xref: /illumos-gate/usr/src/lib/libctf/common/ctf_lib.c (revision 07de4b8b08600eb9a66746ea6cc4a9fbc7981e4f)
1  /*
2   * CDDL HEADER START
3   *
4   * The contents of this file are subject to the terms of the
5   * Common Development and Distribution License, Version 1.0 only
6   * (the "License").  You may not use this file except in compliance
7   * with the License.
8   *
9   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10   * or http://www.opensolaris.org/os/licensing.
11   * See the License for the specific language governing permissions
12   * and limitations under the License.
13   *
14   * When distributing Covered Code, include this CDDL HEADER in each
15   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16   * If applicable, add the following below this CDDL HEADER, with the
17   * fields enclosed by brackets "[]" replaced with your own identifying
18   * information: Portions Copyright [yyyy] [name of copyright owner]
19   *
20   * CDDL HEADER END
21   */
22  /*
23   * Copyright 2003 Sun Microsystems, Inc.  All rights reserved.
24   * Use is subject to license terms.
25   */
26  /*
27   * Copyright (c) 2019, Joyent, Inc.
28   */
29  
30  #include <sys/types.h>
31  #include <sys/stat.h>
32  #include <sys/mman.h>
33  #include <libctf_impl.h>
34  #include <unistd.h>
35  #include <fcntl.h>
36  #include <errno.h>
37  #include <dlfcn.h>
38  #include <gelf.h>
39  #include <zlib.h>
40  #include <sys/debug.h>
41  
42  #ifdef _LP64
43  static const char *_libctf_zlib = "/usr/lib/64/libz.so.1";
44  #else
45  static const char *_libctf_zlib = "/usr/lib/libz.so.1";
46  #endif
47  
48  static struct {
49  	int (*z_uncompress)(uchar_t *, ulong_t *, const uchar_t *, ulong_t);
50  	int (*z_initcomp)(z_stream *, int, const char *, int);
51  	int (*z_compress)(z_stream *, int);
52  	int (*z_finicomp)(z_stream *);
53  	const char *(*z_error)(int);
54  	void *z_dlp;
55  } zlib;
56  
57  static size_t _PAGESIZE;
58  static size_t _PAGEMASK;
59  
60  static uint64_t ctf_phase = 0;
61  
62  #define	CTF_COMPRESS_CHUNK	(64*1024)
63  
64  typedef struct ctf_zdata {
65  	void		*czd_buf;
66  	void		*czd_next;
67  	ctf_file_t	*czd_ctfp;
68  	size_t		czd_allocsz;
69  	z_stream	czd_zstr;
70  } ctf_zdata_t;
71  
72  #pragma init(_libctf_init)
73  void
74  _libctf_init(void)
75  {
76  	const char *p = getenv("LIBCTF_DECOMPRESSOR");
77  
78  	if (p != NULL)
79  		_libctf_zlib = p; /* use alternate decompression library */
80  
81  	_libctf_debug = getenv("LIBCTF_DEBUG") != NULL;
82  
83  	_PAGESIZE = getpagesize();
84  	_PAGEMASK = ~(_PAGESIZE - 1);
85  }
86  
87  /*
88   * Attempt to dlopen the decompression library and locate the symbols of
89   * interest that we will need to call.  This information in cached so
90   * that multiple calls to ctf_bufopen() do not need to reopen the library.
