1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2014 Toomas Soome <tsoome@me.com> 26 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 27 * Copyright 2019 Joyent, Inc. 28 * Copyright 2022 Jason King 29 */ 30 31 #include <stdio.h> 32 #include <stdlib.h> 33 #include <errno.h> 34 #include <strings.h> 35 #include <unistd.h> 36 #include <smbios.h> 37 #include <uuid/uuid.h> 38 #include <libintl.h> 39 #include <sys/debug.h> 40 #include <sys/types.h> 41 #include <sys/dkio.h> 42 #include <sys/vtoc.h> 43 #include <sys/mhd.h> 44 #include <sys/param.h> 45 #include <sys/dktp/fdisk.h> 46 #include <sys/efi_partition.h> 47 #include <sys/byteorder.h> 48 #include <sys/ddi.h> 49 50 /* 51 * The original conversion array used simple array index, but since 52 * we do need to take account of VTOC tag numbers from other systems, 53 * we need to provide tag values too, or the array will grow too large. 54 * 55 * Still we will fabricate the missing p_tag values. 56 */ 57 static struct uuid_to_ptag { 58 struct uuid uuid; 59 ushort_t p_tag; 60 } conversion_array[] = { 61 { EFI_UNUSED, V_UNASSIGNED }, 62 { EFI_BOOT, V_BOOT }, 63 { EFI_ROOT, V_ROOT }, 64 { EFI_SWAP, V_SWAP }, 65 { EFI_USR, V_USR }, 66 { EFI_BACKUP, V_BACKUP }, 67 { EFI_VAR, V_VAR }, 68 { EFI_HOME, V_HOME }, 69 { EFI_ALTSCTR, V_ALTSCTR }, 70 { EFI_RESERVED, V_RESERVED }, 71 { EFI_SYSTEM, V_SYSTEM }, /* V_SYSTEM is 0xc */ 72 { EFI_LEGACY_MBR, 0x10 }, 73 { EFI_SYMC_PUB, 0x11 }, 74 { EFI_SYMC_CDS, 0x12 }, 75 { EFI_MSFT_RESV, 0x13 }, 76 { EFI_DELL_BASIC, 0x14 }, 77 { EFI_DELL_RAID, 0x15 }, 78 { EFI_DELL_SWAP, 0x16 }, 79 { EFI_DELL_LVM, 0x17 }, 80 { EFI_DELL_RESV, 0x19 }, 81 { EFI_AAPL_HFS, 0x1a }, 82 { EFI_AAPL_UFS, 0x1b }, 83 { EFI_AAPL_ZFS, 0x1c }, 84 { EFI_AAPL_APFS, 0x1d }, 85 { EFI_BIOS_BOOT, V_BIOS_BOOT }, /* V_BIOS_BOOT is 0x18 */ 86 { EFI_FREEBSD_BOOT, V_FREEBSD_BOOT }, 87 { EFI_FREEBSD_SWAP, V_FREEBSD_SWAP }, 88 { EFI_FREEBSD_UFS, V_FREEBSD_UFS }, 89 { EFI_FREEBSD_VINUM, V_FREEBSD_VINUM }, 90 { EFI_FREEBSD_ZFS, V_FREEBSD_ZFS }, 91 { EFI_FREEBSD_NANDFS, V_FREEBSD_NANDFS } 92 }; 93 94 /* 95 * Default vtoc information for non-SVr4 partitions 96 */ 97 struct dk_map2 default_vtoc_map[NDKMAP] = { 98 { V_ROOT, 0 }, /* a - 0 */ 99 { V_SWAP, V_UNMNT }, /* b - 1 */ 100 { V_BACKUP, V_UNMNT }, /* c - 2 */ 101 { V_UNASSIGNED, 0 }, /* d - 3 */ 102 { V_UNASSIGNED, 0 }, /* e - 4 */ 103 { V_UNASSIGNED, 0 }, /* f - 5 */ 104 { V_USR, 0 }, /* g - 6 */ 105 { V_UNASSIGNED, 0 }, /* h - 7 */ 106 107 #if defined(_SUNOS_VTOC_16) 108 109 #if defined(i386) || defined(__amd64) 110 { V_BOOT, V_UNMNT }, /* i - 8 */ 111 { V_ALTSCTR, 0 }, /* j - 9 */ 112 113 #else 114 #error No VTOC format defined. 115 #endif /* defined(i386) */ 116 117 { V_UNASSIGNED, 0 }, /* k - 10 */ 118 { V_UNASSIGNED, 0 }, /* l - 11 */ 119 { V_UNASSIGNED, 0 }, /* m - 12 */ 120 { V_UNASSIGNED, 0 }, /* n - 13 */ 121 { V_UNASSIGNED, 0 }, /* o - 14 */ 122 { V_UNASSIGNED, 0 }, /* p - 15 */ 123 #endif /* defined(_SUNOS_VTOC_16) */ 124 }; 125 126 #ifdef DEBUG 127 int efi_debug = 1; 128 #else 129 int efi_debug = 0; 130 #endif 131 132 #define EFI_FIXES_DB "/usr/share/hwdata/efi.fixes" 133 134 extern unsigned int efi_crc32(const unsigned char *, unsigned int); 135 static int efi_read(int, struct dk_gpt *); 136 137 static int 138 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize) 139 { 140 struct dk_minfo disk_info; 141 142 if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1) 143 return (errno); 144 *capacity = disk_info.dki_capacity; 145 *lbsize = disk_info.dki_lbsize; 146 return (0); 147 } 148 149 /* 150 * the number of blocks the EFI label takes up (round up to nearest 151 * block) 152 */ 153 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \ 154 ((l) - 1)) / (l))) 155 /* number of partitions -- limited by what we can malloc */ 156 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \ 157 sizeof (struct dk_part)) 158 159 /* 160 * The EFI reserved partition size is 8 MiB. This calculates the number of 161 * sectors required to store 8 MiB, taking into account the device's sector 162 * size. 163 */ 164 uint_t 165 efi_reserved_sectors(dk_gpt_t *efi) 166 { 167 /* roundup to sector size */ 168 return ((EFI_MIN_RESV_SIZE * DEV_BSIZE + efi->efi_lbasize - 1) / 169 efi->efi_lbasize); 170 } 171 172 int 173 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc) 174 { 175 diskaddr_t capacity; 176 uint_t lbsize; 177 uint_t nblocks; 178 size_t length; 179 struct dk_gpt *vptr; 180 struct uuid uuid; 181 182 if (read_disk_info(fd, &capacity, &lbsize) != 0) { 183 if (efi_debug) 184 (void) fprintf(stderr, 185 "couldn't read disk information\n"); 186 return (-1); 187 } 188 189 nblocks = NBLOCKS(nparts, lbsize); 190 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) { 191 /* 16K plus one block for the GPT */ 192 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1; 193 } 194 195 if (nparts > MAX_PARTS) { 196 if (efi_debug) { 197 (void) fprintf(stderr, 198 "the maximum number of partitions supported is %lu\n", 199 MAX_PARTS); 200 } 201 return (-1); 202 } 203 204 length = sizeof (struct dk_gpt) + 205 sizeof (struct dk_part) * (nparts - 1); 206 207 if ((*vtoc = calloc(1, length)) == NULL) 208 return (-1); 209 210 vptr = *vtoc; 211 212 vptr->efi_version = EFI_VERSION_CURRENT; 213 vptr->efi_lbasize = lbsize; 214 vptr->efi_nparts = nparts; 215 /* 216 * add one block here for the PMBR; on disks with a 512 byte 217 * block size and 128 or fewer partitions, efi_first_u_lba 218 * should work out to "34" 219 */ 220 vptr->efi_first_u_lba = nblocks + 1; 221 vptr->efi_last_lba = capacity - 1; 222 vptr->efi_altern_lba = capacity - 1; 223 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks; 224 225 (void) uuid_generate((uchar_t *)&uuid); 226 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid); 227 return (0); 228 } 229 230 /* 231 * Read EFI - return partition number upon success. 