1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2017, Joyent, Inc. All rights reserved. 28 * Copyright (c) 2012 by Delphix. All rights reserved. 29 */ 30 31 #include <stdlib.h> 32 #include <strings.h> 33 #include <errno.h> 34 #include <unistd.h> 35 #include <limits.h> 36 #include <assert.h> 37 #include <ctype.h> 38 #include <alloca.h> 39 #include <dt_impl.h> 40 #include <dt_pq.h> 41 42 #define DT_MASK_LO 0x00000000FFFFFFFFULL 43 44 /* 45 * We declare this here because (1) we need it and (2) we want to avoid a 46 * dependency on libm in libdtrace. 47 */ 48 static long double 49 dt_fabsl(long double x) 50 { 51 if (x < 0) 52 return (-x); 53 54 return (x); 55 } 56 57 static int 58 dt_ndigits(long long val) 59 { 60 int rval = 1; 61 long long cmp = 10; 62 63 if (val < 0) { 64 val = val == INT64_MIN ? INT64_MAX : -val; 65 rval++; 66 } 67 68 while (val > cmp && cmp > 0) { 69 rval++; 70 cmp *= 10; 71 } 72 73 return (rval < 4 ? 4 : rval); 74 } 75 76 /* 77 * 128-bit arithmetic functions needed to support the stddev() aggregating 78 * action. 79 */ 80 static int 81 dt_gt_128(uint64_t *a, uint64_t *b) 82 { 83 return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0])); 84 } 85 86 static int 87 dt_ge_128(uint64_t *a, uint64_t *b) 88 { 89 return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0])); 90 } 91 92 static int 93 dt_le_128(uint64_t *a, uint64_t *b) 94 { 95 return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0])); 96 } 97 98 /* 99 * Shift the 128-bit value in a by b. If b is positive, shift left. 100 * If b is negative, shift right. 101 */ 102 static void 103 dt_shift_128(uint64_t *a, int b) 104 { 105 uint64_t mask; 106 107 if (b == 0) 108 return; 109 110 if (b < 0) { 111 b = -b; 112 if (b >= 64) { 113 a[0] = a[1] >> (b - 64); 114 a[1] = 0; 115 } else { 116 a[0] >>= b; 117 mask = 1LL << (64 - b); 118 mask -= 1; 119 a[0] |= ((a[1] & mask) << (64 - b)); 120 a[1] >>= b; 121 } 122 } else { 123 if (b >= 64) { 124 a[1] = a[0] << (b - 64); 125 a[0] = 0; 126 } else { 127 a[1] <<= b; 128 mask = a[0] >> (64 - b); 129 a[1] |= mask; 130 a[0] <<= b; 131 } 132 } 133 } 134 135 static int 136 dt_nbits_128(uint64_t *a) 137 { 138 int nbits = 0; 139 uint64_t tmp[2]; 140 uint64_t zero[2] = { 0, 0 }; 141 142 tmp[0] = a[0]; 143 tmp[1] = a[1]; 144 145 dt_shift_128(tmp, -1); 146 while (dt_gt_128(tmp, zero)) { 147 dt_shift_128(tmp, -1); 148 nbits++; 149 } 150 151 return (nbits); 152 } 153 154 static void 155 dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference) 156 { 157 uint64_t result[2]; 158 159 result[0] = minuend[0] - subtrahend[0]; 160 result[1] = minuend[1] - subtrahend[1] - 161 (minuend[0] < subtrahend[0] ? 1 : 0); 162 163 difference[0] = result[0]; 164 difference[1] = result[1]; 165 } 166 167 static void 168 dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 169 { 170 uint64_t result[2]; 171 172 result[0] = addend1[0] + addend2[0]; 173 result[1] = addend1[1] + addend2[1] + 174 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 175 176 sum[0] = result[0]; 177 sum[1] = result[1]; 178 } 179 180 /* 181 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 182 * use native multiplication on those, and then re-combine into the 183 * resulting 128-bit value. 184 * 185 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 186 * hi1 * hi2 << 64 + 187 * hi1 * lo2 << 32 + 188 * hi2 * lo1 << 32 + 189 * lo1 * lo2 190 */ 191 static void 192 dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 193 { 194 uint64_t hi1, hi2, lo1, lo2; 195 uint64_t tmp[2]; 196 197 hi1 = factor1 >> 32; 198 hi2 = factor2 >> 32; 199 200 lo1 = factor1 & DT_MASK_LO; 201 lo2 = factor2 & DT_MASK_LO; 202 203 product[0] = lo1 * lo2; 204 product[1] = hi1 * hi2; 205 206 tmp[0] = hi1 * lo2; 207 tmp[1] = 0; 208 dt_shift_128(tmp, 32); 209 dt_add_128(product, tmp, product); 210 211 tmp[0] = hi2 * lo1; 212 tmp[1] = 0; 213 dt_shift_128(tmp, 32); 214 dt_add_128(product, tmp, product); 215 } 216 217 /* 218 * This is long-hand division. 219 * 220 * We initialize subtrahend by shifting divisor left as far as possible. We 221 * loop, comparing subtrahend to dividend: if subtrahend is smaller, we 222 * subtract and set the appropriate bit in the result. We then shift 223 * subtrahend right by one bit for the next comparison. 224 */ 225 static void 226 dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient) 227 { 228 uint64_t result[2] = { 0, 0 }; 229 uint64_t remainder[2]; 230 uint64_t subtrahend[2]; 231 uint64_t divisor_128[2]; 232 uint64_t mask[2] = { 1, 0 }; 233 int log = 0; 234 235 assert(divisor != 0); 236 237 divisor_128[0] = divisor; 238 divisor_128[1] = 0; 239 240 remainder[0] = dividend[0]; 241 remainder[1] = dividend[1]; 242 243 subtrahend[0] = divisor; 244 subtrahend[1] = 0; 245 246 while (divisor > 0) { 247 log++; 248 divisor >>= 1; 249 } 250 251 dt_shift_128(subtrahend, 128 - log); 252 dt_shift_128(mask, 128 - log); 253 254 while (dt_ge_128(remainder, divisor_128)) { 255 if (dt_ge_128(remainder, subtrahend)) { 256 dt_subtract_128(remainder, subtrahend, remainder); 257 result[0] |= mask[0]; 258 result[1] |= mask[1]; 259 } 260 261 dt_shift_128(subtrahend, -1); 262 dt_shift_128(mask, -1); 263 } 264 265 quotient[0] = result[0]; 266 quotient[1] = result[1]; 267 } 268 269 /* 270 * This is the long-hand method of calculating a square root. 271 * The algorithm is as follows: 272 * 273 * 1. Group the digits by 2 from the right. 274 * 2. Over the leftmost group, find the largest single-digit number 275 * whose square is less than that group. 276 * 3. Subtract the result of the previous step (2 or 4, depending) and 277 * bring down the next two-digit group. 278 * 4. For the result R we have so far, find the largest single-digit number 279 * x such that 2 * R * 10 * x + x^2 is less than the result from step 3. 280 * (Note that this is doubling R and performing a decimal left-shift by 1 281 * and searching for the appropriate decimal to fill the one's place.) 282 * The value x is the next digit in the square root. 283 * Repeat steps 3 and 4 until the desired precision is reached. (We're 284 * dealing with integers, so the above is sufficient.) 285 * 286 * In decimal, the square root of 582,734 would be calculated as so: 287 * 288 * __7__6__3 289 * | 58 27 34 290 * -49 (7^2 == 49 => 7 is the first digit in the square root) 291 * -- 292 * 9 27 (Subtract and bring down the next group.) 293 * 146 8 76 (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in 294 * ----- the square root) 295 * 51 34 (Subtract and bring down the next group.) 296 * 1523 45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in 297 * ----- the square root) 298 * 5 65 (remainder) 299 * 300 * The above algorithm applies similarly in binary, but note that the 301 * only possible non-zero value for x in step 4 is 1, so step 4 becomes a 302 * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the 303 * preceding difference? 304 * 305 * In binary, the square root of 11011011 would be calculated as so: 306 * 307 * __1__1__1__0 308 * | 11 01 10 11 309 * 01 (0 << 2 + 1 == 1 < 11 => this bit is 1) 310 * -- 311 * 10 01 10 11 312 * 101 1 01 (1 << 2 + 1 == 101 < 1001 => next bit is 1) 313 * ----- 314 * 1 00 10 11 315 * 1101 11 01 (11 << 2 + 1 == 1101 < 10010 => next bit is 1) 316 * ------- 317 * 1 01 11 318 * 11101 1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0) 319 * 320 */ 321 static uint64_t 322 dt_sqrt_128(uint64_t *square) 323 { 324 uint64_t result[2] = { 0, 0 }; 325 uint64_t diff[2] = { 0, 0 }; 326 uint64_t one[2] = { 1, 0 }; 327 uint64_t next_pair[2]; 328 uint64_t next_try[2]; 329 uint64_t bit_pairs, pair_shift; 330 int i; 331 332 bit_pairs = dt_nbits_128(square) / 2; 333 pair_shift = bit_pairs * 2; 334 335 for (i = 0; i <= bit_pairs; i++) { 336 /* 337 * Bring down the next pair of bits. 338 */ 339 next_pair[0] = square[0]; 340 next_pair[1] = square[1]; 341 dt_shift_128(next_pair, -pair_shift); 342 next_pair[0] &= 0x3; 343 next_pair[1] = 0; 344 345 dt_shift_128(diff, 2); 346 dt_add_128(diff, next_pair, diff); 347 348 /* 349 * next_try = R << 2 + 1 350 */ 351 next_try[0] = result[0]; 352 next_try[1] = result[1]; 353 dt_shift_128(next_try, 2); 354 dt_add_128(next_try, one, next_try); 355 356 if (dt_le_128(next_try, diff)) { 357 dt_subtract_128(diff, next_try, diff); 358 dt_shift_128(result, 1); 359 dt_add_128(result, one, result); 360 } else { 361 dt_shift_128(result, 1); 362 } 363 364 pair_shift -= 2; 365 } 366 367 assert(result[1] == 0); 368 369 return (result[0]); 370 } 371 372 uint64_t 373 dt_stddev(uint64_t *data, uint64_t normal) 374 { 375 uint64_t avg_of_squares[2]; 376 uint64_t square_of_avg[2]; 377 int64_t norm_avg; 378 uint64_t diff[2]; 379 380 /* 381 * The standard approximation for standard deviation is 382 * sqrt(average(x**2) - average(x)**2), i.e. the square root 383 * of the average of the squares minus the square of the average. 384 * When normalizing, we should divide the sum of x**2 by normal**2. 385 */ 386 dt_divide_128(data + 2, normal, avg_of_squares); 387 dt_divide_128(avg_of_squares, normal, avg_of_squares); 388 dt_divide_128(avg_of_squares, data[0], avg_of_squares); 389 390 norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0]; 391 392 if (norm_avg < 0) 393 norm_avg = -norm_avg; 394 395 dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg); 396 397 dt_subtract_128(avg_of_squares, square_of_avg, diff); 398 399 return (dt_sqrt_128(diff)); 400 } 401 402 static int 403 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last, 404 dtrace_bufdesc_t *buf, size_t offs) 405 { 406 dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd; 407 dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd; 408 char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub; 409 dtrace_flowkind_t flow = DTRACEFLOW_NONE; 410 const char *str = NULL; 411 static const char *e_str[2] = { " -> ", " => " }; 412 static const char *r_str[2] = { " <- ", " <= " }; 413 static const char *ent = "entry", *ret = "return"; 414 static int entlen = 0, retlen = 0; 415 dtrace_epid_t next, id = epd->dtepd_epid; 416 int rval; 417 418 if (entlen == 0) { 419 assert(retlen == 0); 420 entlen = strlen(ent); 421 retlen = strlen(ret); 422 } 423 424 /* 425 * If the name of the probe is "entry" or ends with "-entry", we 426 * treat it as an entry; if it is "return" or ends with "-return", 427 * we treat it as a return. (This allows application-provided probes 428 * like "method-entry" or "function-entry" to participate in flow 429 * indentation -- without accidentally misinterpreting popular probe 430 * names like "carpentry", "gentry" or "Coventry".) 