xref: /illumos-gate/usr/src/lib/libdtrace/common/dt_link.c (revision c8531848467a8747b65b91ab83c4b57f4c000848)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #define	ELF_TARGET_ALL
30 #include <elf.h>
31 
32 #include <sys/types.h>
33 #include <sys/sysmacros.h>
34 
35 #include <unistd.h>
36 #include <strings.h>
37 #include <alloca.h>
38 #include <limits.h>
39 #include <stddef.h>
40 #include <stdlib.h>
41 #include <stdio.h>
42 #include <fcntl.h>
43 #include <errno.h>
44 #include <wait.h>
45 #include <assert.h>
46 #include <sys/ipc.h>
47 
48 #include <dt_impl.h>
49 #include <dt_provider.h>
50 #include <dt_program.h>
51 #include <dt_string.h>
52 
53 #define	ESHDR_NULL	0
54 #define	ESHDR_SHSTRTAB	1
55 #define	ESHDR_DOF	2
56 #define	ESHDR_STRTAB	3
57 #define	ESHDR_SYMTAB	4
58 #define	ESHDR_REL	5
59 #define	ESHDR_NUM	6
60 
61 #define	PWRITE_SCN(index, data) \
62 	(lseek64(fd, (off64_t)elf_file.shdr[(index)].sh_offset, SEEK_SET) != \
63 	(off64_t)elf_file.shdr[(index)].sh_offset || \
64 	dt_write(dtp, fd, (data), elf_file.shdr[(index)].sh_size) != \
65 	elf_file.shdr[(index)].sh_size)
66 
67 static const char DTRACE_SHSTRTAB32[] = "\0"
68 ".shstrtab\0"		/* 1 */
69 ".SUNW_dof\0"		/* 11 */
70 ".strtab\0"		/* 21 */
71 ".symtab\0"		/* 29 */
72 #ifdef __sparc
73 ".rela.SUNW_dof";	/* 37 */
74 #else
75 ".rel.SUNW_dof";	/* 37 */
76 #endif
77 
78 static const char DTRACE_SHSTRTAB64[] = "\0"
79 ".shstrtab\0"		/* 1 */
80 ".SUNW_dof\0"		/* 11 */
81 ".strtab\0"		/* 21 */
82 ".symtab\0"		/* 29 */
83 ".rela.SUNW_dof";	/* 37 */
84 
85 static const char DOFSTR[] = "__SUNW_dof";
86 static const char DOFLAZYSTR[] = "___SUNW_dof";
87 
88 typedef struct dt_link_pair {
89 	struct dt_link_pair *dlp_next;	/* next pair in linked list */
90 	void *dlp_str;			/* buffer for string table */
91 	void *dlp_sym;			/* buffer for symbol table */
92 } dt_link_pair_t;
93 
94 typedef struct dof_elf32 {
95 	uint32_t de_nrel;		/* relocation count */
96 #ifdef __sparc
97 	Elf32_Rela *de_rel;		/* array of relocations for sparc */
98 #else
99 	Elf32_Rel *de_rel;		/* array of relocations for x86 */
100 #endif
101 	uint32_t de_nsym;		/* symbol count */
102 	Elf32_Sym *de_sym;		/* array of symbols */
103 	uint32_t de_strlen;		/* size of of string table */
104 	char *de_strtab;		/* string table */
105 	uint32_t de_global;		/* index of the first global symbol */
106 } dof_elf32_t;
107 
108 static int
109 prepare_elf32(dtrace_hdl_t *dtp, const dof_hdr_t *dof, dof_elf32_t *dep)
110 {
111 	dof_sec_t *dofs, *s;
112 	dof_relohdr_t *dofrh;
113 	dof_relodesc_t *dofr;
114 	char *strtab;
115 	int i, j, nrel;
116 	size_t strtabsz = 1;
117 	uint32_t count = 0;
118 	size_t base;
119 	Elf32_Sym *sym;
120 #ifdef __sparc
121 	Elf32_Rela *rel;
122 #else
123 	Elf32_Rel *rel;
124 #endif
125 
126 	/*LINTED*/
127 	dofs = (dof_sec_t *)((char *)dof + dof->dofh_secoff);
128 
129 	/*
130 	 * First compute the size of the string table and the number of
131 	 * relocations present in the DOF.
132 	 */
133 	for (i = 0; i < dof->dofh_secnum; i++) {
134 		if (dofs[i].dofs_type != DOF_SECT_URELHDR)
135 			continue;
136 
137 		/*LINTED*/
138 		dofrh = (dof_relohdr_t *)((char *)dof + dofs[i].dofs_offset);
139 
140 		s = &dofs[dofrh->dofr_strtab];
141 		strtab = (char *)dof + s->dofs_offset;
142 		assert(strtab[0] == '\0');
143 		strtabsz += s->dofs_size - 1;
144 
145 		s = &dofs[dofrh->dofr_relsec];
146 		/*LINTED*/
147 		dofr = (dof_relodesc_t *)((char *)dof + s->dofs_offset);
148 		count += s->dofs_size / s->dofs_entsize;
149 	}
150 
151 	dep->de_strlen = strtabsz;
152 	dep->de_nrel = count;
153 	dep->de_nsym = count + 1; /* the first symbol is always null */
154 
155 	if (dtp->dt_lazyload) {
156 		dep->de_strlen += sizeof (DOFLAZYSTR);
157 		dep->de_nsym++;
158 	} else {
159 		dep->de_strlen += sizeof (DOFSTR);
160 		dep->de_nsym++;
161 	}
162 
163 	if ((dep->de_rel = calloc(dep->de_nrel,
164 	    sizeof (dep->de_rel[0]))) == NULL) {
165 		return (dt_set_errno(dtp, EDT_NOMEM));
166 	}
167 
168 	if ((dep->de_sym = calloc(dep->de_nsym, sizeof (Elf32_Sym))) == NULL) {
169 		free(dep->de_rel);
170 		return (dt_set_errno(dtp, EDT_NOMEM));
171 	}
172 
173 	if ((dep->de_strtab = calloc(dep->de_strlen, 1)) == NULL) {
174 		free(dep->de_rel);
175 		free(dep->de_sym);
176 		return (dt_set_errno(dtp, EDT_NOMEM));
177 	}
178 
179 	count = 0;
180 	strtabsz = 1;
181 	dep->de_strtab[0] = '\0';
182 	rel = dep->de_rel;
183 	sym = dep->de_sym;
184 	dep->de_global = 1;
185 
186 	/*
187 	 * The first symbol table entry must be zeroed and is always ignored.
188 	 */
189 	bzero(sym, sizeof (Elf32_Sym));
190 	sym++;
191 
192 	/*
193 	 * Take a second pass through the DOF sections filling in the
194 	 * memory we allocated.
195 	 */
196 	for (i = 0; i < dof->dofh_secnum; i++) {
197 		if (dofs[i].dofs_type != DOF_SECT_URELHDR)
198 			continue;
199 
200 		/*LINTED*/
201 		dofrh = (dof_relohdr_t *)((char *)dof + dofs[i].dofs_offset);
202 
203 		s = &dofs[dofrh->dofr_strtab];
204 		strtab = (char *)dof + s->dofs_offset;
205 		bcopy(strtab + 1, dep->de_strtab + strtabsz, s->dofs_size);
206 		base = strtabsz;
207 		strtabsz += s->dofs_size - 1;
208 
209 		s = &dofs[dofrh->dofr_relsec];
210 		/*LINTED*/
211 		dofr = (dof_relodesc_t *)((char *)dof + s->dofs_offset);
212 		nrel = s->dofs_size / s->dofs_entsize;
213 
214 		s = &dofs[dofrh->dofr_tgtsec];
215 
216 		for (j = 0; j < nrel; j++) {
217 #if defined(__i386) || defined(__amd64)
218 			rel->r_offset = s->dofs_offset +
219 			    dofr[j].dofr_offset;
220 			rel->r_info = ELF32_R_INFO(count + dep->de_global,
221 			    R_386_32);
222 #elif defined(__sparc)
223 			/*
224 			 * Add 4 bytes to hit the low half of this 64-bit
225 			 * big-endian address.
226 			 */
227 			rel->r_offset = s->dofs_offset +
228 			    dofr[j].dofr_offset + 4;
229 			rel->r_info = ELF32_R_INFO(count + dep->de_global,
230 			    R_SPARC_32);
231 #else
232 #error unknown ISA
233 #endif
234 
235 			sym->st_name = base + dofr[j].dofr_name - 1;
236 			sym->st_value = 0;
237 			sym->st_size = 0;
238 			sym->st_info = ELF32_ST_INFO(STB_GLOBAL, STT_FUNC);
239 			sym->st_other = 0;
240 			sym->st_shndx = SHN_UNDEF;
241 
242 			rel++;
243 			sym++;
244 			count++;
245 		}
246 	}
247 
248 	/*
249 	 * Add a symbol for the DOF itself. We use a different symbol for
250 	 * lazily and actively loaded DOF to make them easy to distinguish.