232 */ 233 int 234 efi_alloc_and_read(int fd, struct dk_gpt **vtoc) 235 { 236 int rval; 237 uint32_t nparts; 238 int length; 239 struct mboot *mbr; 240 struct ipart *ipart; 241 diskaddr_t capacity; 242 uint_t lbsize; 243 int i; 244 245 if (read_disk_info(fd, &capacity, &lbsize) != 0) 246 return (VT_ERROR); 247 248 if ((mbr = calloc(1, lbsize)) == NULL) 249 return (VT_ERROR); 250 251 if ((ioctl(fd, DKIOCGMBOOT, (caddr_t)mbr)) == -1) { 252 free(mbr); 253 return (VT_ERROR); 254 } 255 256 if (mbr->signature != MBB_MAGIC) { 257 free(mbr); 258 return (VT_EINVAL); 259 } 260 ipart = (struct ipart *)(uintptr_t)mbr->parts; 261 262 /* Check if we have partition with ID EFI_PMBR */ 263 for (i = 0; i < FD_NUMPART; i++) { 264 if (ipart[i].systid == EFI_PMBR) 265 break; 266 } 267 free(mbr); 268 if (i == FD_NUMPART) 269 return (VT_EINVAL); 270 271 /* figure out the number of entries that would fit into 16K */ 272 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t); 273 length = (int) sizeof (struct dk_gpt) + 274 (int) sizeof (struct dk_part) * (nparts - 1); 275 if ((*vtoc = calloc(1, length)) == NULL) 276 return (VT_ERROR); 277 278 (*vtoc)->efi_nparts = nparts; 279 rval = efi_read(fd, *vtoc); 280 281 if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) { 282 void *tmp; 283 length = (int) sizeof (struct dk_gpt) + 284 (int) sizeof (struct dk_part) * 285 ((*vtoc)->efi_nparts - 1); 286 nparts = (*vtoc)->efi_nparts; 287 if ((tmp = realloc(*vtoc, length)) == NULL) { 288 free (*vtoc); 289 *vtoc = NULL; 290 return (VT_ERROR); 291 } else { 292 *vtoc = tmp; 293 rval = efi_read(fd, *vtoc); 294 } 295 } 296 297 if (rval < 0) { 298 if (efi_debug) { 299 (void) fprintf(stderr, 300 "read of EFI table failed, rval=%d\n", rval); 301 } 302 free (*vtoc); 303 *vtoc = NULL; 304 } 305 306 return (rval); 307 } 308 309 static int 310 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc) 311 { 312 void *data = dk_ioc->dki_data; 313 int error; 314 315 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data; 316 error = ioctl(fd, cmd, (void *)dk_ioc); 317 dk_ioc->dki_data = data; 318 319 return (error); 320 } 321 322 static int 323 check_label(int fd, dk_efi_t *dk_ioc) 324 { 325 efi_gpt_t *efi; 326 uint_t crc; 327 328 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) { 329 switch (errno) { 330 case EIO: 331 return (VT_EIO); 332 default: 333 return (VT_ERROR); 334 } 335 } 336 efi = dk_ioc->dki_data; 337 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) { 338 if (efi_debug) 339 (void) fprintf(stderr, 340 "Bad EFI signature: 0x%llx != 0x%llx\n", 341 (long long)efi->efi_gpt_Signature, 342 (long long)LE_64(EFI_SIGNATURE)); 343 return (VT_EINVAL); 344 } 345 346 /* 347 * check CRC of the header; the size of the header should 348 * never be larger than one block 349 */ 350 crc = efi->efi_gpt_HeaderCRC32; 351 efi->efi_gpt_HeaderCRC32 = 0; 352 353 if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) || 354 crc != LE_32(efi_crc32((unsigned char *)efi, 355 LE_32(efi->efi_gpt_HeaderSize)))) { 356 if (efi_debug) 357 (void) fprintf(stderr, 358 "Bad EFI CRC: 0x%x != 0x%x\n", 359 crc, LE_32(efi_crc32((unsigned char *)efi, 360 LE_32(efi->efi_gpt_HeaderSize)))); 361 return (VT_EINVAL); 362 } 363 364 return (0); 365 } 366 367 static int 368 efi_read(int fd, struct dk_gpt *vtoc) 369 { 370 int i, j; 371 int label_len; 372 int rval = 0; 373 int vdc_flag = 0; 374 struct dk_minfo disk_info; 375 dk_efi_t dk_ioc; 376 efi_gpt_t *efi; 377 efi_gpe_t *efi_parts; 378 struct dk_cinfo dki_info; 379 uint32_t user_length; 380 boolean_t legacy_label = B_FALSE; 381 382 /* 383 * get the partition number for this file descriptor. 