431 */ 432 if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' && 433 (sub == n || sub[-1] == '-')) { 434 flow = DTRACEFLOW_ENTRY; 435 str = e_str[strcmp(p, "syscall") == 0]; 436 } else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' && 437 (sub == n || sub[-1] == '-')) { 438 flow = DTRACEFLOW_RETURN; 439 str = r_str[strcmp(p, "syscall") == 0]; 440 } 441 442 /* 443 * If we're going to indent this, we need to check the ID of our last 444 * call. If we're looking at the same probe ID but a different EPID, 445 * we _don't_ want to indent. (Yes, there are some minor holes in 446 * this scheme -- it's a heuristic.) 447 */ 448 if (flow == DTRACEFLOW_ENTRY) { 449 if ((last != DTRACE_EPIDNONE && id != last && 450 pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id)) 451 flow = DTRACEFLOW_NONE; 452 } 453 454 /* 455 * If we're going to unindent this, it's more difficult to see if 456 * we don't actually want to unindent it -- we need to look at the 457 * _next_ EPID. 458 */ 459 if (flow == DTRACEFLOW_RETURN) { 460 offs += epd->dtepd_size; 461 462 do { 463 if (offs >= buf->dtbd_size) 464 goto out; 465 466 next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs); 467 468 if (next == DTRACE_EPIDNONE) 469 offs += sizeof (id); 470 } while (next == DTRACE_EPIDNONE); 471 472 if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0) 473 return (rval); 474 475 if (next != id && npd->dtpd_id == pd->dtpd_id) 476 flow = DTRACEFLOW_NONE; 477 } 478 479 out: 480 if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) { 481 data->dtpda_prefix = str; 482 } else { 483 data->dtpda_prefix = "| "; 484 } 485 486 if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0) 487 data->dtpda_indent -= 2; 488 489 data->dtpda_flow = flow; 490 491 return (0); 492 } 493 494 static int 495 dt_nullprobe() 496 { 497 return (DTRACE_CONSUME_THIS); 498 } 499 500 static int 501 dt_nullrec() 502 { 503 return (DTRACE_CONSUME_NEXT); 504 } 505 506 static void 507 dt_quantize_total(dtrace_hdl_t *dtp, int64_t datum, long double *total) 508 { 509 long double val = dt_fabsl((long double)datum); 510 511 if (dtp->dt_options[DTRACEOPT_AGGZOOM] == DTRACEOPT_UNSET) { 512 *total += val; 513 return; 514 } 515 516 /* 517 * If we're zooming in on an aggregation, we want the height of the 518 * highest value to be approximately 95% of total bar height -- so we 519 * adjust up by the reciprocal of DTRACE_AGGZOOM_MAX when comparing to 520 * our highest value. 521 */ 522 val *= 1 / DTRACE_AGGZOOM_MAX; 523 524 if (*total < val) 525 *total = val; 526 } 527 528 static int 529 dt_print_quanthdr(dtrace_hdl_t *dtp, FILE *fp, int width) 530 { 531 return (dt_printf(dtp, fp, "\n%*s %41s %-9s\n", 532 width ? width : 16, width ? "key" : "value", 533 "------------- Distribution -------------", "count")); 534 } 535 536 static int 537 dt_print_quanthdr_packed(dtrace_hdl_t *dtp, FILE *fp, int width, 538 const dtrace_aggdata_t *aggdata, dtrace_actkind_t action) 539 { 540 int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin; 541 int minwidth, maxwidth, i; 542 543 assert(action == DTRACEAGG_QUANTIZE || action == DTRACEAGG_LQUANTIZE); 544 545 if (action == DTRACEAGG_QUANTIZE) { 546 if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET) 547 min--; 548 549 if (max < DTRACE_QUANTIZE_NBUCKETS - 1) 550 max++; 551 552 minwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(min)); 553 maxwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(max)); 554 } else { 555 maxwidth = 8; 556 minwidth = maxwidth - 1; 557 max++; 558 } 559 560 if (dt_printf(dtp, fp, "\n%*s %*s .", 561 width, width > 0 ? "key" : "", minwidth, "min") < 0) 562 return (-1); 563 564 for (i = min; i <= max; i++) { 565 if (dt_printf(dtp, fp, "-") < 0) 566 return (-1); 567 } 568 569 return (dt_printf(dtp, fp, ". %*s | count\n", -maxwidth, "max")); 570 } 571 572 /* 573 * We use a subset of the Unicode Block Elements (U+2588 through U+258F, 574 * inclusive) to represent aggregations via UTF-8 -- which are expressed via 575 * 3-byte UTF-8 sequences. 576 */ 577 #define DTRACE_AGGUTF8_FULL 0x2588 578 #define DTRACE_AGGUTF8_BASE 0x258f 579 #define DTRACE_AGGUTF8_LEVELS 8 580 581 #define DTRACE_AGGUTF8_BYTE0(val) (0xe0 | ((val) >> 12)) 582 #define DTRACE_AGGUTF8_BYTE1(val) (0x80 | (((val) >> 6) & 0x3f)) 583 #define DTRACE_AGGUTF8_BYTE2(val) (0x80 | ((val) & 0x3f)) 584 585 static int 586 dt_print_quantline_utf8(dtrace_hdl_t *dtp, FILE *fp, int64_t val, 587 uint64_t normal, long double total) 588 { 589 uint_t len = 40, i, whole, partial; 590 long double f = (dt_fabsl((long double)val) * len) / total; 591 const char *spaces = " "; 592 593 whole = (uint_t)f; 594 partial = (uint_t)((f - (long double)(uint_t)f) * 595 (long double)DTRACE_AGGUTF8_LEVELS); 596 597 if (dt_printf(dtp, fp, "|") < 0) 598 return (-1); 599 600 for (i = 0; i < whole; i++) { 601 if (dt_printf(dtp, fp, "%c%c%c", 602 DTRACE_AGGUTF8_BYTE0(DTRACE_AGGUTF8_FULL), 603 DTRACE_AGGUTF8_BYTE1(DTRACE_AGGUTF8_FULL), 604 DTRACE_AGGUTF8_BYTE2(DTRACE_AGGUTF8_FULL)) < 0) 605 return (-1); 606 } 607 608 if (partial != 0) { 609 partial = DTRACE_AGGUTF8_BASE - (partial - 1); 610 611 if (dt_printf(dtp, fp, "%c%c%c", 612 DTRACE_AGGUTF8_BYTE0(partial), 613 DTRACE_AGGUTF8_BYTE1(partial), 614 DTRACE_AGGUTF8_BYTE2(partial)) < 0) 615 return (-1); 616 617 i++; 618 } 619 620 return (dt_printf(dtp, fp, "%s %-9lld\n", spaces + i, 621 (long long)val / normal)); 622 } 623 624 static int 625 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val, 626 uint64_t normal, long double total, char positives, char negatives) 627 { 628 long double f; 629 uint_t depth, len = 40; 630 631 const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@"; 632 const char *spaces = " "; 633 634 assert(strlen(ats) == len && strlen(spaces) == len); 635 assert(!(total == 0 && (positives || negatives))); 636 assert(!(val < 0 && !negatives)); 637 assert(!(val > 0 && !positives)); 638 assert(!(val != 0 && total == 0)); 639 640 if (!negatives) { 641 if (positives) { 642 if (dtp->dt_encoding == DT_ENCODING_UTF8) { 643 return (dt_print_quantline_utf8(dtp, fp, val, 644 normal, total)); 645 } 646 647 f = (dt_fabsl((long double)val) * len) / total; 648 depth = (uint_t)(f + 0.5); 649 } else { 650 depth = 0; 651 } 652 653 return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth, 654 spaces + depth, (long long)val / normal)); 655 } 656 657 if (!positives) { 658 f = (dt_fabsl((long double)val) * len) / total; 659 depth = (uint_t)(f + 0.5); 660 661 return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth, 662 ats + len - depth, (long long)val / normal)); 663 } 664 665 /* 666 * If we're here, we have both positive and negative bucket values. 667 * To express this graphically, we're going to generate both positive 668 * and negative bars separated by a centerline. These bars are half 669 * the size of normal quantize()/lquantize() bars, so we divide the 670 * length in half before calculating the bar length. 671 */ 672 len /= 2; 673 ats = &ats[len]; 674 spaces = &spaces[len]; 675 676 f = (dt_fabsl((long double)val) * len) / total; 677 depth = (uint_t)(f + 0.5); 678 679 if (val <= 0) { 680 return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth, 681 ats + len - depth, len, "", (long long)val / normal)); 682 } else { 683 return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "", 684 ats + len - depth, spaces + depth, 685 (long long)val / normal)); 686 } 687 } 688 689 /* 690 * As with UTF-8 printing of aggregations, we use a subset of the Unicode 691 * Block Elements (U+2581 through U+2588, inclusive) to represent our packed 692 * aggregation. 693 */ 694 #define DTRACE_AGGPACK_BASE 0x2581 695 #define DTRACE_AGGPACK_LEVELS 8 696 697 static int 698 dt_print_packed(dtrace_hdl_t *dtp, FILE *fp, 699 long double datum, long double total) 700 { 701 static boolean_t utf8_checked = B_FALSE; 702 static boolean_t utf8; 703 char *ascii = "__xxxxXX"; 704 char *neg = "vvvvVV"; 705 unsigned int len; 706 long double val; 707 708 if (!utf8_checked) { 709 char *term; 710 711 /* 712 * We want to determine if we can reasonably emit UTF-8 for our 713 * packed aggregation. To do this, we will check for terminals 714 * that are known to be primitive to emit UTF-8 on these. 715 */ 716 utf8_checked = B_TRUE; 717 718 if (dtp->dt_encoding == DT_ENCODING_ASCII) { 719 utf8 = B_FALSE; 720 } else if (dtp->dt_encoding == DT_ENCODING_UTF8) { 721 utf8 = B_TRUE; 722 } else if ((term = getenv("TERM")) != NULL && 723 (strcmp(term, "sun") == 0 || 724 strcmp(term, "sun-color") == 0) || 725 strcmp(term, "dumb") == 0) { 726 utf8 = B_FALSE; 727 } else { 728 utf8 = B_TRUE; 729 } 730 } 731 732 if (datum == 0) 733 return (dt_printf(dtp, fp, " ")); 734 735 if (datum < 0) { 736 len = strlen(neg); 737 val = dt_fabsl(datum * (len - 1)) / total; 738 return (dt_printf(dtp, fp, "%c", neg[(uint_t)(val + 0.5)])); 739 } 740 741 if (utf8) { 742 int block = DTRACE_AGGPACK_BASE + (unsigned int)(((datum * 743 (DTRACE_AGGPACK_LEVELS - 1)) / total) + 0.5); 744 745 return (dt_printf(dtp, fp, "%c%c%c", 746 DTRACE_AGGUTF8_BYTE0(block), 747 DTRACE_AGGUTF8_BYTE1(block), 748 DTRACE_AGGUTF8_BYTE2(block))); 749 } 750 751 len = strlen(ascii); 752 val = (datum * (len - 1)) / total; 753 return (dt_printf(dtp, fp, "%c", ascii[(uint_t)(val + 0.5)])); 754 } 755 756 int 757 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr, 758 size_t size, uint64_t normal) 759 { 760 const int64_t *data = addr; 761 int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1; 762 long double total = 0; 763 char positives = 0, negatives = 0; 764 765 if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t)) 766 return (dt_set_errno(dtp, EDT_DMISMATCH)); 767 768 while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0) 769 first_bin++; 770 771 if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) { 772 /* 773 * There isn't any data. This is possible if the aggregation 774 * has been clear()'d or if negative increment values have been 775 * used. Regardless, we'll print the buckets around 0. 