251 	 */
252 	sym->st_name = strtabsz;
253 	sym->st_value = 0;
254 	sym->st_size = dof->dofh_filesz;
255 	sym->st_info = ELF32_ST_INFO(STB_GLOBAL, STT_OBJECT);
256 	sym->st_other = 0;
257 	sym->st_shndx = ESHDR_DOF;
258 	sym++;
259 
260 	if (dtp->dt_lazyload) {
261 		bcopy(DOFLAZYSTR, dep->de_strtab + strtabsz,
262 		    sizeof (DOFLAZYSTR));
263 		strtabsz += sizeof (DOFLAZYSTR);
264 	} else {
265 		bcopy(DOFSTR, dep->de_strtab + strtabsz, sizeof (DOFSTR));
266 		strtabsz += sizeof (DOFSTR);
267 	}
268 
269 	assert(count == dep->de_nrel);
270 	assert(strtabsz == dep->de_strlen);
271 
272 	return (0);
273 }
274 
275 
276 typedef struct dof_elf64 {
277 	uint32_t de_nrel;
278 	Elf64_Rela *de_rel;
279 	uint32_t de_nsym;
280 	Elf64_Sym *de_sym;
281 
282 	uint32_t de_strlen;
283 	char *de_strtab;
284 
285 	uint32_t de_global;
286 } dof_elf64_t;
287 
288 static int
289 prepare_elf64(dtrace_hdl_t *dtp, const dof_hdr_t *dof, dof_elf64_t *dep)
290 {
291 	dof_sec_t *dofs, *s;
292 	dof_relohdr_t *dofrh;
293 	dof_relodesc_t *dofr;
294 	char *strtab;
295 	int i, j, nrel;
296 	size_t strtabsz = 1;
297 	uint32_t count = 0;
298 	size_t base;
299 	Elf64_Sym *sym;
300 	Elf64_Rela *rel;
301 
302 	/*LINTED*/
303 	dofs = (dof_sec_t *)((char *)dof + dof->dofh_secoff);
304 
305 	/*
306 	 * First compute the size of the string table and the number of
307 	 * relocations present in the DOF.
308 	 */
309 	for (i = 0; i < dof->dofh_secnum; i++) {
310 		if (dofs[i].dofs_type != DOF_SECT_URELHDR)
311 			continue;
312 
313 		/*LINTED*/
314 		dofrh = (dof_relohdr_t *)((char *)dof + dofs[i].dofs_offset);
315 
316 		s = &dofs[dofrh->dofr_strtab];
317 		strtab = (char *)dof + s->dofs_offset;
318 		assert(strtab[0] == '\0');
319 		strtabsz += s->dofs_size - 1;
320 
321 		s = &dofs[dofrh->dofr_relsec];
322 		/*LINTED*/
323 		dofr = (dof_relodesc_t *)((char *)dof + s->dofs_offset);
324 		count += s->dofs_size / s->dofs_entsize;
325 	}
326 
327 	dep->de_strlen = strtabsz;
328 	dep->de_nrel = count;
329 	dep->de_nsym = count + 1; /* the first symbol is always null */
330 
331 	if (dtp->dt_lazyload) {
332 		dep->de_strlen += sizeof (DOFLAZYSTR);
333 		dep->de_nsym++;
334 	} else {
335 		dep->de_strlen += sizeof (DOFSTR);
336 		dep->de_nsym++;
337 	}
338 
339 	if ((dep->de_rel = calloc(dep->de_nrel,
340 	    sizeof (dep->de_rel[0]))) == NULL) {
341 		return (dt_set_errno(dtp, EDT_NOMEM));
342 	}
343 
344 	if ((dep->de_sym = calloc(dep->de_nsym, sizeof (Elf64_Sym))) == NULL) {
345 		free(dep->de_rel);
346 		return (dt_set_errno(dtp, EDT_NOMEM));
347 	}
348 
349 	if ((dep->de_strtab = calloc(dep->de_strlen, 1)) == NULL) {
350 		free(dep->de_rel);
351 		free(dep->de_sym);
352 		return (dt_set_errno(dtp, EDT_NOMEM));
353 	}
354 
355 	count = 0;
356 	strtabsz = 1;
357 	dep->de_strtab[0] = '\0';
358 	rel = dep->de_rel;
359 	sym = dep->de_sym;
360 	dep->de_global = 1;
361 
362 	/*
363 	 * The first symbol table entry must be zeroed and is always ignored.
364 	 */
365 	bzero(sym, sizeof (Elf64_Sym));
366 	sym++;
367 
368 	/*
369 	 * Take a second pass through the DOF sections filling in the
370 	 * memory we allocated.
371 	 */
372 	for (i = 0; i < dof->dofh_secnum; i++) {
373 		if (dofs[i].dofs_type != DOF_SECT_URELHDR)
374 			continue;
375 
376 		/*LINTED*/
377 		dofrh = (dof_relohdr_t *)((char *)dof + dofs[i].dofs_offset);
378 
379 		s = &dofs[dofrh->dofr_strtab];
380 		strtab = (char *)dof + s->dofs_offset;
381 		bcopy(strtab + 1, dep->de_strtab + strtabsz, s->dofs_size);
382 		base = strtabsz;
383 		strtabsz += s->dofs_size - 1;
384 
385 		s = &dofs[dofrh->dofr_relsec];
386 		/*LINTED*/
387 		dofr = (dof_relodesc_t *)((char *)dof + s->dofs_offset);
388 		nrel = s->dofs_size / s->dofs_entsize;
389 
390 		s = &dofs[dofrh->dofr_tgtsec];
391 
392 		for (j = 0; j < nrel; j++) {
393 #if defined(__i386) || defined(__amd64)
394 			rel->r_offset = s->dofs_offset +
395 			    dofr[j].dofr_offset;
396 			rel->r_info = ELF64_R_INFO(count + dep->de_global,
397 			    R_AMD64_64);
398 #elif defined(__sparc)
399 			rel->r_offset = s->dofs_offset +
400 			    dofr[j].dofr_offset;
401 			rel->r_info = ELF64_R_INFO(count + dep->de_global,
402 			    R_SPARC_64);
403 #else
404 #error unknown ISA
405 #endif
406 
407 			sym->st_name = base + dofr[j].dofr_name - 1;
408 			sym->st_value = 0;
409 			sym->st_size = 0;
410 			sym->st_info = GELF_ST_INFO(STB_GLOBAL, STT_FUNC);
411 			sym->st_other = 0;
412 			sym->st_shndx = SHN_UNDEF;
413 
414 			rel++;
415 			sym++;
416 			count++;
417 		}
418 	}
419 
420 	/*
421 	 * Add a symbol for the DOF itself. We use a different symbol for
422 	 * lazily and actively loaded DOF to make them easy to distinguish.
423 	 */
424 	sym->st_name = strtabsz;
425 	sym->st_value = 0;
426 	sym->st_size = dof->dofh_filesz;
427 	sym->st_info = GELF_ST_INFO(STB_GLOBAL, STT_OBJECT);
428 	sym->st_other = 0;
429 	sym->st_shndx = ESHDR_DOF;
430 	sym++;
431 
432 	if (dtp->dt_lazyload) {
433 		bcopy(DOFLAZYSTR, dep->de_strtab + strtabsz,
434 		    sizeof (DOFLAZYSTR));
435 		strtabsz += sizeof (DOFLAZYSTR);
436 	} else {
437 		bcopy(DOFSTR, dep->de_strtab + strtabsz, sizeof (DOFSTR));
438 		strtabsz += sizeof (DOFSTR);
439 	}
440 
441 	assert(count == dep->de_nrel);
442 	assert(strtabsz == dep->de_strlen);
443 
444 	return (0);
445 }
446 
447 /*
448  * Write out an ELF32 file prologue consisting of a header, section headers,
449  * and a section header string table.  The DOF data will follow this prologue
450  * and complete the contents of the given ELF file.
451  */
452 static int
453 dump_elf32(dtrace_hdl_t *dtp, const dof_hdr_t *dof, int fd)
454 {
455 	struct {
456 		Elf32_Ehdr ehdr;
457 		Elf32_Shdr shdr[ESHDR_NUM];
458 	} elf_file;
459 
460 	Elf32_Shdr *shp;
461 	Elf32_Off off;
462 	dof_elf32_t de;
463 	int ret = 0;
464 	uint_t nshdr;
465 
466 	if (prepare_elf32(dtp, dof, &de) != 0)
467 		return (-1); /* errno is set for us */
468 
469 	/*
470 	 * If there are no relocations, we only need enough sections for
471 	 * the shstrtab and the DOF.
