1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2012 by Delphix. All rights reserved. 29 */ 30 31 /* 32 * DTrace Process Control 33 * 34 * This file provides a set of routines that permit libdtrace and its clients 35 * to create and grab process handles using libproc, and to share these handles 36 * between library mechanisms that need libproc access, such as ustack(), and 37 * client mechanisms that need libproc access, such as dtrace(8) -c and -p. 38 * The library provides several mechanisms in the libproc control layer: 39 * 40 * Reference Counting: The library code and client code can independently grab 41 * the same process handles without interfering with one another. Only when 42 * the reference count drops to zero and the handle is not being cached (see 43 * below for more information on caching) will Prelease() be called on it. 44 * 45 * Handle Caching: If a handle is grabbed PGRAB_RDONLY (e.g. by ustack()) and 46 * the reference count drops to zero, the handle is not immediately released. 47 * Instead, libproc handles are maintained on dph_lrulist in order from most- 48 * recently accessed to least-recently accessed. Idle handles are maintained 49 * until a pre-defined LRU cache limit is exceeded, permitting repeated calls 50 * to ustack() to avoid the overhead of releasing and re-grabbing processes. 51 * 52 * Process Control: For processes that are grabbed for control (~PGRAB_RDONLY) 53 * or created by dt_proc_create(), a control thread is created to provide 54 * callbacks on process exit and symbol table caching on dlopen()s. 55 * 56 * MT-Safety: Libproc is not MT-Safe, so dt_proc_lock() and dt_proc_unlock() 57 * are provided to synchronize access to the libproc handle between libdtrace 58 * code and client code and the control thread's use of the ps_prochandle. 59 * 60 * NOTE: MT-Safety is NOT provided for libdtrace itself, or for use of the 61 * dtrace_proc_grab/dtrace_proc_create mechanisms. Like all exported libdtrace 62 * calls, these are assumed to be MT-Unsafe. MT-Safety is ONLY provided for 63 * synchronization between libdtrace control threads and the client thread. 64 * 65 * The ps_prochandles themselves are maintained along with a dt_proc_t struct 66 * in a hash table indexed by PID. This provides basic locking and reference 67 * counting. The dt_proc_t is also maintained in LRU order on dph_lrulist. 68 * The dph_lrucnt and dph_lrulim count the number of cacheable processes and 69 * the current limit on the number of actively cached entries. 70 * 71 * The control thread for a process establishes breakpoints at the rtld_db 72 * locations of interest, updates mappings and symbol tables at these points, 73 * and handles exec and fork (by always following the parent). The control 74 * thread automatically exits when the process dies or control is lost. 75 * 76 * A simple notification mechanism is provided for libdtrace clients using 77 * dtrace_handle_proc() for notification of PS_UNDEAD or PS_LOST events. If 78 * such an event occurs, the dt_proc_t itself is enqueued on a notification 79 * list and the control thread broadcasts to dph_cv. dtrace_sleep() will wake 80 * up using this condition and will then call the client handler as necessary. 81 */ 82 83 #include <sys/wait.h> 84 #include <sys/lwp.h> 85 #include <strings.h> 86 #include <signal.h> 87 #include <assert.h> 88 #include <errno.h> 89 90 #include <dt_proc.h> 91 #include <dt_pid.h> 92 #include <dt_impl.h> 93 94 #define IS_SYS_EXEC(w) (w == SYS_execve) 95 #define IS_SYS_FORK(w) (w == SYS_vfork || w == SYS_forksys) 96 97 static dt_bkpt_t * 98 dt_proc_bpcreate(dt_proc_t *dpr, uintptr_t addr, dt_bkpt_f *func, void *data) 99 { 100 struct ps_prochandle *P = dpr->dpr_proc; 101 dt_bkpt_t *dbp; 102 103 assert(MUTEX_HELD(&dpr->dpr_lock)); 104 105 if ((dbp = dt_zalloc(dpr->dpr_hdl, sizeof (dt_bkpt_t))) != NULL) { 106 dbp->dbp_func = func; 107 dbp->dbp_data = data; 108 dbp->dbp_addr = addr; 109 110 if (Psetbkpt(P, dbp->dbp_addr, &dbp->dbp_instr) == 0) 111 dbp->dbp_active = B_TRUE; 112 113 dt_list_append(&dpr->dpr_bps, dbp); 114 } 115 116 return (dbp); 117 } 118 119 static void 120 dt_proc_bpdestroy(dt_proc_t *dpr, int delbkpts) 121 { 122 int state = Pstate(dpr->dpr_proc); 123 dt_bkpt_t *dbp, *nbp; 124 125 assert(MUTEX_HELD(&dpr->dpr_lock)); 126 127 for (dbp = dt_list_next(&dpr->dpr_bps); dbp != NULL; dbp = nbp) { 128 if (delbkpts && dbp->dbp_active && 129 state != PS_LOST && state != PS_UNDEAD) { 130 (void) Pdelbkpt(dpr->dpr_proc, 131 dbp->dbp_addr, dbp->dbp_instr); 132 } 133 nbp = dt_list_next(dbp); 134 dt_list_delete(&dpr->dpr_bps, dbp); 135 dt_free(dpr->dpr_hdl, dbp); 