384 */ 385 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { 386 if (efi_debug) { 387 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); 388 } 389 switch (errno) { 390 case EIO: 391 return (VT_EIO); 392 case EINVAL: 393 return (VT_EINVAL); 394 default: 395 return (VT_ERROR); 396 } 397 } 398 399 if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) && 400 (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) { 401 /* 402 * The controller and drive name "vdc" (virtual disk client) 403 * indicates a LDoms virtual disk. 404 */ 405 vdc_flag++; 406 } 407 408 /* get the LBA size */ 409 if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) { 410 if (efi_debug) { 411 (void) fprintf(stderr, 412 "assuming LBA 512 bytes %d\n", 413 errno); 414 } 415 disk_info.dki_lbsize = DEV_BSIZE; 416 } 417 if (disk_info.dki_lbsize == 0) { 418 if (efi_debug) { 419 (void) fprintf(stderr, 420 "efi_read: assuming LBA 512 bytes\n"); 421 } 422 disk_info.dki_lbsize = DEV_BSIZE; 423 } 424 /* 425 * Read the EFI GPT to figure out how many partitions we need 426 * to deal with. 427 */ 428 dk_ioc.dki_lba = 1; 429 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) { 430 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize; 431 } else { 432 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) + 433 disk_info.dki_lbsize; 434 if (label_len % disk_info.dki_lbsize) { 435 /* pad to physical sector size */ 436 label_len += disk_info.dki_lbsize; 437 label_len &= ~(disk_info.dki_lbsize - 1); 438 } 439 } 440 441 if ((dk_ioc.dki_data = calloc(1, label_len)) == NULL) 442 return (VT_ERROR); 443 444 dk_ioc.dki_length = disk_info.dki_lbsize; 445 user_length = vtoc->efi_nparts; 446 efi = dk_ioc.dki_data; 447 if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) { 448 /* 449 * No valid label here; try the alternate. Note that here 450 * we just read GPT header and save it into dk_ioc.data, 451 * Later, we will read GUID partition entry array if we 452 * can get valid GPT header. 453 */ 454 455 /* 456 * This is a workaround for legacy systems. In the past, the 457 * last sector of SCSI disk was invisible on x86 platform. At 458 * that time, backup label was saved on the next to the last 459 * sector. It is possible for users to move a disk from previous 460 * solaris system to present system. Here, we attempt to search 461 * legacy backup EFI label first. 462 */ 463 dk_ioc.dki_lba = disk_info.dki_capacity - 2; 464 dk_ioc.dki_length = disk_info.dki_lbsize; 465 rval = check_label(fd, &dk_ioc); 466 if (rval == VT_EINVAL) { 467 /* 468 * we didn't find legacy backup EFI label, try to 469 * search backup EFI label in the last block. 470 */ 471 dk_ioc.dki_lba = disk_info.dki_capacity - 1; 472 dk_ioc.dki_length = disk_info.dki_lbsize; 473 rval = check_label(fd, &dk_ioc); 474 if (rval == 0) { 475 legacy_label = B_TRUE; 476 if (efi_debug) 477 (void) fprintf(stderr, 478 "efi_read: primary label corrupt; " 479 "using EFI backup label located on" 480 " the last block\n"); 481 } 482 } else { 483 if ((efi_debug) && (rval == 0)) 484 (void) fprintf(stderr, "efi_read: primary label" 485 " corrupt; using legacy EFI backup label " 486 " located on the next to last block\n"); 487 } 488 489 if (rval == 0) { 490 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); 491 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT; 492 vtoc->efi_nparts = 493 LE_32(efi->efi_gpt_NumberOfPartitionEntries); 494 /* 495 * Partition tables are between backup GPT header 496 * table and ParitionEntryLBA (the starting LBA of 497 * the GUID partition entries array). Now that we 498 * already got valid GPT header and saved it in 499 * dk_ioc.dki_data, we try to get GUID partition 500 * entry array here. 501 */ 502 /* LINTED */ 503 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data 504 + disk_info.dki_lbsize); 505 if (legacy_label) 506 dk_ioc.dki_length = disk_info.dki_capacity - 1 - 507 dk_ioc.dki_lba; 508 else 509 dk_ioc.dki_length = disk_info.dki_capacity - 2 - 510 dk_ioc.dki_lba; 511 dk_ioc.dki_length *= disk_info.dki_lbsize; 512 if (dk_ioc.dki_length > 513 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) { 514 rval = VT_EINVAL; 515 } else { 516 /* 517 * read GUID partition entry array 518 */ 519 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); 520 } 521 } 522 523 } else if (rval == 0) { 524 525 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); 526 /* LINTED */ 527 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data 528 + disk_info.dki_lbsize); 529 dk_ioc.dki_length = label_len - disk_info.dki_lbsize; 530 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); 531 532 } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) { 533 /* 534 * When the device is a LDoms virtual disk, the DKIOCGETEFI 535 * ioctl can fail with EINVAL if the virtual disk backend 536 * is a ZFS volume serviced by a domain running an old version 537 * of Solaris. This is because the DKIOCGETEFI ioctl was 538 * initially incorrectly implemented for a ZFS volume and it 539 * expected the GPT and GPE to be retrieved with a single ioctl. 540 * So we try to read the GPT and the GPE using that old style 541 * ioctl. 542 */ 543 dk_ioc.dki_lba = 1; 544 dk_ioc.dki_length = label_len; 545 rval = check_label(fd, &dk_ioc); 546 } 547 548 if (rval < 0) { 549 free(efi); 550 return (rval); 551 } 552 553 /* LINTED -- always longlong aligned */ 554 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize); 555 556 /* 557 * Assemble this into a "dk_gpt" struct for easier 558 * digestibility by applications. 