91   */
92  void *
93  ctf_zopen(int *errp)
94  {
95  	ctf_dprintf("decompressing CTF data using %s\n", _libctf_zlib);
96  
97  	if (zlib.z_dlp != NULL)
98  		return (zlib.z_dlp); /* library is already loaded */
99  
100  	if (access(_libctf_zlib, R_OK) == -1)
101  		return (ctf_set_open_errno(errp, ECTF_ZMISSING));
102  
103  	if ((zlib.z_dlp = dlopen(_libctf_zlib, RTLD_LAZY | RTLD_LOCAL)) == NULL)
104  		return (ctf_set_open_errno(errp, ECTF_ZINIT));
105  
106  	zlib.z_uncompress = (int (*)()) dlsym(zlib.z_dlp, "uncompress");
107  	zlib.z_initcomp = (int (*)()) dlsym(zlib.z_dlp, "deflateInit_");
108  	zlib.z_compress = (int (*)()) dlsym(zlib.z_dlp, "deflate");
109  	zlib.z_finicomp = (int (*)()) dlsym(zlib.z_dlp, "deflateEnd");
110  	zlib.z_error = (const char *(*)()) dlsym(zlib.z_dlp, "zError");
111  
112  	if (zlib.z_uncompress == NULL || zlib.z_error == NULL ||
113  	    zlib.z_initcomp == NULL|| zlib.z_compress == NULL ||
114  	    zlib.z_finicomp == NULL) {
115  		(void) dlclose(zlib.z_dlp);
116  		bzero(&zlib, sizeof (zlib));
117  		return (ctf_set_open_errno(errp, ECTF_ZINIT));
118  	}
119  
120  	return (zlib.z_dlp);
121  }
122  
123  /*
124   * The ctf_bufopen() routine calls these subroutines, defined by <sys/zmod.h>,
125   * which we then patch through to the functions in the decompression library.
126   */
127  int
128  z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen)
129  {
130  	return (zlib.z_uncompress(dst, (ulong_t *)dstlen, src, srclen));
131  }
132  
133  const char *
134  z_strerror(int err)
135  {
136  	return (zlib.z_error(err));
137  }
138  
139  static int
140  ctf_zdata_init(ctf_zdata_t *czd, ctf_file_t *fp)
141  {
142  	ctf_header_t *cthp;
143  
144  	bzero(czd, sizeof (ctf_zdata_t));
145  
146  	czd->czd_allocsz = fp->ctf_size;
147  	czd->czd_buf = ctf_data_alloc(czd->czd_allocsz);
148  	if (czd->czd_buf == MAP_FAILED)
149  		return (ctf_set_errno(fp, ENOMEM));
150  
151  	bcopy(fp->ctf_base, czd->czd_buf, sizeof (ctf_header_t));
152  	czd->czd_ctfp = fp;
153  	cthp = czd->czd_buf;
154  	cthp->cth_flags |= CTF_F_COMPRESS;
155  	czd->czd_next = (void *)((uintptr_t)czd->czd_buf +
156  	    sizeof (ctf_header_t));
157  
158  	if (zlib.z_initcomp(&czd->czd_zstr, Z_BEST_COMPRESSION,
159  	    ZLIB_VERSION, sizeof (z_stream)) != Z_OK)
160  		return (ctf_set_errno(fp, ECTF_ZLIB));
161  
162  	return (0);
163  }
164  
165  static int
166  ctf_zdata_grow(ctf_zdata_t *czd)
167  {
168  	size_t off;
169  	size_t newsz;
170  	void *ndata;
171  
172  	off = (uintptr_t)czd->czd_next - (uintptr_t)czd->czd_buf;
173  	newsz = czd->czd_allocsz + CTF_COMPRESS_CHUNK;
174  	ndata = ctf_data_alloc(newsz);
175  	if (ndata == MAP_FAILED) {
176  		return (ctf_set_errno(czd->czd_ctfp, ENOMEM));
177  	}
178  
179  	bcopy(czd->czd_buf, ndata, off);
180  	ctf_data_free(czd->czd_buf, czd->czd_allocsz);
181  	czd->czd_allocsz = newsz;
182  	czd->czd_buf = ndata;
183  	czd->czd_next = (void *)((uintptr_t)ndata + off);
184  
185  	czd->czd_zstr.next_out = (Bytef *)czd->czd_next;
186  	czd->czd_zstr.avail_out = CTF_COMPRESS_CHUNK;
187  	return (0);
188  }
189  
190  static int
191  ctf_zdata_compress_buffer(ctf_zdata_t *czd, const void *buf, size_t bufsize)
192  {
193  	int err;
194  
195  	czd->czd_zstr.next_out = czd->czd_next;
196  	czd->czd_zstr.avail_out = czd->czd_allocsz -
197  	    ((uintptr_t)czd->czd_next - (uintptr_t)czd->czd_buf);
198  	czd->czd_zstr.next_in = (Bytef *)buf;
199  	czd->czd_zstr.avail_in = bufsize;
200  
201  	while (czd->czd_zstr.avail_in != 0) {
202  		if (czd->czd_zstr.avail_out == 0) {
203  			czd->czd_next = czd->czd_zstr.next_out;