136 } 137 } 138 139 static void 140 dt_proc_bpmatch(dtrace_hdl_t *dtp, dt_proc_t *dpr) 141 { 142 const lwpstatus_t *psp = &Pstatus(dpr->dpr_proc)->pr_lwp; 143 dt_bkpt_t *dbp; 144 145 assert(MUTEX_HELD(&dpr->dpr_lock)); 146 147 for (dbp = dt_list_next(&dpr->dpr_bps); 148 dbp != NULL; dbp = dt_list_next(dbp)) { 149 if (psp->pr_reg[R_PC] == dbp->dbp_addr) 150 break; 151 } 152 153 if (dbp == NULL) { 154 dt_dprintf("pid %d: spurious breakpoint wakeup for %lx\n", 155 (int)dpr->dpr_pid, (ulong_t)psp->pr_reg[R_PC]); 156 return; 157 } 158 159 dt_dprintf("pid %d: hit breakpoint at %lx (%lu)\n", 160 (int)dpr->dpr_pid, (ulong_t)dbp->dbp_addr, ++dbp->dbp_hits); 161 162 dbp->dbp_func(dtp, dpr, dbp->dbp_data); 163 (void) Pxecbkpt(dpr->dpr_proc, dbp->dbp_instr); 164 } 165 166 static void 167 dt_proc_bpenable(dt_proc_t *dpr) 168 { 169 dt_bkpt_t *dbp; 170 171 assert(MUTEX_HELD(&dpr->dpr_lock)); 172 173 for (dbp = dt_list_next(&dpr->dpr_bps); 174 dbp != NULL; dbp = dt_list_next(dbp)) { 175 if (!dbp->dbp_active && Psetbkpt(dpr->dpr_proc, 176 dbp->dbp_addr, &dbp->dbp_instr) == 0) 177 dbp->dbp_active = B_TRUE; 178 } 179 180 dt_dprintf("breakpoints enabled\n"); 181 } 182 183 static void 184 dt_proc_bpdisable(dt_proc_t *dpr) 185 { 186 dt_bkpt_t *dbp; 187 188 assert(MUTEX_HELD(&dpr->dpr_lock)); 189 190 for (dbp = dt_list_next(&dpr->dpr_bps); 191 dbp != NULL; dbp = dt_list_next(dbp)) { 192 if (dbp->dbp_active && Pdelbkpt(dpr->dpr_proc, 193 dbp->dbp_addr, dbp->dbp_instr) == 0) 194 dbp->dbp_active = B_FALSE; 195 } 196 197 dt_dprintf("breakpoints disabled\n"); 198 } 199 200 static void 201 dt_proc_notify(dtrace_hdl_t *dtp, dt_proc_hash_t *dph, dt_proc_t *dpr, 202 const char *msg) 203 { 204 dt_proc_notify_t *dprn = dt_alloc(dtp, sizeof (dt_proc_notify_t)); 205 206 if (dprn == NULL) { 207 dt_dprintf("failed to allocate notification for %d %s\n", 208 (int)dpr->dpr_pid, msg); 209 } else { 210 dprn->dprn_dpr = dpr; 211 if (msg == NULL) 212 dprn->dprn_errmsg[0] = '\0'; 213 else 214 (void) strlcpy(dprn->dprn_errmsg, msg, 215 sizeof (dprn->dprn_errmsg)); 216 217 (void) pthread_mutex_lock(&dph->dph_lock); 218 219 dprn->dprn_next = dph->dph_notify; 220 dph->dph_notify = dprn; 221 222 (void) pthread_cond_broadcast(&dph->dph_cv); 223 (void) pthread_mutex_unlock(&dph->dph_lock); 224 } 225 } 226 227 /* 228 * Check to see if the control thread was requested to stop when the victim 229 * process reached a particular event (why) rather than continuing the victim. 230 * If 'why' is set in the stop mask, we wait on dpr_cv for dt_proc_continue(). 231 * If 'why' is not set, this function returns immediately and does nothing. 232 */ 233 static void 234 dt_proc_stop(dt_proc_t *dpr, uint8_t why) 235 { 236 assert(MUTEX_HELD(&dpr->dpr_lock)); 237 assert(why != DT_PROC_STOP_IDLE); 238 239 if (dpr->dpr_stop & why) { 240 dpr->dpr_stop |= DT_PROC_STOP_IDLE; 241 dpr->dpr_stop &= ~why; 242 243 (void) pthread_cond_broadcast(&dpr->dpr_cv); 244 245 /* 246 * We disable breakpoints while stopped to preserve the 247 * integrity of the program text for both our own disassembly 248 * and that of the kernel. 249 */ 250 dt_proc_bpdisable(dpr); 251 252 while (dpr->dpr_stop & DT_PROC_STOP_IDLE) 253 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 254 255 dt_proc_bpenable(dpr); 256 } 257 } 258 259 /*ARGSUSED*/ 260 static void 261 dt_proc_bpmain(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *fname) 262 { 263 dt_dprintf("pid %d: breakpoint at %s()\n", (int)dpr->dpr_pid, fname); 264 dt_proc_stop(dpr, DT_PROC_STOP_MAIN); 265 } 266 267 static void 268 dt_proc_rdevent(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *evname) 269 { 270 rd_event_msg_t rdm; 271 rd_err_e err; 272 273 if ((err = rd_event_getmsg(dpr->dpr_rtld, &rdm)) != RD_OK) { 274 dt_dprintf("pid %d: failed to get %s event message: %s\n", 275 (int)dpr->dpr_pid, evname, rd_errstr(err)); 276 return; 277 } 278 279 dt_dprintf("pid %d: rtld event %s type=%d state %d\n", 280 (int)dpr->dpr_pid, evname, rdm.type, rdm.u.state); 281 282 switch (rdm.type) { 283 case RD_DLACTIVITY: 284 if (rdm.u.state != RD_CONSISTENT) 285 break; 286 287 Pupdate_syms(dpr->dpr_proc); 288 if (dt_pid_create_probes_module(dtp, dpr) != 0) 289 dt_proc_notify(dtp, dtp->dt_procs, dpr, 290 dpr->dpr_errmsg); 291 292 break; 293 case RD_PREINIT: 294 Pupdate_syms(dpr->dpr_proc); 295 dt_proc_stop(dpr, DT_PROC_STOP_PREINIT); 296 break; 297 case RD_POSTINIT: 298 Pupdate_syms(dpr->dpr_proc); 299 dt_proc_stop(dpr, DT_PROC_STOP_POSTINIT); 300 break; 301 } 302 } 303 304 static void 305 dt_proc_rdwatch(dt_proc_t *dpr, rd_event_e event, const char *evname) 306 { 307 rd_notify_t rdn; 308 rd_err_e err; 309 310 if ((err = rd_event_addr(dpr->dpr_rtld, event, &rdn)) != RD_OK) { 311 dt_dprintf("pid %d: failed to get event address for %s: %s\n", 312 (int)dpr->dpr_pid, evname, rd_errstr(err)); 313 return; 314 } 315 316 if (rdn.type != RD_NOTIFY_BPT) { 317 dt_dprintf("pid %d: event %s has unexpected type %d\n", 318 (int)dpr->dpr_pid, evname, rdn.type); 319 return; 320 } 321 322 (void) dt_proc_bpcreate(dpr, rdn.u.bptaddr, 323 (dt_bkpt_f *)dt_proc_rdevent, (void *)evname); 324 } 325 326 /* 327 * Common code for enabling events associated with the run-time linker after 328 * attaching to a process or after a victim process completes an exec(2). 