559 */ 560 vtoc->efi_version = LE_32(efi->efi_gpt_Revision); 561 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries); 562 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry); 563 vtoc->efi_lbasize = disk_info.dki_lbsize; 564 vtoc->efi_last_lba = disk_info.dki_capacity - 1; 565 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA); 566 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA); 567 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA); 568 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID); 569 570 /* 571 * If the array the user passed in is too small, set the length 572 * to what it needs to be and return 573 */ 574 if (user_length < vtoc->efi_nparts) { 575 return (VT_EINVAL); 576 } 577 578 for (i = 0; i < vtoc->efi_nparts; i++) { 579 580 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid, 581 efi_parts[i].efi_gpe_PartitionTypeGUID); 582 583 for (j = 0; 584 j < sizeof (conversion_array) 585 / sizeof (struct uuid_to_ptag); j++) { 586 587 if (bcmp(&vtoc->efi_parts[i].p_guid, 588 &conversion_array[j].uuid, 589 sizeof (struct uuid)) == 0) { 590 vtoc->efi_parts[i].p_tag = 591 conversion_array[j].p_tag; 592 break; 593 } 594 } 595 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) 596 continue; 597 vtoc->efi_parts[i].p_flag = 598 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs); 599 vtoc->efi_parts[i].p_start = 600 LE_64(efi_parts[i].efi_gpe_StartingLBA); 601 vtoc->efi_parts[i].p_size = 602 LE_64(efi_parts[i].efi_gpe_EndingLBA) - 603 vtoc->efi_parts[i].p_start + 1; 604 for (j = 0; j < EFI_PART_NAME_LEN; j++) { 605 vtoc->efi_parts[i].p_name[j] = 606 (uchar_t)LE_16( 607 efi_parts[i].efi_gpe_PartitionName[j]); 608 } 609 610 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid, 611 efi_parts[i].efi_gpe_UniquePartitionGUID); 612 } 613 free(efi); 614 615 return (dki_info.dki_partition); 616 } 617 618 static void 619 hardware_workarounds(int *slot, int *active) 620 { 621 smbios_struct_t s_sys, s_mb; 622 smbios_info_t sys, mb; 623 smbios_hdl_t *shp; 624 char buf[0x400]; 625 FILE *fp; 626 int err; 627 628 if ((fp = fopen(EFI_FIXES_DB, "rF")) == NULL) 629 return; 630 631 if ((shp = smbios_open(NULL, SMB_VERSION, 0, &err)) == NULL) { 632 if (efi_debug) 633 (void) fprintf(stderr, 634 "libefi failed to load SMBIOS: %s\n", 635 smbios_errmsg(err)); 636 (void) fclose(fp); 637 return; 638 } 639 640 if (smbios_lookup_type(shp, SMB_TYPE_SYSTEM, &s_sys) == SMB_ERR || 641 smbios_info_common(shp, s_sys.smbstr_id, &sys) == SMB_ERR) 642 (void) memset(&sys, '\0', sizeof (sys)); 643 if (smbios_lookup_type(shp, SMB_TYPE_BASEBOARD, &s_mb) == SMB_ERR || 644 smbios_info_common(shp, s_mb.smbstr_id, &mb) == SMB_ERR) 645 (void) memset(&mb, '\0', sizeof (mb)); 646 647 while (fgets(buf, sizeof (buf), fp) != NULL) { 648 char *tok, *val, *end; 649 650 tok = buf + strspn(buf, " \t"); 651 if (*tok == '#') 652 continue; 653 while (*tok != '\0') { 654 tok += strspn(tok, " \t"); 655 if ((val = strchr(tok, '=')) == NULL) 656 break; 657 *val++ = '\0'; 658 if (*val == '"') 659 end = strchr(++val, '"'); 660 else 661 end = strpbrk(val, " \t\n"); 662 if (end == NULL) 663 break; 664 *end++ = '\0'; 665 666 if (strcmp(tok, "sys.manufacturer") == 0 && 667 (sys.smbi_manufacturer == NULL || 668 strcasecmp(val, sys.smbi_manufacturer))) 669 break; 670 if (strcmp(tok, "sys.product") == 0 && 671 (sys.smbi_product == NULL || 672 strcasecmp(val, sys.smbi_product))) 673 break; 674 if (strcmp(tok, "sys.version") == 0 && 675 (sys.smbi_version == NULL || 676 strcasecmp(val, sys.smbi_version))) 677 break; 678 if (strcmp(tok, "mb.manufacturer") == 0 && 679 (mb.smbi_manufacturer == NULL || 680 strcasecmp(val, mb.smbi_manufacturer))) 681 break; 682 if (strcmp(tok, "mb.product") == 0 && 683 (mb.smbi_product == NULL || 684 strcasecmp(val, mb.smbi_product))) 685 break; 686 if (strcmp(tok, "mb.version") == 0 && 687 (mb.smbi_version == NULL || 688 strcasecmp(val, mb.smbi_version))) 689 break; 690 691 if (strcmp(tok, "pmbr_slot") == 0) { 692 *slot = atoi(val); 693 if (*slot < 0 || *slot > 3) 694 *slot = 0; 695 if (efi_debug) 696 (void) fprintf(stderr, 697 "Using slot %d\n", *slot); 698 } 699 700 if (strcmp(tok, "pmbr_active") == 0) { 701 *active = atoi(val); 702 if (*active < 0 || *active > 1) 703 *active = 0; 704 if (efi_debug) 705 (void) fprintf(stderr, 706 "Using active %d\n", *active); 707 } 708 709 tok = end; 710 } 711 } 712 (void) fclose(fp); 713 smbios_close(shp); 714 } 715 716 /* writes a "protective" MBR */ 717 static int 718 write_pmbr(int fd, struct dk_gpt *vtoc) 719 { 720 dk_efi_t dk_ioc; 721 struct mboot mb; 722 uchar_t *cp; 723 diskaddr_t size_in_lba; 724 uchar_t *buf; 725 int len, slot, active; 726 727 slot = active = 0; 728 729 hardware_workarounds(&slot, &active); 730 731 len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize; 732 buf = calloc(1, len); 733 734 /* 735 * Preserve any boot code and disk signature if the first block is 736 * already an MBR. 737 */ 738 dk_ioc.dki_lba = 0; 739 dk_ioc.dki_length = len; 740 /* LINTED -- always longlong aligned */ 741 dk_ioc.dki_data = (efi_gpt_t *)buf; 742 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) { 743 (void) memcpy(&mb, buf, sizeof (mb)); 744 bzero(&mb, sizeof (mb)); 745 mb.signature = LE_16(MBB_MAGIC); 746 } else { 747 (void) memcpy(&mb, buf, sizeof (mb)); 748 if (mb.signature != LE_16(MBB_MAGIC)) { 749 bzero(&mb, sizeof (mb)); 750 mb.signature = LE_16(MBB_MAGIC); 751 } 752 } 753 754 bzero(&mb.parts, sizeof (mb.parts)); 755 cp = (uchar_t *)&mb.parts[slot * sizeof (struct ipart)]; 756 /* bootable or not */ 757 *cp++ = active ? ACTIVE : NOTACTIVE; 758 /* beginning CHS; same as starting LBA (but one-based) */ 759 *cp++ = 0x0; 760 *cp++ = 0x2; 761 *cp++ = 0x0; 762 /* OS type */ 763 *cp++ = EFI_PMBR; 764 /* ending CHS; 0xffffff if not representable */ 765 *cp++ = 0xff; 766 *cp++ = 0xff; 767 *cp++ = 0xff; 768 /* starting LBA: 1 (little endian format) by EFI definition */ 769 *cp++ = 0x01; 770 *cp++ = 0x00; 771 *cp++ = 0x00; 772 *cp++ = 0x00; 773 /* ending LBA: last block on the disk (little endian format) */ 774 size_in_lba = vtoc->efi_last_lba; 775 if (size_in_lba < 0xffffffff) { 776 *cp++ = (size_in_lba & 0x000000ff); 777 *cp++ = (size_in_lba & 0x0000ff00) >> 8; 778 *cp++ = (size_in_lba & 0x00ff0000) >> 16; 779 *cp++ = (size_in_lba & 0xff000000) >> 24; 780 } else { 781 *cp++ = 0xff; 782 *cp++ = 0xff; 783 *cp++ = 0xff; 784 *cp++ = 0xff; 785 } 786 787 (void) memcpy(buf, &mb, sizeof (mb)); 788 /* LINTED -- always longlong aligned */ 789 dk_ioc.dki_data = (efi_gpt_t *)buf; 790 dk_ioc.dki_lba = 0; 791 dk_ioc.dki_length = len; 792 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 793 free(buf); 794 switch (errno) { 795 case EIO: 796 return (VT_EIO); 797 case EINVAL: 798 return (VT_EINVAL); 799 default: 800 return (VT_ERROR); 801 } 802 } 803 free(buf); 804 return (0); 805 } 806 807 /* make sure the user specified something reasonable */ 808 static int 809 check_input(struct dk_gpt *vtoc) 810 { 811 int resv_part = -1; 812 int i, j; 813 diskaddr_t istart, jstart, isize, jsize, endsect; 814 815 /* 816 * Sanity-check the input (make sure no partitions overlap) 817 */ 818 for (i = 0; i < vtoc->efi_nparts; i++) { 819 /* It can't be unassigned and have an actual size */ 820 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && 821 (vtoc->efi_parts[i].p_size != 0)) { 822 if (efi_debug) { 823 (void) fprintf(stderr, 824 "partition %d is \"unassigned\" but has a size of %llu", 825 i, 826 vtoc->efi_parts[i].p_size); 827 } 828 return (VT_EINVAL); 829 } 830 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { 831 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid)) 832 continue; 833 /* we have encountered an unknown uuid */ 834 vtoc->efi_parts[i].p_tag = 0xff; 835 } 836 if (vtoc->efi_parts[i].p_tag == V_RESERVED) { 837 if (resv_part != -1) { 838 if (efi_debug) { 839 (void) fprintf(stderr, 840 "found duplicate reserved partition at %d\n", 841 i); 842 } 843 return (VT_EINVAL); 844 } 845 resv_part = i; 846 } 847 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || 848 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { 849 if (efi_debug) { 850 (void) fprintf(stderr, 851 "Partition %d starts at %llu. ", 852 i, 853 vtoc->efi_parts[i].p_start); 854 (void) fprintf(stderr, 855 "It must be between %llu and %llu.\n", 856 vtoc->efi_first_u_lba, 857 vtoc->efi_last_u_lba); 858 } 859 return (VT_EINVAL); 860 } 861 if ((vtoc->efi_parts[i].p_start + 862 vtoc->efi_parts[i].p_size < 863 vtoc->efi_first_u_lba) || 864 (vtoc->efi_parts[i].p_start + 865 vtoc->efi_parts[i].p_size > 866 vtoc->efi_last_u_lba + 1)) { 867 if (efi_debug) { 868 (void) fprintf(stderr, 869 "Partition %d ends at %llu. ", 870 i, 871 vtoc->efi_parts[i].p_start + 872 vtoc->efi_parts[i].p_size); 873 (void) fprintf(stderr, 874 "It must be between %llu and %llu.\n", 875 vtoc->efi_first_u_lba, 876 vtoc->efi_last_u_lba); 877 } 878 return (VT_EINVAL); 879 } 880 881 for (j = 0; j < vtoc->efi_nparts; j++) { 882 isize = vtoc->efi_parts[i].p_size; 883 jsize = vtoc->efi_parts[j].p_size; 884 istart = vtoc->efi_parts[i].p_start; 885 jstart = vtoc->efi_parts[j].p_start; 886 if ((i != j) && (isize != 0) && (jsize != 0)) { 887 endsect = jstart + jsize -1; 888 if ((jstart <= istart) && 889 (istart <= endsect)) { 890 if (efi_debug) { 891 (void) fprintf(stderr, 892 "Partition %d overlaps partition %d.", 893 i, j); 894 } 895 return (VT_EINVAL); 896 } 897 } 898 } 899 } 900 /* just a warning for now */ 901 if ((resv_part == -1) && efi_debug) { 902 (void) fprintf(stderr, 903 "no reserved partition found\n"); 904 } 905 return (0); 906 } 907 908 /* 909 * Set *lastp_p to the last non-reserved partition with the last (highest) 910 * LBA (and set *last_lbap to the last used LBA). We also will fail if the 911 * partition layout isn't as expected (reserved partiton last, no overlap 912 * with the last partiton). 913 */ 914 static int 915 efi_use_whole_disk_get_last(struct dk_gpt *l, struct dk_part **lastp_p, 916 diskaddr_t *last_lbap) 917 { 918 struct dk_part *last_p = NULL; 919 struct dk_part *resv_p = NULL; 920 diskaddr_t last_ulba = 0; 921 uint_t i; 922 923 if (l->efi_nparts < 2) { 924 if (efi_debug) { 925 (void) fprintf(stderr, "%s: too few (%u) partitions", 926 __func__, l->efi_nparts); 927 } 928 return (-1); 929 } 930 931 /* 932 * Look for the last (highest) used LBA. We ignore the last 933 * (efi_nparts - 1) partition since that should be the reserved 934 * partition (which is checked later). 