472 	 */
473 	nshdr = de.de_nrel == 0 ? ESHDR_SYMTAB + 1 : ESHDR_NUM;
474 
475 	bzero(&elf_file, sizeof (elf_file));
476 
477 	elf_file.ehdr.e_ident[EI_MAG0] = ELFMAG0;
478 	elf_file.ehdr.e_ident[EI_MAG1] = ELFMAG1;
479 	elf_file.ehdr.e_ident[EI_MAG2] = ELFMAG2;
480 	elf_file.ehdr.e_ident[EI_MAG3] = ELFMAG3;
481 	elf_file.ehdr.e_ident[EI_VERSION] = EV_CURRENT;
482 	elf_file.ehdr.e_ident[EI_CLASS] = ELFCLASS32;
483 #if defined(_BIG_ENDIAN)
484 	elf_file.ehdr.e_ident[EI_DATA] = ELFDATA2MSB;
485 #elif defined(_LITTLE_ENDIAN)
486 	elf_file.ehdr.e_ident[EI_DATA] = ELFDATA2LSB;
487 #endif
488 	elf_file.ehdr.e_type = ET_REL;
489 #if defined(__sparc)
490 	elf_file.ehdr.e_machine = EM_SPARC;
491 #elif defined(__i386) || defined(__amd64)
492 	elf_file.ehdr.e_machine = EM_386;
493 #endif
494 	elf_file.ehdr.e_version = EV_CURRENT;
495 	elf_file.ehdr.e_shoff = sizeof (Elf32_Ehdr);
496 	elf_file.ehdr.e_ehsize = sizeof (Elf32_Ehdr);
497 	elf_file.ehdr.e_phentsize = sizeof (Elf32_Phdr);
498 	elf_file.ehdr.e_shentsize = sizeof (Elf32_Shdr);
499 	elf_file.ehdr.e_shnum = nshdr;
500 	elf_file.ehdr.e_shstrndx = ESHDR_SHSTRTAB;
501 	off = sizeof (elf_file) + nshdr * sizeof (Elf32_Shdr);
502 
503 	shp = &elf_file.shdr[ESHDR_SHSTRTAB];
504 	shp->sh_name = 1; /* DTRACE_SHSTRTAB32[1] = ".shstrtab" */
505 	shp->sh_type = SHT_STRTAB;
506 	shp->sh_offset = off;
507 	shp->sh_size = sizeof (DTRACE_SHSTRTAB32);
508 	shp->sh_addralign = sizeof (char);
509 	off = P2ROUNDUP(shp->sh_offset + shp->sh_size, 8);
510 
511 	shp = &elf_file.shdr[ESHDR_DOF];
512 	shp->sh_name = 11; /* DTRACE_SHSTRTAB32[11] = ".SUNW_dof" */
513 	shp->sh_flags = SHF_ALLOC;
514 	shp->sh_type = SHT_SUNW_dof;
515 	shp->sh_offset = off;
516 	shp->sh_size = dof->dofh_filesz;
517 	shp->sh_addralign = 8;
518 	off = shp->sh_offset + shp->sh_size;
519 
520 	shp = &elf_file.shdr[ESHDR_STRTAB];
521 	shp->sh_name = 21; /* DTRACE_SHSTRTAB32[21] = ".strtab" */
522 	shp->sh_flags = SHF_ALLOC;
523 	shp->sh_type = SHT_STRTAB;
524 	shp->sh_offset = off;
525 	shp->sh_size = de.de_strlen;
526 	shp->sh_addralign = sizeof (char);
527 	off = P2ROUNDUP(shp->sh_offset + shp->sh_size, 4);
528 
529 	shp = &elf_file.shdr[ESHDR_SYMTAB];
530 	shp->sh_name = 29; /* DTRACE_SHSTRTAB32[29] = ".symtab" */
531 	shp->sh_flags = SHF_ALLOC;
532 	shp->sh_type = SHT_SYMTAB;
533 	shp->sh_entsize = sizeof (Elf32_Sym);
534 	shp->sh_link = ESHDR_STRTAB;
535 	shp->sh_offset = off;
536 	shp->sh_info = de.de_global;
537 	shp->sh_size = de.de_nsym * sizeof (Elf32_Sym);
538 	shp->sh_addralign = 4;
539 	off = P2ROUNDUP(shp->sh_offset + shp->sh_size, 4);
540 
541 	if (de.de_nrel == 0) {
542 		if (dt_write(dtp, fd, &elf_file,
543 		    sizeof (elf_file)) != sizeof (elf_file) ||
544 		    PWRITE_SCN(ESHDR_SHSTRTAB, DTRACE_SHSTRTAB32) ||
545 		    PWRITE_SCN(ESHDR_STRTAB, de.de_strtab) ||
546 		    PWRITE_SCN(ESHDR_SYMTAB, de.de_sym) ||
547 		    PWRITE_SCN(ESHDR_DOF, dof)) {
548 			ret = dt_set_errno(dtp, errno);
549 		}
550 	} else {
551 		shp = &elf_file.shdr[ESHDR_REL];
552 		shp->sh_name = 37; /* DTRACE_SHSTRTAB32[37] = ".rel.SUNW_dof" */
553 		shp->sh_flags = SHF_ALLOC;
554 #ifdef __sparc
555 		shp->sh_type = SHT_RELA;
556 #else
557 		shp->sh_type = SHT_REL;
558 #endif
559 		shp->sh_entsize = sizeof (de.de_rel[0]);
560 		shp->sh_link = ESHDR_SYMTAB;
561 		shp->sh_info = ESHDR_DOF;
562 		shp->sh_offset = off;
563 		shp->sh_size = de.de_nrel * sizeof (de.de_rel[0]);
564 		shp->sh_addralign = 4;
565 
566 		if (dt_write(dtp, fd, &elf_file,
567 		    sizeof (elf_file)) != sizeof (elf_file) ||
568 		    PWRITE_SCN(ESHDR_SHSTRTAB, DTRACE_SHSTRTAB32) ||
569 		    PWRITE_SCN(ESHDR_STRTAB, de.de_strtab) ||
570 		    PWRITE_SCN(ESHDR_SYMTAB, de.de_sym) ||
571 		    PWRITE_SCN(ESHDR_REL, de.de_rel) ||
572 		    PWRITE_SCN(ESHDR_DOF, dof)) {
573 			ret = dt_set_errno(dtp, errno);
574 		}
575 	}
576 
577 	free(de.de_strtab);
578 	free(de.de_sym);
579 	free(de.de_rel);
580 
581 	return (ret);
582 }
583 
584 /*
585  * Write out an ELF64 file prologue consisting of a header, section headers,
586  * and a section header string table.  The DOF data will follow this prologue
587  * and complete the contents of the given ELF file.
588  */
589 static int
590 dump_elf64(dtrace_hdl_t *dtp, const dof_hdr_t *dof, int fd)
591 {
592 	struct {
593 		Elf64_Ehdr ehdr;
594 		Elf64_Shdr shdr[ESHDR_NUM];
595 	} elf_file;
596 
597 	Elf64_Shdr *shp;
598 	Elf64_Off off;
599 	dof_elf64_t de;
600 	int ret = 0;
601 	uint_t nshdr;
602 
603 	if (prepare_elf64(dtp, dof, &de) != 0)
604 		return (-1); /* errno is set for us */
605 
606 	/*
607 	 * If there are no relocations, we only need enough sections for
608 	 * the shstrtab and the DOF.