204  			if ((err = ctf_zdata_grow(czd)) != 0) {
205  				return (err);
206  			}
207  		}
208  
209  		if ((err = zlib.z_compress(&czd->czd_zstr, Z_NO_FLUSH)) != Z_OK)
210  			return (ctf_set_errno(czd->czd_ctfp, ECTF_ZLIB));
211  	}
212  	czd->czd_next = czd->czd_zstr.next_out;
213  
214  	return (0);
215  }
216  
217  static int
218  ctf_zdata_flush(ctf_zdata_t *czd, boolean_t finish)
219  {
220  	int err;
221  	int flag = finish == B_TRUE ? Z_FINISH : Z_FULL_FLUSH;
222  	int bret = finish == B_TRUE ? Z_STREAM_END : Z_BUF_ERROR;
223  
224  	for (;;) {
225  		if (czd->czd_zstr.avail_out == 0) {
226  			czd->czd_next = czd->czd_zstr.next_out;
227  			if ((err = ctf_zdata_grow(czd)) != 0) {
228  				return (err);
229  			}
230  		}
231  
232  		err = zlib.z_compress(&czd->czd_zstr, flag);
233  		if (err == bret) {
234  			break;
235  		}
236  		if (err != Z_OK)
237  			return (ctf_set_errno(czd->czd_ctfp, ECTF_ZLIB));
238  
239  	}
240  
241  	czd->czd_next = czd->czd_zstr.next_out;
242  
243  	return (0);
244  }
245  
246  static int
247  ctf_zdata_end(ctf_zdata_t *czd)
248  {
249  	int ret;
250  
251  	if ((ret = ctf_zdata_flush(czd, B_TRUE)) != 0)
252  		return (ret);
253  
254  	if ((ret = zlib.z_finicomp(&czd->czd_zstr)) != 0)
255  		return (ctf_set_errno(czd->czd_ctfp, ECTF_ZLIB));
256  
257  	return (0);
258  }
259  
260  static void
261  ctf_zdata_cleanup(ctf_zdata_t *czd)
262  {
263  	ctf_data_free(czd->czd_buf, czd->czd_allocsz);
264  	(void) zlib.z_finicomp(&czd->czd_zstr);
265  }
266  
267  /*
268   * Compress our CTF data and return both the size of the compressed data and the
269   * size of the allocation. These may be different due to the nature of
270   * compression.
271   *
272   * In addition, we flush the compression between our two phases such that we
273   * maintain a different dictionary between the CTF data and the string section.
274   */
275  int
276  ctf_compress(ctf_file_t *fp, void **buf, size_t *allocsz, size_t *elfsize)
277  {
278  	int err;
279  	ctf_zdata_t czd;
280  	ctf_header_t *cthp = (ctf_header_t *)fp->ctf_base;
281  
282  	if ((err = ctf_zdata_init(&czd, fp)) != 0)
283  		return (err);
284  
285  	if ((err = ctf_zdata_compress_buffer(&czd, fp->ctf_buf,
286  	    cthp->cth_stroff)) != 0) {
287  		ctf_zdata_cleanup(&czd);
288  		return (err);
289  	}
290  
291  	if ((err = ctf_zdata_flush(&czd, B_FALSE)) != 0) {
292  		ctf_zdata_cleanup(&czd);
293  		return (err);
294  	}
295  
296  	if ((err = ctf_zdata_compress_buffer(&czd,
297  	    fp->ctf_buf + cthp->cth_stroff, cthp->cth_strlen)) != 0) {
298  		ctf_zdata_cleanup(&czd);
299  		return (err);
300  	}
301  
302  	if ((err = ctf_zdata_end(&czd)) != 0) {
303  		ctf_zdata_cleanup(&czd);
304  		return (err);
305  	}
306  
307  	*buf = czd.czd_buf;
308  	*allocsz = czd.czd_allocsz;
309  	*elfsize = (uintptr_t)czd.czd_next - (uintptr_t)czd.czd_buf;
310  
311  	return (0);
312  }
313  
314  int
315  z_compress(void *dst, size_t *dstlen, const void *src, size_t srclen)
316  {
317  	z_stream zs;
318  	int err;
319  
320  	bzero(&zs, sizeof (z_stream));
321  	zs.next_in = (uchar_t *)src;
322  	zs.avail_in = srclen;
323  	zs.next_out = dst;
324  	zs.avail_out = *dstlen;
325  
326  	if ((err = zlib.z_initcomp(&zs, Z_BEST_COMPRESSION, ZLIB_VERSION,
327  	    sizeof (z_stream))) != Z_OK)
328  		return (err);
329  
330  	if ((err = zlib.z_compress(&zs, Z_FINISH)) != Z_STREAM_END) {
331  		(void) zlib.z_finicomp(&zs);
332  		return (err == Z_OK ? Z_BUF_ERROR : err);
333  	}
334  
335  	*dstlen = zs.total_out;
336  	return (zlib.z_finicomp(&zs));
337  }
338  
339  /*
340   * Convert a 32-bit ELF file header into GElf.
