xref: /illumos-gate/usr/src/lib/libdtrace/common/dt_consume.c (revision 2c5ec7a875dcd76853e6618614e990f1e8cdd56d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
28  * Copyright (c) 2012 by Delphix. All rights reserved.
29  */
30 
31 #include <stdlib.h>
32 #include <strings.h>
33 #include <errno.h>
34 #include <unistd.h>
35 #include <limits.h>
36 #include <assert.h>
37 #include <ctype.h>
38 #include <alloca.h>
39 #include <dt_impl.h>
40 #include <dt_pq.h>
41 
42 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
43 
44 /*
45  * We declare this here because (1) we need it and (2) we want to avoid a
46  * dependency on libm in libdtrace.
47  */
48 static long double
49 dt_fabsl(long double x)
50 {
51 	if (x < 0)
52 		return (-x);
53 
54 	return (x);
55 }
56 
57 static int
58 dt_ndigits(long long val)
59 {
60 	int rval = 1;
61 	long long cmp = 10;
62 
63 	if (val < 0) {
64 		val = val == INT64_MIN ? INT64_MAX : -val;
65 		rval++;
66 	}
67 
68 	while (val > cmp && cmp > 0) {
69 		rval++;
70 		cmp *= 10;
71 	}
72 
73 	return (rval < 4 ? 4 : rval);
74 }
75 
76 /*
77  * 128-bit arithmetic functions needed to support the stddev() aggregating
78  * action.
79  */
80 static int
81 dt_gt_128(uint64_t *a, uint64_t *b)
82 {
83 	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
84 }
85 
86 static int
87 dt_ge_128(uint64_t *a, uint64_t *b)
88 {
89 	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
90 }
91 
92 static int
93 dt_le_128(uint64_t *a, uint64_t *b)
94 {
95 	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
96 }
97 
98 /*
99  * Shift the 128-bit value in a by b. If b is positive, shift left.
100  * If b is negative, shift right.
101  */
102 static void
103 dt_shift_128(uint64_t *a, int b)
104 {
105 	uint64_t mask;
106 
107 	if (b == 0)
108 		return;
109 
110 	if (b < 0) {
111 		b = -b;
112 		if (b >= 64) {
113 			a[0] = a[1] >> (b - 64);
114 			a[1] = 0;
115 		} else {
116 			a[0] >>= b;
117 			mask = 1LL << (64 - b);
118 			mask -= 1;
119 			a[0] |= ((a[1] & mask) << (64 - b));
120 			a[1] >>= b;
121 		}
122 	} else {
123 		if (b >= 64) {
124 			a[1] = a[0] << (b - 64);
125 			a[0] = 0;
126 		} else {
127 			a[1] <<= b;
128 			mask = a[0] >> (64 - b);
129 			a[1] |= mask;
130 			a[0] <<= b;
131 		}
132 	}
133 }
134 
135 static int
136 dt_nbits_128(uint64_t *a)
137 {
138 	int nbits = 0;
139 	uint64_t tmp[2];
140 	uint64_t zero[2] = { 0, 0 };
141 
142 	tmp[0] = a[0];
143 	tmp[1] = a[1];
144 
145 	dt_shift_128(tmp, -1);
146 	while (dt_gt_128(tmp, zero)) {
147 		dt_shift_128(tmp, -1);
148 		nbits++;
149 	}
150 
151 	return (nbits);
152 }
153 
154 static void
155 dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
156 {
157 	uint64_t result[2];
158 
159 	result[0] = minuend[0] - subtrahend[0];
160 	result[1] = minuend[1] - subtrahend[1] -
161 	    (minuend[0] < subtrahend[0] ? 1 : 0);
162 
163 	difference[0] = result[0];
164 	difference[1] = result[1];
165 }
166 
167 static void
168 dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
169 {
170 	uint64_t result[2];
171 
172 	result[0] = addend1[0] + addend2[0];
173 	result[1] = addend1[1] + addend2[1] +
174 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
175 
176 	sum[0] = result[0];
177 	sum[1] = result[1];
178 }
179 
180 /*
181  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
182  * use native multiplication on those, and then re-combine into the
183  * resulting 128-bit value.
184  *
185  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
186  *     hi1 * hi2 << 64 +
187  *     hi1 * lo2 << 32 +
188  *     hi2 * lo1 << 32 +
189  *     lo1 * lo2
190  */
191 static void
192 dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
193 {
194 	uint64_t hi1, hi2, lo1, lo2;
195 	uint64_t tmp[2];
196 
197 	hi1 = factor1 >> 32;
198 	hi2 = factor2 >> 32;
199 
200 	lo1 = factor1 & DT_MASK_LO;
201 	lo2 = factor2 & DT_MASK_LO;
202 
203 	product[0] = lo1 * lo2;
204 	product[1] = hi1 * hi2;
205 
206 	tmp[0] = hi1 * lo2;
207 	tmp[1] = 0;
208 	dt_shift_128(tmp, 32);
209 	dt_add_128(product, tmp, product);
210 
211 	tmp[0] = hi2 * lo1;
212 	tmp[1] = 0;
213 	dt_shift_128(tmp, 32);
214 	dt_add_128(product, tmp, product);
215 }
216 
217 /*
218  * This is long-hand division.
219  *
220  * We initialize subtrahend by shifting divisor left as far as possible. We
221  * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
222  * subtract and set the appropriate bit in the result.  We then shift
223  * subtrahend right by one bit for the next comparison.
224  */
225 static void
226 dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
227 {
228 	uint64_t result[2] = { 0, 0 };
229 	uint64_t remainder[2];
230 	uint64_t subtrahend[2];
231 	uint64_t divisor_128[2];
232 	uint64_t mask[2] = { 1, 0 };
233 	int log = 0;
234 
235 	assert(divisor != 0);
236 
237 	divisor_128[0] = divisor;
238 	divisor_128[1] = 0;
239 
240 	remainder[0] = dividend[0];
241 	remainder[1] = dividend[1];
242 
243 	subtrahend[0] = divisor;
244 	subtrahend[1] = 0;
245 
246 	while (divisor > 0) {
247 		log++;
248 		divisor >>= 1;
249 	}
250 
251 	dt_shift_128(subtrahend, 128 - log);
252 	dt_shift_128(mask, 128 - log);
253 
254 	while (dt_ge_128(remainder, divisor_128)) {
255 		if (dt_ge_128(remainder, subtrahend)) {
256 			dt_subtract_128(remainder, subtrahend, remainder);
257 			result[0] |= mask[0];
258 			result[1] |= mask[1];
259 		}
260 
261 		dt_shift_128(subtrahend, -1);
262 		dt_shift_128(mask, -1);
263 	}
264 
265 	quotient[0] = result[0];
266 	quotient[1] = result[1];
267 }
268 
269 /*
270  * This is the long-hand method of calculating a square root.
271  * The algorithm is as follows:
272  *
273  * 1. Group the digits by 2 from the right.
274  * 2. Over the leftmost group, find the largest single-digit number
275  *    whose square is less than that group.
276  * 3. Subtract the result of the previous step (2 or 4, depending) and
277  *    bring down the next two-digit group.
278  * 4. For the result R we have so far, find the largest single-digit number
279  *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
280  *    (Note that this is doubling R and performing a decimal left-shift by 1
281  *    and searching for the appropriate decimal to fill the one's place.)
282  *    The value x is the next digit in the square root.
283  * Repeat steps 3 and 4 until the desired precision is reached.  (We're
284  * dealing with integers, so the above is sufficient.)
285  *
286  * In decimal, the square root of 582,734 would be calculated as so:
287  *
288  *     __7__6__3
289  *    | 58 27 34
290  *     -49       (7^2 == 49 => 7 is the first digit in the square root)
291  *      --
292  *       9 27    (Subtract and bring down the next group.)
293  * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
294  *      -----     the square root)
295  *         51 34 (Subtract and bring down the next group.)
296  * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
297  *         -----  the square root)
298  *          5 65 (remainder)
299  *
300  * The above algorithm applies similarly in binary, but note that the
301  * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
302  * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
303  * preceding difference?
304  *
305  * In binary, the square root of 11011011 would be calculated as so:
306  *
307  *     __1__1__1__0
308  *    | 11 01 10 11
309  *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
310  *      --
311  *      10 01 10 11
312  * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
313  *      -----
314  *       1 00 10 11
315  * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
316  *       -------
317  *          1 01 11
318  * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
319  *
320  */
321 static uint64_t
322 dt_sqrt_128(uint64_t *square)
323 {
324 	uint64_t result[2] = { 0, 0 };
325 	uint64_t diff[2] = { 0, 0 };
326 	uint64_t one[2] = { 1, 0 };
327 	uint64_t next_pair[2];
328 	uint64_t next_try[2];
329 	uint64_t bit_pairs, pair_shift;
330 	int i;
331 
332 	bit_pairs = dt_nbits_128(square) / 2;
333 	pair_shift = bit_pairs * 2;
334 
335 	for (i = 0; i <= bit_pairs; i++) {
336 		/*
337 		 * Bring down the next pair of bits.
338 		 */
339 		next_pair[0] = square[0];
340 		next_pair[1] = square[1];
341 		dt_shift_128(next_pair, -pair_shift);
342 		next_pair[0] &= 0x3;
343 		next_pair[1] = 0;
344 
345 		dt_shift_128(diff, 2);
346 		dt_add_128(diff, next_pair, diff);
347 
348 		/*
349 		 * next_try = R << 2 + 1
350 		 */
351 		next_try[0] = result[0];
352 		next_try[1] = result[1];
353 		dt_shift_128(next_try, 2);
354 		dt_add_128(next_try, one, next_try);
355 
356 		if (dt_le_128(next_try, diff)) {
357 			dt_subtract_128(diff, next_try, diff);
358 			dt_shift_128(result, 1);
359 			dt_add_128(result, one, result);
360 		} else {
361 			dt_shift_128(result, 1);
362 		}
363 
364 		pair_shift -= 2;
365 	}
366 
367 	assert(result[1] == 0);
368 
369 	return (result[0]);
370 }
371 
372 uint64_t
373 dt_stddev(uint64_t *data, uint64_t normal)
374 {
375 	uint64_t avg_of_squares[2];
376 	uint64_t square_of_avg[2];
377 	int64_t norm_avg;
378 	uint64_t diff[2];
379 
380 	/*
381 	 * The standard approximation for standard deviation is
382 	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
383 	 * of the average of the squares minus the square of the average.
384 	 * When normalizing, we should divide the sum of x**2 by normal**2.
385 	 */
386 	dt_divide_128(data + 2, normal, avg_of_squares);
387 	dt_divide_128(avg_of_squares, normal, avg_of_squares);
388 	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
389 
390 	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
391 
392 	if (norm_avg < 0)
393 		norm_avg = -norm_avg;
394 
395 	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
396 
397 	dt_subtract_128(avg_of_squares, square_of_avg, diff);
398 
399 	return (dt_sqrt_128(diff));
400 }
401 
402 static int
403 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
404     dtrace_bufdesc_t *buf, size_t offs)
405 {
406 	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
407 	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
408 	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
409 	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
410 	const char *str = NULL;
411 	static const char *e_str[2] = { " -> ", " => " };
412 	static const char *r_str[2] = { " <- ", " <= " };
413 	static const char *ent = "entry", *ret = "return";
414 	static int entlen = 0, retlen = 0;
415 	dtrace_epid_t next, id = epd->dtepd_epid;
416 	int rval;
417 
418 	if (entlen == 0) {
419 		assert(retlen == 0);
420 		entlen = strlen(ent);
421 		retlen = strlen(ret);
422 	}
423 
424 	/*
425 	 * If the name of the probe is "entry" or ends with "-entry", we
426 	 * treat it as an entry; if it is "return" or ends with "-return",
427 	 * we treat it as a return.  (This allows application-provided probes
428 	 * like "method-entry" or "function-entry" to participate in flow
429 	 * indentation -- without accidentally misinterpreting popular probe
430 	 * names like "carpentry", "gentry" or "Coventry".)
431 	 */
432 	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
433 	    (sub == n || sub[-1] == '-')) {
434 		flow = DTRACEFLOW_ENTRY;
435 		str = e_str[strcmp(p, "syscall") == 0];
436 	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
437 	    (sub == n || sub[-1] == '-')) {
438 		flow = DTRACEFLOW_RETURN;
439 		str = r_str[strcmp(p, "syscall") == 0];
440 	}
441 
442 	/*
443 	 * If we're going to indent this, we need to check the ID of our last
444 	 * call.  If we're looking at the same probe ID but a different EPID,
445 	 * we _don't_ want to indent.  (Yes, there are some minor holes in
446 	 * this scheme -- it's a heuristic.)