609 	 */
610 	nshdr = de.de_nrel == 0 ? ESHDR_SYMTAB + 1 : ESHDR_NUM;
611 
612 	bzero(&elf_file, sizeof (elf_file));
613 
614 	elf_file.ehdr.e_ident[EI_MAG0] = ELFMAG0;
615 	elf_file.ehdr.e_ident[EI_MAG1] = ELFMAG1;
616 	elf_file.ehdr.e_ident[EI_MAG2] = ELFMAG2;
617 	elf_file.ehdr.e_ident[EI_MAG3] = ELFMAG3;
618 	elf_file.ehdr.e_ident[EI_VERSION] = EV_CURRENT;
619 	elf_file.ehdr.e_ident[EI_CLASS] = ELFCLASS64;
620 #if defined(_BIG_ENDIAN)
621 	elf_file.ehdr.e_ident[EI_DATA] = ELFDATA2MSB;
622 #elif defined(_LITTLE_ENDIAN)
623 	elf_file.ehdr.e_ident[EI_DATA] = ELFDATA2LSB;
624 #endif
625 	elf_file.ehdr.e_type = ET_REL;
626 #if defined(__sparc)
627 	elf_file.ehdr.e_machine = EM_SPARCV9;
628 #elif defined(__i386) || defined(__amd64)
629 	elf_file.ehdr.e_machine = EM_AMD64;
630 #endif
631 	elf_file.ehdr.e_version = EV_CURRENT;
632 	elf_file.ehdr.e_shoff = sizeof (Elf64_Ehdr);
633 	elf_file.ehdr.e_ehsize = sizeof (Elf64_Ehdr);
634 	elf_file.ehdr.e_phentsize = sizeof (Elf64_Phdr);
635 	elf_file.ehdr.e_shentsize = sizeof (Elf64_Shdr);
636 	elf_file.ehdr.e_shnum = nshdr;
637 	elf_file.ehdr.e_shstrndx = ESHDR_SHSTRTAB;
638 	off = sizeof (elf_file) + nshdr * sizeof (Elf64_Shdr);
639 
640 	shp = &elf_file.shdr[ESHDR_SHSTRTAB];
641 	shp->sh_name = 1; /* DTRACE_SHSTRTAB64[1] = ".shstrtab" */
642 	shp->sh_type = SHT_STRTAB;
643 	shp->sh_offset = off;
644 	shp->sh_size = sizeof (DTRACE_SHSTRTAB64);
645 	shp->sh_addralign = sizeof (char);
646 	off = P2ROUNDUP(shp->sh_offset + shp->sh_size, 8);
647 
648 	shp = &elf_file.shdr[ESHDR_DOF];
649 	shp->sh_name = 11; /* DTRACE_SHSTRTAB64[11] = ".SUNW_dof" */
650 	shp->sh_flags = SHF_ALLOC;
651 	shp->sh_type = SHT_SUNW_dof;
652 	shp->sh_offset = off;
653 	shp->sh_size = dof->dofh_filesz;
654 	shp->sh_addralign = 8;
655 	off = shp->sh_offset + shp->sh_size;
656 
657 	shp = &elf_file.shdr[ESHDR_STRTAB];
658 	shp->sh_name = 21; /* DTRACE_SHSTRTAB64[21] = ".strtab" */
659 	shp->sh_flags = SHF_ALLOC;
660 	shp->sh_type = SHT_STRTAB;
661 	shp->sh_offset = off;
662 	shp->sh_size = de.de_strlen;
663 	shp->sh_addralign = sizeof (char);
664 	off = P2ROUNDUP(shp->sh_offset + shp->sh_size, 8);
665 
666 	shp = &elf_file.shdr[ESHDR_SYMTAB];
667 	shp->sh_name = 29; /* DTRACE_SHSTRTAB64[29] = ".symtab" */
668 	shp->sh_flags = SHF_ALLOC;
669 	shp->sh_type = SHT_SYMTAB;
670 	shp->sh_entsize = sizeof (Elf64_Sym);
671 	shp->sh_link = ESHDR_STRTAB;
672 	shp->sh_offset = off;
673 	shp->sh_info = de.de_global;
674 	shp->sh_size = de.de_nsym * sizeof (Elf64_Sym);
675 	shp->sh_addralign = 8;
676 	off = P2ROUNDUP(shp->sh_offset + shp->sh_size, 8);
677 
678 	if (de.de_nrel == 0) {
679 		if (dt_write(dtp, fd, &elf_file,
680 		    sizeof (elf_file)) != sizeof (elf_file) ||
681 		    PWRITE_SCN(ESHDR_SHSTRTAB, DTRACE_SHSTRTAB64) ||
682 		    PWRITE_SCN(ESHDR_STRTAB, de.de_strtab) ||
683 		    PWRITE_SCN(ESHDR_SYMTAB, de.de_sym) ||
684 		    PWRITE_SCN(ESHDR_DOF, dof)) {
685 			ret = dt_set_errno(dtp, errno);
686 		}
687 	} else {
688 		shp = &elf_file.shdr[ESHDR_REL];
689 		shp->sh_name = 37; /* DTRACE_SHSTRTAB64[37] = ".rel.SUNW_dof" */
690 		shp->sh_flags = SHF_ALLOC;
691 		shp->sh_type = SHT_RELA;
692 		shp->sh_entsize = sizeof (de.de_rel[0]);
693 		shp->sh_link = ESHDR_SYMTAB;
694 		shp->sh_info = ESHDR_DOF;
695 		shp->sh_offset = off;
696 		shp->sh_size = de.de_nrel * sizeof (de.de_rel[0]);
697 		shp->sh_addralign = 8;
698 
699 		if (dt_write(dtp, fd, &elf_file,
700 		    sizeof (elf_file)) != sizeof (elf_file) ||
701 		    PWRITE_SCN(ESHDR_SHSTRTAB, DTRACE_SHSTRTAB64) ||
702 		    PWRITE_SCN(ESHDR_STRTAB, de.de_strtab) ||
703 		    PWRITE_SCN(ESHDR_SYMTAB, de.de_sym) ||
704 		    PWRITE_SCN(ESHDR_REL, de.de_rel) ||
705 		    PWRITE_SCN(ESHDR_DOF, dof)) {
706 			ret = dt_set_errno(dtp, errno);
707 		}
708 	}
709 
710 	free(de.de_strtab);
711 	free(de.de_sym);
712 	free(de.de_rel);
713 
714 	return (ret);
715 }
716 
717 static int
718 dt_symtab_lookup(Elf_Data *data_sym, int nsym, uintptr_t addr, uint_t shn,
719     GElf_Sym *sym)
720 {
721 	int i, ret = -1;
722 	GElf_Sym s;
723 
724 	for (i = 0; i < nsym && gelf_getsym(data_sym, i, sym) != NULL; i++) {
725 		if (GELF_ST_TYPE(sym->st_info) == STT_FUNC &&
726 		    shn == sym->st_shndx &&
727 		    sym->st_value <= addr &&
728 		    addr < sym->st_value + sym->st_size) {
729 			if (GELF_ST_BIND(sym->st_info) == STB_GLOBAL)
730 				return (0);
731 
732 			ret = 0;
733 			s = *sym;
734 		}
735 	}
736 
737 	if (ret == 0)
738 		*sym = s;
739 	return (ret);
740 }
741 
742 #if defined(__sparc)
743 
744 #define	DT_OP_RET		0x81c7e008
745 #define	DT_OP_NOP		0x01000000
746 #define	DT_OP_CALL		0x40000000
747 #define	DT_OP_CLR_O0		0x90102000
748 
749 #define	DT_IS_MOV_O7(inst)	(((inst) & 0xffffe000) == 0x9e100000)
750 #define	DT_IS_RESTORE(inst)	(((inst) & 0xc1f80000) == 0x81e80000)
751 #define	DT_IS_RETL(inst)	(((inst) & 0xfff83fff) == 0x81c02008)
752 
753 #define	DT_RS2(inst)		((inst) & 0x1f)
754 #define	DT_MAKE_RETL(reg)	(0x81c02008 | ((reg) << 14))
755 
756 /*ARGSUSED*/
757 static int
758 dt_modtext(dtrace_hdl_t *dtp, char *p, int isenabled, GElf_Rela *rela,
759     uint32_t *off)
760 {
761 	uint32_t *ip;
762 
763 	if ((rela->r_offset & (sizeof (uint32_t) - 1)) != 0)
764 		return (-1);
765 
766 	/*LINTED*/
767 	ip = (uint32_t *)(p + rela->r_offset);
768 
769 	/*
770 	 * We only know about some specific relocation types.
771 	 */
772 	if (GELF_R_TYPE(rela->r_info) != R_SPARC_WDISP30 &&
773 	    GELF_R_TYPE(rela->r_info) != R_SPARC_WPLT30)
774 		return (-1);
775 
776 	/*
777 	 * We may have already processed this object file in an earlier linker
778 	 * invocation. Check to see if the present instruction sequence matches
779 	 * the one we would install.
780 	 */
781 	if (isenabled) {
782 		if (ip[0] == DT_OP_CLR_O0)
783 			return (0);
784 	} else {
785 		if (DT_IS_RESTORE(ip[1])) {
786 			if (ip[0] == DT_OP_RET)
787 				return (0);
788 		} else if (DT_IS_MOV_O7(ip[1])) {
789 			if (DT_IS_RETL(ip[0]))
790 				return (0);
791 		} else {
792 			if (ip[0] == DT_OP_NOP) {
793 				(*off) += sizeof (ip[0]);
794 				return (0);
795 			}
796 		}
797 	}
798 
799 	/*
800 	 * We only expect call instructions with a displacement of 0.