776 */ 777 first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1; 778 last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1; 779 } else { 780 if (first_bin > 0) 781 first_bin--; 782 783 while (last_bin > 0 && data[last_bin] == 0) 784 last_bin--; 785 786 if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1) 787 last_bin++; 788 } 789 790 for (i = first_bin; i <= last_bin; i++) { 791 positives |= (data[i] > 0); 792 negatives |= (data[i] < 0); 793 dt_quantize_total(dtp, data[i], &total); 794 } 795 796 if (dt_print_quanthdr(dtp, fp, 0) < 0) 797 return (-1); 798 799 for (i = first_bin; i <= last_bin; i++) { 800 if (dt_printf(dtp, fp, "%16lld ", 801 (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0) 802 return (-1); 803 804 if (dt_print_quantline(dtp, fp, data[i], normal, total, 805 positives, negatives) < 0) 806 return (-1); 807 } 808 809 return (0); 810 } 811 812 int 813 dt_print_quantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr, 814 size_t size, const dtrace_aggdata_t *aggdata) 815 { 816 const int64_t *data = addr; 817 long double total = 0, count = 0; 818 int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin, i; 819 int64_t minval, maxval; 820 821 if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t)) 822 return (dt_set_errno(dtp, EDT_DMISMATCH)); 823 824 if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET) 825 min--; 826 827 if (max < DTRACE_QUANTIZE_NBUCKETS - 1) 828 max++; 829 830 minval = DTRACE_QUANTIZE_BUCKETVAL(min); 831 maxval = DTRACE_QUANTIZE_BUCKETVAL(max); 832 833 if (dt_printf(dtp, fp, " %*lld :", dt_ndigits(minval), 834 (long long)minval) < 0) 835 return (-1); 836 837 for (i = min; i <= max; i++) { 838 dt_quantize_total(dtp, data[i], &total); 839 count += data[i]; 840 } 841 842 for (i = min; i <= max; i++) { 843 if (dt_print_packed(dtp, fp, data[i], total) < 0) 844 return (-1); 845 } 846 847 if (dt_printf(dtp, fp, ": %*lld | %lld\n", 848 -dt_ndigits(maxval), (long long)maxval, (long long)count) < 0) 849 return (-1); 850 851 return (0); 852 } 853 854 int 855 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr, 856 size_t size, uint64_t normal) 857 { 858 const int64_t *data = addr; 859 int i, first_bin, last_bin, base; 860 uint64_t arg; 861 long double total = 0; 862 uint16_t step, levels; 863 char positives = 0, negatives = 0; 864 865 if (size < sizeof (uint64_t)) 866 return (dt_set_errno(dtp, EDT_DMISMATCH)); 867 868 arg = *data++; 869 size -= sizeof (uint64_t); 870 871 base = DTRACE_LQUANTIZE_BASE(arg); 872 step = DTRACE_LQUANTIZE_STEP(arg); 873 levels = DTRACE_LQUANTIZE_LEVELS(arg); 874 875 first_bin = 0; 876 last_bin = levels + 1; 877 878 if (size != sizeof (uint64_t) * (levels + 2)) 879 return (dt_set_errno(dtp, EDT_DMISMATCH)); 880 881 while (first_bin <= levels + 1 && data[first_bin] == 0) 882 first_bin++; 883 884 if (first_bin > levels + 1) { 885 first_bin = 0; 886 last_bin = 2; 887 } else { 888 if (first_bin > 0) 889 first_bin--; 890 891 while (last_bin > 0 && data[last_bin] == 0) 892 last_bin--; 893 894 if (last_bin < levels + 1) 895 last_bin++; 896 } 897 898 for (i = first_bin; i <= last_bin; i++) { 899 positives |= (data[i] > 0); 900 negatives |= (data[i] < 0); 901 dt_quantize_total(dtp, data[i], &total); 902 } 903 904 if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value", 905 "------------- Distribution -------------", "count") < 0) 906 return (-1); 907 908 for (i = first_bin; i <= last_bin; i++) { 909 char c[32]; 910 int err; 911 912 if (i == 0) { 913 (void) snprintf(c, sizeof (c), "< %d", base); 914 err = dt_printf(dtp, fp, "%16s ", c); 915 } else if (i == levels + 1) { 916 (void) snprintf(c, sizeof (c), ">= %d", 917 base + (levels * step)); 918 err = dt_printf(dtp, fp, "%16s ", c); 919 } else { 920 err = dt_printf(dtp, fp, "%16d ", 921 base + (i - 1) * step); 922 } 923 924 if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal, 925 total, positives, negatives) < 0) 926 return (-1); 927 } 928 929 return (0); 930 } 931 932 /*ARGSUSED*/ 933 int 934 dt_print_lquantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr, 935 size_t size, const dtrace_aggdata_t *aggdata) 936 { 937 const int64_t *data = addr; 938 long double total = 0, count = 0; 939 int min, max, base, err; 940 uint64_t arg; 941 uint16_t step, levels; 942 char c[32]; 943 unsigned int i; 944 945 if (size < sizeof (uint64_t)) 946 return (dt_set_errno(dtp, EDT_DMISMATCH)); 947 948 arg = *data++; 949 size -= sizeof (uint64_t); 950 951 base = DTRACE_LQUANTIZE_BASE(arg); 952 step = DTRACE_LQUANTIZE_STEP(arg); 953 levels = DTRACE_LQUANTIZE_LEVELS(arg); 954 955 if (size != sizeof (uint64_t) * (levels + 2)) 956 return (dt_set_errno(dtp, EDT_DMISMATCH)); 957 958 min = 0; 959 max = levels + 1; 960 961 if (min == 0) { 962 (void) snprintf(c, sizeof (c), "< %d", base); 963 err = dt_printf(dtp, fp, "%8s :", c); 964 } else { 965 err = dt_printf(dtp, fp, "%8d :", base + (min - 1) * step); 966 } 967 968 if (err < 0) 969 return (-1); 970 971 for (i = min; i <= max; i++) { 972 dt_quantize_total(dtp, data[i], &total); 973 count += data[i]; 974 } 975 976 for (i = min; i <= max; i++) { 977 if (dt_print_packed(dtp, fp, data[i], total) < 0) 978 return (-1); 979 } 980 981 (void) snprintf(c, sizeof (c), ">= %d", base + (levels * step)); 982 return (dt_printf(dtp, fp, ": %-8s | %lld\n", c, (long long)count)); 983 } 984 985 int 986 dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr, 987 size_t size, uint64_t normal) 988 { 989 int i, first_bin, last_bin, bin = 1, order, levels; 990 uint16_t factor, low, high, nsteps; 991 const int64_t *data = addr; 992 int64_t value = 1, next, step; 993 char positives = 0, negatives = 0; 994 long double total = 0; 995 uint64_t arg; 996 char c[32]; 997 998 if (size < sizeof (uint64_t)) 999 return (dt_set_errno(dtp, EDT_DMISMATCH)); 1000 1001 arg = *data++; 1002 size -= sizeof (uint64_t); 1003 1004 factor = DTRACE_LLQUANTIZE_FACTOR(arg); 1005 low = DTRACE_LLQUANTIZE_LOW(arg); 1006 high = DTRACE_LLQUANTIZE_HIGH(arg); 1007 nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 1008 1009 /* 1010 * We don't expect to be handed invalid llquantize() parameters here, 1011 * but sanity check them (to a degree) nonetheless. 1012 */ 1013 if (size > INT32_MAX || factor < 2 || low >= high || 1014 nsteps == 0 || factor > nsteps) 1015 return (dt_set_errno(dtp, EDT_DMISMATCH)); 1016 1017 levels = (int)size / sizeof (uint64_t); 1018 1019 first_bin = 0; 1020 last_bin = levels - 1; 1021 1022 while (first_bin < levels && data[first_bin] == 0) 1023 first_bin++; 1024 1025 if (first_bin == levels) { 1026 first_bin = 0; 1027 last_bin = 1; 1028 } else { 1029 if (first_bin > 0) 1030 first_bin--; 1031 1032 while (last_bin > 0 && data[last_bin] == 0) 1033 last_bin--; 1034 1035 if (last_bin < levels - 1) 1036 last_bin++; 1037 } 1038 1039 for (i = first_bin; i <= last_bin; i++) { 1040 positives |= (data[i] > 0); 1041 negatives |= (data[i] < 0); 1042 dt_quantize_total(dtp, data[i], &total); 1043 } 1044 1045 if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value", 1046 "------------- Distribution -------------", "count") < 0) 1047 return (-1); 1048 1049 for (order = 0; order < low; order++) 1050 value *= factor; 1051 1052 next = value * factor; 1053 step = next > nsteps ? next / nsteps : 1; 1054 1055 if (first_bin == 0) { 1056 (void) snprintf(c, sizeof (c), "< %lld", value); 1057 1058 if (dt_printf(dtp, fp, "%16s ", c) < 0) 1059 return (-1); 1060 1061 if (dt_print_quantline(dtp, fp, data[0], normal, 1062 total, positives, negatives) < 0) 1063 return (-1); 1064 } 1065 1066 while (order <= high) { 1067 if (bin >= first_bin && bin <= last_bin) { 1068 if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0) 1069 return (-1); 1070 1071 if (dt_print_quantline(dtp, fp, data[bin], 1072 normal, total, positives, negatives) < 0) 1073 return (-1); 1074 } 1075 1076 assert(value < next); 1077 bin++; 1078 1079 if ((value += step) != next) 1080 continue; 1081 1082 next = value * factor; 1083 step = next > nsteps ? next / nsteps : 1; 1084 order++; 1085 } 1086 1087 if (last_bin < bin) 1088 return (0); 1089 1090 assert(last_bin == bin); 1091 (void) snprintf(c, sizeof (c), ">= %lld", value); 1092 1093 if (dt_printf(dtp, fp, "%16s ", c) < 0) 1094 return (-1); 1095 1096 return (dt_print_quantline(dtp, fp, data[bin], normal, 1097 total, positives, negatives)); 1098 } 1099 1100 /*ARGSUSED*/ 1101 static int 1102 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, 1103 size_t size, uint64_t normal) 1104 { 1105 /* LINTED - alignment */ 1106 int64_t *data = (int64_t *)addr; 1107 1108 return (dt_printf(dtp, fp, " %16lld", data[0] ? 1109 (long long)(data[1] / (int64_t)normal / data[0]) : 0)); 1110 } 1111 1112 /*ARGSUSED*/ 1113 static int 1114 dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, 1115 size_t size, uint64_t normal) 1116 { 1117 /* LINTED - alignment */ 1118 uint64_t *data = (uint64_t *)addr; 1119 1120 return (dt_printf(dtp, fp, " %16llu", data[0] ? 1121 (unsigned long long) dt_stddev(data, normal) : 0)); 1122 } 1123 1124 /*ARGSUSED*/ 1125 static int 1126 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, 1127 size_t nbytes, int width, int quiet, int forceraw) 1128 { 1129 /* 1130 * If the byte stream is a series of printable characters, followed by 1131 * a terminating byte, we print it out as a string. Otherwise, we 1132 * assume that it's something else and just print the bytes. 1133 */ 1134 int i, j, margin = 5; 1135 char *c = (char *)addr; 1136 1137 if (nbytes == 0) 1138 return (0); 1139 1140 if (forceraw) 1141 goto raw; 1142 1143 if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET) 1144 goto raw; 1145 1146 for (i = 0; i < nbytes; i++) { 1147 /* 1148 * We define a "printable character" to be one for which 1149 * isprint(3C) returns non-zero, isspace(3C) returns non-zero, 1150 * or a character which is either backspace or the bell. 1151 * Backspace and the bell are regrettably special because 1152 * they fail the first two tests -- and yet they are entirely 1153 * printable. These are the only two control characters that 1154 * have meaning for the terminal and for which isprint(3C) and 1155 * isspace(3C) return 0. 