329 */ 330 static void 331 dt_proc_attach(dt_proc_t *dpr, int exec) 332 { 333 const pstatus_t *psp = Pstatus(dpr->dpr_proc); 334 rd_err_e err; 335 GElf_Sym sym; 336 337 assert(MUTEX_HELD(&dpr->dpr_lock)); 338 339 if (exec) { 340 if (psp->pr_lwp.pr_errno != 0) 341 return; /* exec failed: nothing needs to be done */ 342 343 dt_proc_bpdestroy(dpr, B_FALSE); 344 Preset_maps(dpr->dpr_proc); 345 } 346 347 if ((dpr->dpr_rtld = Prd_agent(dpr->dpr_proc)) != NULL && 348 (err = rd_event_enable(dpr->dpr_rtld, B_TRUE)) == RD_OK) { 349 dt_proc_rdwatch(dpr, RD_PREINIT, "RD_PREINIT"); 350 dt_proc_rdwatch(dpr, RD_POSTINIT, "RD_POSTINIT"); 351 dt_proc_rdwatch(dpr, RD_DLACTIVITY, "RD_DLACTIVITY"); 352 } else { 353 dt_dprintf("pid %d: failed to enable rtld events: %s\n", 354 (int)dpr->dpr_pid, dpr->dpr_rtld ? rd_errstr(err) : 355 "rtld_db agent initialization failed"); 356 } 357 358 Pupdate_maps(dpr->dpr_proc); 359 360 if (Pxlookup_by_name(dpr->dpr_proc, LM_ID_BASE, 361 "a.out", "main", &sym, NULL) == 0) { 362 (void) dt_proc_bpcreate(dpr, (uintptr_t)sym.st_value, 363 (dt_bkpt_f *)dt_proc_bpmain, "a.out`main"); 364 } else { 365 dt_dprintf("pid %d: failed to find a.out`main: %s\n", 366 (int)dpr->dpr_pid, strerror(errno)); 367 } 368 } 369 370 /* 371 * Wait for a stopped process to be set running again by some other debugger. 372 * This is typically not required by /proc-based debuggers, since the usual 373 * model is that one debugger controls one victim. But DTrace, as usual, has 374 * its own needs: the stop() action assumes that prun(1) or some other tool 375 * will be applied to resume the victim process. This could be solved by 376 * adding a PCWRUN directive to /proc, but that seems like overkill unless 377 * other debuggers end up needing this functionality, so we implement a cheap 378 * equivalent to PCWRUN using the set of existing kernel mechanisms. 379 * 380 * Our intent is really not just to wait for the victim to run, but rather to 381 * wait for it to run and then stop again for a reason other than the current 382 * PR_REQUESTED stop. Since PCWSTOP/Pstopstatus() can be applied repeatedly 383 * to a stopped process and will return the same result without affecting the 384 * victim, we can just perform these operations repeatedly until Pstate() 385 * changes, the representative LWP ID changes, or the stop timestamp advances. 386 * dt_proc_control() will then rediscover the new state and continue as usual. 387 * When the process is still stopped in the same exact state, we sleep for a 388 * brief interval before waiting again so as not to spin consuming CPU cycles. 389 */ 390 static void 391 dt_proc_waitrun(dt_proc_t *dpr) 392 { 393 struct ps_prochandle *P = dpr->dpr_proc; 394 const lwpstatus_t *psp = &Pstatus(P)->pr_lwp; 395 396 int krflag = psp->pr_flags & (PR_KLC | PR_RLC); 397 timestruc_t tstamp = psp->pr_tstamp; 398 lwpid_t lwpid = psp->pr_lwpid; 399 400 const long wstop = PCWSTOP; 401 int pfd = Pctlfd(P); 402 403 assert(MUTEX_HELD(&dpr->dpr_lock)); 404 assert(psp->pr_flags & PR_STOPPED); 405 assert(Pstate(P) == PS_STOP); 406 407 /* 408 * While we are waiting for the victim to run, clear PR_KLC and PR_RLC 409 * so that if the libdtrace client is killed, the victim stays stopped. 410 * dt_proc_destroy() will also observe this and perform PRELEASE_HANG. 411 */ 412 (void) Punsetflags(P, krflag); 413 Psync(P); 414 415 (void) pthread_mutex_unlock(&dpr->dpr_lock); 416 417 while (!dpr->dpr_quit) { 418 if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR) 419 continue; /* check dpr_quit and continue waiting */ 420 421 (void) pthread_mutex_lock(&dpr->dpr_lock); 422 (void) Pstopstatus(P, PCNULL, 0); 423 psp = &Pstatus(P)->pr_lwp; 424 425 /* 426 * If we've reached a new state, found a new representative, or 427 * the stop timestamp has changed, restore PR_KLC/PR_RLC to its 428 * original setting and then return with dpr_lock held. 429 */ 430 if (Pstate(P) != PS_STOP || psp->pr_lwpid != lwpid || 431 bcmp(&psp->pr_tstamp, &tstamp, sizeof (tstamp)) != 0) { 432 (void) Psetflags(P, krflag); 433 Psync(P); 434 return; 435 } 436 437 (void) pthread_mutex_unlock(&dpr->dpr_lock); 438 (void) poll(NULL, 0, MILLISEC / 2); 439 } 440 441 (void) pthread_mutex_lock(&dpr->dpr_lock); 442 } 443 444 typedef struct dt_proc_control_data { 445 dtrace_hdl_t *dpcd_hdl; /* DTrace handle */ 446 dt_proc_t *dpcd_proc; /* proccess to control */ 447 } dt_proc_control_data_t; 448 449 /* 450 * Main loop for all victim process control threads. We initialize all the 451 * appropriate /proc control mechanisms, and then enter a loop waiting for 452 * the process to stop on an event or die. We process any events by calling 453 * appropriate subroutines, and exit when the victim dies or we lose control. 454 * 455 * The control thread synchronizes the use of dpr_proc with other libdtrace 456 * threads using dpr_lock. We hold the lock for all of our operations except 457 * waiting while the process is running: this is accomplished by writing a 458 * PCWSTOP directive directly to the underlying /proc/<pid>/ctl file. If the 459 * libdtrace client wishes to exit or abort our wait, SIGCANCEL can be used. 460 */ 461 static void * 462 dt_proc_control(void *arg) 463 { 464 dt_proc_control_data_t *datap = arg; 465 dtrace_hdl_t *dtp = datap->dpcd_hdl; 466 dt_proc_t *dpr = datap->dpcd_proc; 467 dt_proc_hash_t *dph = dtp->dt_procs; 468 struct ps_prochandle *P = dpr->dpr_proc; 469 470 int pfd = Pctlfd(P); 471 int pid = dpr->dpr_pid; 472 473 const long wstop = PCWSTOP; 474 int notify = B_FALSE; 475 476 /* 477 * We disable the POSIX thread cancellation mechanism so that the 478 * client program using libdtrace can't accidentally cancel our thread. 479 * dt_proc_destroy() uses SIGCANCEL explicitly to simply poke us out 480 * of PCWSTOP with EINTR, at which point we will see dpr_quit and exit. 481 */ 482 (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL); 483 484 /* 485 * Set up the corresponding process for tracing by libdtrace. We want 486 * to be able to catch breakpoints and efficiently single-step over 487 * them, and we need to enable librtld_db to watch libdl activity. 488 */ 489 (void) pthread_mutex_lock(&dpr->dpr_lock); 490 491 (void) Punsetflags(P, PR_ASYNC); /* require synchronous mode */ 492 (void) Psetflags(P, PR_BPTADJ); /* always adjust eip on x86 */ 493 (void) Punsetflags(P, PR_FORK); /* do not inherit on fork */ 494 495 (void) Pfault(P, FLTBPT, B_TRUE); /* always trace breakpoints */ 496 (void) Pfault(P, FLTTRACE, B_TRUE); /* always trace single-step */ 497 498 /* 499 * We must trace exit from exec() system calls so that if the exec is 500 * successful, we can reset our breakpoints and re-initialize libproc. 501 */ 502 (void) Psysexit(P, SYS_execve, B_TRUE); 503 504 /* 505 * We must trace entry and exit for fork() system calls in order to 506 * disable our breakpoints temporarily during the fork. We do not set 507 * the PR_FORK flag, so if fork succeeds the child begins executing and 508 * does not inherit any other tracing behaviors or a control thread. 509 */ 510 (void) Psysentry(P, SYS_vfork, B_TRUE); 511 (void) Psysexit(P, SYS_vfork, B_TRUE); 512 (void) Psysentry(P, SYS_forksys, B_TRUE); 513 (void) Psysexit(P, SYS_forksys, B_TRUE); 514 515 Psync(P); /* enable all /proc changes */ 516 dt_proc_attach(dpr, B_FALSE); /* enable rtld breakpoints */ 517 518 /* 519 * If PR_KLC is set, we created the process; otherwise we grabbed it. 520 * Check for an appropriate stop request and wait for dt_proc_continue. 521 */ 522 if (Pstatus(P)->pr_flags & PR_KLC) 523 dt_proc_stop(dpr, DT_PROC_STOP_CREATE); 524 else 525 dt_proc_stop(dpr, DT_PROC_STOP_GRAB); 526 527 if (Psetrun(P, 0, 0) == -1) { 528 dt_dprintf("pid %d: failed to set running: %s\n", 529 (int)dpr->dpr_pid, strerror(errno)); 530 } 531 532 (void) pthread_mutex_unlock(&dpr->dpr_lock); 533 534 /* 535 * Wait for the process corresponding to this control thread to stop, 536 * process the event, and then set it running again. We want to sleep 537 * with dpr_lock *unheld* so that other parts of libdtrace can use the 538 * ps_prochandle in the meantime (e.g. ustack()). To do this, we write 539 * a PCWSTOP directive directly to the underlying /proc/<pid>/ctl file. 540 * Once the process stops, we wake up, grab dpr_lock, and then call 541 * Pwait() (which will return immediately) and do our processing. 