801 	 */
802 	if (ip[0] != DT_OP_CALL) {
803 		dt_dprintf("found %x instead of a call instruction at %llx\n",
804 		    ip[0], (u_longlong_t)rela->r_offset);
805 		return (-1);
806 	}
807 
808 	if (isenabled) {
809 		/*
810 		 * It would necessarily indicate incorrect usage if an is-
811 		 * enabled probe were tail-called so flag that as an error.
812 		 * It's also potentially (very) tricky to handle gracefully,
813 		 * but could be done if this were a desired use scenario.
814 		 */
815 		if (DT_IS_RESTORE(ip[1]) || DT_IS_MOV_O7(ip[1])) {
816 			dt_dprintf("tail call to is-enabled probe at %llx\n",
817 			    (u_longlong_t)rela->r_offset);
818 			return (-1);
819 		}
820 
821 		ip[0] = DT_OP_CLR_O0;
822 	} else {
823 		/*
824 		 * If the call is followed by a restore, it's a tail call so
825 		 * change the call to a ret. If the call if followed by a mov
826 		 * of a register into %o7, it's a tail call in leaf context
827 		 * so change the call to a retl-like instruction that returns
828 		 * to that register value + 8 (rather than the typical %o7 +
829 		 * 8); the delay slot instruction is left, but should have no
830 		 * effect. Otherwise we change the call to be a nop. In the
831 		 * first and the last case we adjust the offset to land on what
832 		 * was once the delay slot of the call so we correctly get all
833 		 * the arguments as they would have been passed in a normal
834 		 * function call.
835 		 */
836 		if (DT_IS_RESTORE(ip[1])) {
837 			ip[0] = DT_OP_RET;
838 			(*off) += sizeof (ip[0]);
839 		} else if (DT_IS_MOV_O7(ip[1])) {
840 			ip[0] = DT_MAKE_RETL(DT_RS2(ip[1]));
841 		} else {
842 			ip[0] = DT_OP_NOP;
843 			(*off) += sizeof (ip[0]);
844 		}
845 	}
846 
847 	return (0);
848 }
849 
850 #elif defined(__i386) || defined(__amd64)
851 
852 #define	DT_OP_NOP		0x90
853 #define	DT_OP_RET		0xc3
854 #define	DT_OP_CALL		0xe8
855 #define	DT_OP_JMP32		0xe9
856 #define	DT_OP_REX_RAX		0x48
857 #define	DT_OP_XOR_EAX_0		0x33
858 #define	DT_OP_XOR_EAX_1		0xc0
859 
860 static int
861 dt_modtext(dtrace_hdl_t *dtp, char *p, int isenabled, GElf_Rela *rela,
862     uint32_t *off)
863 {
864 	uint8_t *ip = (uint8_t *)(p + rela->r_offset - 1);
865 	uint8_t ret;
866 
867 	/*
868 	 * On x86, the first byte of the instruction is the call opcode and
869 	 * the next four bytes are the 32-bit address; the relocation is for
870 	 * the address operand. We back up the offset to the first byte of
871 	 * the instruction. For is-enabled probes, we later advance the offset
872 	 * so that it hits the first nop in the instruction sequence.
873 	 */
874 	(*off) -= 1;
875 
876 	/*
877 	 * We only know about some specific relocation types. Luckily
878 	 * these types have the same values on both 32-bit and 64-bit
879 	 * x86 architectures.
880 	 */
881 	if (GELF_R_TYPE(rela->r_info) != R_386_PC32 &&
882 	    GELF_R_TYPE(rela->r_info) != R_386_PLT32)
883 		return (-1);
884 
885 	/*
886 	 * We may have already processed this object file in an earlier linker
887 	 * invocation. Check to see if the present instruction sequence matches
888 	 * the one we would install. For is-enabled probes, we advance the
889 	 * offset to the first nop instruction in the sequence to match the
890 	 * text modification code below.
891 	 */
892 	if (!isenabled) {
893 		if ((ip[0] == DT_OP_NOP || ip[0] == DT_OP_RET) &&
894 		    ip[1] == DT_OP_NOP && ip[2] == DT_OP_NOP &&
895 		    ip[3] == DT_OP_NOP && ip[4] == DT_OP_NOP)
896 			return (0);
897 	} else if (dtp->dt_oflags & DTRACE_O_LP64) {
898 		if (ip[0] == DT_OP_REX_RAX &&
899 		    ip[1] == DT_OP_XOR_EAX_0 && ip[2] == DT_OP_XOR_EAX_1 &&
900 		    (ip[3] == DT_OP_NOP || ip[3] == DT_OP_RET) &&
901 		    ip[4] == DT_OP_NOP) {
902 			(*off) += 3;
903 			return (0);
904 		}
905 	} else {
906 		if (ip[0] == DT_OP_XOR_EAX_0 && ip[1] == DT_OP_XOR_EAX_1 &&
907 		    (ip[2] == DT_OP_NOP || ip[2] == DT_OP_RET) &&
908 		    ip[3] == DT_OP_NOP && ip[4] == DT_OP_NOP) {
909 			(*off) += 2;
910 			return (0);
911 		}
912 	}
913 
914 	/*
915 	 * We expect either a call instrution with a 32-bit displacement or a
916 	 * jmp instruction with a 32-bit displacement acting as a tail-call.
917 	 */
918 	if (ip[0] != DT_OP_CALL && ip[0] != DT_OP_JMP32) {
919 		dt_dprintf("found %x instead of a call or jmp instruction at "
920 		    "%llx\n", ip[0], (u_longlong_t)rela->r_offset);
921 		return (-1);
922 	}
923 
924 	ret = (ip[0] == DT_OP_JMP32) ? DT_OP_RET : DT_OP_NOP;
925 
926 	/*
927 	 * Establish the instruction sequence -- all nops for probes, and an
928 	 * instruction to clear the return value register (%eax/%rax) followed
929 	 * by nops for is-enabled probes. For is-enabled probes, we advance
930 	 * the offset to the first nop. This isn't stricly necessary but makes
931 	 * for more readable disassembly when the probe is enabled.
932 	 */
933 	if (!isenabled) {
934 		ip[0] = ret;
935 		ip[1] = DT_OP_NOP;
936 		ip[2] = DT_OP_NOP;
937 		ip[3] = DT_OP_NOP;
938 		ip[4] = DT_OP_NOP;
939 	} else if (dtp->dt_oflags & DTRACE_O_LP64) {
940 		ip[0] = DT_OP_REX_RAX;
941 		ip[1] = DT_OP_XOR_EAX_0;
942 		ip[2] = DT_OP_XOR_EAX_1;
943 		ip[3] = ret;
944 		ip[4] = DT_OP_NOP;
945 		(*off) += 3;
946 	} else {
947 		ip[0] = DT_OP_XOR_EAX_0;
948 		ip[1] = DT_OP_XOR_EAX_1;
949 		ip[2] = ret;
950 		ip[3] = DT_OP_NOP;
951 		ip[4] = DT_OP_NOP;
952 		(*off) += 2;
953 	}
954 
955 	return (0);
956 }
957 
958 #else
959 #error unknown ISA
960 #endif
961 
962 /*PRINTFLIKE5*/
963 static int
964 dt_link_error(dtrace_hdl_t *dtp, Elf *elf, int fd, dt_link_pair_t *bufs,
965     const char *format, ...)