935 */ 936 for (i = 0; i < l->efi_nparts - 1; i++) { 937 struct dk_part *p = &l->efi_parts[i]; 938 diskaddr_t end; 939 940 if (p->p_tag == V_RESERVED) { 941 if (efi_debug) { 942 /* 943 * Output the error message now so we can 944 * indicate which partition is the problem. 945 * We'll return failure later. 946 */ 947 (void) fprintf(stderr, "%s: reserved partition " 948 "found at unexpected position (%u)\n", 949 __func__, i); 950 } 951 return (-1); 952 } 953 954 /* Ignore empty partitions */ 955 if (p->p_size == 0) 956 continue; 957 958 end = p->p_start + p->p_size - 1; 959 if (last_ulba < end) { 960 last_p = p; 961 last_ulba = end; 962 } 963 } 964 965 if (l->efi_parts[l->efi_nparts - 1].p_tag != V_RESERVED) { 966 if (efi_debug) { 967 (void) fprintf(stderr, "%s: no reserved partition\n", 968 __func__); 969 } 970 return (-1); 971 } 972 973 resv_p = &l->efi_parts[l->efi_nparts - 1]; 974 975 /* 976 * The reserved partition should start after the last (highest) 977 * LBA used by any other partition. 978 */ 979 if (resv_p->p_start <= last_ulba) { 980 if (efi_debug) { 981 (void) fprintf(stderr, "%s: reserved partition not " 982 "after other partitions\n", __func__); 983 } 984 return (-1); 985 } 986 987 *lastp_p = last_p; 988 *last_lbap = last_ulba; 989 return (0); 990 } 991 992 /* 993 * add all the unallocated space to the current label 994 */ 995 int 996 efi_use_whole_disk(int fd) 997 { 998 struct dk_gpt *efi_label; 999 struct dk_part *resv_p = NULL; 1000 struct dk_part *last_p = NULL; 1001 diskaddr_t last_lba = 0; 1002 int rval; 1003 uint_t nblocks; 1004 boolean_t save = B_FALSE; 1005 1006 rval = efi_alloc_and_read(fd, &efi_label); 1007 if (rval < 0) { 1008 return (rval); 1009 } 1010 1011 rval = efi_use_whole_disk_get_last(efi_label, &last_p, &last_lba); 1012 if (rval < 0) { 1013 efi_free(efi_label); 1014 return (VT_EINVAL); 1015 } 1016 resv_p = &efi_label->efi_parts[efi_label->efi_nparts - 1]; 1017 ASSERT3U(resv_p->p_tag, ==, V_RESERVED); 1018 1019 /* 1020 * If we aren't using the backup label (efi_altern_lba == 1) 1021 * and the backup label isn't at the end of the disk, move the backup 1022 * label to the end of the disk. efi_read() sets efi_last_lba based 1023 * on the capacity of the disk, so we don't need to re-read the 1024 * capacity again to get the last LBA. 1025 */ 1026 if (efi_label->efi_altern_lba != 1 && 1027 efi_label->efi_altern_lba != efi_label->efi_last_lba) { 1028 efi_label->efi_altern_lba = efi_label->efi_last_lba; 1029 save = B_TRUE; 1030 } 1031 1032 /* 1033 * This is similar to the logic used in efi_alloc_and_init(). Based 1034 * on the number of partitions (and the minimum number of entries 1035 * required for an EFI label), determine the size of the backup label. 1036 */ 1037 nblocks = NBLOCKS(efi_label->efi_nparts, efi_label->efi_lbasize); 1038 if ((nblocks * efi_label->efi_lbasize) < EFI_MIN_ARRAY_SIZE + 1039 efi_label->efi_lbasize) { 1040 nblocks = EFI_MIN_ARRAY_SIZE / efi_label->efi_lbasize + 1; 1041 } 1042 1043 /* efi_last_u_lba should be the last LBA before the backup label */ 1044 if (efi_label->efi_last_u_lba < efi_label->efi_last_lba - nblocks) { 1045 efi_label->efi_last_u_lba = efi_label->efi_last_lba - nblocks; 1046 save = B_TRUE; 1047 } 1048 1049 /* 1050 * If there is unused space after the reserved partition, move it to 1051 * the end of the disk. There is currently no data in here except 1052 * fabricated devids (which are generated via efi_write()). Therefore, 1053 * there is no need to copy the contents. 1054 */ 1055 if (resv_p->p_start + resv_p->p_size - 1 < efi_label->efi_last_u_lba) { 1056 diskaddr_t new_start = 1057 efi_label->efi_last_u_lba - resv_p->p_size + 1; 1058 1059 if (resv_p->p_start > new_start) { 1060 if (efi_debug) { 1061 (void) fprintf(stderr, "%s: reserved partition " 1062 "size mismatch\n", __func__); 1063 } 1064 efi_free(efi_label); 1065 return (VT_EINVAL); 1066 } 1067 1068 resv_p->p_start = new_start; 1069 save = B_TRUE; 1070 } 1071 1072 /* 1073 * If there is space between the last (non-reserved) partition and 1074 * the reserved partition, grow the last partition. 1075 */ 1076 if (last_lba < resv_p->p_start) { 1077 last_p->p_size += resv_p->p_start - last_lba - 1; 1078 save = B_TRUE; 1079 } 1080 1081 if (!save) { 1082 efi_free(efi_label); 1083 return (0); 1084 } 1085 1086 rval = efi_write(fd, efi_label); 1087 if (rval < 0) { 1088 if (efi_debug) { 1089 (void) fprintf(stderr, 1090 "efi_use_whole_disk:fail to write label, rval=%d\n", 1091 rval); 1092 } 1093 efi_free(efi_label); 1094 return (rval); 1095 } 1096 1097 efi_free(efi_label); 1098 return (0); 1099 } 1100 1101 1102 /* 1103 * write EFI label and backup label 1104 */ 1105 int 1106 efi_write(int fd, struct dk_gpt *vtoc) 1107 { 1108 dk_efi_t dk_ioc; 1109 efi_gpt_t *efi; 1110 efi_gpe_t *efi_parts; 1111 int i, j; 1112 struct dk_cinfo dki_info; 1113 int nblocks; 1114 diskaddr_t lba_backup_gpt_hdr; 1115 1116 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { 1117 if (efi_debug) 1118 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); 1119 switch (errno) { 1120 case EIO: 1121 return (VT_EIO); 1122 case EINVAL: 1123 return (VT_EINVAL); 1124 default: 1125 return (VT_ERROR); 1126 } 1127 } 1128 1129 if (check_input(vtoc)) 1130 return (VT_EINVAL); 1131 1132 dk_ioc.dki_lba = 1; 1133 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) { 1134 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize; 1135 } else { 1136 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts, 1137 vtoc->efi_lbasize) * 1138 vtoc->efi_lbasize; 1139 } 1140 1141 /* 1142 * the number of blocks occupied by GUID partition entry array 1143 */ 1144 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1; 1145 1146 /* 1147 * Backup GPT header is located on the block after GUID 1148 * partition entry array. Here, we calculate the address 1149 * for backup GPT header. 