447 	 */
448 	if (flow == DTRACEFLOW_ENTRY) {
449 		if ((last != DTRACE_EPIDNONE && id != last &&
450 		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
451 			flow = DTRACEFLOW_NONE;
452 	}
453 
454 	/*
455 	 * If we're going to unindent this, it's more difficult to see if
456 	 * we don't actually want to unindent it -- we need to look at the
457 	 * _next_ EPID.
458 	 */
459 	if (flow == DTRACEFLOW_RETURN) {
460 		offs += epd->dtepd_size;
461 
462 		do {
463 			if (offs >= buf->dtbd_size)
464 				goto out;
465 
466 			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
467 
468 			if (next == DTRACE_EPIDNONE)
469 				offs += sizeof (id);
470 		} while (next == DTRACE_EPIDNONE);
471 
472 		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
473 			return (rval);
474 
475 		if (next != id && npd->dtpd_id == pd->dtpd_id)
476 			flow = DTRACEFLOW_NONE;
477 	}
478 
479 out:
480 	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
481 		data->dtpda_prefix = str;
482 	} else {
483 		data->dtpda_prefix = "| ";
484 	}
485 
486 	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
487 		data->dtpda_indent -= 2;
488 
489 	data->dtpda_flow = flow;
490 
491 	return (0);
492 }
493 
494 static int
495 dt_nullprobe()
496 {
497 	return (DTRACE_CONSUME_THIS);
498 }
499 
500 static int
501 dt_nullrec()
502 {
503 	return (DTRACE_CONSUME_NEXT);
504 }
505 
506 static void
507 dt_quantize_total(dtrace_hdl_t *dtp, int64_t datum, long double *total)
508 {
509 	long double val = dt_fabsl((long double)datum);
510 
511 	if (dtp->dt_options[DTRACEOPT_AGGZOOM] == DTRACEOPT_UNSET) {
512 		*total += val;
513 		return;
514 	}
515 
516 	/*
517 	 * If we're zooming in on an aggregation, we want the height of the
518 	 * highest value to be approximately 95% of total bar height -- so we
519 	 * adjust up by the reciprocal of DTRACE_AGGZOOM_MAX when comparing to
520 	 * our highest value.
521 	 */
522 	val *= 1 / DTRACE_AGGZOOM_MAX;
523 
524 	if (*total < val)
525 		*total = val;
526 }
527 
528 static int
529 dt_print_quanthdr(dtrace_hdl_t *dtp, FILE *fp, int width)
530 {
531 	return (dt_printf(dtp, fp, "\n%*s %41s %-9s\n",
532 	    width ? width : 16, width ? "key" : "value",
533 	    "------------- Distribution -------------", "count"));
534 }
535 
536 static int
537 dt_print_quanthdr_packed(dtrace_hdl_t *dtp, FILE *fp, int width,
538     const dtrace_aggdata_t *aggdata, dtrace_actkind_t action)
539 {
540 	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin;
541 	int minwidth, maxwidth, i;
542 
543 	assert(action == DTRACEAGG_QUANTIZE || action == DTRACEAGG_LQUANTIZE);
544 
545 	if (action == DTRACEAGG_QUANTIZE) {
546 		if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
547 			min--;
548 
549 		if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
550 			max++;
551 
552 		minwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(min));
553 		maxwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(max));
554 	} else {
555 		maxwidth = 8;
556 		minwidth = maxwidth - 1;
557 		max++;
558 	}
559 
560 	if (dt_printf(dtp, fp, "\n%*s %*s .",
561 	    width, width > 0 ? "key" : "", minwidth, "min") < 0)
562 		return (-1);
563 
564 	for (i = min; i <= max; i++) {
565 		if (dt_printf(dtp, fp, "-") < 0)
566 			return (-1);
567 	}
568 
569 	return (dt_printf(dtp, fp, ". %*s | count\n", -maxwidth, "max"));
570 }
571 
572 /*
573  * We use a subset of the Unicode Block Elements (U+2588 through U+258F,
574  * inclusive) to represent aggregations via UTF-8 -- which are expressed via
575  * 3-byte UTF-8 sequences.
576  */
577 #define	DTRACE_AGGUTF8_FULL	0x2588
578 #define	DTRACE_AGGUTF8_BASE	0x258f
579 #define	DTRACE_AGGUTF8_LEVELS	8
580 
581 #define	DTRACE_AGGUTF8_BYTE0(val)	(0xe0 | ((val) >> 12))
582 #define	DTRACE_AGGUTF8_BYTE1(val)	(0x80 | (((val) >> 6) & 0x3f))
583 #define	DTRACE_AGGUTF8_BYTE2(val)	(0x80 | ((val) & 0x3f))
584 
585 static int
586 dt_print_quantline_utf8(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
587     uint64_t normal, long double total)
588 {
589 	uint_t len = 40, i, whole, partial;
590 	long double f = (dt_fabsl((long double)val) * len) / total;
591 	const char *spaces = "                                        ";
592 
593 	whole = (uint_t)f;
594 	partial = (uint_t)((f - (long double)(uint_t)f) *
595 	    (long double)DTRACE_AGGUTF8_LEVELS);
596 
597 	if (dt_printf(dtp, fp, "|") < 0)
598 		return (-1);
599 
600 	for (i = 0; i < whole; i++) {
601 		if (dt_printf(dtp, fp, "%c%c%c",
602 		    DTRACE_AGGUTF8_BYTE0(DTRACE_AGGUTF8_FULL),
603 		    DTRACE_AGGUTF8_BYTE1(DTRACE_AGGUTF8_FULL),
604 		    DTRACE_AGGUTF8_BYTE2(DTRACE_AGGUTF8_FULL)) < 0)
605 			return (-1);
606 	}
607 
608 	if (partial != 0) {
609 		partial = DTRACE_AGGUTF8_BASE - (partial - 1);
610 
611 		if (dt_printf(dtp, fp, "%c%c%c",
612 		    DTRACE_AGGUTF8_BYTE0(partial),
613 		    DTRACE_AGGUTF8_BYTE1(partial),
614 		    DTRACE_AGGUTF8_BYTE2(partial)) < 0)
615 			return (-1);
616 
617 		i++;
618 	}
619 
620 	return (dt_printf(dtp, fp, "%s %-9lld\n", spaces + i,
621 	    (long long)val / normal));
622 }
623 
624 static int
625 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
626     uint64_t normal, long double total, char positives, char negatives)
627 {
628 	long double f;
629 	uint_t depth, len = 40;
630 
631 	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
632 	const char *spaces = "                                        ";
633 
634 	assert(strlen(ats) == len && strlen(spaces) == len);
635 	assert(!(total == 0 && (positives || negatives)));
636 	assert(!(val < 0 && !negatives));
637 	assert(!(val > 0 && !positives));
638 	assert(!(val != 0 && total == 0));
639 
640 	if (!negatives) {
641 		if (positives) {
642 			if (dtp->dt_encoding == DT_ENCODING_UTF8) {
643 				return (dt_print_quantline_utf8(dtp, fp, val,
644 				    normal, total));
645 			}
646 
647 			f = (dt_fabsl((long double)val) * len) / total;
648 			depth = (uint_t)(f + 0.5);
649 		} else {
650 			depth = 0;
651 		}
652 
653 		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
654 		    spaces + depth, (long long)val / normal));
655 	}
656 
657 	if (!positives) {
658 		f = (dt_fabsl((long double)val) * len) / total;
659 		depth = (uint_t)(f + 0.5);
660 
661 		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
662 		    ats + len - depth, (long long)val / normal));
663 	}
664 
665 	/*
666 	 * If we're here, we have both positive and negative bucket values.
667 	 * To express this graphically, we're going to generate both positive
668 	 * and negative bars separated by a centerline.  These bars are half
669 	 * the size of normal quantize()/lquantize() bars, so we divide the
670 	 * length in half before calculating the bar length.
671 	 */
672 	len /= 2;
673 	ats = &ats[len];
674 	spaces = &spaces[len];
675 
676 	f = (dt_fabsl((long double)val) * len) / total;
677 	depth = (uint_t)(f + 0.5);
678 
679 	if (val <= 0) {
680 		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
681 		    ats + len - depth, len, "", (long long)val / normal));
682 	} else {
683 		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
684 		    ats + len - depth, spaces + depth,
685 		    (long long)val / normal));
686 	}
687 }
688 
689 /*
690  * As with UTF-8 printing of aggregations, we use a subset of the Unicode
691  * Block Elements (U+2581 through U+2588, inclusive) to represent our packed
692  * aggregation.
693  */
694 #define	DTRACE_AGGPACK_BASE	0x2581
695 #define	DTRACE_AGGPACK_LEVELS	8
696 
697 static int
698 dt_print_packed(dtrace_hdl_t *dtp, FILE *fp,
699     long double datum, long double total)
700 {
701 	static boolean_t utf8_checked = B_FALSE;
702 	static boolean_t utf8;
703 	char *ascii = "__xxxxXX";
704 	char *neg = "vvvvVV";
705 	unsigned int len;
706 	long double val;
707 
708 	if (!utf8_checked) {
709 		char *term;
710 
711 		/*
712 		 * We want to determine if we can reasonably emit UTF-8 for our
713 		 * packed aggregation.  To do this, we will check for terminals
714 		 * that are known to be primitive to emit UTF-8 on these.
715 		 */
716 		utf8_checked = B_TRUE;
717 
718 		if (dtp->dt_encoding == DT_ENCODING_ASCII) {
719 			utf8 = B_FALSE;
720 		} else if (dtp->dt_encoding == DT_ENCODING_UTF8) {
721 			utf8 = B_TRUE;
722 		} else if ((term = getenv("TERM")) != NULL &&
723 		    (strcmp(term, "sun") == 0 ||
724 		    strcmp(term, "sun-color") == 0) ||
725 		    strcmp(term, "dumb") == 0) {
726 			utf8 = B_FALSE;
727 		} else {
728 			utf8 = B_TRUE;
729 		}
730 	}
731 
732 	if (datum == 0)
733 		return (dt_printf(dtp, fp, " "));
734 
735 	if (datum < 0) {
736 		len = strlen(neg);
737 		val = dt_fabsl(datum * (len - 1)) / total;
738 		return (dt_printf(dtp, fp, "%c", neg[(uint_t)(val + 0.5)]));
739 	}
740 
741 	if (utf8) {
742 		int block = DTRACE_AGGPACK_BASE + (unsigned int)(((datum *
743 		    (DTRACE_AGGPACK_LEVELS - 1)) / total) + 0.5);
744 
745 		return (dt_printf(dtp, fp, "%c%c%c",
746 		    DTRACE_AGGUTF8_BYTE0(block),
747 		    DTRACE_AGGUTF8_BYTE1(block),
748 		    DTRACE_AGGUTF8_BYTE2(block)));
749 	}
750 
751 	len = strlen(ascii);
752 	val = (datum * (len - 1)) / total;
753 	return (dt_printf(dtp, fp, "%c", ascii[(uint_t)(val + 0.5)]));
754 }
755 
756 int
757 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
758     size_t size, uint64_t normal)
759 {
760 	const int64_t *data = addr;
761 	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
762 	long double total = 0;
763 	char positives = 0, negatives = 0;
764 
765 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
766 		return (dt_set_errno(dtp, EDT_DMISMATCH));
767 
768 	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
769 		first_bin++;
770 
771 	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
772 		/*
773 		 * There isn't any data.  This is possible if the aggregation
774 		 * has been clear()'d or if negative increment values have been
775 		 * used.  Regardless, we'll print the buckets around 0.