542 */ 543 while (!dpr->dpr_quit) { 544 const lwpstatus_t *psp; 545 546 if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR) 547 continue; /* check dpr_quit and continue waiting */ 548 549 (void) pthread_mutex_lock(&dpr->dpr_lock); 550 pwait_locked: 551 if (Pstopstatus(P, PCNULL, 0) == -1 && errno == EINTR) { 552 (void) pthread_mutex_unlock(&dpr->dpr_lock); 553 continue; /* check dpr_quit and continue waiting */ 554 } 555 556 switch (Pstate(P)) { 557 case PS_STOP: 558 psp = &Pstatus(P)->pr_lwp; 559 560 dt_dprintf("pid %d: proc stopped showing %d/%d\n", 561 pid, psp->pr_why, psp->pr_what); 562 563 /* 564 * If the process stops showing PR_REQUESTED, then the 565 * DTrace stop() action was applied to it or another 566 * debugging utility (e.g. pstop(1)) asked it to stop. 567 * In either case, the user's intention is for the 568 * process to remain stopped until another external 569 * mechanism (e.g. prun(1)) is applied. So instead of 570 * setting the process running ourself, we wait for 571 * someone else to do so. Once that happens, we return 572 * to our normal loop waiting for an event of interest. 573 */ 574 if (psp->pr_why == PR_REQUESTED) { 575 dt_proc_waitrun(dpr); 576 (void) pthread_mutex_unlock(&dpr->dpr_lock); 577 continue; 578 } 579 580 /* 581 * If the process stops showing one of the events that 582 * we are tracing, perform the appropriate response. 583 * Note that we ignore PR_SUSPENDED, PR_CHECKPOINT, and 584 * PR_JOBCONTROL by design: if one of these conditions 585 * occurs, we will fall through to Psetrun() but the 586 * process will remain stopped in the kernel by the 587 * corresponding mechanism (e.g. job control stop). 588 */ 589 if (psp->pr_why == PR_FAULTED && psp->pr_what == FLTBPT) 590 dt_proc_bpmatch(dtp, dpr); 591 else if (psp->pr_why == PR_SYSENTRY && 592 IS_SYS_FORK(psp->pr_what)) 593 dt_proc_bpdisable(dpr); 594 else if (psp->pr_why == PR_SYSEXIT && 595 IS_SYS_FORK(psp->pr_what)) 596 dt_proc_bpenable(dpr); 597 else if (psp->pr_why == PR_SYSEXIT && 598 IS_SYS_EXEC(psp->pr_what)) 599 dt_proc_attach(dpr, B_TRUE); 600 break; 601 602 case PS_LOST: 603 if (Preopen(P) == 0) 604 goto pwait_locked; 605 606 dt_dprintf("pid %d: proc lost: %s\n", 607 pid, strerror(errno)); 608 609 dpr->dpr_quit = B_TRUE; 610 notify = B_TRUE; 611 break; 612 613 case PS_UNDEAD: 614 dt_dprintf("pid %d: proc died\n", pid); 615 dpr->dpr_quit = B_TRUE; 616 notify = B_TRUE; 617 break; 618 } 619 620 if (Pstate(P) != PS_UNDEAD && Psetrun(P, 0, 0) == -1) { 621 dt_dprintf("pid %d: failed to set running: %s\n", 622 (int)dpr->dpr_pid, strerror(errno)); 623 } 624 625 (void) pthread_mutex_unlock(&dpr->dpr_lock); 626 } 627 628 /* 629 * If the control thread detected PS_UNDEAD or PS_LOST, then enqueue 630 * the dt_proc_t structure on the dt_proc_hash_t notification list. 631 */ 632 if (notify) 633 dt_proc_notify(dtp, dph, dpr, NULL); 634 635 /* 636 * Destroy and remove any remaining breakpoints, set dpr_done and clear 637 * dpr_tid to indicate the control thread has exited, and notify any 638 * waiting thread in dt_proc_destroy() that we have succesfully exited. 639 */ 640 (void) pthread_mutex_lock(&dpr->dpr_lock); 641 642 dt_proc_bpdestroy(dpr, B_TRUE); 643 dpr->dpr_done = B_TRUE; 644 dpr->dpr_tid = 0; 645 646 (void) pthread_cond_broadcast(&dpr->dpr_cv); 647 (void) pthread_mutex_unlock(&dpr->dpr_lock); 648 649 return (NULL); 650 } 651 652 /*PRINTFLIKE3*/ 653 static struct ps_prochandle * 654 dt_proc_error(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *format, ...) 655 { 656 va_list ap; 657 658 va_start(ap, format); 659 dt_set_errmsg(dtp, NULL, NULL, NULL, 0, format, ap); 660 va_end(ap); 661 662 if (dpr->dpr_proc != NULL) 663 Prelease(dpr->dpr_proc, 0); 664 665 dt_free(dtp, dpr); 666 (void) dt_set_errno(dtp, EDT_COMPILER); 667 return (NULL); 668 } 669 670 dt_proc_t * 671 dt_proc_lookup(dtrace_hdl_t *dtp, struct ps_prochandle *P, int remove) 672 { 673 dt_proc_hash_t *dph = dtp->dt_procs; 674 pid_t pid = Pstatus(P)->pr_pid; 675 dt_proc_t *dpr, **dpp = &dph->dph_hash[pid & (dph->dph_hashlen - 1)]; 676 677 for (dpr = *dpp; dpr != NULL; dpr = dpr->dpr_hash) { 678 if (dpr->dpr_pid == pid) 679 break; 680 else 681 dpp = &dpr->dpr_hash; 682 } 683 684 assert(dpr != NULL); 685 assert(dpr->dpr_proc == P); 686 687 if (remove) 688 *dpp = dpr->dpr_hash; /* remove from pid hash chain */ 689 690 return (dpr); 691 } 692 693 static void 694 dt_proc_destroy(dtrace_hdl_t *dtp, struct ps_prochandle *P) 695 { 696 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 697 dt_proc_hash_t *dph = dtp->dt_procs; 698 dt_proc_notify_t *npr, **npp; 699 int rflag; 700 701 assert(dpr != NULL); 702 703 /* 704 * If neither PR_KLC nor PR_RLC is set, then the process is stopped by 705 * an external debugger and we were waiting in dt_proc_waitrun(). 