341   */
342  static void
343  ehdr_to_gelf(const Elf32_Ehdr *src, GElf_Ehdr *dst)
344  {
345  	bcopy(src->e_ident, dst->e_ident, EI_NIDENT);
346  	dst->e_type = src->e_type;
347  	dst->e_machine = src->e_machine;
348  	dst->e_version = src->e_version;
349  	dst->e_entry = (Elf64_Addr)src->e_entry;
350  	dst->e_phoff = (Elf64_Off)src->e_phoff;
351  	dst->e_shoff = (Elf64_Off)src->e_shoff;
352  	dst->e_flags = src->e_flags;
353  	dst->e_ehsize = src->e_ehsize;
354  	dst->e_phentsize = src->e_phentsize;
355  	dst->e_phnum = src->e_phnum;
356  	dst->e_shentsize = src->e_shentsize;
357  	dst->e_shnum = src->e_shnum;
358  	dst->e_shstrndx = src->e_shstrndx;
359  }
360  
361  /*
362   * Convert a 32-bit ELF section header into GElf.
363   */
364  static void
365  shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
366  {
367  	dst->sh_name = src->sh_name;
368  	dst->sh_type = src->sh_type;
369  	dst->sh_flags = src->sh_flags;
370  	dst->sh_addr = src->sh_addr;
371  	dst->sh_offset = src->sh_offset;
372  	dst->sh_size = src->sh_size;
373  	dst->sh_link = src->sh_link;
374  	dst->sh_info = src->sh_info;
375  	dst->sh_addralign = src->sh_addralign;
376  	dst->sh_entsize = src->sh_entsize;
377  }
378  
379  /*
380   * In order to mmap a section from the ELF file, we must round down sh_offset
381   * to the previous page boundary, and mmap the surrounding page.  We store
382   * the pointer to the start of the actual section data back into sp->cts_data.
383   */
384  const void *
385  ctf_sect_mmap(ctf_sect_t *sp, int fd)
386  {
387  	size_t pageoff = sp->cts_offset & ~_PAGEMASK;
388  
389  	caddr_t base = mmap64(NULL, sp->cts_size + pageoff, PROT_READ,
390  	    MAP_PRIVATE, fd, sp->cts_offset & _PAGEMASK);
391  
392  	if (base != MAP_FAILED)
393  		sp->cts_data = base + pageoff;
394  
395  	return (base);
396  }
397  
398  /*
399   * Since sp->cts_data has the adjusted offset, we have to again round down
400   * to get the actual mmap address and round up to get the size.
401   */
402  void
403  ctf_sect_munmap(const ctf_sect_t *sp)
404  {
405  	uintptr_t addr = (uintptr_t)sp->cts_data;
406  	uintptr_t pageoff = addr & ~_PAGEMASK;
407  
408  	(void) munmap((void *)(addr - pageoff), sp->cts_size + pageoff);
409  }
410  
411  /*
412   * Open the specified file descriptor and return a pointer to a CTF container.
413   * The file can be either an ELF file or raw CTF file.  The caller is
414   * responsible for closing the file descriptor when it is no longer needed.