1150 */ 1151 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks; 1152 if ((dk_ioc.dki_data = calloc(1, dk_ioc.dki_length)) == NULL) 1153 return (VT_ERROR); 1154 1155 efi = dk_ioc.dki_data; 1156 1157 /* stuff user's input into EFI struct */ 1158 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE); 1159 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */ 1160 efi->efi_gpt_HeaderSize = LE_32(EFI_HEADER_SIZE); 1161 efi->efi_gpt_Reserved1 = 0; 1162 efi->efi_gpt_MyLBA = LE_64(1ULL); 1163 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr); 1164 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba); 1165 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba); 1166 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL); 1167 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts); 1168 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe)); 1169 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid); 1170 1171 /* LINTED -- always longlong aligned */ 1172 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize); 1173 1174 for (i = 0; i < vtoc->efi_nparts; i++) { 1175 for (j = 0; 1176 j < sizeof (conversion_array) / 1177 sizeof (struct uuid_to_ptag); j++) { 1178 1179 if (vtoc->efi_parts[i].p_tag == 1180 conversion_array[j].p_tag) { 1181 UUID_LE_CONVERT( 1182 efi_parts[i].efi_gpe_PartitionTypeGUID, 1183 conversion_array[j].uuid); 1184 break; 1185 } 1186 } 1187 1188 if (j == sizeof (conversion_array) / 1189 sizeof (struct uuid_to_ptag)) { 1190 /* 1191 * If we didn't have a matching uuid match, bail here. 1192 * Don't write a label with unknown uuid. 1193 */ 1194 if (efi_debug) { 1195 (void) fprintf(stderr, 1196 "Unknown uuid for p_tag %d\n", 1197 vtoc->efi_parts[i].p_tag); 1198 } 1199 return (VT_EINVAL); 1200 } 1201 1202 efi_parts[i].efi_gpe_StartingLBA = 1203 LE_64(vtoc->efi_parts[i].p_start); 1204 efi_parts[i].efi_gpe_EndingLBA = 1205 LE_64(vtoc->efi_parts[i].p_start + 1206 vtoc->efi_parts[i].p_size - 1); 1207 efi_parts[i].efi_gpe_Attributes.PartitionAttrs = 1208 LE_16(vtoc->efi_parts[i].p_flag); 1209 for (j = 0; j < EFI_PART_NAME_LEN; j++) { 1210 efi_parts[i].efi_gpe_PartitionName[j] = 1211 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]); 1212 } 1213 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) && 1214 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) { 1215 (void) uuid_generate((uchar_t *) 1216 &vtoc->efi_parts[i].p_uguid); 1217 } 1218 bcopy(&vtoc->efi_parts[i].p_uguid, 1219 &efi_parts[i].efi_gpe_UniquePartitionGUID, 1220 sizeof (uuid_t)); 1221 } 1222 efi->efi_gpt_PartitionEntryArrayCRC32 = 1223 LE_32(efi_crc32((unsigned char *)efi_parts, 1224 vtoc->efi_nparts * (int)sizeof (struct efi_gpe))); 1225 efi->efi_gpt_HeaderCRC32 = LE_32(efi_crc32((unsigned char *)efi, 1226 EFI_HEADER_SIZE)); 1227 1228 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 1229 free(dk_ioc.dki_data); 1230 switch (errno) { 1231 case EIO: 1232 return (VT_EIO); 1233 case EINVAL: 1234 return (VT_EINVAL); 1235 default: 1236 return (VT_ERROR); 1237 } 1238 } 1239 1240 /* write backup partition array */ 1241 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1; 1242 dk_ioc.dki_length -= vtoc->efi_lbasize; 1243 /* LINTED */ 1244 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data + 1245 vtoc->efi_lbasize); 1246 1247 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 1248 /* 1249 * we wrote the primary label okay, so don't fail 1250 */ 1251 if (efi_debug) { 1252 (void) fprintf(stderr, 1253 "write of backup partitions to block %llu " 1254 "failed, errno %d\n", 1255 vtoc->efi_last_u_lba + 1, 1256 errno); 1257 } 1258 } 1259 /* 1260 * now swap MyLBA and AlternateLBA fields and write backup 1261 * partition table header 1262 */ 1263 dk_ioc.dki_lba = lba_backup_gpt_hdr; 1264 dk_ioc.dki_length = vtoc->efi_lbasize; 1265 /* LINTED */ 1266 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data - 1267 vtoc->efi_lbasize); 1268 efi->efi_gpt_AlternateLBA = LE_64(1ULL); 1269 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr); 1270 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1); 1271 efi->efi_gpt_HeaderCRC32 = 0; 1272 efi->efi_gpt_HeaderCRC32 = 1273 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data, EFI_HEADER_SIZE)); 1274 1275 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 1276 if (efi_debug) { 1277 (void) fprintf(stderr, 1278 "write of backup header to block %llu failed, " 1279 "errno %d\n", 1280 lba_backup_gpt_hdr, 1281 errno); 1282 } 1283 } 1284 /* write the PMBR */ 1285 (void) write_pmbr(fd, vtoc); 1286 free(dk_ioc.dki_data); 1287 return (0); 1288 } 1289 1290 void 1291 efi_free(struct dk_gpt *ptr) 1292 { 1293 free(ptr); 1294 } 1295 1296 /* 1297 * Input: File descriptor 1298 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR. 1299 * Otherwise 0. 