776 		 */
777 		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
778 		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
779 	} else {
780 		if (first_bin > 0)
781 			first_bin--;
782 
783 		while (last_bin > 0 && data[last_bin] == 0)
784 			last_bin--;
785 
786 		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
787 			last_bin++;
788 	}
789 
790 	for (i = first_bin; i <= last_bin; i++) {
791 		positives |= (data[i] > 0);
792 		negatives |= (data[i] < 0);
793 		dt_quantize_total(dtp, data[i], &total);
794 	}
795 
796 	if (dt_print_quanthdr(dtp, fp, 0) < 0)
797 		return (-1);
798 
799 	for (i = first_bin; i <= last_bin; i++) {
800 		if (dt_printf(dtp, fp, "%16lld ",
801 		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
802 			return (-1);
803 
804 		if (dt_print_quantline(dtp, fp, data[i], normal, total,
805 		    positives, negatives) < 0)
806 			return (-1);
807 	}
808 
809 	return (0);
810 }
811 
812 int
813 dt_print_quantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
814     size_t size, const dtrace_aggdata_t *aggdata)
815 {
816 	const int64_t *data = addr;
817 	long double total = 0, count = 0;
818 	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin, i;
819 	int64_t minval, maxval;
820 
821 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
822 		return (dt_set_errno(dtp, EDT_DMISMATCH));
823 
824 	if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
825 		min--;
826 
827 	if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
828 		max++;
829 
830 	minval = DTRACE_QUANTIZE_BUCKETVAL(min);
831 	maxval = DTRACE_QUANTIZE_BUCKETVAL(max);
832 
833 	if (dt_printf(dtp, fp, " %*lld :", dt_ndigits(minval),
834 	    (long long)minval) < 0)
835 		return (-1);
836 
837 	for (i = min; i <= max; i++) {
838 		dt_quantize_total(dtp, data[i], &total);
839 		count += data[i];
840 	}
841 
842 	for (i = min; i <= max; i++) {
843 		if (dt_print_packed(dtp, fp, data[i], total) < 0)
844 			return (-1);
845 	}
846 
847 	if (dt_printf(dtp, fp, ": %*lld | %lld\n",
848 	    -dt_ndigits(maxval), (long long)maxval, (long long)count) < 0)
849 		return (-1);
850 
851 	return (0);
852 }
853 
854 int
855 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
856     size_t size, uint64_t normal)
857 {
858 	const int64_t *data = addr;
859 	int i, first_bin, last_bin, base;
860 	uint64_t arg;
861 	long double total = 0;
862 	uint16_t step, levels;
863 	char positives = 0, negatives = 0;
864 
865 	if (size < sizeof (uint64_t))
866 		return (dt_set_errno(dtp, EDT_DMISMATCH));
867 
868 	arg = *data++;
869 	size -= sizeof (uint64_t);
870 
871 	base = DTRACE_LQUANTIZE_BASE(arg);
872 	step = DTRACE_LQUANTIZE_STEP(arg);
873 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
874 
875 	first_bin = 0;
876 	last_bin = levels + 1;
877 
878 	if (size != sizeof (uint64_t) * (levels + 2))
879 		return (dt_set_errno(dtp, EDT_DMISMATCH));
880 
881 	while (first_bin <= levels + 1 && data[first_bin] == 0)
882 		first_bin++;
883 
884 	if (first_bin > levels + 1) {
885 		first_bin = 0;
886 		last_bin = 2;
887 	} else {
888 		if (first_bin > 0)
889 			first_bin--;
890 
891 		while (last_bin > 0 && data[last_bin] == 0)
892 			last_bin--;
893 
894 		if (last_bin < levels + 1)
895 			last_bin++;
896 	}
897 
898 	for (i = first_bin; i <= last_bin; i++) {
899 		positives |= (data[i] > 0);
900 		negatives |= (data[i] < 0);
901 		dt_quantize_total(dtp, data[i], &total);
902 	}
903 
904 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
905 	    "------------- Distribution -------------", "count") < 0)
906 		return (-1);
907 
908 	for (i = first_bin; i <= last_bin; i++) {
909 		char c[32];
910 		int err;
911 
912 		if (i == 0) {
913 			(void) snprintf(c, sizeof (c), "< %d", base);
914 			err = dt_printf(dtp, fp, "%16s ", c);
915 		} else if (i == levels + 1) {
916 			(void) snprintf(c, sizeof (c), ">= %d",
917 			    base + (levels * step));
918 			err = dt_printf(dtp, fp, "%16s ", c);
919 		} else {
920 			err = dt_printf(dtp, fp, "%16d ",
921 			    base + (i - 1) * step);
922 		}
923 
924 		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
925 		    total, positives, negatives) < 0)
926 			return (-1);
927 	}
928 
929 	return (0);
930 }
931 
932 /*ARGSUSED*/
933 int
934 dt_print_lquantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
935     size_t size, const dtrace_aggdata_t *aggdata)
936 {
937 	const int64_t *data = addr;
938 	long double total = 0, count = 0;
939 	int min, max, base, err;
940 	uint64_t arg;
941 	uint16_t step, levels;
942 	char c[32];
943 	unsigned int i;
944 
945 	if (size < sizeof (uint64_t))
946 		return (dt_set_errno(dtp, EDT_DMISMATCH));
947 
948 	arg = *data++;
949 	size -= sizeof (uint64_t);
950 
951 	base = DTRACE_LQUANTIZE_BASE(arg);
952 	step = DTRACE_LQUANTIZE_STEP(arg);
953 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
954 
955 	if (size != sizeof (uint64_t) * (levels + 2))
956 		return (dt_set_errno(dtp, EDT_DMISMATCH));
957 
958 	min = 0;
959 	max = levels + 1;
960 
961 	if (min == 0) {
962 		(void) snprintf(c, sizeof (c), "< %d", base);
963 		err = dt_printf(dtp, fp, "%8s :", c);
964 	} else {
965 		err = dt_printf(dtp, fp, "%8d :", base + (min - 1) * step);
966 	}
967 
968 	if (err < 0)
969 		return (-1);
970 
971 	for (i = min; i <= max; i++) {
972 		dt_quantize_total(dtp, data[i], &total);
973 		count += data[i];
974 	}
975 
976 	for (i = min; i <= max; i++) {
977 		if (dt_print_packed(dtp, fp, data[i], total) < 0)
978 			return (-1);
979 	}
980 
981 	(void) snprintf(c, sizeof (c), ">= %d", base + (levels * step));
982 	return (dt_printf(dtp, fp, ": %-8s | %lld\n", c, (long long)count));
983 }
984 
985 int
986 dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
987     size_t size, uint64_t normal)
988 {
989 	int i, first_bin, last_bin, bin = 1, order, levels;
990 	uint16_t factor, low, high, nsteps;
991 	const int64_t *data = addr;
992 	int64_t value = 1, next, step;
993 	char positives = 0, negatives = 0;
994 	long double total = 0;
995 	uint64_t arg;
996 	char c[32];
997 
998 	if (size < sizeof (uint64_t))
999 		return (dt_set_errno(dtp, EDT_DMISMATCH));
1000 
1001 	arg = *data++;
1002 	size -= sizeof (uint64_t);
1003 
1004 	factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1005 	low = DTRACE_LLQUANTIZE_LOW(arg);
1006 	high = DTRACE_LLQUANTIZE_HIGH(arg);
1007 	nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1008 
1009 	/*
1010 	 * We don't expect to be handed invalid llquantize() parameters here,
1011 	 * but sanity check them (to a degree) nonetheless.
1012 	 */
1013 	if (size > INT32_MAX || factor < 2 || low >= high ||
1014 	    nsteps == 0 || factor > nsteps)
1015 		return (dt_set_errno(dtp, EDT_DMISMATCH));
1016 
1017 	levels = (int)size / sizeof (uint64_t);
1018 
1019 	first_bin = 0;
1020 	last_bin = levels - 1;
1021 
1022 	while (first_bin < levels && data[first_bin] == 0)
1023 		first_bin++;
1024 
1025 	if (first_bin == levels) {
1026 		first_bin = 0;
1027 		last_bin = 1;
1028 	} else {
1029 		if (first_bin > 0)
1030 			first_bin--;
1031 
1032 		while (last_bin > 0 && data[last_bin] == 0)
1033 			last_bin--;
1034 
1035 		if (last_bin < levels - 1)
1036 			last_bin++;
1037 	}
1038 
1039 	for (i = first_bin; i <= last_bin; i++) {
1040 		positives |= (data[i] > 0);
1041 		negatives |= (data[i] < 0);
1042 		dt_quantize_total(dtp, data[i], &total);
1043 	}
1044 
1045 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
1046 	    "------------- Distribution -------------", "count") < 0)
1047 		return (-1);
1048 
1049 	for (order = 0; order < low; order++)
1050 		value *= factor;
1051 
1052 	next = value * factor;
1053 	step = next > nsteps ? next / nsteps : 1;
1054 
1055 	if (first_bin == 0) {
1056 		(void) snprintf(c, sizeof (c), "< %lld", value);
1057 
1058 		if (dt_printf(dtp, fp, "%16s ", c) < 0)
1059 			return (-1);
1060 
1061 		if (dt_print_quantline(dtp, fp, data[0], normal,
1062 		    total, positives, negatives) < 0)
1063 			return (-1);
1064 	}
1065 
1066 	while (order <= high) {
1067 		if (bin >= first_bin && bin <= last_bin) {
1068 			if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0)
1069 				return (-1);
1070 
1071 			if (dt_print_quantline(dtp, fp, data[bin],
1072 			    normal, total, positives, negatives) < 0)
1073 				return (-1);
1074 		}
1075 
1076 		assert(value < next);
1077 		bin++;
1078 
1079 		if ((value += step) != next)
1080 			continue;
1081 
1082 		next = value * factor;
1083 		step = next > nsteps ? next / nsteps : 1;
1084 		order++;
1085 	}
1086 
1087 	if (last_bin < bin)
1088 		return (0);
1089 
1090 	assert(last_bin == bin);
1091 	(void) snprintf(c, sizeof (c), ">= %lld", value);
1092 
1093 	if (dt_printf(dtp, fp, "%16s ", c) < 0)
1094 		return (-1);
1095 
1096 	return (dt_print_quantline(dtp, fp, data[bin], normal,
1097 	    total, positives, negatives));
1098 }
1099 
1100 /*ARGSUSED*/
1101 static int
1102 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1103     size_t size, uint64_t normal)
1104 {
1105 	/* LINTED - alignment */
1106 	int64_t *data = (int64_t *)addr;
1107 
1108 	return (dt_printf(dtp, fp, " %16lld", data[0] ?
1109 	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
1110 }
1111 
1112 /*ARGSUSED*/
1113 static int
1114 dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1115     size_t size, uint64_t normal)
1116 {
1117 	/* LINTED - alignment */
1118 	uint64_t *data = (uint64_t *)addr;
1119 
1120 	return (dt_printf(dtp, fp, " %16llu", data[0] ?
1121 	    (unsigned long long) dt_stddev(data, normal) : 0));
1122 }
1123 
1124 /*ARGSUSED*/
1125 static int
1126 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1127     size_t nbytes, int width, int quiet, int forceraw)
1128 {
1129 	/*
1130 	 * If the byte stream is a series of printable characters, followed by
1131 	 * a terminating byte, we print it out as a string.  Otherwise, we
1132 	 * assume that it's something else and just print the bytes.
1133 	 */
1134 	int i, j, margin = 5;
1135 	char *c = (char *)addr;
1136 
1137 	if (nbytes == 0)
1138 		return (0);
1139 
1140 	if (forceraw)
1141 		goto raw;
1142 
1143 	if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
1144 		goto raw;
1145 
1146 	for (i = 0; i < nbytes; i++) {
1147 		/*
1148 		 * We define a "printable character" to be one for which
1149 		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
1150 		 * or a character which is either backspace or the bell.
1151 		 * Backspace and the bell are regrettably special because
1152 		 * they fail the first two tests -- and yet they are entirely
1153 		 * printable.  These are the only two control characters that
1154 		 * have meaning for the terminal and for which isprint(3C) and
1155 		 * isspace(3C) return 0.
1156 		 */
1157 		if (isprint(c[i]) || isspace(c[i]) ||
1158 		    c[i] == '\b' || c[i] == '\a')
1159 			continue;
1160 
1161 		if (c[i] == '\0' && i > 0) {
1162 			/*
1163 			 * This looks like it might be a string.  Before we
1164 			 * assume that it is indeed a string, check the
1165 			 * remainder of the byte range; if it contains
1166 			 * additional non-nul characters, we'll assume that
1167 			 * it's a binary stream that just happens to look like
1168 			 * a string, and we'll print out the individual bytes.
1169 			 */
1170 			for (j = i + 1; j < nbytes; j++) {
1171 				if (c[j] != '\0')
1172 					break;
1173 			}
1174 
1175 			if (j != nbytes)
1176 				break;
1177 
1178 			if (quiet) {
1179 				return (dt_printf(dtp, fp, "%s", c));
1180 			} else {
1181 				return (dt_printf(dtp, fp, " %s%*s",
1182 				    width < 0 ? " " : "", width, c));
1183 			}
1184 		}
1185 
1186 		break;
1187 	}
1188 
1189 	if (i == nbytes) {
1190 		/*
1191 		 * The byte range is all printable characters, but there is
1192 		 * no trailing nul byte.  We'll assume that it's a string and
1193 		 * print it as such.