415   */
416  ctf_file_t *
417  ctf_fdcreate_int(int fd, int *errp, ctf_sect_t *ctfp)
418  {
419  	ctf_sect_t ctfsect, symsect, strsect;
420  	ctf_file_t *fp = NULL;
421  	size_t shstrndx, shnum;
422  
423  	struct stat64 st;
424  	ssize_t nbytes;
425  
426  	union {
427  		ctf_preamble_t ctf;
428  		Elf32_Ehdr e32;
429  		GElf_Ehdr e64;
430  	} hdr;
431  
432  	bzero(&ctfsect, sizeof (ctf_sect_t));
433  	bzero(&symsect, sizeof (ctf_sect_t));
434  	bzero(&strsect, sizeof (ctf_sect_t));
435  	bzero(&hdr.ctf, sizeof (hdr));
436  
437  	if (fstat64(fd, &st) == -1)
438  		return (ctf_set_open_errno(errp, errno));
439  
440  	if ((nbytes = pread64(fd, &hdr.ctf, sizeof (hdr), 0)) <= 0)
441  		return (ctf_set_open_errno(errp, nbytes < 0? errno : ECTF_FMT));
442  
443  	/*
444  	 * If we have read enough bytes to form a CTF header and the magic
445  	 * string matches, attempt to interpret the file as raw CTF.
446  	 */
447  	if (nbytes >= sizeof (ctf_preamble_t) &&
448  	    hdr.ctf.ctp_magic == CTF_MAGIC) {
449  		if (ctfp != NULL)
450  			return (ctf_set_open_errno(errp, EINVAL));
451  
452  		if (hdr.ctf.ctp_version > CTF_VERSION)
453  			return (ctf_set_open_errno(errp, ECTF_CTFVERS));
454  
455  		ctfsect.cts_data = mmap64(NULL, st.st_size, PROT_READ,
456  		    MAP_PRIVATE, fd, 0);
457  
458  		if (ctfsect.cts_data == MAP_FAILED)
459  			return (ctf_set_open_errno(errp, errno));
460  
461  		ctfsect.cts_name = _CTF_SECTION;
462  		ctfsect.cts_type = SHT_PROGBITS;
463  		ctfsect.cts_flags = SHF_ALLOC;
464  		ctfsect.cts_size = (size_t)st.st_size;
465  		ctfsect.cts_entsize = 1;
466  		ctfsect.cts_offset = 0;
467  
468  		if ((fp = ctf_bufopen(&ctfsect, NULL, NULL, errp)) == NULL)
469  			ctf_sect_munmap(&ctfsect);
470  
471  		return (fp);
472  	}
473  
474  	/*
475  	 * If we have read enough bytes to form an ELF header and the magic
476  	 * string matches, attempt to interpret the file as an ELF file.  We
477  	 * do our own largefile ELF processing, and convert everything to
478  	 * GElf structures so that clients can operate on any data model.
479  	 */
480  	if (nbytes >= sizeof (Elf32_Ehdr) &&
481  	    bcmp(&hdr.e32.e_ident[EI_MAG0], ELFMAG, SELFMAG) == 0) {
482  #ifdef	_BIG_ENDIAN
483  		uchar_t order = ELFDATA2MSB;
484  #else
485  		uchar_t order = ELFDATA2LSB;
486  #endif
487  		GElf_Shdr *sp;
488  
489  		void *strs_map;
490  		size_t strs_mapsz, i;
491  		const char *strs;
492  
493  		if (hdr.e32.e_ident[EI_DATA] != order)
494  			return (ctf_set_open_errno(errp, ECTF_ENDIAN));
495  		if (hdr.e32.e_version != EV_CURRENT)
496  			return (ctf_set_open_errno(errp, ECTF_ELFVERS));
497  
498  		if (hdr.e32.e_ident[EI_CLASS] == ELFCLASS64) {
499  			if (nbytes < sizeof (GElf_Ehdr))
500  				return (ctf_set_open_errno(errp, ECTF_FMT));
501  		} else {
502  			Elf32_Ehdr e32 = hdr.e32;
503  			ehdr_to_gelf(&e32, &hdr.e64);
504  		}
505  
506  		shnum = hdr.e64.e_shnum;
507  		shstrndx = hdr.e64.e_shstrndx;
508  
509  		/* Extended ELF sections */
510  		if ((shstrndx == SHN_XINDEX) || (shnum == 0)) {
511  			if (hdr.e32.e_ident[EI_CLASS] == ELFCLASS32) {
512  				Elf32_Shdr x32;
513  
514  				if (pread64(fd, &x32, sizeof (x32),
515  				    hdr.e64.e_shoff) != sizeof (x32))
516  					return (ctf_set_open_errno(errp,
517  					    errno));
518  
519  				shnum = x32.sh_size;
520  				shstrndx = x32.sh_link;
521  			} else {
522  				Elf64_Shdr x64;
523  
524  				if (pread64(fd, &x64, sizeof (x64),
525  				    hdr.e64.e_shoff) != sizeof (x64))
526  					return (ctf_set_open_errno(errp,
527  					    errno));
528  
529  				shnum = x64.sh_size;
530  				shstrndx = x64.sh_link;
531  			}
532  		}
533  
534  		if (shstrndx >= shnum)
535  			return (ctf_set_open_errno(errp, ECTF_CORRUPT));
536  
537  		nbytes = sizeof (GElf_Shdr) * shnum;
538  
539  		if ((sp = malloc(nbytes)) == NULL)
540  			return (ctf_set_open_errno(errp, errno));
541  
542  		/*
543  		 * Read in and convert to GElf the array of Shdr structures
544  		 * from e_shoff so we can locate sections of interest.