1300 */ 1301 int 1302 efi_type(int fd) 1303 { 1304 struct vtoc vtoc; 1305 struct extvtoc extvtoc; 1306 1307 if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) { 1308 if (errno == ENOTSUP) 1309 return (1); 1310 else if (errno == ENOTTY) { 1311 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1) 1312 if (errno == ENOTSUP) 1313 return (1); 1314 } 1315 } 1316 return (0); 1317 } 1318 1319 void 1320 efi_err_check(struct dk_gpt *vtoc) 1321 { 1322 int resv_part = -1; 1323 int i, j; 1324 diskaddr_t istart, jstart, isize, jsize, endsect; 1325 int overlap = 0; 1326 uint_t reserved; 1327 1328 /* 1329 * make sure no partitions overlap 1330 */ 1331 reserved = efi_reserved_sectors(vtoc); 1332 for (i = 0; i < vtoc->efi_nparts; i++) { 1333 /* It can't be unassigned and have an actual size */ 1334 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && 1335 (vtoc->efi_parts[i].p_size != 0)) { 1336 (void) fprintf(stderr, 1337 "partition %d is \"unassigned\" but has a size " 1338 "of %llu\n", i, vtoc->efi_parts[i].p_size); 1339 } 1340 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { 1341 continue; 1342 } 1343 if (vtoc->efi_parts[i].p_tag == V_RESERVED) { 1344 if (resv_part != -1) { 1345 (void) fprintf(stderr, 1346 "found duplicate reserved partition at " 1347 "%d\n", i); 1348 } 1349 resv_part = i; 1350 if (vtoc->efi_parts[i].p_size != reserved) 1351 (void) fprintf(stderr, 1352 "Warning: reserved partition size must " 1353 "be %u sectors\n", reserved); 1354 } 1355 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || 1356 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { 1357 (void) fprintf(stderr, 1358 "Partition %d starts at %llu\n", 1359 i, 1360 vtoc->efi_parts[i].p_start); 1361 (void) fprintf(stderr, 1362 "It must be between %llu and %llu.\n", 1363 vtoc->efi_first_u_lba, 1364 vtoc->efi_last_u_lba); 1365 } 1366 if ((vtoc->efi_parts[i].p_start + 1367 vtoc->efi_parts[i].p_size < 1368 vtoc->efi_first_u_lba) || 1369 (vtoc->efi_parts[i].p_start + 1370 vtoc->efi_parts[i].p_size > 1371 vtoc->efi_last_u_lba + 1)) { 1372 (void) fprintf(stderr, 1373 "Partition %d ends at %llu\n", 1374 i, 1375 vtoc->efi_parts[i].p_start + 1376 vtoc->efi_parts[i].p_size); 1377 (void) fprintf(stderr, 1378 "It must be between %llu and %llu.\n", 1379 vtoc->efi_first_u_lba, 1380 vtoc->efi_last_u_lba); 1381 } 1382 1383 for (j = 0; j < vtoc->efi_nparts; j++) { 1384 isize = vtoc->efi_parts[i].p_size; 1385 jsize = vtoc->efi_parts[j].p_size; 1386 istart = vtoc->efi_parts[i].p_start; 1387 jstart = vtoc->efi_parts[j].p_start; 1388 if ((i != j) && (isize != 0) && (jsize != 0)) { 1389 endsect = jstart + jsize -1; 1390 if ((jstart <= istart) && 1391 (istart <= endsect)) { 1392 if (!overlap) { 1393 (void) fprintf(stderr, 1394 "label error: EFI Labels do not " 1395 "support overlapping partitions\n"); 1396 } 1397 (void) fprintf(stderr, 1398 "Partition %d overlaps partition " 1399 "%d.\n", i, j); 1400 overlap = 1; 1401 } 1402 } 1403 } 1404 } 1405 /* make sure there is a reserved partition */ 1406 if (resv_part == -1) { 1407 (void) fprintf(stderr, 1408 "no reserved partition found\n"); 1409 } 1410 } 1411 1412 /* 1413 * We need to get information necessary to construct a *new* efi 1414 * label type 1415 */ 1416 int 1417 efi_auto_sense(int fd, struct dk_gpt **vtoc) 1418 { 1419 1420 int i; 1421 1422 /* 1423 * Now build the default partition table 1424 */ 1425 if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) { 1426 if (efi_debug) { 1427 (void) fprintf(stderr, "efi_alloc_and_init failed.\n"); 1428 } 1429 return (-1); 1430 } 1431 1432 for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) { 1433 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag; 1434 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag; 1435 (*vtoc)->efi_parts[i].p_start = 0; 1436 (*vtoc)->efi_parts[i].p_size = 0; 1437 } 1438 /* 1439 * Make constants first 1440 * and variable partitions later 1441 */ 1442 1443 /* root partition - s0 128 MB */ 1444 (*vtoc)->efi_parts[0].p_start = 34; 1445 (*vtoc)->efi_parts[0].p_size = 262144; 1446 1447 /* partition - s1 128 MB */ 1448 (*vtoc)->efi_parts[1].p_start = 262178; 1449 (*vtoc)->efi_parts[1].p_size = 262144; 1450 1451 /* partition -s2 is NOT the Backup disk */ 1452 (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED; 1453 1454 /* partition -s6 /usr partition - HOG */ 1455 (*vtoc)->efi_parts[6].p_start = 524322; 1456 (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322 1457 - (1024 * 16); 1458 1459 /* efi reserved partition - s9 16K */ 1460 (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16); 1461 (*vtoc)->efi_parts[8].p_size = (1024 * 16); 1462 (*vtoc)->efi_parts[8].p_tag = V_RESERVED; 1463 return (0); 1464 } 1465