1156 */ 1157 if (isprint(c[i]) || isspace(c[i]) || 1158 c[i] == '\b' || c[i] == '\a') 1159 continue; 1160 1161 if (c[i] == '\0' && i > 0) { 1162 /* 1163 * This looks like it might be a string. Before we 1164 * assume that it is indeed a string, check the 1165 * remainder of the byte range; if it contains 1166 * additional non-nul characters, we'll assume that 1167 * it's a binary stream that just happens to look like 1168 * a string, and we'll print out the individual bytes. 1169 */ 1170 for (j = i + 1; j < nbytes; j++) { 1171 if (c[j] != '\0') 1172 break; 1173 } 1174 1175 if (j != nbytes) 1176 break; 1177 1178 if (quiet) { 1179 return (dt_printf(dtp, fp, "%s", c)); 1180 } else { 1181 return (dt_printf(dtp, fp, " %s%*s", 1182 width < 0 ? " " : "", width, c)); 1183 } 1184 } 1185 1186 break; 1187 } 1188 1189 if (i == nbytes) { 1190 /* 1191 * The byte range is all printable characters, but there is 1192 * no trailing nul byte. We'll assume that it's a string and 1193 * print it as such. 1194 */ 1195 char *s = alloca(nbytes + 1); 1196 bcopy(c, s, nbytes); 1197 s[nbytes] = '\0'; 1198 return (dt_printf(dtp, fp, " %-*s", width, s)); 1199 } 1200 1201 raw: 1202 if (dt_printf(dtp, fp, "\n%*s ", margin, "") < 0) 1203 return (-1); 1204 1205 for (i = 0; i < 16; i++) 1206 if (dt_printf(dtp, fp, " %c", "0123456789abcdef"[i]) < 0) 1207 return (-1); 1208 1209 if (dt_printf(dtp, fp, " 0123456789abcdef\n") < 0) 1210 return (-1); 1211 1212 1213 for (i = 0; i < nbytes; i += 16) { 1214 if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0) 1215 return (-1); 1216 1217 for (j = i; j < i + 16 && j < nbytes; j++) { 1218 if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0) 1219 return (-1); 1220 } 1221 1222 while (j++ % 16) { 1223 if (dt_printf(dtp, fp, " ") < 0) 1224 return (-1); 1225 } 1226 1227 if (dt_printf(dtp, fp, " ") < 0) 1228 return (-1); 1229 1230 for (j = i; j < i + 16 && j < nbytes; j++) { 1231 if (dt_printf(dtp, fp, "%c", 1232 c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0) 1233 return (-1); 1234 } 1235 1236 if (dt_printf(dtp, fp, "\n") < 0) 1237 return (-1); 1238 } 1239 1240 return (0); 1241 } 1242 1243 int 1244 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format, 1245 caddr_t addr, int depth, int size) 1246 { 1247 dtrace_syminfo_t dts; 1248 GElf_Sym sym; 1249 int i, indent; 1250 char c[PATH_MAX * 2]; 1251 uint64_t pc; 1252 1253 if (dt_printf(dtp, fp, "\n") < 0) 1254 return (-1); 1255 1256 if (format == NULL) 1257 format = "%s"; 1258 1259 if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET) 1260 indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT]; 1261 else 1262 indent = _dtrace_stkindent; 1263 1264 for (i = 0; i < depth; i++) { 1265 switch (size) { 1266 case sizeof (uint32_t): 1267 /* LINTED - alignment */ 1268 pc = *((uint32_t *)addr); 1269 break; 1270 1271 case sizeof (uint64_t): 1272 /* LINTED - alignment */ 1273 pc = *((uint64_t *)addr); 1274 break; 1275 1276 default: 1277 return (dt_set_errno(dtp, EDT_BADSTACKPC)); 1278 } 1279 1280 if (pc == NULL) 1281 break; 1282 1283 addr += size; 1284 1285 if (dt_printf(dtp, fp, "%*s", indent, "") < 0) 1286 return (-1); 1287 1288 if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) { 1289 if (pc > sym.st_value) { 1290 (void) snprintf(c, sizeof (c), "%s`%s+0x%llx", 1291 dts.dts_object, dts.dts_name, 1292 pc - sym.st_value); 1293 } else { 1294 (void) snprintf(c, sizeof (c), "%s`%s", 1295 dts.dts_object, dts.dts_name); 1296 } 1297 } else { 1298 /* 1299 * We'll repeat the lookup, but this time we'll specify 1300 * a NULL GElf_Sym -- indicating that we're only 1301 * interested in the containing module. 1302 */ 1303 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) { 1304 (void) snprintf(c, sizeof (c), "%s`0x%llx", 1305 dts.dts_object, pc); 1306 } else { 1307 (void) snprintf(c, sizeof (c), "0x%llx", pc); 1308 } 1309 } 1310 1311 if (dt_printf(dtp, fp, format, c) < 0) 1312 return (-1); 1313 1314 if (dt_printf(dtp, fp, "\n") < 0) 1315 return (-1); 1316 } 1317 1318 return (0); 1319 } 1320 1321 int 1322 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format, 1323 caddr_t addr, uint64_t arg) 1324 { 1325 /* LINTED - alignment */ 1326 uint64_t *pc = (uint64_t *)addr; 1327 uint32_t depth = DTRACE_USTACK_NFRAMES(arg); 1328 uint32_t strsize = DTRACE_USTACK_STRSIZE(arg); 1329 const char *strbase = addr + (depth + 1) * sizeof (uint64_t); 1330 const char *str = strsize ? strbase : NULL; 1331 int err = 0; 1332 1333 char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2]; 1334 struct ps_prochandle *P; 1335 GElf_Sym sym; 1336 int i, indent; 1337 pid_t pid; 1338 1339 if (depth == 0) 1340 return (0); 1341 1342 pid = (pid_t)*pc++; 1343 1344 if (dt_printf(dtp, fp, "\n") < 0) 1345 return (-1); 1346 1347 if (format == NULL) 1348 format = "%s"; 1349 1350 if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET) 1351 indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT]; 1352 else 1353 indent = _dtrace_stkindent; 1354 1355 /* 1356 * Ultimately, we need to add an entry point in the library vector for 1357 * determining <symbol, offset> from <pid, address>. For now, if 1358 * this is a vector open, we just print the raw address or string. 1359 */ 1360 if (dtp->dt_vector == NULL) 1361 P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0); 1362 else 1363 P = NULL; 1364 1365 if (P != NULL) 1366 dt_proc_lock(dtp, P); /* lock handle while we perform lookups */ 1367 1368 for (i = 0; i < depth && pc[i] != NULL; i++) { 1369 const prmap_t *map; 1370 1371 if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0) 1372 break; 1373 1374 if (P != NULL && Plookup_by_addr(P, pc[i], 1375 name, sizeof (name), &sym) == 0) { 1376 (void) Pobjname(P, pc[i], objname, sizeof (objname)); 1377 1378 if (pc[i] > sym.st_value) { 1379 (void) snprintf(c, sizeof (c), 1380 "%s`%s+0x%llx", dt_basename(objname), name, 1381 (u_longlong_t)(pc[i] - sym.st_value)); 1382 } else { 1383 (void) snprintf(c, sizeof (c), 1384 "%s`%s", dt_basename(objname), name); 1385 } 1386 } else if (str != NULL && str[0] != '\0' && str[0] != '@' && 1387 (P == NULL || (map = Paddr_to_map(P, pc[i])) == NULL || 1388 map->pr_mflags & MA_WRITE)) { 1389 /* 1390 * If the current string pointer in the string table 1391 * does not point to an empty string _and_ the program 1392 * counter falls in a writable region, we'll use the 1393 * string from the string table instead of the raw 1394 * address. This last condition is necessary because 1395 * some (broken) ustack helpers will return a string 1396 * even for a program counter that they can't 1397 * identify. If we have a string for a program 1398 * counter that falls in a segment that isn't 1399 * writable, we assume that we have fallen into this 1400 * case and we refuse to use the string. Finally, 1401 * note that if we could not grab the process (e.g., 1402 * because it exited), the information from the helper 1403 * is better than nothing. 1404 */ 1405 (void) snprintf(c, sizeof (c), "%s", str); 1406 } else { 1407 if (P != NULL && Pobjname(P, pc[i], objname, 1408 sizeof (objname)) != NULL) { 1409 (void) snprintf(c, sizeof (c), "%s`0x%llx", 1410 dt_basename(objname), (u_longlong_t)pc[i]); 1411 } else { 1412 (void) snprintf(c, sizeof (c), "0x%llx", 1413 (u_longlong_t)pc[i]); 1414 } 1415 } 1416 1417 if ((err = dt_printf(dtp, fp, format, c)) < 0) 1418 break; 1419 1420 if ((err = dt_printf(dtp, fp, "\n")) < 0) 1421 break; 1422 1423 if (str != NULL && str[0] == '@') { 1424 /* 1425 * If the first character of the string is an "at" sign, 1426 * then the string is inferred to be an annotation -- 1427 * and it is printed out beneath the frame and offset 1428 * with brackets. 1429 */ 1430 if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0) 1431 break; 1432 1433 (void) snprintf(c, sizeof (c), " [ %s ]", &str[1]); 1434 1435 if ((err = dt_printf(dtp, fp, format, c)) < 0) 1436 break; 1437 1438 if ((err = dt_printf(dtp, fp, "\n")) < 0) 1439 break; 1440 } 1441 1442 if (str != NULL) { 1443 str += strlen(str) + 1; 1444 if (str - strbase >= strsize) 1445 str = NULL; 1446 } 1447 } 1448 1449 if (P != NULL) { 1450 dt_proc_unlock(dtp, P); 1451 dt_proc_release(dtp, P); 1452 } 1453 1454 return (err); 1455 } 1456 1457 static int 1458 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act) 1459 { 1460 /* LINTED - alignment */ 1461 uint64_t pid = ((uint64_t *)addr)[0]; 1462 /* LINTED - alignment */ 1463 uint64_t pc = ((uint64_t *)addr)[1]; 1464 const char *format = " %-50s"; 1465 char *s; 1466 int n, len = 256; 1467 1468 if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) { 1469 struct ps_prochandle *P; 1470 1471 if ((P = dt_proc_grab(dtp, pid, 1472 PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) { 1473 GElf_Sym sym; 1474 1475 dt_proc_lock(dtp, P); 1476 1477 if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0) 1478 pc = sym.st_value; 1479 1480 dt_proc_unlock(dtp, P); 1481 dt_proc_release(dtp, P); 1482 } 1483 } 1484 1485 do { 1486 n = len; 1487 s = alloca(n); 1488 } while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n); 1489 1490 return (dt_printf(dtp, fp, format, s)); 1491 } 1492 1493 int 1494 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr) 1495 { 1496 /* LINTED - alignment */ 1497 uint64_t pid = ((uint64_t *)addr)[0]; 1498 /* LINTED - alignment */ 1499 uint64_t pc = ((uint64_t *)addr)[1]; 1500 int err = 0; 1501 1502 char objname[PATH_MAX], c[PATH_MAX * 2]; 1503 struct ps_prochandle *P; 1504 1505 if (format == NULL) 1506 format = " %-50s"; 1507 1508 /* 1509 * See the comment in dt_print_ustack() for the rationale for 1510 * printing raw addresses in the vectored case. 1511 */ 1512 if (dtp->dt_vector == NULL) 1513 P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0); 1514 else 1515 P = NULL; 1516 1517 if (P != NULL) 1518 dt_proc_lock(dtp, P); /* lock handle while we perform lookups */ 1519 1520 if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != NULL) { 1521 (void) snprintf(c, sizeof (c), "%s", dt_basename(objname)); 1522 } else { 1523 (void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc); 1524 } 1525 1526 err = dt_printf(dtp, fp, format, c); 1527 1528 if (P != NULL) { 1529 dt_proc_unlock(dtp, P); 1530 dt_proc_release(dtp, P); 1531 } 1532 1533 return (err); 1534 } 1535 1536 static int 1537 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr) 1538 { 1539 /* LINTED - alignment */ 1540 uint64_t pc = *((uint64_t *)addr); 1541 dtrace_syminfo_t dts; 1542 GElf_Sym sym; 1543 char c[PATH_MAX * 2]; 1544 1545 if (format == NULL) 1546 format = " %-50s"; 1547 1548 if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) { 1549 (void) snprintf(c, sizeof (c), "%s`%s", 1550 dts.dts_object, dts.dts_name); 1551 } else { 1552 /* 1553 * We'll repeat the lookup, but this time we'll specify a 1554 * NULL GElf_Sym -- indicating that we're only interested in 1555 * the containing module. 