706 * Leave the process in this condition using PRELEASE_HANG. 707 */ 708 if (!(Pstatus(dpr->dpr_proc)->pr_flags & (PR_KLC | PR_RLC))) { 709 dt_dprintf("abandoning pid %d\n", (int)dpr->dpr_pid); 710 rflag = PRELEASE_HANG; 711 } else if (Pstatus(dpr->dpr_proc)->pr_flags & PR_KLC) { 712 dt_dprintf("killing pid %d\n", (int)dpr->dpr_pid); 713 rflag = PRELEASE_KILL; /* apply kill-on-last-close */ 714 } else { 715 dt_dprintf("releasing pid %d\n", (int)dpr->dpr_pid); 716 rflag = 0; /* apply run-on-last-close */ 717 } 718 719 if (dpr->dpr_tid) { 720 /* 721 * Set the dpr_quit flag to tell the daemon thread to exit. We 722 * send it a SIGCANCEL to poke it out of PCWSTOP or any other 723 * long-term /proc system call. Our daemon threads have POSIX 724 * cancellation disabled, so EINTR will be the only effect. We 725 * then wait for dpr_done to indicate the thread has exited. 726 * 727 * We can't use pthread_kill() to send SIGCANCEL because the 728 * interface forbids it and we can't use pthread_cancel() 729 * because with cancellation disabled it won't actually 730 * send SIGCANCEL to the target thread, so we use _lwp_kill() 731 * to do the job. This is all built on evil knowledge of 732 * the details of the cancellation mechanism in libc. 733 */ 734 (void) pthread_mutex_lock(&dpr->dpr_lock); 735 dpr->dpr_quit = B_TRUE; 736 (void) _lwp_kill(dpr->dpr_tid, SIGCANCEL); 737 738 /* 739 * If the process is currently idling in dt_proc_stop(), re- 740 * enable breakpoints and poke it into running again. 741 */ 742 if (dpr->dpr_stop & DT_PROC_STOP_IDLE) { 743 dt_proc_bpenable(dpr); 744 dpr->dpr_stop &= ~DT_PROC_STOP_IDLE; 745 (void) pthread_cond_broadcast(&dpr->dpr_cv); 746 } 747 748 while (!dpr->dpr_done) 749 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 750 751 (void) pthread_mutex_unlock(&dpr->dpr_lock); 752 } 753 754 /* 755 * Before we free the process structure, remove this dt_proc_t from the 756 * lookup hash, and then walk the dt_proc_hash_t's notification list 757 * and remove this dt_proc_t if it is enqueued. 758 */ 759 (void) pthread_mutex_lock(&dph->dph_lock); 760 (void) dt_proc_lookup(dtp, P, B_TRUE); 761 npp = &dph->dph_notify; 762 763 while ((npr = *npp) != NULL) { 764 if (npr->dprn_dpr == dpr) { 765 *npp = npr->dprn_next; 766 dt_free(dtp, npr); 767 } else { 768 npp = &npr->dprn_next; 769 } 770 } 771 772 (void) pthread_mutex_unlock(&dph->dph_lock); 773 774 /* 775 * Remove the dt_proc_list from the LRU list, release the underlying 776 * libproc handle, and free our dt_proc_t data structure. 777 */ 778 if (dpr->dpr_cacheable) { 779 assert(dph->dph_lrucnt != 0); 780 dph->dph_lrucnt--; 781 } 782 783 dt_list_delete(&dph->dph_lrulist, dpr); 784 Prelease(dpr->dpr_proc, rflag); 785 dt_free(dtp, dpr); 786 } 787 788 static int 789 dt_proc_create_thread(dtrace_hdl_t *dtp, dt_proc_t *dpr, uint_t stop) 790 { 791 dt_proc_control_data_t data; 792 sigset_t nset, oset; 793 pthread_attr_t a; 794 int err; 795 796 (void) pthread_mutex_lock(&dpr->dpr_lock); 797 dpr->dpr_stop |= stop; /* set bit for initial rendezvous */ 798 799 (void) pthread_attr_init(&a); 800 (void) pthread_attr_setdetachstate(&a, PTHREAD_CREATE_DETACHED); 801 802 (void) sigfillset(&nset); 803 (void) sigdelset(&nset, SIGABRT); /* unblocked for assert() */ 804 (void) sigdelset(&nset, SIGCANCEL); /* see dt_proc_destroy() */ 805 806 data.dpcd_hdl = dtp; 807 data.dpcd_proc = dpr; 808 809 (void) pthread_sigmask(SIG_SETMASK, &nset, &oset); 810 err = pthread_create(&dpr->dpr_tid, &a, dt_proc_control, &data); 811 (void) pthread_sigmask(SIG_SETMASK, &oset, NULL); 812 813 /* 814 * If the control thread was created, then wait on dpr_cv for either 815 * dpr_done to be set (the victim died or the control thread failed) 816 * or DT_PROC_STOP_IDLE to be set, indicating that the victim is now 817 * stopped by /proc and the control thread is at the rendezvous event. 818 * On success, we return with the process and control thread stopped: 819 * the caller can then apply dt_proc_continue() to resume both. 820 */ 821 if (err == 0) { 822 while (!dpr->dpr_done && !