966 {
967 	va_list ap;
968 	dt_link_pair_t *pair;
969 
970 	va_start(ap, format);
971 	dt_set_errmsg(dtp, NULL, NULL, NULL, 0, format, ap);
972 	va_end(ap);
973 
974 	if (elf != NULL)
975 		(void) elf_end(elf);
976 
977 	if (fd >= 0)
978 		(void) close(fd);
979 
980 	while ((pair = bufs) != NULL) {
981 		bufs = pair->dlp_next;
982 		dt_free(dtp, pair->dlp_str);
983 		dt_free(dtp, pair->dlp_sym);
984 		dt_free(dtp, pair);
985 	}
986 
987 	return (dt_set_errno(dtp, EDT_COMPILER));
988 }
989 
990 static int
991 process_obj(dtrace_hdl_t *dtp, const char *obj, int *eprobesp)
992 {
993 	static const char dt_prefix[] = "__dtrace";
994 	static const char dt_enabled[] = "enabled";
995 	static const char dt_symprefix[] = "$dtrace";
996 	static const char dt_symfmt[] = "%s%d.%s";
997 	int fd, i, ndx, eprobe, mod = 0;
998 	Elf *elf = NULL;
999 	GElf_Ehdr ehdr;
1000 	Elf_Scn *scn_rel, *scn_sym, *scn_str, *scn_tgt;
1001 	Elf_Data *data_rel, *data_sym, *data_str, *data_tgt;
1002 	GElf_Shdr shdr_rel, shdr_sym, shdr_str, shdr_tgt;
1003 	GElf_Sym rsym, fsym, dsym;
1004 	GElf_Rela rela;
1005 	char *s, *p, *r;
1006 	char pname[DTRACE_PROVNAMELEN];
1007 	dt_provider_t *pvp;
1008 	dt_probe_t *prp;
1009 	uint32_t off, eclass, emachine1, emachine2;
1010 	size_t symsize, nsym, isym, istr, len;
1011 	key_t objkey;
1012 	dt_link_pair_t *pair, *bufs = NULL;
1013 	dt_strtab_t *strtab;
1014 
1015 	if ((fd = open64(obj, O_RDWR)) == -1) {
1016 		return (dt_link_error(dtp, elf, fd, bufs,
1017 		    "failed to open %s: %s", obj, strerror(errno)));
1018 	}
1019 
1020 	if ((elf = elf_begin(fd, ELF_C_RDWR, NULL)) == NULL) {
1021 		return (dt_link_error(dtp, elf, fd, bufs,
1022 		    "failed to process %s: %s", obj, elf_errmsg(elf_errno())));
1023 	}
1024 
1025 	switch (elf_kind(elf)) {
1026 	case ELF_K_ELF:
1027 		break;
1028 	case ELF_K_AR:
1029 		return (dt_link_error(dtp, elf, fd, bufs, "archives are not "
1030 		    "permitted; use the contents of the archive instead: %s",
1031 		    obj));
1032 	default:
1033 		return (dt_link_error(dtp, elf, fd, bufs,
1034 		    "invalid file type: %s", obj));
1035 	}
1036 
1037 	if (gelf_getehdr(elf, &ehdr) == NULL) {
1038 		return (dt_link_error(dtp, elf, fd, bufs, "corrupt file: %s",
1039 		    obj));
1040 	}
1041 
1042 	if (dtp->dt_oflags & DTRACE_O_LP64) {
1043 		eclass = ELFCLASS64;
1044 #if defined(__sparc)
1045 		emachine1 = emachine2 = EM_SPARCV9;
1046 #elif defined(__i386) || defined(__amd64)
1047 		emachine1 = emachine2 = EM_AMD64;
1048 #endif
1049 		symsize = sizeof (Elf64_Sym);
1050 	} else {
1051 		eclass = ELFCLASS32;
1052 #if defined(__sparc)
1053 		emachine1 = EM_SPARC;
1054 		emachine2 = EM_SPARC32PLUS;
1055 #elif defined(__i386) || defined(__amd64)
1056 		emachine1 = emachine2 = EM_386;
1057 #endif
1058 		symsize = sizeof (Elf32_Sym);
1059 	}
1060 
1061 	if (ehdr.e_ident[EI_CLASS] != eclass) {
1062 		return (dt_link_error(dtp, elf, fd, bufs,
1063 		    "incorrect ELF class for object file: %s", obj));
1064 	}
1065 
1066 	if (ehdr.e_machine != emachine1 && ehdr.e_machine != emachine2) {
1067 		return (dt_link_error(dtp, elf, fd, bufs,
1068 		    "incorrect ELF machine type for object file: %s", obj));
1069 	}
1070 
1071 	/*
1072 	 * We use this token as a relatively unique handle for this file on the
1073 	 * system in order to disambiguate potential conflicts between files of
1074 	 * the same name which contain identially named local symbols.
1075 	 */
1076 	if ((objkey = ftok(obj, 0)) == (key_t)-1) {
1077 		return (dt_link_error(dtp, elf, fd, bufs,
1078 		    "failed to generate unique key for object file: %s", obj));
1079 	}
1080 
1081 	scn_rel = NULL;
1082 	while ((scn_rel = elf_nextscn(elf, scn_rel)) != NULL) {
1083 		if (gelf_getshdr(scn_rel, &shdr_rel) == NULL)
1084 			goto err;
1085 
1086 		/*
1087 		 * Skip any non-relocation sections.
1088 		 */
1089 		if (shdr_rel.sh_type != SHT_RELA && shdr_rel.sh_type != SHT_REL)
1090 			continue;
1091 
1092 		if ((data_rel = elf_getdata(scn_rel, NULL)) == NULL)
1093 			goto err;
1094 
1095 		/*
1096 		 * Grab the section, section header and section data for the
1097 		 * symbol table that this relocation section references.
1098 		 */
1099 		if ((scn_sym = elf_getscn(elf, shdr_rel.sh_link)) == NULL ||
1100 		    gelf_getshdr(scn_sym, &shdr_sym) == NULL ||
1101 		    (data_sym = elf_getdata(scn_sym, NULL)) == NULL)
1102 			goto err;
1103 
1104 		/*
1105 		 * Ditto for that symbol table's string table.
1106 		 */
1107 		if ((scn_str = elf_getscn(elf, shdr_sym.sh_link)) == NULL ||
1108 		    gelf_getshdr(scn_str, &shdr_str) == NULL ||
1109 		    (data_str = elf_getdata(scn_str, NULL)) == NULL)
1110 			goto err;
1111 
1112 		/*
1113 		 * Grab the section, section header and section data for the
1114 		 * target section for the relocations. For the relocations
1115 		 * we're looking for -- this will typically be the text of the
1116 		 * object file.
1117 		 */
1118 		if ((scn_tgt = elf_getscn(elf, shdr_rel.sh_info)) == NULL ||
1119 		    gelf_getshdr(scn_tgt, &shdr_tgt) == NULL ||
1120 		    (data_tgt = elf_getdata(scn_tgt, NULL)) == NULL)
1121 			goto err;
1122 
1123 		/*
1124 		 * We're looking for relocations to symbols matching this form:
1125 		 *
1126 		 *   __dtrace[enabled]_<prov>___<probe>
1127 		 *
1128 		 * For the generated object, we need to record the location
1129 		 * identified by the relocation, and create a new relocation
1130 		 * in the generated object that will be resolved at link time
1131 		 * to the location of the function in which the probe is
1132 		 * embedded. In the target object, we change the matched symbol
1133 		 * so that it will be ignored at link time, and we modify the
1134 		 * target (text) section to replace the call instruction with
1135 		 * one or more nops.
1136 		 *
1137 		 * If the function containing the probe is locally scoped
1138 		 * (static), we create an alias used by the relocation in the
1139 		 * generated object. The alias, a new symbol, will be global
1140 		 * (so that the relocation from the generated object can be
1141 		 * resolved), and hidden (so that it is converted to a local
1142 		 * symbol at link time). Such aliases have this form:
1143 		 *
1144 		 *   $dtrace<key>.<function>
1145 		 *
1146 		 * We take a first pass through all the relocations to
1147 		 * populate our string table and count the number of extra
1148 		 * symbols we'll require.
1149 		 */
1150 		strtab = dt_strtab_create(1);
1151 		nsym = 0;
1152 		isym = data_sym->d_size / symsize;
1153 		istr = data_str->d_size;
1154 
1155 		for (i = 0; i < shdr_rel.sh_size / shdr_rel.sh_entsize; i++) {
1156 
1157 			if (shdr_rel.sh_type == SHT_RELA) {
1158 				if (gelf_getrela(data_rel, i, &rela) == NULL)
1159 					continue;
1160 			} else {
1161 				GElf_Rel rel;
1162 				if (gelf_getrel(data_rel, i, &rel) == NULL)
1163 					continue;
1164 				rela.r_offset = rel.r_offset;
1165 				rela.r_info = rel.r_info;
1166 				rela.r_addend = 0;
1167 			}
1168 
1169 			if (gelf_getsym(data_sym, GELF_R_SYM(rela.r_info),
1170 			    &rsym) == NULL) {
1171 				dt_strtab_destroy(strtab);
1172 				goto err;
1173 			}
1174 
1175 			s = (char *)data_str->d_buf + rsym.st_name;
1176 
1177 			if (strncmp(s, dt_prefix, sizeof (dt_prefix) - 1) != 0)
1178 				continue;
1179 
1180 			if (dt_symtab_lookup(data_sym, isym, rela.r_offset,
1181 			    shdr_rel.sh_info, &fsym) != 0) {
1182 				dt_strtab_destroy(strtab);
1183 				goto err;
1184 			}
1185 
1186 			if (GELF_ST_BIND(fsym.st_info) != STB_LOCAL)
1187 				continue;
1188 
1189 			if (fsym.st_name > data_str->d_size) {
1190 				dt_strtab_destroy(strtab);
1191 				goto err;
1192 			}
1193 
1194 			s = (char *)data_str->d_buf + fsym.st_name;
1195 
1196 			/*
1197 			 * If this symbol isn't of type function, we've really
1198 			 * driven off the rails or the object file is corrupt.