545  		 */
546  		if (hdr.e32.e_ident[EI_CLASS] == ELFCLASS32) {
547  			Elf32_Shdr *sp32;
548  
549  			nbytes = sizeof (Elf32_Shdr) * shnum;
550  
551  			if ((sp32 = malloc(nbytes)) == NULL || pread64(fd,
552  			    sp32, nbytes, hdr.e64.e_shoff) != nbytes) {
553  				free(sp);
554  				return (ctf_set_open_errno(errp, errno));
555  			}
556  
557  			for (i = 0; i < shnum; i++)
558  				shdr_to_gelf(&sp32[i], &sp[i]);
559  
560  			free(sp32);
561  
562  		} else if (pread64(fd, sp, nbytes, hdr.e64.e_shoff) != nbytes) {
563  			free(sp);
564  			return (ctf_set_open_errno(errp, errno));
565  		}
566  
567  		/*
568  		 * Now mmap the section header strings section so that we can
569  		 * perform string comparison on the section names.
570  		 */
571  		strs_mapsz = sp[shstrndx].sh_size +
572  		    (sp[shstrndx].sh_offset & ~_PAGEMASK);
573  
574  		strs_map = mmap64(NULL, strs_mapsz, PROT_READ, MAP_PRIVATE,
575  		    fd, sp[shstrndx].sh_offset & _PAGEMASK);
576  
577  		strs = (const char *)strs_map +
578  		    (sp[shstrndx].sh_offset & ~_PAGEMASK);
579  
580  		if (strs_map == MAP_FAILED) {
581  			free(sp);
582  			return (ctf_set_open_errno(errp, ECTF_MMAP));
583  		}
584  
585  		/*
586  		 * Iterate over the section header array looking for the CTF
587  		 * section and symbol table.  The strtab is linked to symtab.
588  		 */
589  		for (i = 0; i < shnum; i++) {
590  			const GElf_Shdr *shp = &sp[i];
591  			const GElf_Shdr *lhp = &sp[shp->sh_link];
592  
593  			if (shp->sh_link >= shnum)
594  				continue; /* corrupt sh_link field */
595  
596  			if (shp->sh_name >= sp[shstrndx].sh_size ||
597  			    lhp->sh_name >= sp[shstrndx].sh_size)
598  				continue; /* corrupt sh_name field */
599  
600  			if (shp->sh_type == SHT_PROGBITS &&
601  			    strcmp(strs + shp->sh_name, _CTF_SECTION) == 0 &&
602  			    ctfp == NULL) {
603  				ctfsect.cts_name = strs + shp->sh_name;
604  				ctfsect.cts_type = shp->sh_type;
605  				ctfsect.cts_flags = shp->sh_flags;
606  				ctfsect.cts_size = shp->sh_size;
607  				ctfsect.cts_entsize = shp->sh_entsize;
608  				ctfsect.cts_offset = (off64_t)shp->sh_offset;
609  
610  			} else if (shp->sh_type == SHT_SYMTAB) {
611  				symsect.cts_name = strs + shp->sh_name;
612  				symsect.cts_type = shp->sh_type;
613  				symsect.cts_flags = shp->sh_flags;
614  				symsect.cts_size = shp->sh_size;
615  				symsect.cts_entsize = shp->sh_entsize;
616  				symsect.cts_offset = (off64_t)shp->sh_offset;
617  
618  				strsect.cts_name = strs + lhp->sh_name;
619  				strsect.cts_type = lhp->sh_type;
620  				strsect.cts_flags = lhp->sh_flags;
621  				strsect.cts_size = lhp->sh_size;
622  				strsect.cts_entsize = lhp->sh_entsize;
623  				strsect.cts_offset = (off64_t)lhp->sh_offset;
624  			}
625  		}
626  
627  		free(sp); /* free section header array */
628  
629  		if (ctfp == NULL) {
630  			if (ctfsect.cts_type == SHT_NULL && ctfp == NULL) {
631  				(void) munmap(strs_map, strs_mapsz);
632  				return (ctf_set_open_errno(errp,
633  				    ECTF_NOCTFDATA));
634  			}
635  
636  			/*
637  			 * Now mmap the CTF data, symtab, and strtab sections
638  			 * and call ctf_bufopen() to do the rest of the work.