1194 		 */
1195 		char *s = alloca(nbytes + 1);
1196 		bcopy(c, s, nbytes);
1197 		s[nbytes] = '\0';
1198 		return (dt_printf(dtp, fp, "  %-*s", width, s));
1199 	}
1200 
1201 raw:
1202 	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
1203 		return (-1);
1204 
1205 	for (i = 0; i < 16; i++)
1206 		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
1207 			return (-1);
1208 
1209 	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
1210 		return (-1);
1211 
1212 
1213 	for (i = 0; i < nbytes; i += 16) {
1214 		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
1215 			return (-1);
1216 
1217 		for (j = i; j < i + 16 && j < nbytes; j++) {
1218 			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
1219 				return (-1);
1220 		}
1221 
1222 		while (j++ % 16) {
1223 			if (dt_printf(dtp, fp, "   ") < 0)
1224 				return (-1);
1225 		}
1226 
1227 		if (dt_printf(dtp, fp, "  ") < 0)
1228 			return (-1);
1229 
1230 		for (j = i; j < i + 16 && j < nbytes; j++) {
1231 			if (dt_printf(dtp, fp, "%c",
1232 			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
1233 				return (-1);
1234 		}
1235 
1236 		if (dt_printf(dtp, fp, "\n") < 0)
1237 			return (-1);
1238 	}
1239 
1240 	return (0);
1241 }
1242 
1243 int
1244 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1245     caddr_t addr, int depth, int size)
1246 {
1247 	dtrace_syminfo_t dts;
1248 	GElf_Sym sym;
1249 	int i, indent;
1250 	char c[PATH_MAX * 2];
1251 	uint64_t pc;
1252 
1253 	if (dt_printf(dtp, fp, "\n") < 0)
1254 		return (-1);
1255 
1256 	if (format == NULL)
1257 		format = "%s";
1258 
1259 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1260 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1261 	else
1262 		indent = _dtrace_stkindent;
1263 
1264 	for (i = 0; i < depth; i++) {
1265 		switch (size) {
1266 		case sizeof (uint32_t):
1267 			/* LINTED - alignment */
1268 			pc = *((uint32_t *)addr);
1269 			break;
1270 
1271 		case sizeof (uint64_t):
1272 			/* LINTED - alignment */
1273 			pc = *((uint64_t *)addr);
1274 			break;
1275 
1276 		default:
1277 			return (dt_set_errno(dtp, EDT_BADSTACKPC));
1278 		}
1279 
1280 		if (pc == NULL)
1281 			break;
1282 
1283 		addr += size;
1284 
1285 		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
1286 			return (-1);
1287 
1288 		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1289 			if (pc > sym.st_value) {
1290 				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
1291 				    dts.dts_object, dts.dts_name,
1292 				    pc - sym.st_value);
1293 			} else {
1294 				(void) snprintf(c, sizeof (c), "%s`%s",
1295 				    dts.dts_object, dts.dts_name);
1296 			}
1297 		} else {
1298 			/*
1299 			 * We'll repeat the lookup, but this time we'll specify
1300 			 * a NULL GElf_Sym -- indicating that we're only
1301 			 * interested in the containing module.
1302 			 */
1303 			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1304 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1305 				    dts.dts_object, pc);
1306 			} else {
1307 				(void) snprintf(c, sizeof (c), "0x%llx", pc);
1308 			}
1309 		}
1310 
1311 		if (dt_printf(dtp, fp, format, c) < 0)
1312 			return (-1);
1313 
1314 		if (dt_printf(dtp, fp, "\n") < 0)
1315 			return (-1);
1316 	}
1317 
1318 	return (0);
1319 }
1320 
1321 int
1322 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1323     caddr_t addr, uint64_t arg)
1324 {
1325 	/* LINTED - alignment */
1326 	uint64_t *pc = (uint64_t *)addr;
1327 	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
1328 	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
1329 	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
1330 	const char *str = strsize ? strbase : NULL;
1331 	int err = 0;
1332 
1333 	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
1334 	struct ps_prochandle *P;
1335 	GElf_Sym sym;
1336 	int i, indent;
1337 	pid_t pid;
1338 
1339 	if (depth == 0)
1340 		return (0);
1341 
1342 	pid = (pid_t)*pc++;
1343 
1344 	if (dt_printf(dtp, fp, "\n") < 0)
1345 		return (-1);
1346 
1347 	if (format == NULL)
1348 		format = "%s";
1349 
1350 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1351 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1352 	else
1353 		indent = _dtrace_stkindent;
1354 
1355 	/*
1356 	 * Ultimately, we need to add an entry point in the library vector for
1357 	 * determining <symbol, offset> from <pid, address>.  For now, if
1358 	 * this is a vector open, we just print the raw address or string.
1359 	 */
1360 	if (dtp->dt_vector == NULL)
1361 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1362 	else
1363 		P = NULL;
1364 
1365 	if (P != NULL)
1366 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1367 
1368 	for (i = 0; i < depth && pc[i] != NULL; i++) {
1369 		const prmap_t *map;
1370 
1371 		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1372 			break;
1373 
1374 		if (P != NULL && Plookup_by_addr(P, pc[i],
1375 		    name, sizeof (name), &sym) == 0) {
1376 			(void) Pobjname(P, pc[i], objname, sizeof (objname));
1377 
1378 			if (pc[i] > sym.st_value) {
1379 				(void) snprintf(c, sizeof (c),
1380 				    "%s`%s+0x%llx", dt_basename(objname), name,
1381 				    (u_longlong_t)(pc[i] - sym.st_value));
1382 			} else {
1383 				(void) snprintf(c, sizeof (c),
1384 				    "%s`%s", dt_basename(objname), name);
1385 			}
1386 		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
1387 		    (P == NULL || (map = Paddr_to_map(P, pc[i])) == NULL ||
1388 		    map->pr_mflags & MA_WRITE)) {
1389 			/*
1390 			 * If the current string pointer in the string table
1391 			 * does not point to an empty string _and_ the program
1392 			 * counter falls in a writable region, we'll use the
1393 			 * string from the string table instead of the raw
1394 			 * address.  This last condition is necessary because
1395 			 * some (broken) ustack helpers will return a string
1396 			 * even for a program counter that they can't
1397 			 * identify.  If we have a string for a program
1398 			 * counter that falls in a segment that isn't
1399 			 * writable, we assume that we have fallen into this
1400 			 * case and we refuse to use the string.  Finally,
1401 			 * note that if we could not grab the process (e.g.,
1402 			 * because it exited), the information from the helper
1403 			 * is better than nothing.
1404 			 */
1405 			(void) snprintf(c, sizeof (c), "%s", str);
1406 		} else {
1407 			if (P != NULL && Pobjname(P, pc[i], objname,
1408 			    sizeof (objname)) != NULL) {
1409 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1410 				    dt_basename(objname), (u_longlong_t)pc[i]);
1411 			} else {
1412 				(void) snprintf(c, sizeof (c), "0x%llx",
1413 				    (u_longlong_t)pc[i]);
1414 			}
1415 		}
1416 
1417 		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1418 			break;
1419 
1420 		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1421 			break;
1422 
1423 		if (str != NULL && str[0] == '@') {
1424 			/*
1425 			 * If the first character of the string is an "at" sign,
1426 			 * then the string is inferred to be an annotation --
1427 			 * and it is printed out beneath the frame and offset
1428 			 * with brackets.
1429 			 */
1430 			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1431 				break;
1432 
1433 			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1434 
1435 			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1436 				break;
1437 
1438 			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1439 				break;
1440 		}
1441 
1442 		if (str != NULL) {
1443 			str += strlen(str) + 1;
1444 			if (str - strbase >= strsize)
1445 				str = NULL;
1446 		}
1447 	}
1448 
1449 	if (P != NULL) {
1450 		dt_proc_unlock(dtp, P);
1451 		dt_proc_release(dtp, P);
1452 	}
1453 
1454 	return (err);
1455 }
1456 
1457 static int
1458 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1459 {
1460 	/* LINTED - alignment */
1461 	uint64_t pid = ((uint64_t *)addr)[0];
1462 	/* LINTED - alignment */
1463 	uint64_t pc = ((uint64_t *)addr)[1];
1464 	const char *format = "  %-50s";
1465 	char *s;
1466 	int n, len = 256;
1467 
1468 	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1469 		struct ps_prochandle *P;
1470 
1471 		if ((P = dt_proc_grab(dtp, pid,
1472 		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1473 			GElf_Sym sym;
1474 
1475 			dt_proc_lock(dtp, P);
1476 
1477 			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1478 				pc = sym.st_value;
1479 
1480 			dt_proc_unlock(dtp, P);
1481 			dt_proc_release(dtp, P);
1482 		}
1483 	}
1484 
1485 	do {
1486 		n = len;
1487 		s = alloca(n);
1488 	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1489 
1490 	return (dt_printf(dtp, fp, format, s));
1491 }
1492 
1493 int
1494 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1495 {
1496 	/* LINTED - alignment */
1497 	uint64_t pid = ((uint64_t *)addr)[0];
1498 	/* LINTED - alignment */
1499 	uint64_t pc = ((uint64_t *)addr)[1];
1500 	int err = 0;
1501 
1502 	char objname[PATH_MAX], c[PATH_MAX * 2];
1503 	struct ps_prochandle *P;
1504 
1505 	if (format == NULL)
1506 		format = "  %-50s";
1507 
1508 	/*
1509 	 * See the comment in dt_print_ustack() for the rationale for
1510 	 * printing raw addresses in the vectored case.
1511 	 */
1512 	if (dtp->dt_vector == NULL)
1513 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1514 	else
1515 		P = NULL;
1516 
1517 	if (P != NULL)
1518 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1519 
1520 	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != NULL) {
1521 		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1522 	} else {
1523 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1524 	}
1525 
1526 	err = dt_printf(dtp, fp, format, c);
1527 
1528 	if (P != NULL) {
1529 		dt_proc_unlock(dtp, P);
1530 		dt_proc_release(dtp, P);
1531 	}
1532 
1533 	return (err);
1534 }
1535 
1536 static int
1537 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1538 {
1539 	/* LINTED - alignment */
1540 	uint64_t pc = *((uint64_t *)addr);
1541 	dtrace_syminfo_t dts;
1542 	GElf_Sym sym;
1543 	char c[PATH_MAX * 2];
1544 
1545 	if (format == NULL)
1546 		format = "  %-50s";
1547 
1548 	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1549 		(void) snprintf(c, sizeof (c), "%s`%s",
1550 		    dts.dts_object, dts.dts_name);
1551 	} else {
1552 		/*
1553 		 * We'll repeat the lookup, but this time we'll specify a
1554 		 * NULL GElf_Sym -- indicating that we're only interested in
1555 		 * the containing module.
1556 		 */
1557 		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1558 			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1559 			    dts.dts_object, (u_longlong_t)pc);
1560 		} else {
1561 			(void) snprintf(c, sizeof (c), "0x%llx",
1562 			    (u_longlong_t)pc);
1563 		}
1564 	}
1565 
1566 	if (dt_printf(dtp, fp, format, c) < 0)
1567 		return (-1);
1568 
1569 	return (0);
1570 }
1571 
1572 int
1573 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1574 {
1575 	/* LINTED - alignment */
1576 	uint64_t pc = *((uint64_t *)addr);
1577 	dtrace_syminfo_t dts;
1578 	char c[PATH_MAX * 2];
1579 
1580 	if (format == NULL)
1581 		format = "  %-50s";
1582 
1583 	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1584 		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1585 	} else {
1586 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1587 	}
1588 
1589 	if (dt_printf(dtp, fp, format, c) < 0)
1590 		return (-1);
1591 
1592 	return (0);
1593 }
1594 
1595 typedef struct dt_normal {
1596 	dtrace_aggvarid_t dtnd_id;
1597 	uint64_t dtnd_normal;
1598 } dt_normal_t;
1599 
1600 static int
1601 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1602 {
1603 	dt_normal_t *normal = arg;
1604 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1605 	dtrace_aggvarid_t id = normal->dtnd_id;
1606 
1607 	if (agg->dtagd_nrecs == 0)
1608 		return (DTRACE_AGGWALK_NEXT);
1609 
1610 	if (agg->dtagd_varid != id)
1611 		return (DTRACE_AGGWALK_NEXT);
1612 
1613 	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1614 	return (DTRACE_AGGWALK_NORMALIZE);
1615 }
1616 
1617 static int
1618 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1619 {
1620 	dt_normal_t normal;
1621 	caddr_t addr;
1622 
1623 	/*
1624 	 * We (should) have two records:  the aggregation ID followed by the
1625 	 * normalization value.