1556 */ 1557 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) { 1558 (void) snprintf(c, sizeof (c), "%s`0x%llx", 1559 dts.dts_object, (u_longlong_t)pc); 1560 } else { 1561 (void) snprintf(c, sizeof (c), "0x%llx", 1562 (u_longlong_t)pc); 1563 } 1564 } 1565 1566 if (dt_printf(dtp, fp, format, c) < 0) 1567 return (-1); 1568 1569 return (0); 1570 } 1571 1572 int 1573 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr) 1574 { 1575 /* LINTED - alignment */ 1576 uint64_t pc = *((uint64_t *)addr); 1577 dtrace_syminfo_t dts; 1578 char c[PATH_MAX * 2]; 1579 1580 if (format == NULL) 1581 format = " %-50s"; 1582 1583 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) { 1584 (void) snprintf(c, sizeof (c), "%s", dts.dts_object); 1585 } else { 1586 (void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc); 1587 } 1588 1589 if (dt_printf(dtp, fp, format, c) < 0) 1590 return (-1); 1591 1592 return (0); 1593 } 1594 1595 typedef struct dt_normal { 1596 dtrace_aggvarid_t dtnd_id; 1597 uint64_t dtnd_normal; 1598 } dt_normal_t; 1599 1600 static int 1601 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg) 1602 { 1603 dt_normal_t *normal = arg; 1604 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1605 dtrace_aggvarid_t id = normal->dtnd_id; 1606 1607 if (agg->dtagd_nrecs == 0) 1608 return (DTRACE_AGGWALK_NEXT); 1609 1610 if (agg->dtagd_varid != id) 1611 return (DTRACE_AGGWALK_NEXT); 1612 1613 ((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal; 1614 return (DTRACE_AGGWALK_NORMALIZE); 1615 } 1616 1617 static int 1618 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec) 1619 { 1620 dt_normal_t normal; 1621 caddr_t addr; 1622 1623 /* 1624 * We (should) have two records: the aggregation ID followed by the 1625 * normalization value. 1626 */ 1627 addr = base + rec->dtrd_offset; 1628 1629 if (rec->dtrd_size != sizeof (dtrace_aggvarid_t)) 1630 return (dt_set_errno(dtp, EDT_BADNORMAL)); 1631 1632 /* LINTED - alignment */ 1633 normal.dtnd_id = *((dtrace_aggvarid_t *)addr); 1634 rec++; 1635 1636 if (rec->dtrd_action != DTRACEACT_LIBACT) 1637 return (dt_set_errno(dtp, EDT_BADNORMAL)); 1638 1639 if (rec->dtrd_arg != DT_ACT_NORMALIZE) 1640 return (dt_set_errno(dtp, EDT_BADNORMAL)); 1641 1642 addr = base + rec->dtrd_offset; 1643 1644 switch (rec->dtrd_size) { 1645 case sizeof (uint64_t): 1646 /* LINTED - alignment */ 1647 normal.dtnd_normal = *((uint64_t *)addr); 1648 break; 1649 case sizeof (uint32_t): 1650 /* LINTED - alignment */ 1651 normal.dtnd_normal = *((uint32_t *)addr); 1652 break; 1653 case sizeof (uint16_t): 1654 /* LINTED - alignment */ 1655 normal.dtnd_normal = *((uint16_t *)addr); 1656 break; 1657 case sizeof (uint8_t): 1658 normal.dtnd_normal = *((uint8_t *)addr); 1659 break; 1660 default: 1661 return (dt_set_errno(dtp, EDT_BADNORMAL)); 1662 } 1663 1664 (void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal); 1665 1666 return (0); 1667 } 1668 1669 static int 1670 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg) 1671 { 1672 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1673 dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg); 1674 1675 if (agg->dtagd_nrecs == 0) 1676 return (DTRACE_AGGWALK_NEXT); 1677 1678 if (agg->dtagd_varid != id) 1679 return (DTRACE_AGGWALK_NEXT); 1680 1681 return (DTRACE_AGGWALK_DENORMALIZE); 1682 } 1683 1684 static int 1685 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg) 1686 { 1687 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1688 dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg); 1689 1690 if (agg->dtagd_nrecs == 0) 1691 return (DTRACE_AGGWALK_NEXT); 1692 1693 if (agg->dtagd_varid != id) 1694 return (DTRACE_AGGWALK_NEXT); 1695 1696 return (DTRACE_AGGWALK_CLEAR); 1697 } 1698 1699 typedef struct dt_trunc { 1700 dtrace_aggvarid_t dttd_id; 1701 uint64_t dttd_remaining; 1702 } dt_trunc_t; 1703 1704 static int 1705 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg) 1706 { 1707 dt_trunc_t *trunc = arg; 1708 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1709 dtrace_aggvarid_t id = trunc->dttd_id; 1710 1711 if (agg->dtagd_nrecs == 0) 1712 return (DTRACE_AGGWALK_NEXT); 1713 1714 if (agg->dtagd_varid != id) 1715 return (DTRACE_AGGWALK_NEXT); 1716 1717 if (trunc->dttd_remaining == 0) 1718 return (DTRACE_AGGWALK_REMOVE); 1719 1720 trunc->dttd_remaining--; 1721 return (DTRACE_AGGWALK_NEXT); 1722 } 1723 1724 static int 1725 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec) 1726 { 1727 dt_trunc_t trunc; 1728 caddr_t addr; 1729 int64_t remaining; 1730 int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *); 1731 1732 /* 1733 * We (should) have two records: the aggregation ID followed by the 1734 * number of aggregation entries after which the aggregation is to be 1735 * truncated. 1736 */ 1737 addr = base + rec->dtrd_offset; 1738 1739 if (rec->dtrd_size != sizeof (dtrace_aggvarid_t)) 1740 return (dt_set_errno(dtp, EDT_BADTRUNC)); 1741 1742 /* LINTED - alignment */ 1743 trunc.dttd_id = *((dtrace_aggvarid_t *)addr); 1744 rec++; 1745 1746 if (rec->dtrd_action != DTRACEACT_LIBACT) 1747 return (dt_set_errno(dtp, EDT_BADTRUNC)); 1748 1749 if (rec->dtrd_arg != DT_ACT_TRUNC) 1750 return (dt_set_errno(dtp, EDT_BADTRUNC)); 1751 1752 addr = base + rec->dtrd_offset; 1753 1754 switch (rec->dtrd_size) { 1755 case sizeof (uint64_t): 1756 /* LINTED - alignment */ 1757 remaining = *((int64_t *)addr); 1758 break; 1759 case sizeof (uint32_t): 1760 /* LINTED - alignment */ 1761 remaining = *((int32_t *)addr); 1762 break; 1763 case sizeof (uint16_t): 1764 /* LINTED - alignment */ 1765 remaining = *((int16_t *)addr); 1766 break; 1767 case sizeof (uint8_t): 1768 remaining = *((int8_t *)addr); 1769 break; 1770 default: 1771 return (dt_set_errno(dtp, EDT_BADNORMAL)); 1772 } 1773 1774 if (remaining < 0) { 1775 func = dtrace_aggregate_walk_valsorted; 1776 remaining = -remaining; 1777 } else { 1778 func = dtrace_aggregate_walk_valrevsorted; 1779 } 1780 1781 assert(remaining >= 0); 1782 trunc.dttd_remaining = remaining; 1783 1784 (void) func(dtp, dt_trunc_agg, &trunc); 1785 1786 return (0); 1787 } 1788 1789 static int 1790 dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec, 1791 caddr_t addr, size_t size, const dtrace_aggdata_t *aggdata, 1792 uint64_t normal, dt_print_aggdata_t *pd) 1793 { 1794 int err, width; 1795 dtrace_actkind_t act = rec->dtrd_action; 1796 boolean_t packed = pd->dtpa_agghist || pd->dtpa_aggpack; 1797 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1798 1799 static struct { 1800 size_t size; 1801 int width; 1802 int packedwidth; 1803 } *fmt, fmttab[] = { 1804 { sizeof (uint8_t), 3, 3 }, 1805 { sizeof (uint16_t), 5, 5 }, 1806 { sizeof (uint32_t), 8, 8 }, 1807 { sizeof (uint64_t), 16, 16 }, 1808 { 0, -50, 16 } 1809 }; 1810 1811 if (packed && pd->dtpa_agghisthdr != agg->dtagd_varid) { 1812 dtrace_recdesc_t *r; 1813 1814 width = 0; 1815 1816 /* 1817 * To print our quantization header for either an agghist or 1818 * aggpack aggregation, we need to iterate through all of our 1819 * of our records to determine their width. 1820 */ 1821 for (r = rec; !DTRACEACT_ISAGG(r->dtrd_action); r++) { 1822 for (fmt = fmttab; fmt->size && 1823 fmt->size != r->dtrd_size; fmt++) 1824 continue; 1825 1826 width += fmt->packedwidth + 1; 1827 } 1828 1829 if (pd->dtpa_agghist) { 1830 if (dt_print_quanthdr(dtp, fp, width) < 0) 1831 return (-1); 1832 } else { 1833 if (dt_print_quanthdr_packed(dtp, fp, 1834 width, aggdata, r->dtrd_action) < 0) 1835 return (-1); 1836 } 1837 1838 pd->dtpa_agghisthdr = agg->dtagd_varid; 1839 } 1840 1841 if (pd->dtpa_agghist && DTRACEACT_ISAGG(act)) { 1842 char positives = aggdata->dtada_flags & DTRACE_A_HASPOSITIVES; 1843 char negatives = aggdata->dtada_flags & DTRACE_A_HASNEGATIVES; 1844 int64_t val; 1845 1846 assert(act == DTRACEAGG_SUM || act == DTRACEAGG_COUNT); 1847 val = (long long)*((uint64_t *)addr); 1848 1849 if (dt_printf(dtp, fp, " ") < 0) 1850 return (-1); 1851 1852 return (dt_print_quantline(dtp, fp, val, normal, 1853 aggdata->dtada_total, positives, negatives)); 1854 } 1855 1856 if (pd->dtpa_aggpack && DTRACEACT_ISAGG(act)) { 1857 switch (act) { 1858 case DTRACEAGG_QUANTIZE: 1859 return (dt_print_quantize_packed(dtp, 1860 fp, addr, size, aggdata)); 1861 case DTRACEAGG_LQUANTIZE: 1862 return (dt_print_lquantize_packed(dtp, 1863 fp, addr, size, aggdata)); 1864 default: 1865 break; 1866 } 1867 } 1868 1869 switch (act) { 1870 case DTRACEACT_STACK: 1871 return (dt_print_stack(dtp, fp, NULL, addr, 1872 rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg)); 1873 1874 case DTRACEACT_USTACK: 1875 case DTRACEACT_JSTACK: 1876 return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg)); 1877 1878 case DTRACEACT_USYM: 1879 case DTRACEACT_UADDR: 1880 return (dt_print_usym(dtp, fp, addr, act)); 1881 1882 case DTRACEACT_UMOD: 1883 return (dt_print_umod(dtp, fp, NULL, addr)); 1884 1885 case DTRACEACT_SYM: 1886 return (dt_print_sym(dtp, fp, NULL, addr)); 1887 1888 case DTRACEACT_MOD: 1889 return (dt_print_mod(dtp, fp, NULL, addr)); 1890 1891 case DTRACEAGG_QUANTIZE: 1892 return (dt_print_quantize(dtp, fp, addr, size, normal)); 1893 1894 case DTRACEAGG_LQUANTIZE: 1895 return (dt_print_lquantize(dtp, fp, addr, size, normal)); 1896 1897 case DTRACEAGG_LLQUANTIZE: 1898 return (dt_print_llquantize(dtp, fp, addr, size, normal)); 1899 1900 case DTRACEAGG_AVG: 1901 return (dt_print_average(dtp, fp, addr, size, normal)); 1902 1903 case DTRACEAGG_STDDEV: 1904 return (dt_print_stddev(dtp, fp, addr, size, normal)); 1905 1906 default: 1907 break; 1908 } 1909 1910 for (fmt = fmttab; fmt->size && fmt->size != size; fmt++) 1911 continue; 1912 1913 width = packed ? fmt->packedwidth : fmt->width; 1914 1915 switch (size) { 1916 case sizeof (uint64_t): 1917 err = dt_printf(dtp, fp, " %*lld", width, 1918 /* LINTED - alignment */ 1919 (long long)*((uint64_t *)addr) / normal); 1920 break; 1921 case sizeof (uint32_t): 1922 /* LINTED - alignment */ 1923 err = dt_printf(dtp, fp, " %*d", width, *((uint32_t *)addr) / 1924 (uint32_t)normal); 1925 break; 1926 case sizeof (uint16_t): 1927 /* LINTED - alignment */ 1928 err = dt_printf(dtp, fp, " %*d", width, *((uint16_t *)addr) / 1929 (uint32_t)normal); 1930 break; 1931 case sizeof (uint8_t): 1932 err = dt_printf(dtp, fp, " %*d", width, *((uint8_t *)addr) / 1933 (uint32_t)normal); 1934 break; 1935 default: 1936 err = dt_print_bytes(dtp, fp, addr, size, width, 0, 0); 1937 break; 1938 } 1939 1940 return (err); 1941 } 1942 1943 int 1944 dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg) 1945 { 1946 int i, aggact = 0; 1947 dt_print_aggdata_t *pd = arg; 1948 const dtrace_aggdata_t *aggdata = aggsdata[0]; 1949 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1950 FILE *fp = pd->dtpa_fp; 1951 dtrace_hdl_t *dtp = pd->dtpa_dtp; 1952 dtrace_recdesc_t *rec; 1953 dtrace_actkind_t act; 1954 caddr_t addr; 1955 size_t size; 1956 1957 pd->dtpa_agghist = (aggdata->dtada_flags & DTRACE_A_TOTAL); 1958 pd->dtpa_aggpack = (aggdata->dtada_flags & DTRACE_A_MINMAXBIN); 1959 1960 /* 1961 * Iterate over each record description in the key, printing the traced 1962 * data, skipping the first datum (the tuple member created by the 1963 * compiler). 