1199 			 */
1200 			if (GELF_ST_TYPE(fsym.st_info) != STT_FUNC) {
1201 				dt_strtab_destroy(strtab);
1202 				return (dt_link_error(dtp, elf, fd, bufs,
1203 				    "expected %s to be of type function", s));
1204 			}
1205 
1206 			len = snprintf(NULL, 0, dt_symfmt, dt_symprefix,
1207 			    objkey, s) + 1;
1208 			if ((p = dt_alloc(dtp, len)) == NULL) {
1209 				dt_strtab_destroy(strtab);
1210 				goto err;
1211 			}
1212 			(void) snprintf(p, len, dt_symfmt, dt_symprefix,
1213 			    objkey, s);
1214 
1215 			if (dt_strtab_index(strtab, p) == -1) {
1216 				nsym++;
1217 				(void) dt_strtab_insert(strtab, p);
1218 			}
1219 
1220 			dt_free(dtp, p);
1221 		}
1222 
1223 		/*
1224 		 * If needed, allocate the additional space for the symbol
1225 		 * table and string table copying the old data into the new
1226 		 * buffers, and marking the buffers as dirty. We inject those
1227 		 * newly allocated buffers into the libelf data structures, but
1228 		 * are still responsible for freeing them once we're done with
1229 		 * the elf handle.
1230 		 */
1231 		if (nsym > 0) {
1232 			/*
1233 			 * The first byte of the string table is reserved for
1234 			 * the \0 entry.
1235 			 */
1236 			len = dt_strtab_size(strtab) - 1;
1237 
1238 			assert(len > 0);
1239 			assert(dt_strtab_index(strtab, "") == 0);
1240 
1241 			dt_strtab_destroy(strtab);
1242 
1243 			if ((pair = dt_alloc(dtp, sizeof (*pair))) == NULL)
1244 				goto err;
1245 
1246 			if ((pair->dlp_str = dt_alloc(dtp, data_str->d_size +
1247 			    len)) == NULL) {
1248 				dt_free(dtp, pair);
1249 				goto err;
1250 			}
1251 
1252 			if ((pair->dlp_sym = dt_alloc(dtp, data_sym->d_size +
1253 			    nsym * symsize)) == NULL) {
1254 				dt_free(dtp, pair->dlp_str);
1255 				dt_free(dtp, pair);
1256 				goto err;
1257 			}
1258 
1259 			pair->dlp_next = bufs;
1260 			bufs = pair;
1261 
1262 			bcopy(data_str->d_buf, pair->dlp_str, data_str->d_size);
1263 			data_str->d_buf = pair->dlp_str;
1264 			data_str->d_size += len;
1265 			(void) elf_flagdata(data_str, ELF_C_SET, ELF_F_DIRTY);
1266 
1267 			shdr_str.sh_size += len;
1268 			(void) gelf_update_shdr(scn_str, &shdr_str);
1269 
1270 			bcopy(data_sym->d_buf, pair->dlp_sym, data_sym->d_size);
1271 			data_sym->d_buf = pair->dlp_sym;
1272 			data_sym->d_size += nsym * symsize;
1273 			(void) elf_flagdata(data_sym, ELF_C_SET, ELF_F_DIRTY);
1274 
1275 			shdr_sym.sh_size += nsym * symsize;
1276 			(void) gelf_update_shdr(scn_sym, &shdr_sym);
1277 
1278 			nsym += isym;
1279 		} else {
1280 			dt_strtab_destroy(strtab);
1281 		}
1282 
1283 		/*
1284 		 * Now that the tables have been allocated, perform the
1285 		 * modifications described above.
1286 		 */
1287 		for (i = 0; i < shdr_rel.sh_size / shdr_rel.sh_entsize; i++) {
1288 
1289 			if (shdr_rel.sh_type == SHT_RELA) {
1290 				if (gelf_getrela(data_rel, i, &rela) == NULL)
1291 					continue;
1292 			} else {
1293 				GElf_Rel rel;
1294 				if (gelf_getrel(data_rel, i, &rel) == NULL)
1295 					continue;
1296 				rela.r_offset = rel.r_offset;
1297 				rela.r_info = rel.r_info;
1298 				rela.r_addend = 0;
1299 			}
1300 
1301 			ndx = GELF_R_SYM(rela.r_info);
1302 
1303 			if (gelf_getsym(data_sym, ndx, &rsym) == NULL ||
1304 			    rsym.st_name > data_str->d_size)
1305 				goto err;
1306 
1307 			s = (char *)data_str->d_buf + rsym.st_name;
1308 
1309 			if (strncmp(s, dt_prefix, sizeof (dt_prefix) - 1) != 0)
1310 				continue;
1311 
1312 			s += sizeof (dt_prefix) - 1;
1313 
1314 			/*
1315 			 * Check to see if this is an 'is-enabled' check as
1316 			 * opposed to a normal probe.
1317 			 */
1318 			if (strncmp(s, dt_enabled,
1319 			    sizeof (dt_enabled) - 1) == 0) {
1320 				s += sizeof (dt_enabled) - 1;
1321 				eprobe = 1;
1322 				*eprobesp = 1;
1323 				dt_dprintf("is-enabled probe\n");
1324 			} else {
1325 				eprobe = 0;
1326 				dt_dprintf("normal probe\n");
1327 			}
1328 
1329 			if (*s++ != '_')
1330 				goto err;
1331 
1332 			if ((p = strstr(s, "___")) == NULL ||
1333 			    p - s >= sizeof (pname))
1334 				goto err;
1335 
1336 			bcopy(s, pname, p - s);
1337 			pname[p - s] = '\0';
1338 
1339 			p = strhyphenate(p + 3); /* strlen("___") */
1340 
1341 			if (dt_symtab_lookup(data_sym, isym, rela.r_offset,
1342 			    shdr_rel.sh_info, &fsym) != 0)
1343 				goto err;
1344 
1345 			if (fsym.st_name > data_str->d_size)
1346 				goto err;
1347 
1348 			assert(GELF_ST_TYPE(fsym.st_info) == STT_FUNC);
1349 
1350 			/*
1351 			 * If a NULL relocation name is passed to
1352 			 * dt_probe_define(), the function name is used for the
1353 			 * relocation. The relocation needs to use a mangled
1354 			 * name if the symbol is locally scoped; the function
1355 			 * name may need to change if we've found the global
1356 			 * alias for the locally scoped symbol (we prefer
1357 			 * global symbols to locals in dt_symtab_lookup()).
1358 			 */
1359 			s = (char *)data_str->d_buf + fsym.st_name;
1360 			r = NULL;
1361 
1362 			if (GELF_ST_BIND(fsym.st_info) == STB_LOCAL) {
1363 				dsym = fsym;
1364 				dsym.st_name = istr;
1365 				dsym.st_info = GELF_ST_INFO(STB_GLOBAL,
1366 				    STT_FUNC);
1367 				dsym.st_other =
1368 				    ELF64_ST_VISIBILITY(STV_ELIMINATE);
1369 				(void) gelf_update_sym(data_sym, isym, &dsym);
1370 
1371 				r = (char *)data_str->d_buf + istr;
1372 				istr += 1 + sprintf(r, dt_symfmt,
1373 				    dt_symprefix, objkey, s);
1374 				isym++;
1375 				assert(isym <= nsym);
1376 
1377 			} else if (strncmp(s, dt_symprefix,
1378 			    strlen(dt_symprefix)) == 0) {
1379 				r = s;
1380 				if ((s = strchr(s, '.')) == NULL)
1381 					goto err;
1382 				s++;
1383 			}
1384 
1385 			if ((pvp = dt_provider_lookup(dtp, pname)) == NULL) {
1386 				return (dt_link_error(dtp, elf, fd, bufs,
1387 				    "no such provider %s", pname));
1388 			}
1389 
1390 			if ((prp = dt_probe_lookup(pvp, p)) == NULL) {
1391 				return (dt_link_error(dtp, elf, fd, bufs,
1392 				    "no such probe %s", p));
1393 			}
1394 
1395 			assert(fsym.st_value <= rela.r_offset);
1396 
1397 			off = rela.r_offset - fsym.st_value;
1398 			if (dt_modtext(dtp, data_tgt->d_buf, eprobe,
1399 			    &rela, &off) != 0) {
1400 				goto err;
1401 			}
1402 
1403 			if (dt_probe_define(pvp, prp, s, r, off, eprobe) != 0) {
1404 				return (dt_link_error(dtp, elf, fd, bufs,
1405 				    "failed to allocate space for probe"));
1406 			}
1407 
1408 			mod = 1;
1409 			(void) elf_flagdata(data_tgt, ELF_C_SET, ELF_F_DIRTY);
1410 
1411 			/*
1412 			 * This symbol may already have been marked to
1413 			 * be ignored by another relocation referencing
1414 			 * the same symbol or if this object file has
1415 			 * already been processed by an earlier link
1416 			 * invocation.