639  			 */
640  			if (ctf_sect_mmap(&ctfsect, fd) == MAP_FAILED) {
641  				(void) munmap(strs_map, strs_mapsz);
642  				return (ctf_set_open_errno(errp, ECTF_MMAP));
643  			}
644  			ctfp = &ctfsect;
645  		}
646  
647  		if (symsect.cts_type != SHT_NULL &&
648  		    strsect.cts_type != SHT_NULL) {
649  			if (ctf_sect_mmap(&symsect, fd) == MAP_FAILED ||
650  			    ctf_sect_mmap(&strsect, fd) == MAP_FAILED) {
651  				(void) ctf_set_open_errno(errp, ECTF_MMAP);
652  				goto bad; /* unmap all and abort */
653  			}
654  			fp = ctf_bufopen(ctfp, &symsect, &strsect, errp);
655  		} else
656  			fp = ctf_bufopen(ctfp, NULL, NULL, errp);
657  bad:
658  		if (fp == NULL) {
659  			if (ctfp == NULL)
660  				ctf_sect_munmap(&ctfsect);
661  			ctf_sect_munmap(&symsect);
662  			ctf_sect_munmap(&strsect);
663  		} else
664  			fp->ctf_flags |= LCTF_MMAP;
665  
666  		(void) munmap(strs_map, strs_mapsz);
667  		return (fp);
668  	}
669  
670  	return (ctf_set_open_errno(errp, ECTF_FMT));
671  }
672  
673  ctf_file_t *
674  ctf_fdopen(int fd, int *errp)
675  {
676  	return (ctf_fdcreate_int(fd, errp, NULL));
677  }
678  
679  /*
680   * Open the specified file and return a pointer to a CTF container.  The file
681   * can be either an ELF file or raw CTF file.  This is just a convenient
682   * wrapper around ctf_fdopen() for callers.
683   */
684  ctf_file_t *
685  ctf_open(const char *filename, int *errp)
686  {
687  	ctf_file_t *fp;
688  	int fd;
689  
690  	if ((fd = open64(filename, O_RDONLY)) == -1) {
691  		if (errp != NULL)
692  			*errp = errno;
693  		return (NULL);
694  	}
695  
696  	fp = ctf_fdopen(fd, errp);
697  	(void) close(fd);
698  	return (fp);
699  }
700  
701  /*
702   * Write the uncompressed CTF data stream to the specified file descriptor.
703   * This is useful for saving the results of dynamic CTF containers.
704   */
705  int
706  ctf_write(ctf_file_t *fp, int fd)
707  {
708  	const uchar_t *buf = fp->ctf_base;
709  	ssize_t resid = fp->ctf_size;
710  	ssize_t len;
711  
712  	while (resid != 0) {
713  		if ((len = write(fd, buf, resid)) <= 0)
714  			return (ctf_set_errno(fp, errno));
715  		resid -= len;
716  		buf += len;
717  	}
718  
719  	return (0);
720  }
721  
722  /*
723   * Set the CTF library client version to the specified version.  If version is
724   * zero, we just return the default library version number.