1964 */ 1965 for (i = 1; i < agg->dtagd_nrecs; i++) { 1966 rec = &agg->dtagd_rec[i]; 1967 act = rec->dtrd_action; 1968 addr = aggdata->dtada_data + rec->dtrd_offset; 1969 size = rec->dtrd_size; 1970 1971 if (DTRACEACT_ISAGG(act)) { 1972 aggact = i; 1973 break; 1974 } 1975 1976 if (dt_print_datum(dtp, fp, rec, addr, 1977 size, aggdata, 1, pd) < 0) 1978 return (-1); 1979 1980 if (dt_buffered_flush(dtp, NULL, rec, aggdata, 1981 DTRACE_BUFDATA_AGGKEY) < 0) 1982 return (-1); 1983 } 1984 1985 assert(aggact != 0); 1986 1987 for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) { 1988 uint64_t normal; 1989 1990 aggdata = aggsdata[i]; 1991 agg = aggdata->dtada_desc; 1992 rec = &agg->dtagd_rec[aggact]; 1993 act = rec->dtrd_action; 1994 addr = aggdata->dtada_data + rec->dtrd_offset; 1995 size = rec->dtrd_size; 1996 1997 assert(DTRACEACT_ISAGG(act)); 1998 normal = aggdata->dtada_normal; 1999 2000 if (dt_print_datum(dtp, fp, rec, addr, 2001 size, aggdata, normal, pd) < 0) 2002 return (-1); 2003 2004 if (dt_buffered_flush(dtp, NULL, rec, aggdata, 2005 DTRACE_BUFDATA_AGGVAL) < 0) 2006 return (-1); 2007 2008 if (!pd->dtpa_allunprint) 2009 agg->dtagd_flags |= DTRACE_AGD_PRINTED; 2010 } 2011 2012 if (!pd->dtpa_agghist && !pd->dtpa_aggpack) { 2013 if (dt_printf(dtp, fp, "\n") < 0) 2014 return (-1); 2015 } 2016 2017 if (dt_buffered_flush(dtp, NULL, NULL, aggdata, 2018 DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0) 2019 return (-1); 2020 2021 return (0); 2022 } 2023 2024 int 2025 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg) 2026 { 2027 dt_print_aggdata_t *pd = arg; 2028 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 2029 dtrace_aggvarid_t aggvarid = pd->dtpa_id; 2030 2031 if (pd->dtpa_allunprint) { 2032 if (agg->dtagd_flags & DTRACE_AGD_PRINTED) 2033 return (0); 2034 } else { 2035 /* 2036 * If we're not printing all unprinted aggregations, then the 2037 * aggregation variable ID denotes a specific aggregation 2038 * variable that we should print -- skip any other aggregations 2039 * that we encounter. 2040 */ 2041 if (agg->dtagd_nrecs == 0) 2042 return (0); 2043 2044 if (aggvarid != agg->dtagd_varid) 2045 return (0); 2046 } 2047 2048 return (dt_print_aggs(&aggdata, 1, arg)); 2049 } 2050 2051 int 2052 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data, 2053 const char *option, const char *value) 2054 { 2055 int len, rval; 2056 char *msg; 2057 const char *errstr; 2058 dtrace_setoptdata_t optdata; 2059 2060 bzero(&optdata, sizeof (optdata)); 2061 (void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval); 2062 2063 if (dtrace_setopt(dtp, option, value) == 0) { 2064 (void) dtrace_getopt(dtp, option, &optdata.dtsda_newval); 2065 optdata.dtsda_probe = data; 2066 optdata.dtsda_option = option; 2067 optdata.dtsda_handle = dtp; 2068 2069 if ((rval = dt_handle_setopt(dtp, &optdata)) != 0) 2070 return (rval); 2071 2072 return (0); 2073 } 2074 2075 errstr = dtrace_errmsg(dtp, dtrace_errno(dtp)); 2076 len = strlen(option) + strlen(value) + strlen(errstr) + 80; 2077 msg = alloca(len); 2078 2079 (void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n", 2080 option, value, errstr); 2081 2082 if ((rval = dt_handle_liberr(dtp, data, msg)) == 0) 2083 return (0); 2084 2085 return (rval); 2086 } 2087 2088 static int 2089 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu, 2090 dtrace_bufdesc_t *buf, boolean_t just_one, 2091 dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg) 2092 { 2093 dtrace_epid_t id; 2094 size_t offs; 2095 int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET); 2096 int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET); 2097 int rval, i, n; 2098 uint64_t tracememsize = 0; 2099 dtrace_probedata_t data; 2100 uint64_t drops; 2101 2102 bzero(&data, sizeof (data)); 2103 data.dtpda_handle = dtp; 2104 data.dtpda_cpu = cpu; 2105 data.dtpda_flow = dtp->dt_flow; 2106 data.dtpda_indent = dtp->dt_indent; 2107 data.dtpda_prefix = dtp->dt_prefix; 2108 2109 for (offs = buf->dtbd_oldest; offs < buf->dtbd_size; ) { 2110 dtrace_eprobedesc_t *epd; 2111 2112 /* 2113 * We're guaranteed to have an ID. 2114 */ 2115 id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs); 2116 2117 if (id == DTRACE_EPIDNONE) { 2118 /* 2119 * This is filler to assure proper alignment of the 2120 * next record; we simply ignore it. 2121 */ 2122 offs += sizeof (id); 2123 continue; 2124 } 2125 2126 if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc, 2127 &data.dtpda_pdesc)) != 0) 2128 return (rval); 2129 2130 epd = data.dtpda_edesc; 2131 data.dtpda_data = buf->dtbd_data + offs; 2132 2133 if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) { 2134 rval = dt_handle(dtp, &data); 2135 2136 if (rval == DTRACE_CONSUME_NEXT) 2137 goto nextepid; 2138 2139 if (rval == DTRACE_CONSUME_ERROR) 2140 return (-1); 2141 } 2142 2143 if (flow) 2144 (void) dt_flowindent(dtp, &data, dtp->dt_last_epid, 2145 buf, offs); 2146 2147 rval = (*efunc)(&data, arg); 2148 2149 if (flow) { 2150 if (data.dtpda_flow == DTRACEFLOW_ENTRY) 2151 data.dtpda_indent += 2; 2152 } 2153 2154 if (rval == DTRACE_CONSUME_NEXT) 2155 goto nextepid; 2156 2157 if (rval == DTRACE_CONSUME_ABORT) 2158 return (dt_set_errno(dtp, EDT_DIRABORT)); 2159 2160 if (rval != DTRACE_CONSUME_THIS) 2161 return (dt_set_errno(dtp, EDT_BADRVAL)); 2162 2163 for (i = 0; i < epd->dtepd_nrecs; i++) { 2164 caddr_t addr; 2165 dtrace_recdesc_t *rec = &epd->dtepd_rec[i]; 2166 dtrace_actkind_t act = rec->dtrd_action; 2167 2168 data.dtpda_data = buf->dtbd_data + offs + 2169 rec->dtrd_offset; 2170 addr = data.dtpda_data; 2171 2172 if (act == DTRACEACT_LIBACT) { 2173 uint64_t arg = rec->dtrd_arg; 2174 dtrace_aggvarid_t id; 2175 2176 switch (arg) { 2177 case DT_ACT_CLEAR: 2178 /* LINTED - alignment */ 2179 id = *((dtrace_aggvarid_t *)addr); 2180 (void) dtrace_aggregate_walk(dtp, 2181 dt_clear_agg, &id); 2182 continue; 2183 2184 case DT_ACT_DENORMALIZE: 2185 /* LINTED - alignment */ 2186 id = *((dtrace_aggvarid_t *)addr); 2187 (void) dtrace_aggregate_walk(dtp, 2188 dt_denormalize_agg, &id); 2189 continue; 2190 2191 case DT_ACT_FTRUNCATE: 2192 if (fp == NULL) 2193 continue; 2194 2195 (void) fflush(fp); 2196 (void) ftruncate(fileno(fp), 0); 2197 (void) fseeko(fp, 0, SEEK_SET); 2198 continue; 2199 2200 case DT_ACT_NORMALIZE: 2201 if (i == epd->dtepd_nrecs - 1) 2202 return (dt_set_errno(dtp, 2203 EDT_BADNORMAL)); 2204 2205 if (dt_normalize(dtp, 2206 buf->dtbd_data + offs, rec) != 0) 2207 return (-1); 2208 2209 i++; 2210 continue; 2211 2212 case DT_ACT_SETOPT: { 2213 uint64_t *opts = dtp->dt_options; 2214 dtrace_recdesc_t *valrec; 2215 uint32_t valsize; 2216 caddr_t val; 2217 int rv; 2218 2219 if (i == epd->dtepd_nrecs - 1) { 2220 return (dt_set_errno(dtp, 2221 EDT_BADSETOPT)); 2222 } 2223 2224 valrec = &epd->dtepd_rec[++i]; 2225 valsize = valrec->dtrd_size; 2226 2227 if (valrec->dtrd_action != act || 2228 valrec->dtrd_arg != arg) { 2229 return (dt_set_errno(dtp, 2230 EDT_BADSETOPT)); 2231 } 2232 2233 if (valsize > sizeof (uint64_t)) { 2234 val = buf->dtbd_data + offs + 2235 valrec->dtrd_offset; 2236 } else { 2237 val = "1"; 2238 } 2239 2240 rv = dt_setopt(dtp, &data, addr, val); 2241 2242 if (rv != 0) 2243 return (-1); 2244 2245 flow = (opts[DTRACEOPT_FLOWINDENT] != 2246 DTRACEOPT_UNSET); 2247 quiet = (opts[DTRACEOPT_QUIET] != 2248 DTRACEOPT_UNSET); 2249 2250 continue; 2251 } 2252 2253 case DT_ACT_TRUNC: 2254 if (i == epd->dtepd_nrecs - 1) 2255 return (dt_set_errno(dtp, 2256 EDT_BADTRUNC)); 2257 2258 if (dt_trunc(dtp, 2259 buf->dtbd_data + offs, rec) != 0) 2260 return (-1); 2261 2262 i++; 2263 continue; 2264 2265 default: 2266 continue; 2267 } 2268 } 2269 2270 if (act == DTRACEACT_TRACEMEM_DYNSIZE && 2271 rec->dtrd_size == sizeof (uint64_t)) { 2272 /* LINTED - alignment */ 2273 tracememsize = *((unsigned long long *)addr); 2274 continue; 2275 } 2276 2277 rval = (*rfunc)(&data, rec, arg); 2278 2279 if (rval == DTRACE_CONSUME_NEXT) 2280 continue; 2281 2282 if (rval == DTRACE_CONSUME_ABORT) 2283 return (dt_set_errno(dtp, EDT_DIRABORT)); 2284 2285 if (rval != DTRACE_CONSUME_THIS) 2286 return (dt_set_errno(dtp, EDT_BADRVAL)); 2287 2288 if (act == DTRACEACT_STACK) { 2289 int depth = rec->dtrd_arg; 2290 2291 if (dt_print_stack(dtp, fp, NULL, addr, depth, 2292 rec->dtrd_size / depth) < 0) 2293 return (-1); 2294 goto nextrec; 2295 } 2296 2297 if (act == DTRACEACT_USTACK || 2298 act == DTRACEACT_JSTACK) { 2299 if (dt_print_ustack(dtp, fp, NULL, 2300 addr, rec->dtrd_arg) < 0) 2301 return (-1); 2302 goto nextrec; 2303 } 2304 2305 if (act == DTRACEACT_SYM) { 2306 if (dt_print_sym(dtp, fp, NULL, addr) < 0) 2307 return (-1); 2308 goto nextrec; 2309 } 2310 2311 if (act == DTRACEACT_MOD) { 2312 if (dt_print_mod(dtp, fp, NULL, addr) < 0) 2313 return (-1); 2314 goto nextrec; 2315 } 2316 2317 if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) { 2318 if (dt_print_usym(dtp, fp, addr, act) < 0) 2319 return (-1); 2320 goto nextrec; 2321 } 2322 2323 if (act == DTRACEACT_UMOD) { 2324 if (dt_print_umod(dtp, fp, NULL, addr) < 0) 2325 return (-1); 2326 goto nextrec; 2327 } 2328 2329 if (DTRACEACT_ISPRINTFLIKE(act)) { 2330 void *fmtdata; 2331 int (*func)(dtrace_hdl_t *, FILE *, void *, 2332 const dtrace_probedata_t *, 2333 const dtrace_recdesc_t *, uint_t, 2334 const void *buf, size_t); 2335 2336 if ((fmtdata = dt_format_lookup(dtp, 2337 rec->dtrd_format)) == NULL) 2338 goto nofmt; 2339 2340 switch (act) { 2341 case DTRACEACT_PRINTF: 2342 func = dtrace_fprintf; 2343 break; 2344 case DTRACEACT_PRINTA: 2345 func = dtrace_fprinta; 2346 break; 2347 case DTRACEACT_SYSTEM: 2348 func = dtrace_system; 2349 break; 2350 case DTRACEACT_FREOPEN: 2351 func = dtrace_freopen; 2352 break; 2353 } 2354 2355 n = (*func)(dtp, fp, fmtdata, &data, 2356 rec, epd->dtepd_nrecs - i, 2357 (uchar_t *)buf->dtbd_data + offs, 2358 buf->dtbd_size - offs); 2359 2360 if (n < 0) 2361 return (-1); /* errno is set for us */ 2362 2363 if (n > 0) 2364 i += n - 1; 2365 goto nextrec; 2366 } 2367 2368 /* 2369 * If this is a DIF expression, and the record has a 2370 * format set, this indicates we have a CTF type name 2371 * associated with the data and we should try to print 2372 * it out by type. 2373 */ 2374 if (act == DTRACEACT_DIFEXPR) { 2375 const char *strdata = dt_strdata_lookup(dtp, 2376 rec->dtrd_format); 2377 if (strdata != NULL) { 2378 n = dtrace_print(dtp, fp, strdata, 2379 addr, rec->dtrd_size); 2380 2381 /* 2382 * dtrace_print() will return -1 on 2383 * error, or return the number of bytes 2384 * consumed. It will return 0 if the 2385 * type couldn't be determined, and we 2386 * should fall through to the normal 2387 * trace method. 