1417 			 */
1418 			if (rsym.st_shndx != SHN_SUNW_IGNORE) {
1419 				rsym.st_shndx = SHN_SUNW_IGNORE;
1420 				(void) gelf_update_sym(data_sym, ndx, &rsym);
1421 			}
1422 		}
1423 	}
1424 
1425 	if (mod && elf_update(elf, ELF_C_WRITE) == -1)
1426 		goto err;
1427 
1428 	(void) elf_end(elf);
1429 	(void) close(fd);
1430 
1431 	while ((pair = bufs) != NULL) {
1432 		bufs = pair->dlp_next;
1433 		dt_free(dtp, pair->dlp_str);
1434 		dt_free(dtp, pair->dlp_sym);
1435 		dt_free(dtp, pair);
1436 	}
1437 
1438 	return (0);
1439 
1440 err:
1441 	return (dt_link_error(dtp, elf, fd, bufs,
1442 	    "an error was encountered while processing %s", obj));
1443 }
1444 
1445 int
1446 dtrace_program_link(dtrace_hdl_t *dtp, dtrace_prog_t *pgp, uint_t dflags,
1447     const char *file, int objc, char *const objv[])
1448 {
1449 	char drti[PATH_MAX];
1450 	dof_hdr_t *dof;
1451 	int fd, status, i, cur;
1452 	char *cmd, tmp;
1453 	size_t len;
1454 	int eprobes = 0, ret = 0;
1455 
1456 	/*
1457 	 * A NULL program indicates a special use in which we just link
1458 	 * together a bunch of object files specified in objv and then
1459 	 * unlink(2) those object files.
1460 	 */
1461 	if (pgp == NULL) {
1462 		const char *fmt = "%s -o %s -r";
1463 
1464 		len = snprintf(&tmp, 1, fmt, dtp->dt_ld_path, file) + 1;
1465 
1466 		for (i = 0; i < objc; i++)
1467 			len += strlen(objv[i]) + 1;
1468 
1469 		cmd = alloca(len);
1470 
1471 		cur = snprintf(cmd, len, fmt, dtp->dt_ld_path, file);
1472 
1473 		for (i = 0; i < objc; i++)
1474 			cur += snprintf(cmd + cur, len - cur, " %s", objv[i]);
1475 
1476 		if ((status = system(cmd)) == -1) {
1477 			return (dt_link_error(dtp, NULL, -1, NULL,
1478 			    "failed to run %s: %s", dtp->dt_ld_path,
1479 			    strerror(errno)));
1480 		}
1481 
1482 		if (WIFSIGNALED(status)) {
1483 			return (dt_link_error(dtp, NULL, -1, NULL,
1484 			    "failed to link %s: %s failed due to signal %d",
1485 			    file, dtp->dt_ld_path, WTERMSIG(status)));
1486 		}
1487 
1488 		if (WEXITSTATUS(status) != 0) {
1489 			return (dt_link_error(dtp, NULL, -1, NULL,
1490 			    "failed to link %s: %s exited with status %d\n",
1491 			    file, dtp->dt_ld_path, WEXITSTATUS(status)));
1492 		}
1493 
1494 		for (i = 0; i < objc; i++) {
1495 			if (strcmp(objv[i], file) != 0)
1496 				(void) unlink(objv[i]);
1497 		}
1498 
1499 		return (0);
1500 	}
1501 
1502 	for (i = 0; i < objc; i++) {
1503 		if (process_obj(dtp, objv[i], &eprobes) != 0)
1504 			return (-1); /* errno is set for us */
1505 	}
1506 
1507 	/*
1508 	 * If there are is-enabled probes then we need to force use of DOF
1509 	 * version 2.
1510 	 */
1511 	if (eprobes && pgp->dp_dofversion < DOF_VERSION_2)
1512 		pgp->dp_dofversion = DOF_VERSION_2;
1513 
1514 	if ((dof = dtrace_dof_create(dtp, pgp, dflags)) == NULL)
1515 		return (-1); /* errno is set for us */
1516 
1517 	/*
1518 	 * Create a temporary file and then unlink it if we're going to
1519 	 * combine it with drti.o later.  We can still refer to it in child
1520 	 * processes as /dev/fd/<fd>.
1521 	 */
1522 	if ((fd = open64(file, O_RDWR | O_CREAT | O_TRUNC, 0666)) == -1) {
1523 		return (dt_link_error(dtp, NULL, -1, NULL,
1524 		    "failed to open %s: %s", file, strerror(errno)));
1525 	}
1526 
1527 	/*
1528 	 * If -xlinktype=DOF has been selected, just write out the DOF.
1529 	 * Otherwise proceed to the default of generating and linking ELF.
1530 	 */
1531 	switch (dtp->dt_linktype) {
1532 	case DT_LTYP_DOF:
1533 		if (dt_write(dtp, fd, dof, dof->dofh_filesz) < dof->dofh_filesz)
1534 			ret = errno;
1535 
1536 		if (close(fd) != 0 && ret == 0)
1537 			ret = errno;
1538 
1539 		if (ret != 0) {
1540 			return (dt_link_error(dtp, NULL, -1, NULL,
1541 			    "failed to write %s: %s", file, strerror(ret)));
1542 		}
1543 
1544 		return (0);
1545 
1546 	case DT_LTYP_ELF:
1547 		break; /* fall through to the rest of dtrace_program_link() */
1548 
1549 	default:
1550 		return (dt_link_error(dtp, NULL, -1, NULL,
1551 		    "invalid link type %u\n", dtp->dt_linktype));
1552 	}
1553 
1554 
1555 	if (!dtp->dt_lazyload)
1556 		(void) unlink(file);
1557 
1558 	if (dtp->dt_oflags & DTRACE_O_LP64)
1559 		status = dump_elf64(dtp, dof, fd);
1560 	else
1561 		status = dump_elf32(dtp, dof, fd);
1562 
1563 	if (status != 0 || lseek(fd, 0, SEEK_SET) != 0) {
1564 		return (dt_link_error(dtp, NULL, -1, NULL,
1565 		    "failed to write %s: %s", file, strerror(errno)));
1566 	}
1567 
1568 	if (!dtp->dt_lazyload) {
1569 		const char *fmt = "%s -o %s -r -Blocal -Breduce /dev/fd/%d %s";
1570 
1571 		if (dtp->dt_oflags & DTRACE_O_LP64) {
1572 			(void) snprintf(drti, sizeof (drti),
1573 			    "%s/64/drti.o", _dtrace_libdir);
1574 		} else {
1575 			(void) snprintf(drti, sizeof (drti),
1576 			    "%s/drti.o", _dtrace_libdir);
1577 		}
1578 
1579 		len = snprintf(&tmp, 1, fmt, dtp->dt_ld_path, file, fd,
1580 		    drti) + 1;
1581 
1582 		cmd = alloca(len);
1583 
1584 		(void) snprintf(cmd, len, fmt, dtp->dt_ld_path, file, fd, drti);
1585 
1586 		if ((status = system(cmd)) == -1) {
1587 			ret = dt_link_error(dtp, NULL, -1, NULL,
1588 			    "failed to run %s: %s", dtp->dt_ld_path,
1589 			    strerror(errno));
1590 			goto done;
1591 		}
1592 
1593 		(void) close(fd); /* release temporary file */
1594 
1595 		if (WIFSIGNALED(status)) {
1596 			ret = dt_link_error(dtp, NULL, -1, NULL,
1597 			    "failed to link %s: %s failed due to signal %d",
1598 			    file, dtp->dt_ld_path, WTERMSIG(status));
1599 			goto done;
1600 		}
1601 
1602 		if (WEXITSTATUS(status) != 0) {
1603 			ret = dt_link_error(dtp, NULL, -1, NULL,
1604 			    "failed to link %s: %s exited with status %d\n",
1605 			    file, dtp->dt_ld_path, WEXITSTATUS(status));
1606 			goto done;
1607 		}
1608 	} else {
1609 		(void) close(fd);
1610 	}
1611 
1612 done:
1613 	dtrace_dof_destroy(dtp, dof);
1614 	return (ret);
1615 }
1616