1626 	 */
1627 	addr = base + rec->dtrd_offset;
1628 
1629 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1630 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1631 
1632 	/* LINTED - alignment */
1633 	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1634 	rec++;
1635 
1636 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1637 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1638 
1639 	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1640 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1641 
1642 	addr = base + rec->dtrd_offset;
1643 
1644 	switch (rec->dtrd_size) {
1645 	case sizeof (uint64_t):
1646 		/* LINTED - alignment */
1647 		normal.dtnd_normal = *((uint64_t *)addr);
1648 		break;
1649 	case sizeof (uint32_t):
1650 		/* LINTED - alignment */
1651 		normal.dtnd_normal = *((uint32_t *)addr);
1652 		break;
1653 	case sizeof (uint16_t):
1654 		/* LINTED - alignment */
1655 		normal.dtnd_normal = *((uint16_t *)addr);
1656 		break;
1657 	case sizeof (uint8_t):
1658 		normal.dtnd_normal = *((uint8_t *)addr);
1659 		break;
1660 	default:
1661 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1662 	}
1663 
1664 	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1665 
1666 	return (0);
1667 }
1668 
1669 static int
1670 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1671 {
1672 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1673 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1674 
1675 	if (agg->dtagd_nrecs == 0)
1676 		return (DTRACE_AGGWALK_NEXT);
1677 
1678 	if (agg->dtagd_varid != id)
1679 		return (DTRACE_AGGWALK_NEXT);
1680 
1681 	return (DTRACE_AGGWALK_DENORMALIZE);
1682 }
1683 
1684 static int
1685 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1686 {
1687 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1688 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1689 
1690 	if (agg->dtagd_nrecs == 0)
1691 		return (DTRACE_AGGWALK_NEXT);
1692 
1693 	if (agg->dtagd_varid != id)
1694 		return (DTRACE_AGGWALK_NEXT);
1695 
1696 	return (DTRACE_AGGWALK_CLEAR);
1697 }
1698 
1699 typedef struct dt_trunc {
1700 	dtrace_aggvarid_t dttd_id;
1701 	uint64_t dttd_remaining;
1702 } dt_trunc_t;
1703 
1704 static int
1705 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1706 {
1707 	dt_trunc_t *trunc = arg;
1708 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1709 	dtrace_aggvarid_t id = trunc->dttd_id;
1710 
1711 	if (agg->dtagd_nrecs == 0)
1712 		return (DTRACE_AGGWALK_NEXT);
1713 
1714 	if (agg->dtagd_varid != id)
1715 		return (DTRACE_AGGWALK_NEXT);
1716 
1717 	if (trunc->dttd_remaining == 0)
1718 		return (DTRACE_AGGWALK_REMOVE);
1719 
1720 	trunc->dttd_remaining--;
1721 	return (DTRACE_AGGWALK_NEXT);
1722 }
1723 
1724 static int
1725 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1726 {
1727 	dt_trunc_t trunc;
1728 	caddr_t addr;
1729 	int64_t remaining;
1730 	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1731 
1732 	/*
1733 	 * We (should) have two records:  the aggregation ID followed by the
1734 	 * number of aggregation entries after which the aggregation is to be
1735 	 * truncated.
1736 	 */
1737 	addr = base + rec->dtrd_offset;
1738 
1739 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1740 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1741 
1742 	/* LINTED - alignment */
1743 	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1744 	rec++;
1745 
1746 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1747 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1748 
1749 	if (rec->dtrd_arg != DT_ACT_TRUNC)
1750 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1751 
1752 	addr = base + rec->dtrd_offset;
1753 
1754 	switch (rec->dtrd_size) {
1755 	case sizeof (uint64_t):
1756 		/* LINTED - alignment */
1757 		remaining = *((int64_t *)addr);
1758 		break;
1759 	case sizeof (uint32_t):
1760 		/* LINTED - alignment */
1761 		remaining = *((int32_t *)addr);
1762 		break;
1763 	case sizeof (uint16_t):
1764 		/* LINTED - alignment */
1765 		remaining = *((int16_t *)addr);
1766 		break;
1767 	case sizeof (uint8_t):
1768 		remaining = *((int8_t *)addr);
1769 		break;
1770 	default:
1771 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1772 	}
1773 
1774 	if (remaining < 0) {
1775 		func = dtrace_aggregate_walk_valsorted;
1776 		remaining = -remaining;
1777 	} else {
1778 		func = dtrace_aggregate_walk_valrevsorted;
1779 	}
1780 
1781 	assert(remaining >= 0);
1782 	trunc.dttd_remaining = remaining;
1783 
1784 	(void) func(dtp, dt_trunc_agg, &trunc);
1785 
1786 	return (0);
1787 }
1788 
1789 static int
1790 dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1791     caddr_t addr, size_t size, const dtrace_aggdata_t *aggdata,
1792     uint64_t normal, dt_print_aggdata_t *pd)
1793 {
1794 	int err, width;
1795 	dtrace_actkind_t act = rec->dtrd_action;
1796 	boolean_t packed = pd->dtpa_agghist || pd->dtpa_aggpack;
1797 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1798 
1799 	static struct {
1800 		size_t size;
1801 		int width;
1802 		int packedwidth;
1803 	} *fmt, fmttab[] = {
1804 		{ sizeof (uint8_t),	3,	3 },
1805 		{ sizeof (uint16_t),	5,	5 },
1806 		{ sizeof (uint32_t),	8,	8 },
1807 		{ sizeof (uint64_t),	16,	16 },
1808 		{ 0,			-50,	16 }
1809 	};
1810 
1811 	if (packed && pd->dtpa_agghisthdr != agg->dtagd_varid) {
1812 		dtrace_recdesc_t *r;
1813 
1814 		width = 0;
1815 
1816 		/*
1817 		 * To print our quantization header for either an agghist or
1818 		 * aggpack aggregation, we need to iterate through all of our
1819 		 * of our records to determine their width.
1820 		 */
1821 		for (r = rec; !DTRACEACT_ISAGG(r->dtrd_action); r++) {
1822 			for (fmt = fmttab; fmt->size &&
1823 			    fmt->size != r->dtrd_size; fmt++)
1824 				continue;
1825 
1826 			width += fmt->packedwidth + 1;
1827 		}
1828 
1829 		if (pd->dtpa_agghist) {
1830 			if (dt_print_quanthdr(dtp, fp, width) < 0)
1831 				return (-1);
1832 		} else {
1833 			if (dt_print_quanthdr_packed(dtp, fp,
1834 			    width, aggdata, r->dtrd_action) < 0)
1835 				return (-1);
1836 		}
1837 
1838 		pd->dtpa_agghisthdr = agg->dtagd_varid;
1839 	}
1840 
1841 	if (pd->dtpa_agghist && DTRACEACT_ISAGG(act)) {
1842 		char positives = aggdata->dtada_flags & DTRACE_A_HASPOSITIVES;
1843 		char negatives = aggdata->dtada_flags & DTRACE_A_HASNEGATIVES;
1844 		int64_t val;
1845 
1846 		assert(act == DTRACEAGG_SUM || act == DTRACEAGG_COUNT);
1847 		val = (long long)*((uint64_t *)addr);
1848 
1849 		if (dt_printf(dtp, fp, " ") < 0)
1850 			return (-1);
1851 
1852 		return (dt_print_quantline(dtp, fp, val, normal,
1853 		    aggdata->dtada_total, positives, negatives));
1854 	}
1855 
1856 	if (pd->dtpa_aggpack && DTRACEACT_ISAGG(act)) {
1857 		switch (act) {
1858 		case DTRACEAGG_QUANTIZE:
1859 			return (dt_print_quantize_packed(dtp,
1860 			    fp, addr, size, aggdata));
1861 		case DTRACEAGG_LQUANTIZE:
1862 			return (dt_print_lquantize_packed(dtp,
1863 			    fp, addr, size, aggdata));
1864 		default:
1865 			break;
1866 		}
1867 	}
1868 
1869 	switch (act) {
1870 	case DTRACEACT_STACK:
1871 		return (dt_print_stack(dtp, fp, NULL, addr,
1872 		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1873 
1874 	case DTRACEACT_USTACK:
1875 	case DTRACEACT_JSTACK:
1876 		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1877 
1878 	case DTRACEACT_USYM:
1879 	case DTRACEACT_UADDR:
1880 		return (dt_print_usym(dtp, fp, addr, act));
1881 
1882 	case DTRACEACT_UMOD:
1883 		return (dt_print_umod(dtp, fp, NULL, addr));
1884 
1885 	case DTRACEACT_SYM:
1886 		return (dt_print_sym(dtp, fp, NULL, addr));
1887 
1888 	case DTRACEACT_MOD:
1889 		return (dt_print_mod(dtp, fp, NULL, addr));
1890 
1891 	case DTRACEAGG_QUANTIZE:
1892 		return (dt_print_quantize(dtp, fp, addr, size, normal));
1893 
1894 	case DTRACEAGG_LQUANTIZE:
1895 		return (dt_print_lquantize(dtp, fp, addr, size, normal));
1896 
1897 	case DTRACEAGG_LLQUANTIZE:
1898 		return (dt_print_llquantize(dtp, fp, addr, size, normal));
1899 
1900 	case DTRACEAGG_AVG:
1901 		return (dt_print_average(dtp, fp, addr, size, normal));
1902 
1903 	case DTRACEAGG_STDDEV:
1904 		return (dt_print_stddev(dtp, fp, addr, size, normal));
1905 
1906 	default:
1907 		break;
1908 	}
1909 
1910 	for (fmt = fmttab; fmt->size && fmt->size != size; fmt++)
1911 		continue;
1912 
1913 	width = packed ? fmt->packedwidth : fmt->width;
1914 
1915 	switch (size) {
1916 	case sizeof (uint64_t):
1917 		err = dt_printf(dtp, fp, " %*lld", width,
1918 		    /* LINTED - alignment */
1919 		    (long long)*((uint64_t *)addr) / normal);
1920 		break;
1921 	case sizeof (uint32_t):
1922 		/* LINTED - alignment */
1923 		err = dt_printf(dtp, fp, " %*d", width, *((uint32_t *)addr) /
1924 		    (uint32_t)normal);
1925 		break;
1926 	case sizeof (uint16_t):
1927 		/* LINTED - alignment */
1928 		err = dt_printf(dtp, fp, " %*d", width, *((uint16_t *)addr) /
1929 		    (uint32_t)normal);
1930 		break;
1931 	case sizeof (uint8_t):
1932 		err = dt_printf(dtp, fp, " %*d", width, *((uint8_t *)addr) /
1933 		    (uint32_t)normal);
1934 		break;
1935 	default:
1936 		err = dt_print_bytes(dtp, fp, addr, size, width, 0, 0);
1937 		break;
1938 	}
1939 
1940 	return (err);
1941 }
1942 
1943 int
1944 dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1945 {
1946 	int i, aggact = 0;
1947 	dt_print_aggdata_t *pd = arg;
1948 	const dtrace_aggdata_t *aggdata = aggsdata[0];
1949 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1950 	FILE *fp = pd->dtpa_fp;
1951 	dtrace_hdl_t *dtp = pd->dtpa_dtp;
1952 	dtrace_recdesc_t *rec;
1953 	dtrace_actkind_t act;
1954 	caddr_t addr;
1955 	size_t size;
1956 
1957 	pd->dtpa_agghist = (aggdata->dtada_flags & DTRACE_A_TOTAL);
1958 	pd->dtpa_aggpack = (aggdata->dtada_flags & DTRACE_A_MINMAXBIN);
1959 
1960 	/*
1961 	 * Iterate over each record description in the key, printing the traced
1962 	 * data, skipping the first datum (the tuple member created by the
1963 	 * compiler).