(dpr->dpr_stop & DT_PROC_STOP_IDLE)) 823 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 824 825 /* 826 * If dpr_done is set, the control thread aborted before it 827 * reached the rendezvous event. This is either due to PS_LOST 828 * or PS_UNDEAD (i.e. the process died). We try to provide a 829 * small amount of useful information to help figure it out. 830 */ 831 if (dpr->dpr_done) { 832 const psinfo_t *prp = Ppsinfo(dpr->dpr_proc); 833 int stat = prp ? prp->pr_wstat : 0; 834 int pid = dpr->dpr_pid; 835 836 if (Pstate(dpr->dpr_proc) == PS_LOST) { 837 (void) dt_proc_error(dpr->dpr_hdl, dpr, 838 "failed to control pid %d: process exec'd " 839 "set-id or unobservable program\n", pid); 840 } else if (WIFSIGNALED(stat)) { 841 (void) dt_proc_error(dpr->dpr_hdl, dpr, 842 "failed to control pid %d: process died " 843 "from signal %d\n", pid, WTERMSIG(stat)); 844 } else { 845 (void) dt_proc_error(dpr->dpr_hdl, dpr, 846 "failed to control pid %d: process exited " 847 "with status %d\n", pid, WEXITSTATUS(stat)); 848 } 849 850 err = ESRCH; /* cause grab() or create() to fail */ 851 } 852 } else { 853 (void) dt_proc_error(dpr->dpr_hdl, dpr, 854 "failed to create control thread for process-id %d: %s\n", 855 (int)dpr->dpr_pid, strerror(err)); 856 } 857 858 (void) pthread_mutex_unlock(&dpr->dpr_lock); 859 (void) pthread_attr_destroy(&a); 860 861 return (err); 862 } 863 864 struct ps_prochandle * 865 dt_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv) 866 { 867 dt_proc_hash_t *dph = dtp->dt_procs; 868 dt_proc_t *dpr; 869 int err; 870 871 if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL) 872 return (NULL); /* errno is set for us */ 873 874 (void) pthread_mutex_init(&dpr->dpr_lock, NULL); 875 (void) pthread_cond_init(&dpr->dpr_cv, NULL); 876 877 dpr->dpr_proc = Pxcreate(file, argv, dtp->dt_proc_env, &err, NULL, 0); 878 if (dpr->dpr_proc == NULL) { 879 return (dt_proc_error(dtp, dpr, 880 "failed to execute %s: %s\n", file, Pcreate_error(err))); 881 } 882 883 dpr->dpr_hdl = dtp; 884 dpr->dpr_pid = Pstatus(dpr->dpr_proc)->pr_pid; 885 886 (void) Punsetflags(dpr->dpr_proc, PR_RLC); 887 (void) Psetflags(dpr->dpr_proc, PR_KLC); 888 889 if (dt_proc_create_thread(dtp, dpr, dtp->dt_prcmode) != 0) 890 return (NULL); /* dt_proc_error() has been called for us */ 891 892 dpr->dpr_hash = dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)]; 893 dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)] = dpr; 894 dt_list_prepend(&dph->dph_lrulist, dpr); 895 896 dt_dprintf("created pid %d\n", (int)dpr->dpr_pid); 897 dpr->dpr_refs++; 898 899 return (dpr->dpr_proc); 900 } 901 902 struct ps_prochandle * 903 dt_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags, int nomonitor) 904 { 905 dt_proc_hash_t *dph = dtp->dt_procs; 906 uint_t h = pid & (dph->dph_hashlen - 1); 907 dt_proc_t *dpr, *opr; 908 int err; 909 910 /* 911 * Search the hash table for the pid. If it is already grabbed or 912 * created, move the handle to the front of the lrulist, increment 913 * the reference count, and return the existing ps_prochandle. 914 */ 915 for (dpr = dph->dph_hash[h]; dpr != NULL; dpr = dpr->dpr_hash) { 916 if (dpr->dpr_pid == pid && !dpr->dpr_stale) { 917 /* 918 * If the cached handle was opened read-only and 919 * this request is for a writeable handle, mark 920 * the cached handle as stale and open a new handle. 921 * Since it's stale, unmark it as cacheable. 922 */ 923 if (dpr->dpr_rdonly && !(flags & PGRAB_RDONLY)) { 924 dt_dprintf("upgrading pid %d\n", (int)pid); 925 dpr->dpr_stale = B_TRUE; 926 dpr->dpr_cacheable = B_FALSE; 927 dph->dph_lrucnt--; 928 break; 929 } 930 931 dt_dprintf("grabbed pid %d (cached)\n", (int)pid); 932 dt_list_delete(&dph->dph_lrulist, dpr); 933 dt_list_prepend(&dph->dph_lrulist, dpr); 934 dpr->dpr_refs++; 935 return (dpr->dpr_proc); 936 } 937 } 938 939 if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL) 940 return (NULL); /* errno is set for us */ 941 942 (void) pthread_mutex_init(&dpr->dpr_lock, NULL); 943 (void) pthread_cond_init(&dpr->dpr_cv, NULL); 944 945 if ((dpr->dpr_proc = Pgrab(pid, flags, &err)) == NULL) { 946 return (dt_proc_error(dtp, dpr, 947 "failed to grab pid %d: %s\n", (int)pid, Pgrab_error(err))); 948 } 949 950 dpr->dpr_hdl = dtp; 951 dpr->dpr_pid = pid; 952 953 (void) Punsetflags(dpr->dpr_proc, PR_KLC); 954 (void) Psetflags(dpr->dpr_proc, PR_RLC); 955 956 /* 957 * If we are attempting to grab the process without a monitor 958 * thread, then mark the process cacheable only if it's being 959 * grabbed read-only. If we're currently caching more process 960 * handles than dph_lrulim permits, attempt to find the 961 * least-recently-used handle that is currently unreferenced and 962 * release it from the cache. Otherwise we are grabbing the process 963 * for control: create a control thread for this process and store 964 * its ID in dpr->dpr_tid. 965 */ 966 if (nomonitor || (flags & PGRAB_RDONLY)) { 967 if (dph->dph_lrucnt >= dph->dph_lrulim) { 968 for (opr = dt_list_prev(&dph->dph_lrulist); 969 opr != NULL; opr = dt_list_prev(opr)) { 970 if (opr->dpr_cacheable && opr->dpr_refs == 0) { 971 dt_proc_destroy(dtp, opr->dpr_proc); 972 break; 973 } 974 } 975 } 976 977 if (flags & PGRAB_RDONLY) { 978 dpr->dpr_cacheable = B_TRUE; 979 dpr->dpr_rdonly = B_TRUE; 980 dph->dph_lrucnt++; 981 } 982 983 } else if (dt_proc_create_thread(dtp, dpr, DT_PROC_STOP_GRAB) != 0) 984 return (NULL); /* dt_proc_error() has been called for us */ 985 986 dpr->dpr_hash = dph->dph_hash[h]; 987 dph->dph_hash[h] = dpr; 988 dt_list_prepend(&dph->dph_lrulist, dpr); 989 990 dt_dprintf("grabbed pid %d\n", (int)pid); 991 dpr->dpr_refs++; 992 993 return (dpr->dpr_proc); 994 } 995 996 void 997 dt_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P) 998 { 999 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1000 dt_proc_hash_t *dph = dtp->dt_procs; 1001 1002 assert(dpr != NULL); 1003 assert(dpr->dpr_refs != 0); 1004 1005 if (--dpr->dpr_refs == 0 && 1006 (!dpr->dpr_cacheable || dph->dph_lrucnt > dph->dph_lrulim)) 1007 dt_proc_destroy(dtp, P); 1008 } 1009 1010 void 1011 dt_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1012 { 1013 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1014 1015 (void) pthread_mutex_lock(&dpr->dpr_lock); 1016 1017 if (dpr->dpr_stop & DT_PROC_STOP_IDLE) { 1018 dpr->dpr_stop &= ~DT_PROC_STOP_IDLE; 1019 (void) pthread_cond_broadcast(&dpr->dpr_cv); 1020 } 1021 1022 (void) pthread_mutex_unlock(&dpr->dpr_lock); 1023 } 1024 1025 void 1026 dt_proc_lock(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1027 { 1028 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1029 int err = pthread_mutex_lock(&dpr->dpr_lock); 1030 assert(err == 0); /* check for recursion */ 1031 } 1032 1033 void 1034 dt_proc_unlock(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1035 { 1036 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1037 int err = pthread_mutex_unlock(&dpr->dpr_lock); 1038 assert(err == 0); /* check for unheld lock */ 1039 } 1040 1041 void 1042 dt_proc_init(dtrace_hdl_t *dtp) 1043 { 1044 extern char **environ; 1045 static char *envdef[] = { 1046 "LD_NOLAZYLOAD=1", /* linker lazy loading hides funcs */ 1047 NULL 1048 }; 1049 char **p; 1050 int i; 1051 1052 if ((dtp->dt_procs = dt_zalloc(dtp, sizeof (dt_proc_hash_t) + 1053 sizeof (dt_proc_t *) * _dtrace_pidbuckets - 1)) == NULL) 1054 return; 1055 1056 (void) pthread_mutex_init(&dtp->dt_procs->dph_lock, NULL); 1057 (void) pthread_cond_init(&dtp->dt_procs->dph_cv, NULL); 1058 1059 dtp->dt_procs->dph_hashlen = _dtrace_pidbuckets; 1060 dtp->dt_procs->dph_lrulim = _dtrace_pidlrulim; 1061 1062 1063 /* 1064 * Count how big our environment needs to be. 1065 */ 1066 for (i = 1, p = environ; *p != NULL; i++, p++) 1067 continue; 1068 for (p = envdef; *p != NULL; i++, p++) 1069 continue; 1070 1071 if ((dtp->dt_proc_env = dt_zalloc(dtp, sizeof (char *) * i)) == NULL) 1072 return; 1073 1074 for (i = 0, p = environ; *p != NULL; i++, p++) { 1075 if ((dtp->dt_proc_env[i] = strdup(*p)) == NULL) 1076 goto err; 1077 } 1078 for (p = envdef; *p != NULL; i++, p++) { 1079 if ((dtp->dt_proc_env[i] = strdup(*p)) == NULL) 1080 goto err; 1081 } 1082 1083 return; 1084 1085 err: 1086 while (--i != 0) { 1087 dt_free(dtp, dtp->dt_proc_env[i]); 1088 } 1089 dt_free(dtp, dtp->dt_proc_env); 1090 dtp->dt_proc_env = NULL; 1091 } 1092 1093 void 1094 dt_proc_fini(dtrace_hdl_t *dtp) 1095 { 1096 dt_proc_hash_t *dph = dtp->dt_procs; 1097 dt_proc_t *dpr; 1098 char **p; 1099 1100 while ((dpr = dt_list_next(&dph->dph_lrulist)) != NULL) 1101 dt_proc_destroy(dtp, dpr->dpr_proc); 1102 1103 dtp->dt_procs = NULL; 1104 dt_free(dtp, dph); 1105 1106 for (p = dtp->dt_proc_env; *p != NULL; p++) 1107 dt_free(dtp, *p); 1108 1109 dt_free(dtp, dtp->dt_proc_env); 1110 dtp->dt_proc_env = NULL; 1111 } 1112 1113 struct ps_prochandle * 1114 dtrace_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv) 1115 { 1116 dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target"); 1117 struct ps_prochandle *P = dt_proc_create(dtp, file, argv); 1118 1119 if (P != NULL && idp != NULL && idp->di_id == 0) 1120 idp->di_id = Pstatus(P)->pr_pid; /* $target = created pid */ 1121 1122 return (P); 1123 } 1124 1125 struct ps_prochandle * 1126 dtrace_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags) 1127 { 1128 dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target"); 1129 struct ps_prochandle *P = dt_proc_grab(dtp, pid, flags, 0); 1130 1131 if (P != NULL && idp != NULL && idp->di_id == 0) 1132 idp->di_id = pid; /* $target = grabbed pid */ 1133 1134 return (P); 1135 } 1136 1137 void 1138 dtrace_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1139 { 1140 dt_proc_release(dtp, P); 1141 } 1142 1143 void 1144 dtrace_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1145 { 1146 dt_proc_continue(dtp, P); 1147 } 1148