725   */
726  int
727  ctf_version(int version)
728  {
729  	if (version < 0) {
730  		errno = EINVAL;
731  		return (-1);
732  	}
733  
734  	if (version > 0) {
735  		if (version > CTF_VERSION) {
736  			errno = ENOTSUP;
737  			return (-1);
738  		}
739  		ctf_dprintf("ctf_version: client using version %d\n", version);
740  		_libctf_version = version;
741  	}
742  
743  	return (_libctf_version);
744  }
745  
746  /*
747   * A utility function for folks debugging CTF conversion and merging.
748   */
749  void
750  ctf_phase_dump(ctf_file_t *fp, const char *phase, const char *name)
751  {
752  	int fd;
753  	static char *base;
754  	char path[MAXPATHLEN];
755  
756  	if (base == NULL && (base = getenv("LIBCTF_WRITE_PHASES")) == NULL)
757  		return;
758  
759  	if (name == NULL)
760  		name = "libctf";
761  
762  	(void) snprintf(path, sizeof (path), "%s/%s.%s.%d.ctf", base, name,
763  	    phase != NULL ? phase : "",
764  	    ctf_phase);
765  	if ((fd = open(path, O_CREAT | O_TRUNC | O_RDWR, 0777)) < 0)
766  		return;
767  	(void) ctf_write(fp, fd);
768  	(void) close(fd);
769  }
770  
771  void
772  ctf_phase_bump(void)
773  {
774  	ctf_phase++;
775  }
776  
777  int
778  ctf_symtab_iter(ctf_file_t *fp, ctf_symtab_f func, void *arg)
779  {
780  	ulong_t i;
781  	uintptr_t symbase;
782  	uintptr_t strbase;
783  	const char *file = NULL;
784  	boolean_t primary = B_TRUE;
785  
786  	if (fp->ctf_symtab.cts_data == NULL ||
787  	    fp->ctf_strtab.cts_data == NULL) {
788  		return (ECTF_NOSYMTAB);
789  	}
790  
791  	symbase = (uintptr_t)fp->ctf_symtab.cts_data;
792  	strbase = (uintptr_t)fp->ctf_strtab.cts_data;
793  
794  	for (i = 0; i < fp->ctf_nsyms; i++) {
795  		const char *name;
796  		int ret;
797  		uint_t type;
798  		Elf64_Sym sym;
799  
800  		/*
801  		 * The CTF library has historically tried to handle large file
802  		 * offsets itself so that way clients can be unaware of such
803  		 * isseus. Therefore, we translate everything to a 64-bit ELF
804  		 * symbol, this is done to make it so that the rest of the
805  		 * library doesn't have to know about these differences. For
806  		 * more information see, lib/libctf/common/ctf_lib.c.
807  		 */
808  		if (fp->ctf_symtab.cts_entsize == sizeof (Elf32_Sym)) {
809  			const Elf32_Sym *symp = (Elf32_Sym *)symbase + i;
810  			uint_t bind, itype;
811  
812  			sym.st_name = symp->st_name;
813  			sym.st_value = symp->st_value;
814  			sym.st_size = symp->st_size;
815  			bind = ELF32_ST_BIND(symp->st_info);
816  			itype = ELF32_ST_TYPE(symp->st_info);
817  			sym.st_info = ELF64_ST_INFO(bind, itype);
818  			sym.st_other = symp->st_other;
819  			sym.st_shndx = symp->st_shndx;
820  		} else {
821  			const Elf64_Sym *symp = (Elf64_Sym *)symbase + i;
822  
823  			sym = *symp;
824  		}
825  
826  		type = ELF64_ST_TYPE(sym.st_info);
827  		name = (const char *)(strbase + sym.st_name);
828  
829  		/*
830  		 * Check first if we have an STT_FILE entry. This is used to
831  		 * distinguish between various local symbols when merging.
832  		 */
833  		if (type == STT_FILE) {
834  			if (file != NULL) {
835  				primary = B_FALSE;
836  			}
837  			file = name;
838  			continue;
839  		}
840  
841  		/*
842  		 * Check if this is a symbol that we care about.
843  		 */
844  		if (!ctf_sym_valid(strbase, type, sym.st_shndx, sym.st_value,
845  		    sym.st_name)) {
846  			continue;
847  		}
848  
849  		if ((ret = func(&sym, i, file, name, primary, arg)) != 0) {
850  			return (ret);
851  		}
852  	}
853  
854  	return (0);
855  }
856