1964 	 */
1965 	for (i = 1; i < agg->dtagd_nrecs; i++) {
1966 		rec = &agg->dtagd_rec[i];
1967 		act = rec->dtrd_action;
1968 		addr = aggdata->dtada_data + rec->dtrd_offset;
1969 		size = rec->dtrd_size;
1970 
1971 		if (DTRACEACT_ISAGG(act)) {
1972 			aggact = i;
1973 			break;
1974 		}
1975 
1976 		if (dt_print_datum(dtp, fp, rec, addr,
1977 		    size, aggdata, 1, pd) < 0)
1978 			return (-1);
1979 
1980 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1981 		    DTRACE_BUFDATA_AGGKEY) < 0)
1982 			return (-1);
1983 	}
1984 
1985 	assert(aggact != 0);
1986 
1987 	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
1988 		uint64_t normal;
1989 
1990 		aggdata = aggsdata[i];
1991 		agg = aggdata->dtada_desc;
1992 		rec = &agg->dtagd_rec[aggact];
1993 		act = rec->dtrd_action;
1994 		addr = aggdata->dtada_data + rec->dtrd_offset;
1995 		size = rec->dtrd_size;
1996 
1997 		assert(DTRACEACT_ISAGG(act));
1998 		normal = aggdata->dtada_normal;
1999 
2000 		if (dt_print_datum(dtp, fp, rec, addr,
2001 		    size, aggdata, normal, pd) < 0)
2002 			return (-1);
2003 
2004 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
2005 		    DTRACE_BUFDATA_AGGVAL) < 0)
2006 			return (-1);
2007 
2008 		if (!pd->dtpa_allunprint)
2009 			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
2010 	}
2011 
2012 	if (!pd->dtpa_agghist && !pd->dtpa_aggpack) {
2013 		if (dt_printf(dtp, fp, "\n") < 0)
2014 			return (-1);
2015 	}
2016 
2017 	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
2018 	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
2019 		return (-1);
2020 
2021 	return (0);
2022 }
2023 
2024 int
2025 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
2026 {
2027 	dt_print_aggdata_t *pd = arg;
2028 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2029 	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
2030 
2031 	if (pd->dtpa_allunprint) {
2032 		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
2033 			return (0);
2034 	} else {
2035 		/*
2036 		 * If we're not printing all unprinted aggregations, then the
2037 		 * aggregation variable ID denotes a specific aggregation
2038 		 * variable that we should print -- skip any other aggregations
2039 		 * that we encounter.
2040 		 */
2041 		if (agg->dtagd_nrecs == 0)
2042 			return (0);
2043 
2044 		if (aggvarid != agg->dtagd_varid)
2045 			return (0);
2046 	}
2047 
2048 	return (dt_print_aggs(&aggdata, 1, arg));
2049 }
2050 
2051 int
2052 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
2053     const char *option, const char *value)
2054 {
2055 	int len, rval;
2056 	char *msg;
2057 	const char *errstr;
2058 	dtrace_setoptdata_t optdata;
2059 
2060 	bzero(&optdata, sizeof (optdata));
2061 	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
2062 
2063 	if (dtrace_setopt(dtp, option, value) == 0) {
2064 		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
2065 		optdata.dtsda_probe = data;
2066 		optdata.dtsda_option = option;
2067 		optdata.dtsda_handle = dtp;
2068 
2069 		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
2070 			return (rval);
2071 
2072 		return (0);
2073 	}
2074 
2075 	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
2076 	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
2077 	msg = alloca(len);
2078 
2079 	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
2080 	    option, value, errstr);
2081 
2082 	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
2083 		return (0);
2084 
2085 	return (rval);
2086 }
2087 
2088 static int
2089 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu,
2090     dtrace_bufdesc_t *buf, boolean_t just_one,
2091     dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
2092 {
2093 	dtrace_epid_t id;
2094 	size_t offs;
2095 	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
2096 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
2097 	int rval, i, n;
2098 	uint64_t tracememsize = 0;
2099 	dtrace_probedata_t data;
2100 	uint64_t drops;
2101 
2102 	bzero(&data, sizeof (data));
2103 	data.dtpda_handle = dtp;
2104 	data.dtpda_cpu = cpu;
2105 	data.dtpda_flow = dtp->dt_flow;
2106 	data.dtpda_indent = dtp->dt_indent;
2107 	data.dtpda_prefix = dtp->dt_prefix;
2108 
2109 	for (offs = buf->dtbd_oldest; offs < buf->dtbd_size; ) {
2110 		dtrace_eprobedesc_t *epd;
2111 
2112 		/*
2113 		 * We're guaranteed to have an ID.
2114 		 */
2115 		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
2116 
2117 		if (id == DTRACE_EPIDNONE) {
2118 			/*
2119 			 * This is filler to assure proper alignment of the
2120 			 * next record; we simply ignore it.
2121 			 */
2122 			offs += sizeof (id);
2123 			continue;
2124 		}
2125 
2126 		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
2127 		    &data.dtpda_pdesc)) != 0)
2128 			return (rval);
2129 
2130 		epd = data.dtpda_edesc;
2131 		data.dtpda_data = buf->dtbd_data + offs;
2132 
2133 		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
2134 			rval = dt_handle(dtp, &data);
2135 
2136 			if (rval == DTRACE_CONSUME_NEXT)
2137 				goto nextepid;
2138 
2139 			if (rval == DTRACE_CONSUME_ERROR)
2140 				return (-1);
2141 		}
2142 
2143 		if (flow)
2144 			(void) dt_flowindent(dtp, &data, dtp->dt_last_epid,
2145 			    buf, offs);
2146 
2147 		rval = (*efunc)(&data, arg);
2148 
2149 		if (flow) {
2150 			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
2151 				data.dtpda_indent += 2;
2152 		}
2153 
2154 		if (rval == DTRACE_CONSUME_NEXT)
2155 			goto nextepid;
2156 
2157 		if (rval == DTRACE_CONSUME_ABORT)
2158 			return (dt_set_errno(dtp, EDT_DIRABORT));
2159 
2160 		if (rval != DTRACE_CONSUME_THIS)
2161 			return (dt_set_errno(dtp, EDT_BADRVAL));
2162 
2163 		for (i = 0; i < epd->dtepd_nrecs; i++) {
2164 			caddr_t addr;
2165 			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
2166 			dtrace_actkind_t act = rec->dtrd_action;
2167 
2168 			data.dtpda_data = buf->dtbd_data + offs +
2169 			    rec->dtrd_offset;
2170 			addr = data.dtpda_data;
2171 
2172 			if (act == DTRACEACT_LIBACT) {
2173 				uint64_t arg = rec->dtrd_arg;
2174 				dtrace_aggvarid_t id;
2175 
2176 				switch (arg) {
2177 				case DT_ACT_CLEAR:
2178 					/* LINTED - alignment */
2179 					id = *((dtrace_aggvarid_t *)addr);
2180 					(void) dtrace_aggregate_walk(dtp,
2181 					    dt_clear_agg, &id);
2182 					continue;
2183 
2184 				case DT_ACT_DENORMALIZE:
2185 					/* LINTED - alignment */
2186 					id = *((dtrace_aggvarid_t *)addr);
2187 					(void) dtrace_aggregate_walk(dtp,
2188 					    dt_denormalize_agg, &id);
2189 					continue;
2190 
2191 				case DT_ACT_FTRUNCATE:
2192 					if (fp == NULL)
2193 						continue;
2194 
2195 					(void) fflush(fp);
2196 					(void) ftruncate(fileno(fp), 0);
2197 					(void) fseeko(fp, 0, SEEK_SET);
2198 					continue;
2199 
2200 				case DT_ACT_NORMALIZE:
2201 					if (i == epd->dtepd_nrecs - 1)
2202 						return (dt_set_errno(dtp,
2203 						    EDT_BADNORMAL));
2204 
2205 					if (dt_normalize(dtp,
2206 					    buf->dtbd_data + offs, rec) != 0)
2207 						return (-1);
2208 
2209 					i++;
2210 					continue;
2211 
2212 				case DT_ACT_SETOPT: {
2213 					uint64_t *opts = dtp->dt_options;
2214 					dtrace_recdesc_t *valrec;
2215 					uint32_t valsize;
2216 					caddr_t val;
2217 					int rv;
2218 
2219 					if (i == epd->dtepd_nrecs - 1) {
2220 						return (dt_set_errno(dtp,
2221 						    EDT_BADSETOPT));
2222 					}
2223 
2224 					valrec = &epd->dtepd_rec[++i];
2225 					valsize = valrec->dtrd_size;
2226 
2227 					if (valrec->dtrd_action != act ||
2228 					    valrec->dtrd_arg != arg) {
2229 						return (dt_set_errno(dtp,
2230 						    EDT_BADSETOPT));
2231 					}
2232 
2233 					if (valsize > sizeof (uint64_t)) {
2234 						val = buf->dtbd_data + offs +
2235 						    valrec->dtrd_offset;
2236 					} else {
2237 						val = "1";
2238 					}
2239 
2240 					rv = dt_setopt(dtp, &data, addr, val);
2241 
2242 					if (rv != 0)
2243 						return (-1);
2244 
2245 					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2246 					    DTRACEOPT_UNSET);
2247 					quiet = (opts[DTRACEOPT_QUIET] !=
2248 					    DTRACEOPT_UNSET);
2249 
2250 					continue;
2251 				}
2252 
2253 				case DT_ACT_TRUNC:
2254 					if (i == epd->dtepd_nrecs - 1)
2255 						return (dt_set_errno(dtp,
2256 						    EDT_BADTRUNC));
2257 
2258 					if (dt_trunc(dtp,
2259 					    buf->dtbd_data + offs, rec) != 0)
2260 						return (-1);
2261 
2262 					i++;
2263 					continue;
2264 
2265 				default:
2266 					continue;
2267 				}
2268 			}
2269 
2270 			if (act == DTRACEACT_TRACEMEM_DYNSIZE &&
2271 			    rec->dtrd_size == sizeof (uint64_t)) {
2272 				/* LINTED - alignment */
2273 				tracememsize = *((unsigned long long *)addr);
2274 				continue;
2275 			}
2276 
2277 			rval = (*rfunc)(&data, rec, arg);
2278 
2279 			if (rval == DTRACE_CONSUME_NEXT)
2280 				continue;
2281 
2282 			if (rval == DTRACE_CONSUME_ABORT)
2283 				return (dt_set_errno(dtp, EDT_DIRABORT));
2284 
2285 			if (rval != DTRACE_CONSUME_THIS)
2286 				return (dt_set_errno(dtp, EDT_BADRVAL));
2287 
2288 			if (act == DTRACEACT_STACK) {
2289 				int depth = rec->dtrd_arg;
2290 
2291 				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2292 				    rec->dtrd_size / depth) < 0)
2293 					return (-1);
2294 				goto nextrec;
2295 			}
2296 
2297 			if (act == DTRACEACT_USTACK ||
2298 			    act == DTRACEACT_JSTACK) {
2299 				if (dt_print_ustack(dtp, fp, NULL,
2300 				    addr, rec->dtrd_arg) < 0)
2301 					return (-1);
2302 				goto nextrec;
2303 			}
2304 
2305 			if (act == DTRACEACT_SYM) {
2306 				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2307 					return (-1);
2308 				goto nextrec;
2309 			}
2310 
2311 			if (act == DTRACEACT_MOD) {
2312 				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2313 					return (-1);
2314 				goto nextrec;
2315 			}
2316 
2317 			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2318 				if (dt_print_usym(dtp, fp, addr, act) < 0)
2319 					return (-1);
2320 				goto nextrec;
2321 			}
2322 
2323 			if (act == DTRACEACT_UMOD) {
2324 				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2325 					return (-1);
2326 				goto nextrec;
2327 			}
2328 
2329 			if (DTRACEACT_ISPRINTFLIKE(act)) {
2330 				void *fmtdata;
2331 				int (*func)(dtrace_hdl_t *, FILE *, void *,
2332 				    const dtrace_probedata_t *,
2333 				    const dtrace_recdesc_t *, uint_t,
2334 				    const void *buf, size_t);
2335 
2336 				if ((fmtdata = dt_format_lookup(dtp,
2337 				    rec->dtrd_format)) == NULL)
2338 					goto nofmt;
2339 
2340 				switch (act) {
2341 				case DTRACEACT_PRINTF:
2342 					func = dtrace_fprintf;
2343 					break;
2344 				case DTRACEACT_PRINTA:
2345 					func = dtrace_fprinta;
2346 					break;
2347 				case DTRACEACT_SYSTEM:
2348 					func = dtrace_system;
2349 					break;
2350 				case DTRACEACT_FREOPEN:
2351 					func = dtrace_freopen;
2352 					break;
2353 				}
2354 
2355 				n = (*func)(dtp, fp, fmtdata, &data,
2356 				    rec, epd->dtepd_nrecs - i,
2357 				    (uchar_t *)buf->dtbd_data + offs,
2358 				    buf->dtbd_size - offs);
2359 
2360 				if (n < 0)
2361 					return (-1); /* errno is set for us */
2362 
2363 				if (n > 0)
2364 					i += n - 1;
2365 				goto nextrec;
2366 			}
2367 
2368 			/*
2369 			 * If this is a DIF expression, and the record has a
2370 			 * format set, this indicates we have a CTF type name
2371 			 * associated with the data and we should try to print
2372 			 * it out by type.
