROR); 905 906 efi = dk_ioc.dki_data; 907 908 /* stuff user's input into EFI struct */ 909 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE); 910 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */ 911 efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt)); 912 efi->efi_gpt_Reserved1 = 0; 913 efi->efi_gpt_MyLBA = LE_64(1ULL); 914 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr); 915 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba); 916 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba); 917 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL); 918 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts); 919 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe)); 920 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid); 921 922 /* LINTED -- always longlong aligned */ 923 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize); 924 925 for (i = 0; i < vtoc->efi_nparts; i++) { 926 for (j = 0; 927 j < sizeof (conversion_array) / 928 sizeof (struct uuid_to_ptag); j++) { 929 930 if (vtoc->efi_parts[i].p_tag == j) { 931 UUID_LE_CONVERT( 932 efi_parts[i].efi_gpe_PartitionTypeGUID, 933 conversion_array[j].uuid); 934 break; 935 } 936 } 937 938 if (j == sizeof (conversion_array) / 939 sizeof (struct uuid_to_ptag)) { 940 /* 941 * If we didn't have a matching uuid match, bail here. 942 * Don't write a label with unknown uuid. 943 */ 944 if (efi_debug) { 945 (void) fprintf(stderr, 946 "Unknown uuid for p_tag %d\n", 947 vtoc->efi_parts[i].p_tag); 948 } 949 return (VT_EINVAL); 950 } 951 952 efi_parts[i].efi_gpe_StartingLBA = 953 LE_64(vtoc->efi_parts[i].p_start); 954 efi_parts[i].efi_gpe_EndingLBA = 955 LE_64(vtoc->efi_parts[i].p_start + 956 vtoc->efi_parts[i].p_size - 1); 957 efi_parts[i].efi_gpe_Attributes.PartitionAttrs = 958 LE_16(vtoc->efi_parts[i].p_flag); 959 for (j = 0; j < EFI_PART_NAME_LEN; j++) { 960 efi_parts[i].efi_gpe_PartitionName[j] = 961 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]); 962 } 963 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) && 964 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) { 965 (void) uuid_generate((uchar_t *) 966 &vtoc->efi_parts[i].p_uguid); 967 } 968 bcopy(&vtoc->efi_parts[i].p_uguid, 969 &efi_parts[i].efi_gpe_UniquePartitionGUID, 970 sizeof (uuid_t)); 971 } 972 efi->efi_gpt_PartitionEntryArrayCRC32 = 973 LE_32(efi_crc32((unsigned char *)efi_parts, 974 vtoc->efi_nparts * (int)sizeof (struct efi_gpe))); 975 efi->efi_gpt_HeaderCRC32 = 976 LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt))); 977 978 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 979 free(dk_ioc.dki_data); 980 switch (errno) { 981 case EIO: 982 return (VT_EIO); 983 case EINVAL: 984 return (VT_EINVAL); 985 default: 986 return (VT_ERROR); 987 } 988 } 989 /* if it's a metadevice we're done */ 990 if (md_flag) { 991 free(dk_ioc.dki_data); 992 return (0); 993 } 994 995 /* write backup partition array */ 996 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1; 997 dk_ioc.dki_length -= vtoc->efi_lbasize; 998 /* LINTED */ 999 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data + 1000 vtoc->efi_lbasize); 1001 1002 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 1003 /* 1004 * we wrote the primary label okay, so don't fail 1005 */ 1006 if (efi_debug) { 1007 (void) fprintf(stderr, 1008 "write of backup partitions to block %llu " 1009 "failed, errno %d\n", 1010 vtoc->efi_last_u_lba + 1, 1011 errno); 1012 } 1013 } 1014 /* 1015 * now swap MyLBA and AlternateLBA fields and write backup 1016 * partition table header 1017 */ 1018 dk_ioc.dki_lba = lba_backup_gpt_hdr; 1019 dk_ioc.dki_length = vtoc->efi_lbasize; 1020 /* LINTED */ 1021 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data - 1022 vtoc->efi_lbasize); 1023 efi->efi_gpt_AlternateLBA = LE_64(1ULL); 1024 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr); 1025 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1); 1026 efi->efi_gpt_HeaderCRC32 = 0; 1027 efi->efi_gpt_HeaderCRC32 = 1028 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data, 1029 sizeof (struct efi_gpt))); 1030 1031 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 1032 if (efi_debug) { 1033 (void) fprintf(stderr, 1034 "write of backup header to block %llu failed, " 1035 "errno %d\n", 1036 lba_backup_gpt_hdr, 1037 errno); 1038 } 1039 } 1040 /* write the PMBR */ 1041 (void) write_pmbr(fd, vtoc); 1042 free(dk_ioc.dki_data); 1043 return (0); 1044 } 1045 1046 void 1047 efi_free(struct dk_gpt *ptr) 1048 { 1049 free(ptr); 1050 } 1051 1052 /* 1053 * Input: File descriptor 1054 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR. 1055 * Otherwise 0. 