2388 */ 2389 if (n < 0) 2390 return (-1); 2391 2392 if (n > 0) 2393 goto nextrec; 2394 } 2395 } 2396 2397 nofmt: 2398 if (act == DTRACEACT_PRINTA) { 2399 dt_print_aggdata_t pd; 2400 dtrace_aggvarid_t *aggvars; 2401 int j, naggvars = 0; 2402 size_t size = ((epd->dtepd_nrecs - i) * 2403 sizeof (dtrace_aggvarid_t)); 2404 2405 if ((aggvars = dt_alloc(dtp, size)) == NULL) 2406 return (-1); 2407 2408 /* 2409 * This might be a printa() with multiple 2410 * aggregation variables. We need to scan 2411 * forward through the records until we find 2412 * a record from a different statement. 2413 */ 2414 for (j = i; j < epd->dtepd_nrecs; j++) { 2415 dtrace_recdesc_t *nrec; 2416 caddr_t naddr; 2417 2418 nrec = &epd->dtepd_rec[j]; 2419 2420 if (nrec->dtrd_uarg != rec->dtrd_uarg) 2421 break; 2422 2423 if (nrec->dtrd_action != act) { 2424 return (dt_set_errno(dtp, 2425 EDT_BADAGG)); 2426 } 2427 2428 naddr = buf->dtbd_data + offs + 2429 nrec->dtrd_offset; 2430 2431 aggvars[naggvars++] = 2432 /* LINTED - alignment */ 2433 *((dtrace_aggvarid_t *)naddr); 2434 } 2435 2436 i = j - 1; 2437 bzero(&pd, sizeof (pd)); 2438 pd.dtpa_dtp = dtp; 2439 pd.dtpa_fp = fp; 2440 2441 assert(naggvars >= 1); 2442 2443 if (naggvars == 1) { 2444 pd.dtpa_id = aggvars[0]; 2445 dt_free(dtp, aggvars); 2446 2447 if (dt_printf(dtp, fp, "\n") < 0 || 2448 dtrace_aggregate_walk_sorted(dtp, 2449 dt_print_agg, &pd) < 0) 2450 return (-1); 2451 goto nextrec; 2452 } 2453 2454 if (dt_printf(dtp, fp, "\n") < 0 || 2455 dtrace_aggregate_walk_joined(dtp, aggvars, 2456 naggvars, dt_print_aggs, &pd) < 0) { 2457 dt_free(dtp, aggvars); 2458 return (-1); 2459 } 2460 2461 dt_free(dtp, aggvars); 2462 goto nextrec; 2463 } 2464 2465 if (act == DTRACEACT_TRACEMEM) { 2466 if (tracememsize == 0 || 2467 tracememsize > rec->dtrd_size) { 2468 tracememsize = rec->dtrd_size; 2469 } 2470 2471 n = dt_print_bytes(dtp, fp, addr, 2472 tracememsize, -33, quiet, 1); 2473 2474 tracememsize = 0; 2475 2476 if (n < 0) 2477 return (-1); 2478 2479 goto nextrec; 2480 } 2481 2482 switch (rec->dtrd_size) { 2483 case sizeof (uint64_t): 2484 n = dt_printf(dtp, fp, 2485 quiet ? "%lld" : " %16lld", 2486 /* LINTED - alignment */ 2487 *((unsigned long long *)addr)); 2488 break; 2489 case sizeof (uint32_t): 2490 n = dt_printf(dtp, fp, quiet ? "%d" : " %8d", 2491 /* LINTED - alignment */ 2492 *((uint32_t *)addr)); 2493 break; 2494 case sizeof (uint16_t): 2495 n = dt_printf(dtp, fp, quiet ? "%d" : " %5d", 2496 /* LINTED - alignment */ 2497 *((uint16_t *)addr)); 2498 break; 2499 case sizeof (uint8_t): 2500 n = dt_printf(dtp, fp, quiet ? "%d" : " %3d", 2501 *((uint8_t *)addr)); 2502 break; 2503 default: 2504 n = dt_print_bytes(dtp, fp, addr, 2505 rec->dtrd_size, -33, quiet, 0); 2506 break; 2507 } 2508 2509 if (n < 0) 2510 return (-1); /* errno is set for us */ 2511 2512 nextrec: 2513 if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0) 2514 return (-1); /* errno is set for us */ 2515 } 2516 2517 /* 2518 * Call the record callback with a NULL record to indicate 2519 * that we're done processing this EPID. 2520 */ 2521 rval = (*rfunc)(&data, NULL, arg); 2522 nextepid: 2523 offs += epd->dtepd_size; 2524 dtp->dt_last_epid = id; 2525 if (just_one) { 2526 buf->dtbd_oldest = offs; 2527 break; 2528 } 2529 } 2530 2531 dtp->dt_flow = data.dtpda_flow; 2532 dtp->dt_indent = data.dtpda_indent; 2533 dtp->dt_prefix = data.dtpda_prefix; 2534 2535 if ((drops = buf->dtbd_drops) == 0) 2536 return (0); 2537 2538 /* 2539 * Explicitly zero the drops to prevent us from processing them again. 2540 */ 2541 buf->dtbd_drops = 0; 2542 2543 return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops)); 2544 } 2545 2546 /* 2547 * Reduce memory usage by shrinking the buffer if it's no more than half full. 2548 * Note, we need to preserve the alignment of the data at dtbd_oldest, which is 2549 * only 4-byte aligned. 2550 */ 2551 static void 2552 dt_realloc_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf, int cursize) 2553 { 2554 uint64_t used = buf->dtbd_size - buf->dtbd_oldest; 2555 if (used < cursize / 2) { 2556 int misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1); 2557 char *newdata = dt_alloc(dtp, used + misalign); 2558 if (newdata == NULL) 2559 return; 2560 bzero(newdata, misalign); 2561 bcopy(buf->dtbd_data + buf->dtbd_oldest, 2562 newdata + misalign, used); 2563 dt_free(dtp, buf->dtbd_data); 2564 buf->dtbd_oldest = misalign; 2565 buf->dtbd_size = used + misalign; 2566 buf->dtbd_data = newdata; 2567 } 2568 } 2569 2570 /* 2571 * If the ring buffer has wrapped, the data is not in order. Rearrange it 2572 * so that it is. Note, we need to preserve the alignment of the data at 2573 * dtbd_oldest, which is only 4-byte aligned. 2574 */ 2575 static int 2576 dt_unring_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf) 2577 { 2578 int misalign; 2579 char *newdata, *ndp; 2580 2581 if (buf->dtbd_oldest == 0) 2582 return (0); 2583 2584 misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1); 2585 newdata = ndp = dt_alloc(dtp, buf->dtbd_size + misalign); 2586 2587 if (newdata == NULL) 2588 return (-1); 2589 2590 assert(0 == (buf->dtbd_size & (sizeof (uint64_t) - 1))); 2591 2592 bzero(ndp, misalign); 2593 ndp += misalign; 2594 2595 bcopy(buf->dtbd_data + buf->dtbd_oldest, ndp, 2596 buf->dtbd_size - buf->dtbd_oldest); 2597 ndp += buf->dtbd_size - buf->dtbd_oldest; 2598 2599 bcopy(buf->dtbd_data, ndp, buf->dtbd_oldest); 2600 2601 dt_free(dtp, buf->dtbd_data); 2602 buf->dtbd_oldest = 0; 2603 buf->dtbd_data = newdata; 2604 buf->dtbd_size += misalign; 2605 2606 return (0); 2607 } 2608 2609 static void 2610 dt_put_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf) 2611 { 2612 dt_free(dtp, buf->dtbd_data); 2613 dt_free(dtp, buf); 2614 } 2615 2616 /* 2617 * Returns 0 on success, in which case *cbp will be filled in if we retrieved 2618 * data, or NULL if there is no data for this CPU. 2619 * Returns -1 on failure and sets dt_errno. 2620 */ 2621 static int 2622 dt_get_buf(dtrace_hdl_t *dtp, int cpu, dtrace_bufdesc_t **bufp) 2623 { 2624 dtrace_optval_t size; 2625 dtrace_bufdesc_t *buf = dt_zalloc(dtp, sizeof (*buf)); 2626 int error; 2627 2628 if (buf == NULL) 2629 return (-1); 2630 2631 (void) dtrace_getopt(dtp, "bufsize", &size); 2632 buf->dtbd_data = dt_alloc(dtp, size); 2633 if (buf->dtbd_data == NULL) { 2634 dt_free(dtp, buf); 2635 return (-1); 2636 } 2637 buf->dtbd_size = size; 2638 buf->dtbd_cpu = cpu; 2639 2640 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) { 2641 dt_put_buf(dtp, buf); 2642 /* 2643 * If we failed with ENOENT, it may be because the 2644 * CPU was unconfigured -- this is okay. Any other 2645 * error, however, is unexpected. 2646 */ 2647 if (errno == ENOENT) { 2648 *bufp = NULL; 2649 return (0); 2650 } 2651 2652 return (dt_set_errno(dtp, errno)); 2653 } 2654 2655 error = dt_unring_buf(dtp, buf); 2656 if (error != 0) { 2657 dt_put_buf(dtp, buf); 2658 return (error); 2659 } 2660 dt_realloc_buf(dtp, buf, size); 2661 2662 *bufp = buf; 2663 return (0); 2664 } 2665 2666 typedef struct dt_begin { 2667 dtrace_consume_probe_f *dtbgn_probefunc; 2668 dtrace_consume_rec_f *dtbgn_recfunc; 2669 void *dtbgn_arg; 2670 dtrace_handle_err_f *dtbgn_errhdlr; 2671 void *dtbgn_errarg; 2672 int dtbgn_beginonly; 2673 } dt_begin_t; 2674 2675 static int 2676 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg) 2677 { 2678 dt_begin_t *begin = arg; 2679 dtrace_probedesc_t *pd = data->dtpda_pdesc; 2680 2681 int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0); 2682 int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0); 2683 2684 if (begin->dtbgn_beginonly) { 2685 if (!(r1 && r2)) 2686 return (DTRACE_CONSUME_NEXT); 2687 } else { 2688 if (r1 && r2) 2689 return (DTRACE_CONSUME_NEXT); 2690 } 2691 2692 /* 2693 * We have a record that we're interested in. Now call the underlying 2694 * probe function... 2695 */ 2696 return (begin->dtbgn_probefunc(data, begin->dtbgn_arg)); 2697 } 2698 2699 static int 2700 dt_consume_begin_record(const dtrace_probedata_t *data, 2701 const dtrace_recdesc_t *rec, void *arg) 2702 { 2703 dt_begin_t *begin = arg; 2704 2705 return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg)); 2706 } 2707 2708 static int 2709 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg) 2710 { 2711 dt_begin_t *begin = (dt_begin_t *)arg; 2712 dtrace_probedesc_t *pd = data->dteda_pdesc; 2713 2714 int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0); 2715 int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0); 2716 2717 if (begin->dtbgn_beginonly) { 2718 if (!