2373 			 */
2374 			if (act == DTRACEACT_DIFEXPR) {
2375 				const char *strdata = dt_strdata_lookup(dtp,
2376 				    rec->dtrd_format);
2377 				if (strdata != NULL) {
2378 					n = dtrace_print(dtp, fp, strdata,
2379 					    addr, rec->dtrd_size);
2380 
2381 					/*
2382 					 * dtrace_print() will return -1 on
2383 					 * error, or return the number of bytes
2384 					 * consumed.  It will return 0 if the
2385 					 * type couldn't be determined, and we
2386 					 * should fall through to the normal
2387 					 * trace method.
2388 					 */
2389 					if (n < 0)
2390 						return (-1);
2391 
2392 					if (n > 0)
2393 						goto nextrec;
2394 				}
2395 			}
2396 
2397 nofmt:
2398 			if (act == DTRACEACT_PRINTA) {
2399 				dt_print_aggdata_t pd;
2400 				dtrace_aggvarid_t *aggvars;
2401 				int j, naggvars = 0;
2402 				size_t size = ((epd->dtepd_nrecs - i) *
2403 				    sizeof (dtrace_aggvarid_t));
2404 
2405 				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2406 					return (-1);
2407 
2408 				/*
2409 				 * This might be a printa() with multiple
2410 				 * aggregation variables.  We need to scan
2411 				 * forward through the records until we find
2412 				 * a record from a different statement.
2413 				 */
2414 				for (j = i; j < epd->dtepd_nrecs; j++) {
2415 					dtrace_recdesc_t *nrec;
2416 					caddr_t naddr;
2417 
2418 					nrec = &epd->dtepd_rec[j];
2419 
2420 					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2421 						break;
2422 
2423 					if (nrec->dtrd_action != act) {
2424 						return (dt_set_errno(dtp,
2425 						    EDT_BADAGG));
2426 					}
2427 
2428 					naddr = buf->dtbd_data + offs +
2429 					    nrec->dtrd_offset;
2430 
2431 					aggvars[naggvars++] =
2432 					    /* LINTED - alignment */
2433 					    *((dtrace_aggvarid_t *)naddr);
2434 				}
2435 
2436 				i = j - 1;
2437 				bzero(&pd, sizeof (pd));
2438 				pd.dtpa_dtp = dtp;
2439 				pd.dtpa_fp = fp;
2440 
2441 				assert(naggvars >= 1);
2442 
2443 				if (naggvars == 1) {
2444 					pd.dtpa_id = aggvars[0];
2445 					dt_free(dtp, aggvars);
2446 
2447 					if (dt_printf(dtp, fp, "\n") < 0 ||
2448 					    dtrace_aggregate_walk_sorted(dtp,
2449 					    dt_print_agg, &pd) < 0)
2450 						return (-1);
2451 					goto nextrec;
2452 				}
2453 
2454 				if (dt_printf(dtp, fp, "\n") < 0 ||
2455 				    dtrace_aggregate_walk_joined(dtp, aggvars,
2456 				    naggvars, dt_print_aggs, &pd) < 0) {
2457 					dt_free(dtp, aggvars);
2458 					return (-1);
2459 				}
2460 
2461 				dt_free(dtp, aggvars);
2462 				goto nextrec;
2463 			}
2464 
2465 			if (act == DTRACEACT_TRACEMEM) {
2466 				if (tracememsize == 0 ||
2467 				    tracememsize > rec->dtrd_size) {
2468 					tracememsize = rec->dtrd_size;
2469 				}
2470 
2471 				n = dt_print_bytes(dtp, fp, addr,
2472 				    tracememsize, -33, quiet, 1);
2473 
2474 				tracememsize = 0;
2475 
2476 				if (n < 0)
2477 					return (-1);
2478 
2479 				goto nextrec;
2480 			}
2481 
2482 			switch (rec->dtrd_size) {
2483 			case sizeof (uint64_t):
2484 				n = dt_printf(dtp, fp,
2485 				    quiet ? "%lld" : " %16lld",
2486 				    /* LINTED - alignment */
2487 				    *((unsigned long long *)addr));
2488 				break;
2489 			case sizeof (uint32_t):
2490 				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2491 				    /* LINTED - alignment */
2492 				    *((uint32_t *)addr));
2493 				break;
2494 			case sizeof (uint16_t):
2495 				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2496 				    /* LINTED - alignment */
2497 				    *((uint16_t *)addr));
2498 				break;
2499 			case sizeof (uint8_t):
2500 				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2501 				    *((uint8_t *)addr));
2502 				break;
2503 			default:
2504 				n = dt_print_bytes(dtp, fp, addr,
2505 				    rec->dtrd_size, -33, quiet, 0);
2506 				break;
2507 			}
2508 
2509 			if (n < 0)
2510 				return (-1); /* errno is set for us */
2511 
2512 nextrec:
2513 			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2514 				return (-1); /* errno is set for us */
2515 		}
2516 
2517 		/*
2518 		 * Call the record callback with a NULL record to indicate
2519 		 * that we're done processing this EPID.
2520 		 */
2521 		rval = (*rfunc)(&data, NULL, arg);
2522 nextepid:
2523 		offs += epd->dtepd_size;
2524 		dtp->dt_last_epid = id;
2525 		if (just_one) {
2526 			buf->dtbd_oldest = offs;
2527 			break;
2528 		}
2529 	}
2530 
2531 	dtp->dt_flow = data.dtpda_flow;
2532 	dtp->dt_indent = data.dtpda_indent;
2533 	dtp->dt_prefix = data.dtpda_prefix;
2534 
2535 	if ((drops = buf->dtbd_drops) == 0)
2536 		return (0);
2537 
2538 	/*
2539 	 * Explicitly zero the drops to prevent us from processing them again.
2540 	 */
2541 	buf->dtbd_drops = 0;
2542 
2543 	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2544 }
2545 
2546 /*
2547  * Reduce memory usage by shrinking the buffer if it's no more than half full.
2548  * Note, we need to preserve the alignment of the data at dtbd_oldest, which is
2549  * only 4-byte aligned.
2550  */
2551 static void
2552 dt_realloc_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf, int cursize)
2553 {
2554 	uint64_t used = buf->dtbd_size - buf->dtbd_oldest;
2555 	if (used < cursize / 2) {
2556 		int misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2557 		char *newdata = dt_alloc(dtp, used + misalign);
2558 		if (newdata == NULL)
2559 			return;
2560 		bzero(newdata, misalign);
2561 		bcopy(buf->dtbd_data + buf->dtbd_oldest,
2562 		    newdata + misalign, used);
2563 		dt_free(dtp, buf->dtbd_data);
2564 		buf->dtbd_oldest = misalign;
2565 		buf->dtbd_size = used + misalign;
2566 		buf->dtbd_data = newdata;
2567 	}
2568 }
2569 
2570 /*
2571  * If the ring buffer has wrapped, the data is not in order.  Rearrange it
2572  * so that it is.  Note, we need to preserve the alignment of the data at
2573  * dtbd_oldest, which is only 4-byte aligned.
2574  */
2575 static int
2576 dt_unring_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2577 {
2578 	int misalign;
2579 	char *newdata, *ndp;
2580 
2581 	if (buf->dtbd_oldest == 0)
2582 		return (0);
2583 
2584 	misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2585 	newdata = ndp = dt_alloc(dtp, buf->dtbd_size + misalign);
2586 
2587 	if (newdata == NULL)
2588 		return (-1);
2589 
2590 	assert(0 == (buf->dtbd_size & (sizeof (uint64_t) - 1)));
2591 
2592 	bzero(ndp, misalign);
2593 	ndp += misalign;
2594 
2595 	bcopy(buf->dtbd_data + buf->dtbd_oldest, ndp,
2596 	    buf->dtbd_size - buf->dtbd_oldest);
2597 	ndp += buf->dtbd_size - buf->dtbd_oldest;
2598 
2599 	bcopy(buf->dtbd_data, ndp, buf->dtbd_oldest);
2600 
2601 	dt_free(dtp, buf->dtbd_data);
2602 	buf->dtbd_oldest = 0;
2603 	buf->dtbd_data = newdata;
2604 	buf->dtbd_size += misalign;
2605 
2606 	return (0);
2607 }
2608 
2609 static void
2610 dt_put_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2611 {
2612 	dt_free(dtp, buf->dtbd_data);
2613 	dt_free(dtp, buf);
2614 }
2615 
2616 /*
2617  * Returns 0 on success, in which case *cbp will be filled in if we retrieved
2618  * data, or NULL if there is no data for this CPU.
2619  * Returns -1 on failure and sets dt_errno.
2620  */
2621 static int
2622 dt_get_buf(dtrace_hdl_t *dtp, int cpu, dtrace_bufdesc_t **bufp)
2623 {
2624 	dtrace_optval_t size;
2625 	dtrace_bufdesc_t *buf = dt_zalloc(dtp, sizeof (*buf));
2626 	int error;
2627 
2628 	if (buf == NULL)
2629 		return (-1);
2630 
2631 	(void) dtrace_getopt(dtp, "bufsize", &size);
2632 	buf->dtbd_data = dt_alloc(dtp, size);
2633 	if (buf->dtbd_data == NULL) {
2634 		dt_free(dtp, buf);
2635 		return (-1);
2636 	}
2637 	buf->dtbd_size = size;
2638 	buf->dtbd_cpu = cpu;
2639 
2640 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2641 		dt_put_buf(dtp, buf);
2642 		/*
2643 		 * If we failed with ENOENT, it may be because the
2644 		 * CPU was unconfigured -- this is okay.  Any other
2645 		 * error, however, is unexpected.
2646 		 */
2647 		if (errno == ENOENT) {
2648 			*bufp = NULL;
2649 			return (0);
2650 		}
2651 
2652 		return (dt_set_errno(dtp, errno));
2653 	}
2654 
2655 	error = dt_unring_buf(dtp, buf);
2656 	if (error != 0) {
2657 		dt_put_buf(dtp, buf);
2658 		return (error);
2659 	}
2660 	dt_realloc_buf(dtp, buf, size);
2661 
2662 	*bufp = buf;
2663 	return (0);
2664 }
2665 
2666 typedef struct dt_begin {
2667 	dtrace_consume_probe_f *dtbgn_probefunc;
2668 	dtrace_consume_rec_f *dtbgn_recfunc;
2669 	void *dtbgn_arg;
2670 	dtrace_handle_err_f *dtbgn_errhdlr;
2671 	void *dtbgn_errarg;
2672 	int dtbgn_beginonly;
2673 } dt_begin_t;
2674 
2675 static int
2676 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2677 {
2678 	dt_begin_t *begin = arg;
2679 	dtrace_probedesc_t *pd = data->dtpda_pdesc;
2680 
2681 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2682 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2683 
2684 	if (begin->dtbgn_beginonly) {
2685 		if (!(r1 && r2))
2686 			return (DTRACE_CONSUME_NEXT);
2687 	} else {
2688 		if (r1 && r2)
2689 			return (DTRACE_CONSUME_NEXT);
2690 	}
2691 
2692 	/*
2693 	 * We have a record that we're interested in.  Now call the underlying
2694 	 * probe function...
2695 	 */
2696 	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2697 }
2698 
2699 static int
2700 dt_consume_begin_record(const dtrace_probedata_t *data,
2701     const dtrace_recdesc_t *rec, void *arg)
2702 {
2703 	dt_begin_t *begin = arg;
2704 
2705 	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2706 }
2707 
2708 static int
2709 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2710 {
2711 	dt_begin_t *begin = (dt_begin_t *)arg;
2712 	dtrace_probedesc_t *pd = data->dteda_pdesc;
2713 
2714 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2715 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2716 
2717 	if (begin->dtbgn_beginonly) {
2718 		if (!(r1 && r2))
2719 			return (DTRACE_HANDLE_OK);
2720 	} else {
2721 		if (r1 && r2)
2722 			return (DTRACE_HANDLE_OK);
2723 	}
2724 
2725 	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2726 }
2727 
2728 static int
2729 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp,
2730     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2731 {
2732 	/*
2733 	 * There's this idea that the BEGIN probe should be processed before
2734 	 * everything else, and that the END probe should be processed after
2735 	 * anything else.  In the common case, this is pretty easy to deal
2736 	 * with.  However, a situation may arise where the BEGIN enabling and
2737 	 * END enabling are on the same CPU, and some enabling in the middle
2738 	 * occurred on a different CPU.  To deal with this (blech!) we need to
2739 	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2740 	 * then set it aside.  We will then process every other CPU, and then
2741 	 * we'll return to the BEGIN CPU and process the rest of the data
2742 	 * (which will inevitably include the END probe, if any).  Making this
2743 	 * even more complicated (!) is the library's ERROR enabling.  Because
2744 	 * this enabling is processed before we even get into the consume call
2745 	 * back, any ERROR firing would result in the library's ERROR enabling
2746 	 * being processed twice -- once in our first pass (for BEGIN probes),
2747 	 * and again in our second pass (for everything but BEGIN probes).  To
2748 	 * deal with this, we interpose on the ERROR handler to assure that we
2749 	 * only process ERROR enablings induced by BEGIN enablings in the
2750 	 * first pass, and that we only process ERROR enablings _not_ induced
2751 	 * by BEGIN enablings in the second pass.