1056 */ 1057 int 1058 efi_type(int fd) 1059 { 1060 struct vtoc vtoc; 1061 struct extvtoc extvtoc; 1062 1063 if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) { 1064 if (errno == ENOTSUP) 1065 return (1); 1066 else if (errno == ENOTTY) { 1067 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1) 1068 if (errno == ENOTSUP) 1069 return (1); 1070 } 1071 } 1072 return (0); 1073 } 1074 1075 void 1076 efi_err_check(struct dk_gpt *vtoc) 1077 { 1078 int resv_part = -1; 1079 int i, j; 1080 diskaddr_t istart, jstart, isize, jsize, endsect; 1081 int overlap = 0; 1082 1083 /* 1084 * make sure no partitions overlap 1085 */ 1086 for (i = 0; i < vtoc->efi_nparts; i++) { 1087 /* It can't be unassigned and have an actual size */ 1088 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && 1089 (vtoc->efi_parts[i].p_size != 0)) { 1090 (void) fprintf(stderr, 1091 "partition %d is \"unassigned\" but has a size " 1092 "of %llu\n", i, vtoc->efi_parts[i].p_size); 1093 } 1094 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { 1095 continue; 1096 } 1097 if (vtoc->efi_parts[i].p_tag == V_RESERVED) { 1098 if (resv_part != -1) { 1099 (void) fprintf(stderr, 1100 "found duplicate reserved partition at " 1101 "%d\n", i); 1102 } 1103 resv_part = i; 1104 if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE) 1105 (void) fprintf(stderr, 1106 "Warning: reserved partition size must " 1107 "be %d sectors\n", EFI_MIN_RESV_SIZE); 1108 } 1109 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || 1110 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { 1111 (void) fprintf(stderr, 1112 "Partition %d starts at %llu\n", 1113 i, 1114 vtoc->efi_parts[i].p_start); 1115 (void) fprintf(stderr, 1116 "It must be between %llu and %llu.\n", 1117 vtoc->efi_first_u_lba, 1118 vtoc->efi_last_u_lba); 1119 } 1120 if ((vtoc->efi_parts[i].p_start + 1121 vtoc->efi_parts[i].p_size < 1122 vtoc->efi_first_u_lba) || 1123 (vtoc->efi_parts[i].p_start + 1124 vtoc->efi_parts[i].p_size > 1125 vtoc->efi_last_u_lba + 1)) { 1126 (void) fprintf(stderr, 1127 "Partition %d ends at %llu\n", 1128 i, 1129 vtoc->efi_parts[i].p_start + 1130 vtoc->efi_parts[i].p_size); 1131 (void) fprintf(stderr, 1132 "It must be between %llu and %llu.\n", 1133 vtoc->efi_first_u_lba, 1134 vtoc->efi_last_u_lba); 1135 } 1136 1137 for (j = 0; j < vtoc->efi_nparts; j++) { 1138 isize = vtoc->efi_parts[i].p_size; 1139 jsize = vtoc->efi_parts[j].p_size; 1140 istart = vtoc->efi_parts[i].p_start; 1141 jstart = vtoc->efi_parts[j].p_start; 1142 if ((i != j) && (isize != 0) && (jsize != 0)) { 1143 endsect = jstart + jsize -1; 1144 if ((jstart <= istart) && 1145 (istart <= endsect)) { 1146 if (!overlap) { 1147 (void) fprintf(stderr, 1148 "label error: EFI Labels do not " 1149 "support overlapping partitions\n"); 1150 } 1151 (void) fprintf(stderr, 1152 "Partition %d overlaps partition " 1153 "%d.\n", i, j); 1154 overlap = 1; 1155 } 1156 } 1157 } 1158 } 1159 /* make sure there is a reserved partition */ 1160 if (resv_part == -1) { 1161 (void) fprintf(stderr, 1162 "no reserved partition found\n"); 1163 } 1164 } 1165 1166 /* 1167 * We need to get information necessary to construct a *new* efi 1168 * label type 1169 */ 1170 int 1171 efi_auto_sense(int fd, struct dk_gpt **vtoc) 1172 { 1173 1174 int i; 1175 1176 /* 1177 * Now build the default partition table 1178 */ 1179 if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) { 1180 if (efi_debug) { 1181 (void) fprintf(stderr, "efi_alloc_and_init failed.\n"); 1182 } 1183 return (-1); 1184 } 1185 1186 for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) { 1187 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag; 1188 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag; 1189 (*vtoc)->efi_parts[i].p_start = 0; 1190 (*vtoc)->efi_parts[i].p_size = 0; 1191 } 1192 /* 1193 * Make constants first 1194 * and variable partitions later 1195 */ 1196 1197 /* root partition - s0 128 MB */ 1198 (*vtoc)->efi_parts[0].p_start = 34; 1199 (*vtoc)->efi_parts[0].p_size = 262144; 1200 1201 /* partition - s1 128 MB */ 1202 (*vtoc)->efi_parts[1].p_start = 262178; 1203 (*vtoc)->efi_parts[1].p_size = 262144; 1204 1205 /* partition -s2 is NOT the Backup disk */ 1206 (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED; 1207 1208 /* partition -s6 /usr partition - HOG */ 1209 (*vtoc)->efi_parts[6].p_start = 524322; 1210 (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322 1211 - (1024 * 16); 1212 1213 /* efi reserved partition - s9 16K */ 1214 (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16); 1215 (*vtoc)->efi_parts[8].p_size = (1024 * 16); 1216 (*vtoc)->efi_parts[8].p_tag = V_RESERVED; 1217 return (0); 1218 } 1219