(r1 && r2)) 2719 return (DTRACE_HANDLE_OK); 2720 } else { 2721 if (r1 && r2) 2722 return (DTRACE_HANDLE_OK); 2723 } 2724 2725 return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg)); 2726 } 2727 2728 static int 2729 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp, 2730 dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg) 2731 { 2732 /* 2733 * There's this idea that the BEGIN probe should be processed before 2734 * everything else, and that the END probe should be processed after 2735 * anything else. In the common case, this is pretty easy to deal 2736 * with. However, a situation may arise where the BEGIN enabling and 2737 * END enabling are on the same CPU, and some enabling in the middle 2738 * occurred on a different CPU. To deal with this (blech!) we need to 2739 * consume the BEGIN buffer up until the end of the BEGIN probe, and 2740 * then set it aside. We will then process every other CPU, and then 2741 * we'll return to the BEGIN CPU and process the rest of the data 2742 * (which will inevitably include the END probe, if any). Making this 2743 * even more complicated (!) is the library's ERROR enabling. Because 2744 * this enabling is processed before we even get into the consume call 2745 * back, any ERROR firing would result in the library's ERROR enabling 2746 * being processed twice -- once in our first pass (for BEGIN probes), 2747 * and again in our second pass (for everything but BEGIN probes). To 2748 * deal with this, we interpose on the ERROR handler to assure that we 2749 * only process ERROR enablings induced by BEGIN enablings in the 2750 * first pass, and that we only process ERROR enablings _not_ induced 2751 * by BEGIN enablings in the second pass. 2752 */ 2753 2754 dt_begin_t begin; 2755 processorid_t cpu = dtp->dt_beganon; 2756 int rval, i; 2757 static int max_ncpus; 2758 dtrace_bufdesc_t *buf; 2759 2760 dtp->dt_beganon = -1; 2761 2762 if (dt_get_buf(dtp, cpu, &buf) != 0) 2763 return (-1); 2764 if (buf == NULL) 2765 return (0); 2766 2767 if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) { 2768 /* 2769 * This is the simple case. We're either not stopped, or if 2770 * we are, we actually processed any END probes on another 2771 * CPU. We can simply consume this buffer and return. 2772 */ 2773 rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE, 2774 pf, rf, arg); 2775 dt_put_buf(dtp, buf); 2776 return (rval); 2777 } 2778 2779 begin.dtbgn_probefunc = pf; 2780 begin.dtbgn_recfunc = rf; 2781 begin.dtbgn_arg = arg; 2782 begin.dtbgn_beginonly = 1; 2783 2784 /* 2785 * We need to interpose on the ERROR handler to be sure that we 2786 * only process ERRORs induced by BEGIN. 2787 */ 2788 begin.dtbgn_errhdlr = dtp->dt_errhdlr; 2789 begin.dtbgn_errarg = dtp->dt_errarg; 2790 dtp->dt_errhdlr = dt_consume_begin_error; 2791 dtp->dt_errarg = &begin; 2792 2793 rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE, 2794 dt_consume_begin_probe, dt_consume_begin_record, &begin); 2795 2796 dtp->dt_errhdlr = begin.dtbgn_errhdlr; 2797 dtp->dt_errarg = begin.dtbgn_errarg; 2798 2799 if (rval != 0) { 2800 dt_put_buf(dtp, buf); 2801 return (rval); 2802 } 2803 2804 if (max_ncpus == 0) 2805 max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1; 2806 2807 for (i = 0; i < max_ncpus; i++) { 2808 dtrace_bufdesc_t *nbuf; 2809 if (i == cpu) 2810 continue; 2811 2812 if (dt_get_buf(dtp, i, &nbuf) != 0) { 2813 dt_put_buf(dtp, buf); 2814 return (-1); 2815 } 2816 if (nbuf == NULL) 2817 continue; 2818 2819 rval = dt_consume_cpu(dtp, fp, i, nbuf, B_FALSE, 2820 pf, rf, arg); 2821 dt_put_buf(dtp, nbuf); 2822 if (rval != 0) { 2823 dt_put_buf(dtp, buf); 2824 return (rval); 2825 } 2826 } 2827 2828 /* 2829 * Okay -- we're done with the other buffers. Now we want to 2830 * reconsume the first buffer -- but this time we're looking for 2831 * everything _but_ BEGIN. And of course, in order to only consume 2832 * those ERRORs _not_ associated with BEGIN, we need to reinstall our 2833 * ERROR interposition function... 2834 */ 2835 begin.dtbgn_beginonly = 0; 2836 2837 assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr); 2838 assert(begin.dtbgn_errarg == dtp->dt_errarg); 2839 dtp->dt_errhdlr = dt_consume_begin_error; 2840 dtp->dt_errarg = &begin; 2841 2842 rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE, 2843 dt_consume_begin_probe, dt_consume_begin_record, &begin); 2844 2845 dtp->dt_errhdlr = begin.dtbgn_errhdlr; 2846 dtp->dt_errarg = begin.dtbgn_errarg; 2847 2848 return (rval); 2849 } 2850 2851 /* ARGSUSED */ 2852 static uint64_t 2853 dt_buf_oldest(void *elem, void *arg) 2854 { 2855 dtrace_bufdesc_t *buf = elem; 2856 size_t offs = buf->dtbd_oldest; 2857 2858 while (offs < buf->dtbd_size) { 2859 dtrace_rechdr_t *dtrh = 2860 /* LINTED - alignment */ 2861 (dtrace_rechdr_t *)(buf->dtbd_data + offs); 2862 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2863 offs += sizeof (dtrace_epid_t); 2864 } else { 2865 return (DTRACE_RECORD_LOAD_TIMESTAMP(dtrh)); 2866 } 2867 } 2868 2869 /* There are no records left; use the time the buffer was retrieved. */ 2870 return (buf->dtbd_timestamp); 2871 } 2872 2873 int 2874 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp, 2875 dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg) 2876 { 2877 dtrace_optval_t size; 2878 static int max_ncpus; 2879 int i, rval; 2880 dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE]; 2881 hrtime_t now = gethrtime(); 2882 2883 if (dtp->dt_lastswitch != 0) { 2884 if (now - dtp->dt_lastswitch < interval) 2885 return (0); 2886 2887 dtp->dt_lastswitch += interval; 2888 } else { 2889 dtp->dt_lastswitch = now; 2890 } 2891 2892 if (!dtp->dt_active) 2893 return (dt_set_errno(dtp, EINVAL)); 2894 2895 if (max_ncpus == 0) 2896 max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1; 2897 2898 if (pf == NULL) 2899 pf = (dtrace_consume_probe_f *)dt_nullprobe; 2900 2901 if (rf == NULL) 2902 rf = (dtrace_consume_rec_f *)dt_nullrec; 2903 2904 if (dtp->dt_options[DTRACEOPT_TEMPORAL] == DTRACEOPT_UNSET) { 2905 /* 2906 * The output will not be in the order it was traced. Rather, 2907 * we will consume all of the data from each CPU's buffer in 2908 * turn. We apply special handling for the records from BEGIN 2909 * and END probes so that they are consumed first and last, 2910 * respectively. 2911 * 2912 * If we have just begun, we want to first process the CPU that 2913 * executed the BEGIN probe (if any). 2914 */ 2915 if (dtp->dt_active && dtp->dt_beganon != -1 && 2916 (rval = dt_consume_begin(dtp, fp, pf, rf, arg)) != 0) 2917 return (rval); 2918 2919 for (i = 0; i < max_ncpus; i++) { 2920 dtrace_bufdesc_t *buf; 2921 2922 /* 2923 * If we have stopped, we want to process the CPU on 2924 * which the END probe was processed only _after_ we 2925 * have processed everything else. 2926 */ 2927 if (dtp->dt_stopped && (i == dtp->dt_endedon)) 2928 continue; 2929 2930 if (dt_get_buf(dtp, i, &buf) != 0) 2931 return (-1); 2932 if (buf == NULL) 2933 continue; 2934 2935 dtp->dt_flow = 0; 2936 dtp->dt_indent = 0; 2937 dtp->dt_prefix = NULL; 2938 rval = dt_consume_cpu(dtp, fp, i, 2939 buf, B_FALSE, pf, rf, arg); 2940 dt_put_buf(dtp, buf); 2941 if (rval != 0) 2942 return (rval); 2943 } 2944 if (dtp->dt_stopped) { 2945 dtrace_bufdesc_t *buf; 2946 2947 if (dt_get_buf(dtp, dtp->dt_endedon, &buf) != 0) 2948 return (-1); 2949 if (buf == NULL) 2950 return (0); 2951 2952 rval = dt_consume_cpu(dtp, fp, dtp->dt_endedon, 2953 buf, B_FALSE, pf, rf, arg); 2954 dt_put_buf(dtp, buf); 2955 return (rval); 2956 } 2957 } else { 2958 /* 2959 * The output will be in the order it was traced (or for 2960 * speculations, when it was committed). We retrieve a buffer 2961 * from each CPU and put it into a priority queue, which sorts 2962 * based on the first entry in the buffer. This is sufficient 2963 * because entries within a buffer are already sorted. 2964 * 2965 * We then consume records one at a time, always consuming the 2966 * oldest record, as determined by the priority queue. When 2967 * we reach the end of the time covered by these buffers, 2968 * we need to stop and retrieve more records on the next pass. 2969 * The kernel tells us the time covered by each buffer, in 2970 * dtbd_timestamp. The first buffer's timestamp tells us the 2971 * time covered by all buffers, as subsequently retrieved 2972 * buffers will cover to a more recent time. 2973 */ 2974 2975 uint64_t *drops = alloca(max_ncpus * sizeof (uint64_t)); 2976 uint64_t first_timestamp = 0; 2977 uint_t cookie = 0; 2978 dtrace_bufdesc_t *buf; 2979 2980 bzero(drops, max_ncpus * sizeof (uint64_t)); 2981 2982 if (dtp->dt_bufq == NULL) { 2983 dtp->dt_bufq = dt_pq_init(dtp, max_ncpus * 2, 2984 dt_buf_oldest, NULL); 2985 if (dtp->dt_bufq == NULL) /* ENOMEM */ 2986 return (-1); 2987 } 2988 2989 /* Retrieve data from each CPU. */ 2990 (void) dtrace_getopt(dtp, "bufsize", &size); 2991 for (i = 0; i < max_ncpus; i++) { 2992 dtrace_bufdesc_t *buf; 2993 2994 if (dt_get_buf(dtp, i, &buf) != 0) 2995 return (-1); 2996 if (buf != NULL) { 2997 if (first_timestamp == 0) 2998 first_timestamp = buf->dtbd_timestamp; 2999 assert(buf->dtbd_timestamp >= first_timestamp); 3000 3001 dt_pq_insert(dtp->dt_bufq, buf); 3002 drops[i] = buf->dtbd_drops; 3003 buf->dtbd_drops = 0; 3004 } 3005 } 3006 3007 /* Consume records. */ 3008 for (;;) { 3009 dtrace_bufdesc_t *buf = dt_pq_pop(dtp->dt_bufq); 3010 uint64_t timestamp; 3011 3012 if (buf == NULL) 3013 break; 3014 3015 timestamp = dt_buf_oldest(buf, dtp); 3016 if (timestamp == buf->dtbd_timestamp) { 3017 /* 3018 * We've reached the end of the time covered 3019 * by this buffer. If this is the oldest 3020 * buffer, we must do another pass 3021 * to retrieve more data. 3022 */ 3023 dt_put_buf(dtp, buf); 3024 if (timestamp == first_timestamp && 3025 !dtp->dt_stopped) 3026 break; 3027 continue; 3028 } 3029 assert(timestamp >= dtp->dt_last_timestamp); 3030 dtp->dt_last_timestamp = timestamp; 3031 3032 if ((rval = dt_consume_cpu(dtp, fp, 3033 buf->dtbd_cpu, buf, B_TRUE, pf, rf, arg)) != 0) 3034 return (rval); 3035 dt_pq_insert(dtp->dt_bufq, buf); 3036 } 3037 3038 /* Consume drops. */ 3039 for (i = 0; i < max_ncpus; i++) { 3040 if (drops[i] != 0) { 3041 int error = dt_handle_cpudrop(dtp, i, 3042 DTRACEDROP_PRINCIPAL, drops[i]); 3043 if (error != 0) 3044 return (error); 3045 } 3046 } 3047 3048 /* 3049 * Reduce memory usage by re-allocating smaller buffers 3050 * for the "remnants". 3051 */ 3052 while (buf = dt_pq_walk(dtp->dt_bufq, &cookie)) 3053 dt_realloc_buf(dtp, buf, buf->dtbd_size); 3054 } 3055 3056 return (0); 3057 } 3058