2752 	 */
2753 
2754 	dt_begin_t begin;
2755 	processorid_t cpu = dtp->dt_beganon;
2756 	int rval, i;
2757 	static int max_ncpus;
2758 	dtrace_bufdesc_t *buf;
2759 
2760 	dtp->dt_beganon = -1;
2761 
2762 	if (dt_get_buf(dtp, cpu, &buf) != 0)
2763 		return (-1);
2764 	if (buf == NULL)
2765 		return (0);
2766 
2767 	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2768 		/*
2769 		 * This is the simple case.  We're either not stopped, or if
2770 		 * we are, we actually processed any END probes on another
2771 		 * CPU.  We can simply consume this buffer and return.
2772 		 */
2773 		rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2774 		    pf, rf, arg);
2775 		dt_put_buf(dtp, buf);
2776 		return (rval);
2777 	}
2778 
2779 	begin.dtbgn_probefunc = pf;
2780 	begin.dtbgn_recfunc = rf;
2781 	begin.dtbgn_arg = arg;
2782 	begin.dtbgn_beginonly = 1;
2783 
2784 	/*
2785 	 * We need to interpose on the ERROR handler to be sure that we
2786 	 * only process ERRORs induced by BEGIN.
2787 	 */
2788 	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2789 	begin.dtbgn_errarg = dtp->dt_errarg;
2790 	dtp->dt_errhdlr = dt_consume_begin_error;
2791 	dtp->dt_errarg = &begin;
2792 
2793 	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2794 	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
2795 
2796 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2797 	dtp->dt_errarg = begin.dtbgn_errarg;
2798 
2799 	if (rval != 0) {
2800 		dt_put_buf(dtp, buf);
2801 		return (rval);
2802 	}
2803 
2804 	if (max_ncpus == 0)
2805 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2806 
2807 	for (i = 0; i < max_ncpus; i++) {
2808 		dtrace_bufdesc_t *nbuf;
2809 		if (i == cpu)
2810 			continue;
2811 
2812 		if (dt_get_buf(dtp, i, &nbuf) != 0) {
2813 			dt_put_buf(dtp, buf);
2814 			return (-1);
2815 		}
2816 		if (nbuf == NULL)
2817 			continue;
2818 
2819 		rval = dt_consume_cpu(dtp, fp, i, nbuf, B_FALSE,
2820 		    pf, rf, arg);
2821 		dt_put_buf(dtp, nbuf);
2822 		if (rval != 0) {
2823 			dt_put_buf(dtp, buf);
2824 			return (rval);
2825 		}
2826 	}
2827 
2828 	/*
2829 	 * Okay -- we're done with the other buffers.  Now we want to
2830 	 * reconsume the first buffer -- but this time we're looking for
2831 	 * everything _but_ BEGIN.  And of course, in order to only consume
2832 	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2833 	 * ERROR interposition function...
2834 	 */
2835 	begin.dtbgn_beginonly = 0;
2836 
2837 	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2838 	assert(begin.dtbgn_errarg == dtp->dt_errarg);
2839 	dtp->dt_errhdlr = dt_consume_begin_error;
2840 	dtp->dt_errarg = &begin;
2841 
2842 	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2843 	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
2844 
2845 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2846 	dtp->dt_errarg = begin.dtbgn_errarg;
2847 
2848 	return (rval);
2849 }
2850 
2851 /* ARGSUSED */
2852 static uint64_t
2853 dt_buf_oldest(void *elem, void *arg)
2854 {
2855 	dtrace_bufdesc_t *buf = elem;
2856 	size_t offs = buf->dtbd_oldest;
2857 
2858 	while (offs < buf->dtbd_size) {
2859 		dtrace_rechdr_t *dtrh =
2860 		    /* LINTED - alignment */
2861 		    (dtrace_rechdr_t *)(buf->dtbd_data + offs);
2862 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2863 			offs += sizeof (dtrace_epid_t);
2864 		} else {
2865 			return (DTRACE_RECORD_LOAD_TIMESTAMP(dtrh));
2866 		}
2867 	}
2868 
2869 	/* There are no records left; use the time the buffer was retrieved. */
2870 	return (buf->dtbd_timestamp);
2871 }
2872 
2873 int
2874 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2875     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2876 {
2877 	dtrace_optval_t size;
2878 	static int max_ncpus;
2879 	int i, rval;
2880 	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2881 	hrtime_t now = gethrtime();
2882 
2883 	if (dtp->dt_lastswitch != 0) {
2884 		if (now - dtp->dt_lastswitch < interval)
2885 			return (0);
2886 
2887 		dtp->dt_lastswitch += interval;
2888 	} else {
2889 		dtp->dt_lastswitch = now;
2890 	}
2891 
2892 	if (!dtp->dt_active)
2893 		return (dt_set_errno(dtp, EINVAL));
2894 
2895 	if (max_ncpus == 0)
2896 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2897 
2898 	if (pf == NULL)
2899 		pf = (dtrace_consume_probe_f *)dt_nullprobe;
2900 
2901 	if (rf == NULL)
2902 		rf = (dtrace_consume_rec_f *)dt_nullrec;
2903 
2904 	if (dtp->dt_options[DTRACEOPT_TEMPORAL] == DTRACEOPT_UNSET) {
2905 		/*
2906 		 * The output will not be in the order it was traced.  Rather,
2907 		 * we will consume all of the data from each CPU's buffer in
2908 		 * turn.  We apply special handling for the records from BEGIN
2909 		 * and END probes so that they are consumed first and last,
2910 		 * respectively.
2911 		 *
2912 		 * If we have just begun, we want to first process the CPU that
2913 		 * executed the BEGIN probe (if any).
2914 		 */
2915 		if (dtp->dt_active && dtp->dt_beganon != -1 &&
2916 		    (rval = dt_consume_begin(dtp, fp, pf, rf, arg)) != 0)
2917 			return (rval);
2918 
2919 		for (i = 0; i < max_ncpus; i++) {
2920 			dtrace_bufdesc_t *buf;
2921 
2922 			/*
2923 			 * If we have stopped, we want to process the CPU on
2924 			 * which the END probe was processed only _after_ we
2925 			 * have processed everything else.
2926 			 */
2927 			if (dtp->dt_stopped && (i == dtp->dt_endedon))
2928 				continue;
2929 
2930 			if (dt_get_buf(dtp, i, &buf) != 0)
2931 				return (-1);
2932 			if (buf == NULL)
2933 				continue;
2934 
2935 			dtp->dt_flow = 0;
2936 			dtp->dt_indent = 0;
2937 			dtp->dt_prefix = NULL;
2938 			rval = dt_consume_cpu(dtp, fp, i,
2939 			    buf, B_FALSE, pf, rf, arg);
2940 			dt_put_buf(dtp, buf);
2941 			if (rval != 0)
2942 				return (rval);
2943 		}
2944 		if (dtp->dt_stopped) {
2945 			dtrace_bufdesc_t *buf;
2946 
2947 			if (dt_get_buf(dtp, dtp->dt_endedon, &buf) != 0)
2948 				return (-1);
2949 			if (buf == NULL)
2950 				return (0);
2951 
2952 			rval = dt_consume_cpu(dtp, fp, dtp->dt_endedon,
2953 			    buf, B_FALSE, pf, rf, arg);
2954 			dt_put_buf(dtp, buf);
2955 			return (rval);
2956 		}
2957 	} else {
2958 		/*
2959 		 * The output will be in the order it was traced (or for
2960 		 * speculations, when it was committed).  We retrieve a buffer
2961 		 * from each CPU and put it into a priority queue, which sorts
2962 		 * based on the first entry in the buffer.  This is sufficient
2963 		 * because entries within a buffer are already sorted.
2964 		 *
2965 		 * We then consume records one at a time, always consuming the
2966 		 * oldest record, as determined by the priority queue.  When
2967 		 * we reach the end of the time covered by these buffers,
2968 		 * we need to stop and retrieve more records on the next pass.
2969 		 * The kernel tells us the time covered by each buffer, in
2970 		 * dtbd_timestamp.  The first buffer's timestamp tells us the
2971 		 * time covered by all buffers, as subsequently retrieved
2972 		 * buffers will cover to a more recent time.
2973 		 */
2974 
2975 		uint64_t *drops = alloca(max_ncpus * sizeof (uint64_t));
2976 		uint64_t first_timestamp = 0;
2977 		uint_t cookie = 0;
2978 		dtrace_bufdesc_t *buf;
2979 
2980 		bzero(drops, max_ncpus * sizeof (uint64_t));
2981 
2982 		if (dtp->dt_bufq == NULL) {
2983 			dtp->dt_bufq = dt_pq_init(dtp, max_ncpus * 2,
2984 			    dt_buf_oldest, NULL);
2985 			if (dtp->dt_bufq == NULL) /* ENOMEM */
2986 				return (-1);
2987 		}
2988 
2989 		/* Retrieve data from each CPU. */
2990 		(void) dtrace_getopt(dtp, "bufsize", &size);
2991 		for (i = 0; i < max_ncpus; i++) {
2992 			dtrace_bufdesc_t *buf;
2993 
2994 			if (dt_get_buf(dtp, i, &buf) != 0)
2995 				return (-1);
2996 			if (buf != NULL) {
2997 				if (first_timestamp == 0)
2998 					first_timestamp = buf->dtbd_timestamp;
2999 				assert(buf->dtbd_timestamp >= first_timestamp);
3000 
3001 				dt_pq_insert(dtp->dt_bufq, buf);
3002 				drops[i] = buf->dtbd_drops;
3003 				buf->dtbd_drops = 0;
3004 			}
3005 		}
3006 
3007 		/* Consume records. */
3008 		for (;;) {
3009 			dtrace_bufdesc_t *buf = dt_pq_pop(dtp->dt_bufq);
3010 			uint64_t timestamp;
3011 
3012 			if (buf == NULL)
3013 				break;
3014 
3015 			timestamp = dt_buf_oldest(buf, dtp);
3016 			assert(timestamp >= dtp->dt_last_timestamp);
3017 			dtp->dt_last_timestamp = timestamp;
3018 
3019 			if (timestamp == buf->dtbd_timestamp) {
3020 				/*
3021 				 * We've reached the end of the time covered
3022 				 * by this buffer.  If this is the oldest
3023 				 * buffer, we must do another pass
3024 				 * to retrieve more data.
3025 				 */
3026 				dt_put_buf(dtp, buf);
3027 				if (timestamp == first_timestamp &&
3028 				    !dtp->dt_stopped)
3029 					break;
3030 				continue;
3031 			}
3032 
3033 			if ((rval = dt_consume_cpu(dtp, fp,
3034 			    buf->dtbd_cpu, buf, B_TRUE, pf, rf, arg)) != 0)
3035 				return (rval);
3036 			dt_pq_insert(dtp->dt_bufq, buf);
3037 		}
3038 
3039 		/* Consume drops. */
3040 		for (i = 0; i < max_ncpus; i++) {
3041 			if (drops[i] != 0) {
3042 				int error = dt_handle_cpudrop(dtp, i,
3043 				    DTRACEDROP_PRINCIPAL, drops[i]);
3044 				if (error != 0)
3045 					return (error);
3046 			}
3047 		}
3048 
3049 		/*
3050 		 * Reduce memory usage by re-allocating smaller buffers
3051 		 * for the "remnants".
3052 		 */
3053 		while (buf = dt_pq_walk(dtp->dt_bufq, &cookie))
3054 			dt_realloc_buf(dtp, buf, buf->dtbd_size);
3055 	}
3056 
3057 	return (0);
3058 }
3059